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Abstract—Due to the capabilities of providing extremely low
packet loss and bounded end-to-end latency, deterministic net-
working (DetNet) has been considered as a promising technology
for emerging time-sensitive applications (e.g., industrial control
and smart grids) in IP networks. To provide deterministic
services, the operator needs to address the routing and scheduling
problem. In this work, we study the problem from a novel
prospective, i.e., the problem should be optimized not only
for deterministic traffic, but also for normal traffic to coexist
with the former. Specifically, we redefine the problem as band-
width allocation, routing and scheduling (BaRS), and model this
problem as a bilevel optimization which consists of an upper-
level optimization and a lower-level optimization. The upper-
level optimization allocates link bandwidth between deterministic
and normal traffic to maximize the available bandwidth for
normal traffic on the premise of accepting a certain portion of
deterministic bandwidth; the lower-level optimization determines
specific routing and scheduling solutions for deterministic traffic
to maximize the number of accepted deterministic flows. We first
formulate the bilevel optimization as a bilevel mixed integer linear
programming (BMILP). Then, we propose an exact algorithm
based on cutting planes to solve it exactly, and propose an
approximation algorithm based on two-level relaxations and
randomized rounding to solve it effectively and time-efficiently.
Extensive simulations are conducted and the results verify the
effectiveness of our proposals in balancing the tradeoff between
the available bandwidth for normal traffic and the number of
accepted deterministic flows.

Index Terms—Deterministic networking, Normal and deter-
ministic traffic, Bandwidth allocation, routing and scheduling,
Bilevel optimization.

I. INTRODUCTION

In the past years, the prosperity of 5G and Internet protocols
has stimulated industrial applications transitioning from dedi-
cated vertical solutions to general IP-based infrastructures [1].
These applications, such as smart grids and industrial control,
require IP networks to provide deterministic services [2]. On
the other hand, traditional IP networks cannot provide rigorous
quality of service (QoS) guarantees, although certain services
can be handled in higher priority acquiring improved QoS.
Under the circumstances, deterministic networking (DetNet)
has attracted intensive attentions for its capabilities of pro-
viding extremely low packet loss, bounded end-to-end latency
and jitter, which can be achieved by employing various mech-
anisms, such as explicit routing, queuing and scheduling [3].
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In particular for bounded end-to-end latency, an explicit path
ensures that the latency from links between the two ends is
constant; a well-designed queuing and scheduling mechanism
can provision sufficient buffer at nodes along the path to avoid
packet loss, and meanwhile control the latency from nodes to
be bounded.

The IETF DetNet working group has drafted several queu-
ing mechanisms to enable bounded end-to-end latency, among
which cyclic specified queuing and forwarding (CSQF) based
on Segment routing (SR) is progressing through commercial-
ization and thus demonstrates greater maturity than the others
[4]–[8]. Specifically, CSQF requires a frequency-synchronized
network and logically divides the transmission at ports into
equal cycles. It applies several queues (more than 2) on each
egress port to open and close in a round-robin pattern. During
any cycle, one queue is for transmission while the others are
for reception. Figs. 1(a)-(b) illustrate an example of CSQF,
where 3 queues are used for deterministic flows and work
cyclicly. Given a deterministic flow, SR employs SIDs in the
header of packets to explicitly specify to which egress port
and in which cycle the packets should be transmitted from the
source. Fig. 1(c) shows an example of an SID inside a packet.
Assuming that the packet arrives in cycle 1 at the second hop,
the SID indicates that it should be forwarded to port 2 and
enter queue 3 according to the mapping between transmission
cycles and queues.

Although possessing CSQF and SR, a network controller
still needs to carefully determine the egress ports (i.e., rout-
ing) and transmission cycles (i.e., scheduling) to provision
deterministic flows. Fig. 1(d) shows an example of the routing
and scheduling (RS) for a deterministic flow. Considering the
flow from node A to node E, the route is selected as node
A → node C → node D → node E. The packets are sent
from node A during cycle 1. When arriving at node C during
cycle 2, they are scheduled to be transmitted in the next cycle.
Then at node D, they are scheduled to be transmitted two
cycles later, i.e., in cycle 6. Previously, the problem of RS has
been studied in [9]–[13]. Nevertheless, these works only think
over deterministic traffic to maximize its bandwidth or the
number of accepted flows as much as possible. Note that, in
addition to deterministic traffic, there are plenty of applications
generating normal traffic, which accounts for a substantial part
of network traffic. To support such traffic, it is essential for
DetNet to coexist well with existing QoS mechanisms [3]. This
means that: 1) when deterministic traffic are scheduled with
specific transmission opportunities, normal traffic should also
be provided with sufficient transmission opportunities to avoid
starvation; 2) on the premise of not disrupting deterministic
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Fig. 1. Illustrations: (a) simplified switching device supporting CSQF, (b)
scheduling principle of CSQF, (c) SID of SR for CSQF, (d) example of RS.

traffic, transmission opportunities dedicated to but not utilized
by deterministic traffic should be available to normal traffic.
This complicates the problem of RS and motivates us to revisit
it.

In this work, we incorporate the problem of bandwidth
allocation between deterministic and normal traffic into con-
sideration, and redefine the problem as bandwidth allocation,
routing and scheduling (BaRS) to maximize the number of
accepted deterministic flows and maximize the bandwidth
available for normal traffic simultaneously. Considering that
the two maximizations contradict to each other and can hardly
be integrated into a single-level optimization, we model the
BaRS problem as a bilevel optimization, consisting of an
upper-level and a lower-level optimizations. Specifically, the
upper-level optimization allocates link bandwidth between
deterministic and normal traffic such that the bandwidth
available for normal traffic is maximized, while the lower-
level one determines RS for deterministic traffic to achieve
a maximized number of accepted flows. Furthermore, the
two levels correlate with each other in that the upper-level
optimization constrains the RS for deterministic traffic in the
lower-level one while the lower-level optimization evaluates
the upper-level one. We first formulate the bilevel optimization
as a bilevel mixed integer linear programming (BMILP). Then,
we propose an exact algorithm based on cutting planes and an
approximation algorithm based on two-level relaxations and
randomized rounding. Finally, extensive simulations verify the
effectiveness of our proposals.

The rest of the paper is organized as follows. Section II elab-
orates related works. Section III proposes the BaRS problem
and describes the system model. Section IV formulates the
bilevel optimization and analyzes its complexity. The exact
and approximation algorithms are described in Section V and
Section VI respectively. Simulations are provided in Section
VII, and conclusions are drawn in Section VIII.

II. RELATED WORK

In past decades, QoS has always been one of the essential
issues in networks. To achieve satisfying QoS, researchers
have proposed various mechanisms in scheduling, which we
could simply categorize into normal ones (e.g., [14]–[17]) and
deterministic ones (e.g. [4], [18]–[21]). Normal mechanisms
applied to normal traffic, which provided differentiated but
still statistical QoS. For instance, weighted fair queueing
(WFQ) [17] scheduled queues in a round-robin pattern, and
each time allowed one queue to transmit a certain volume
of bits according to the queue’s weight. To achieve strict
QoS guarantees, deterministic mechanisms were proposed. For
example, for layer-2 networks, IEEE 802.1Qch proposed cycle
queuing and forwarding (CQF) [20], where 2 queues open and
closed alternately in cycles to transmit and receive packets.
By employing more queues for slack synchronization and
advanced scheduling, CQF are extended for IP networks to
achieve improved flexibility and scalability, typically CSQF.
When deploying CSQF, the scheduling is more flexible and
therefore the RS problem becomes more intractable.

To facilitate implementations of deterministic mechanisms,
various works have studied the RS problem in [9]–[13], [22]–
[28]. In layer-2 networks, the researchers of [22]–[28] based
on CQF or its variants, and investigated the RS problem with
methods such as divisibility theory and deep reinforcement
learning (DRL). Towards IP networks, [10] proposed advanced
CQF that adds 2 backup queues and design a heuristic
algorithm for the RS problem to maximize the number of
accepted deterministic flows. However, due to the working
principle of CQF, the scheduling problem therein merely
needed to determine the cycle at the network border where
packets are injected. When deploying CSQF, the scheduling
is more flexible and therefore the RS problem becomes more
intractable. In [9], Krolikowski et al. studied the problem and
proposed two algorithms to maximize the accepted bandwidth
of deterministic traffic. Despite mentioning that a percentage
(e.g., 50%) of bandwidth should be allocated for normal traffic,
they did not delve into how to allocate the bandwidth. In
[11], they studied 1+1 protection for deterministic traffic and
introduced spacing constraints for the RS problem. To solve
the problem, two heuristic algorithms (i.e., the greedy and the
Tabu-search) were proposed to maximize the number of ac-
cepted deterministic flows. The researchers of [12] considered
that the flow’s rate could be adjusted at the network border, and
redefined the routing problem with multi-variable constraints.
A Lagrange relaxation based heuristic was proposed to solve
the routing problem. In [13], Yu et al. classified deterministic
flows into hard ones and soft ones, and designed a DRL
based scheduler to solve the RS problem with the objective of
maximizing the number of hard flows and the utilities of soft
flows. As stated above, existing studies did not consider that
deterministic and normal traffic coexist in IP networks, and to
the best of our knowledge, the BaRS problem has not been
investigated. In this work, we will study the BaRS problem
with a fancy optimization, i.e., bilevel optimization, which has
been successfully applied to computer networks [29]–[31].
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Fig. 2. A simplified switching device supporting deterministic and normal
traffic.

III. PROBLEM DESCRIPTION

A. BaRS Problem

Fig. 2 depicts a simplified switching device supporting
transmitting deterministic and normal traffic in DetNet. As
it shows, each egress port is associated with several logical
queues (typically 8), where some (more than 2) are dedi-
cated for deterministic traffic while the others are for normal
traffic. Deterministic queues are scheduled with CSQF, while
the normal ones can be scheduled with normal mechanisms
mentioned in section II, e.g., WFQ. The time of each port is
divided into equal cycles (e.g., 10 us) and packet transmission
operates in cycles. Each cycle, both a deterministic and a
normal queue can access the bandwidth such that the deter-
ministic one is drained and the normal one discharges a certain
amount of traffic. Here, the problem of bandwidth allocation
between deterministic and normal traffic arises. Qualitatively
speaking, no matter for deterministic or normal traffic, the
more bandwidth is allocated, higher throughput or better QoS
tends to be achieved. Allocating more bandwidth for either
one would incur traffic losses or service degradation for the
other one. Hence, the problem should be taken seriously.

In this work, we integrate the bandwidth allocation problem
with the RS problem to study the BaRS problem, which is
inherently a hierarchical decision process. Concretely, the con-
troller first allocates the bandwidth of each port to maximize
the bandwidth available for normal traffic on the premise of
certain accepted deterministic traffic, and then addresses the
RS problem for deterministic traffic to maximize the number
of accepted flows. Note that, the bandwidth allocation and
the RS interact, and the two maximizations contradict to each
other. Namely, bandwidth allocation constrains the bandwidth
for deterministic traffic in RS, while RS conversely evaluates
the bandwidth available for normal traffic. To capture such
characteristics of the BaRS problem, a single-level optimiza-
tion is no longer applicable, which motivates us to adopt
a brand-new optimization, i.e., the bilevel optimization in
Section IV.

B. System Model

DetNet is modelled as a directed graph G(V,E), where
nodes V represent DetNet-enabled swithes/routers and are
connected with directed links E. According to CSQF, DetNet
is required to be frequency-synchronized, and time is divided
into equal cycles c across the network [4]. Without loss of
generality, the cycles can be assumed starting at the same time
[9]. Blocks of consecutive cycles consist of hypercycles H ,
in each of which the network behavior repeats. For each node
v ∈ V , the number of queues dedicated for deterministic traffic

per egress port is N . Each link eu,v ∈ E has the bandwidth as
bu,v and the length as lu,v . The possible portions of bandwidth
that can be allocated for deterministic traffic are denoted as
set B.

In diverse industries, the patterns of traffic demanding de-
terministic forwarding can be time-triggered (i.e., periodic) or
event-triggered (i.e., sporadic) [32]. Since CSQF is proposed
for time-triggered traffic, we will only consider this type of
traffic in this work, and model deterministic traffic as a set of
time-triggered flows F . Each flow f ∈ F can be defined as
a five-tuple (ℓf , τf , ωf , Qf , Pf ). Specifically, ℓf is the packet
size, τf is the maximum end-to-end delay that the flow can
tolerate, ωf is the period in cycles. Qf is the pattern of packet
arrivals, and Qf,i denotes the number of packets arrived in
the i-th cycle. Pf is the precomputed paths for the flow. To
provision flow f , the controller needs to determine the RS, i.e.,
selecting a feasible path and assigning a transmission cycle
at each node along the path except the destination. At each
node, the transmission can be delayed by a few cycles for
successful scheduling, where the number of cycles should be
no more than N − 2 according to CSQF. Moreover, the RS
should satisfy the maximum end-to-end delay and bandwidth
constraints to get accepted. Note that, we consider that the
propagation delay and the queueing delay constitute the end-
to-end delay1. In this work, we set the hypercycle H as the
least common multiple of flow periods, and hence study the
BaRS problem within a hypercycle.

IV. BILEVEL OPTIMIZATION

We model the BaRS problem as a bilevel optimization,
which is a branch of mathematical optimization that some vari-
ables are constrained to be the solution of another optimiza-
tion [33]. Specifically, the upper-level optimization addresses
bandwidth allocation between normal and deterministic traffic
to maximize the available bandwidth for normal traffic on the
premise of certain accepted deterministic traffic; the lower-
level optimization addresses RS for deterministic flows to
maximize the number of accepted flows.

A. BMILP Formulation

We formulate the bilevel optimization as a BMILP. Table I
lists the parameters of the BMILP.

1) Upper-level Optimization: It is to allocate the bandwidth
on each link between deterministic and normal traffic. Table
II summarizes the variables.

Objective:

Maximize Ωn = Ω1
n + λ · Ω2

n (1)

The upper-level optimization maximizes the bandwidth avail-
able for normal traffic, which consists of two parts Ω1

n and
Ω2

n. Ω1
n denotes the part that is allocated for normal traffic,

while Ω2
n denotes the part that is allocated for but not fully

1We should point out that there are also the processing delay and the
transmission delay constituting the end-to-end delay. Here, the transmission
delay, different from the propagation delay, is the time taken to push all the bits
of a packet onto the transmission medium. Since they are almost independent
of RS, we treat them as constants and do not consider them in this work.



4

TABLE I
PARAMETERS OF THE BMILP

G(V,E) the topology of the DetNet

bu,v the bandwidth of link eu,v ∈ E

lu,v the propagation delay in the number of cycles of
link eu,v ∈ E

N the number of queues for deterministic traffic

c the cycle in seconds

H the hypercycle in the number of cycles

F the set of deterministic flows

ℓf the packet size of flow f ∈ F

τf the maximum tolerable end-to-end delay in the
number of cycles of flow f ∈ F

Qf the pattern of packet arrivals of flow f

Pf the set of candidate paths for flow f ∈ F

|p| the number of links in the path p ∈ Pf

B the set of possible portions of bandwidth that can
be allocated for deterministic traffic

ρ the ratio of accepted deterministic traffic

λ a weight coefficient

M a large positive for linearization

utilized by deterministic traffic. λ is a coefficient to weigh the
importance of them.

TABLE II
UPPER-LEVEL VARIABLES

xu,v,i the boolean variable that equals 1 if the i-th ratio in B

is selected for deterministic traffic on link eu,v ∈ E,
and 0 otherwise

b̄u,v the variable that denotes the bandwidth allocated for
deterministic traffic on link eu,v ∈ E

yf,p the boolean variable that equals 1 if path p ∈ Pf is
selected for flow f ∈ F , and 0 otherwise

Ωn the variable that denotes the total bandwidth available
for normal traffic

Ω1
n the variable that calculates the bandwidth allocated for

normal traffic
Ω2

n the variable that calculates the bandwidth allocated for
but not utilized by deterministic traffic

Ωd the variable that calculates the number of accepted
deterministic flows

Constraints:
|B|−1∑
i=0

xu,v,i = 1, eu,v ∈ E. (2)

b̄u,v =

|B|−1∑
i=0

(xu,v,i ·Bi) · bu,v, eu,v ∈ E. (3)

Eqs. (2)-(3) specify the bandwidth that is allocated for deter-
ministic flows on each link.

Ωd ≥ ρ ·
∑
f∈F

H−1∑
i=0

ℓf ·Qf,i

H · c
(4)

Eq. (4) ensures a minimum ratio of accepted deterministic
traffic.

Ω1
n =

∑
eu,v∈E

(bu,v − b̄u,v) (5)

Ω2
n =

∑
eu,v∈E

b̄u,v −
∑
f∈F

∑
p∈Pf

H−1∑
i=0

ℓf ·Qf,i

H · c
· |p| · yf,p (6)

Ωd =
∑
f∈F

∑
p∈Pf

H−1∑
i=0

ℓf ·Qf,i

H · c
· yf,p (7)

Eqs. (5)-(7) calculate Ω1
n, Ω2

n and Ωd respectively.

TABLE III
LOWER-LEVEL VARIABLES

yf,p the boolean variable that equals 1 if flow f ∈ F is routed
on path p ∈ Pf , and 0 otherwise

of,p,i the integer variable that denotes the delay in cycles on
the i-th link of path p ∈ Pf for flow f ∈ F

qf,p,i the total queuing delay in cycles that flow f ∈ F has
experienced on the i-th link of path p ∈ Pf

rf,p,i the total propagation delay in cycles that flow f ∈ F has
experienced on the i-th link of path p ∈ Pf

wj
f,p,i the boolean variable that equals 1 if the accumulated cycle

shift for flow f ∈ F on the i-th link of path p ∈ Pf is
j, and 0 otherwise

mj
f,p,i the auxiliary integer variable that calculates the number of

packets for flow f ∈ F in the j-th cycle on the i-th link
of path p ∈ Pf

2) Lower-level Optimization: It is to determine RS for
deterministic traffic. Note that the two optimizations correlate
with each other. Specifically, the variables {b̄u,v} in the upper-
level optimization will serve as parameters in the lower-level
one, while the solutions {yf,p} of the lower-level optimization
will conversely evaluate the objective of the upper-level one.
Table III summarizes the variables.

Objective:

Maximize
∑
f∈F

∑
p∈Pf

yf,p (8)

The lower-level objective is to maximize the number of
accepted deterministic flows.

Constraints: ∑
p∈Pf

yf,p ≤ 1, ∀f ∈ F. (9)

Eq. (9) ensures that each deterministic flow is routed over one
path at most.

of,p,i +M · (yf,p − 1) ≤ N − 2,

∀ f ∈ F, p ∈ Pf , eu,v = pi.
(10)
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Eq. (10) ensures that the scheduling of each flow on each link
is within the right range.

qf,p,i =

i∑
i′=0

of,p,i′ ,

rf,p,i =

pi∑
eu,v=p0

lu,v,

∀ f ∈ F, p ∈ Pf ,

i ∈ [0, |p| − 1].
(11)

Eq. (11) calculates the accumulated queuing and propagation
delays along the path for each flow.

qf,p,i + rf,p,i +M · (yf,p − 1) ≤ τf ,

∀ f ∈ F, p ∈ Pf , i = |p| − 1.
(12)

Eq. (12) ensures that the maximum tolerable end-to-end delay
of each flow should not be exceeded.

yf,p ≤
H−1∑
j=0

wj
f,p,i ≤ (1−M) · yf,p +M,

∀ f ∈ F, i ∈ [0, |p| − 1].

(13)

H−1∑
j=0

j · wj
f,p,i = (qf,p,i + rf,p,i) mod H,

∀ f ∈ F, i ∈ [0, |p| − 1].

(14)

Eqs. (13)-(14) figure out whether each flow has packets arrived
at a cycle on each link along the path.

mj
f,p,i =

∑
k<=j

Qf,k · wj−k
f,p,i +

∑
k>j

Qf,k · wj−k+H
f,p,i ,

∀ f ∈ F, i ∈ [0, |p| − 1], j ∈ [0, |H| − 1].

(15)

Eq. (15) precisely computes the number of packets for each
flow arrived at each cycle on each link along the path.

1

c
·
∑
f∈F

∑
p∈Pf

ℓf ·mj
f,p,i ≤ b̄u,v,

∀ eu,v ∈ E, j ∈ [0, H − 1], pi = eu,v.

(16)

Eq. (16) ensures that the allocated bandwidth in each cycle on
each link should not be exceeded.

B. Complexity Analysis

We can analyze that the formulated bilevel optimization is
NP-Hard. To this end, we introduce the high-point relaxation
(HPR) of the bilevel optimization, which relaxes the optimality
of the lower-level optimization.

Theorem 1. Given an optimal solution of the HPR, if it is
optimal to the lower-level optimization, it is also optimal to
the bilevel optimization.

Proof. The feasible region of the HPR can be expressed as
Eq. (17).

H := {(x, y) | Eqs. (2)-(7), (9)-(16) are satisfied.} (17)

Here, (x, y) are decision variables in Section IV-A about
bandwidth allocation and routing. An optimal solution of the

HPR is the one in Eq. (17) that maximizes Eq. (1). Clearly,
an optimal solution of the HPR is a feasible solution of the
lower-level optimization, and acts as an upper bound on the
optimum of the bilevel optimization. On the other hand, the
feasible region of the bilevel optimization can be expressed
as Eq. (18), where the optimal response of the lower-level
optimization is taken into account.

B := {(x, y) | (x, y) ∈ H and y maximzes Eq. (8)} (18)

An optimal solution of the bilevel optimization is the one in
Eq. (18) that maximizes Eq. (1). Comparing Eq. (17) and Eq.
(18), we prove the theorem. ■

Theorem 1 indicates that given an optimal solution of the
HPR, checking whether it is the optimal response of the bilevel
optimization is equivalent to checking whether it is the optimal
response of the lower-level optimization. We notice that the
problem that whether a solution is the optimal response of
the lower-level optimization is exactly the decision counterpart
of the lower-level optimization, which has been proved NP-
Complete in [9]. This means that the problem that given
an optimal solution of the HPR, checking whether it is the
optimal response of the bilevel optimization is NP-Complete.
Therefore, the bilevel optimization is NP-Hard.

V. EXACT ALGORITHM

To the best of our knowledge, mature solvers are yet missing
to solve the BMILP. In this section, we propose an algorithm
based on cutting planes to solve it exactly.

A. Cutting Plane Design

As stated in Section IV-B, we can write the HPR as Eq. (19)
shows, which is a single-level optimization and can be solved
with well-known solvers, such as Cplex [34] and Gurobi [35].
Since the objective of the lower-level optimization is ignored
by the HPR, a solution that is optimal to the HPR might not
be the optimal response of the lower-level optimization, and is
bilevel-infeasible according to Eq. (18). Hence, if we hope to
get an optimal bilevel solution from the HPR, such bilevel-
infeasible solutions should be excluded from the feasible
region of the HPR, which can be achieved by adding valid
cuts to the HPR.

Maximize Ωn

s.t. Eqs. (2)-(7), Eqs. (9)-(16)
(19)

In the following, we explain how to design such cuts.

Definition 1: Let z := {zf | f ∈ [0, |F | − 1]} be a set of
binary variables such that an accepted flow has zf = 1 and a
rejected one has zf = 0, and Z be the set of all possible z.

According to Eq. (9), we have
∑

p∈Pf

yf,p = zf = 1 for an

accepted flow and have
∑

p∈Pf

yf,p = zf = 0 for a rejected flow.

Therefore, any solution of the HPR or the bilevel optimization
can be mapped to a specific z. Provided a HPR-optimal but
bilevel-infeasible solution, there exists at least a deterministic
flow that can be accepted under the bilevel optimization but
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is rejected under the HPR. This indicates that any solution
that is bilevel optimal and a solution that is HPR-optimal but
bilevel-infeasible are mapped to two different z. Assume that a
solution that is HPR-optimal but bilevel-infeasible is mapped
to z0. To exclude z0, a valid cut should ensure that for any
z ∈ Z\z0, ∑

f∈[0,|F |)

γf · zf ≤ γ|F |, ∀f ∈ F, (20)

and for z0, ∑
f∈[0,|F |)

γf · zf ≥ γ|F |, (21)

where γ := {γf | f ∈ [0, |F |]} are coefficients and∑
f∈[0,|F |)

γf ̸= 0. To obtain the coefficients γ, we propose the

following integer quadratic programming (IQP).
Parameters:
• Z: all possible z.
• z0: a specific z that a HPR-optimal but bilevel-infeasible

solution is mapped to.
Variables:
• γ: the set of coefficients.
Objective:

Minimize
∑

f∈[0,|F |]

γ2
f (22)

The objective is to minimize the quadratic sum of the coeffi-
cients so that the coefficients can be as compact as possible.

Constraints: ∑
f∈[0,|F |)

γf ̸= 0 (23)

∑
f∈[0,|F |)

γf · zf ≤ γ|F |, z ∈ Z\z0 (24)

∑
f∈[0,|F |)

γf · zf > γ|F |, z = z0 (25)

In the IQP, Z can be obtained through numeration easily,
and z0 is obtained by solving the HPR. As a single-level
optimization, the IQP can be solved with Cplex or Gurobi.
Hence, we can get γ and design a valid cut for z0 as Eq. (20)
shows.

Fig. 3 illustrates an example of cutting plane design. As-
suming 3 flows, all 8 possible z can be represented by the
solid points, where each dimension indicates whether a flow
is accepted or not. If the red solid point z0 = (1, 1, 0) is HPR-
optimal but bilevel-infeasible, the corresponding {γf | f ∈
[0, 3]} can be derived with the IQP as {1, 1,−1, 1}, obtaining
a valid cut as z0 + z1 − z2 = 1.

B. Algorithm Description

Algorithm 1 describes the whole procedure of the exact al-
gorithm. Lines 1-2 are for initialization. The for-loop covering
Lines 3-7 prepares all possible valid cuts. The while-loop that
covers Lines 8-21 tries to obtain a bilevel-optimal solution
by solving the HPR in iterations. Specifically, Line 9 first
solves the HPR to obtain {b̄u,v}, {yhf,p} and {ohf,p,i}. With the

Fig. 3. Example of cutting plane design.

obtained {b̄u,v}, Line 10 solves the lower-level optimization to
obtain {ylf,p} and {olf,p,i}. Line 11 calculates the lower-level
objectives in Eq. (7) with the obtained {yhf,p} and {ylf,p} as Ωh

d

and Ωl
d respectively. If Ωh

d = Ωl
d, we obtain a bilevel-optimal

solution successfully according to Theorem 1, and therefore
Lines 14-16 return the solution. Otherwise, Lines 18-19 select
the valid cut that corresponds to {yhf,p} from Ψ, and add it to
the HPR to eliminate the current bilevel-infeasible solution.

The complexity of Algorithm 1 is not polynomial-time. On
the one hand, Lines 3-7 and Lines 9-10 cannot be accom-
plished in polynomial time. On the other hand, the for-loop
covering Lines 8-21 can be executed 2|F | times at most. In
practical, the number of iterations of the for-loop is highly
relevant to the parameter ρ in the bilevel optimization, which
will be verified with simulations in Section VII.

VI. APPROXIMATION ALGORITHM

Due to the complexity of Algorithm 1, it becomes powerless
when the problem scale of the bilevel optimization gets larger.
In this section, we propose an approximation algorithm.

A. Algorithm Description

Since linear programming relaxation (LPR) and randomized
rounding are classical techniques for integer linear program-
ming, the approximation algorithm leverages them to obtain
near-optimal solutions whose performance can be analyzed
statistically. In this algorithm, we first relax the bilevel opti-
mization to its HPR and then to its LPR as r-HPR. By solving
the r-HPR, we get the solutions of bandwidth allocation in
real numbers. Next, we proceed to the lower-level optimization
and relax it to its LPR as r-LLO. By solving the r-LLO, we
get the solutions of RS in real numbers. Then randomized
rounding is executed iteratively to obtain integer solutions of
the BaRS problem, i.e., {b̄u,v}, {yf,p} and {of,p,i}. Note that
during randomized rounding, the constraints of the BMILP
might be violated, leading to infeasible integer solutions. To
avoid this, we introduce a parameter for scaling, i.e., ϵ, with
which the probability of generating infeasible solutions can
be theoretically analyzed to be bounded [36]. To control
the performance of the approximation algorithm, another two
parameters are also introduced, i.e., the number of iterations
I and the approximation ratio ζ. The overall procedure of the
algorithm is provided in Algorithm 2 and Algorithm 3, where
Algorithm 3 is a subprocedure of Algorithm 2.
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Algorithm 1: Exact Algorithm Based on Cutting
Plane

input : Parameters in Table I.
output: Results of BaRS as {b̄u,v}, {yf,p} and

{of,p,i}.

1 initialize flag = 0, Ψ = ∅;
2 initialize the HPR as Eq. (19);
3 for each z ∈ Z do
4 solve the IQP in Eqs. (22)-(25) to obtain γ;
5 construct a valid cut φ with γ as Eq. (20);
6 add φ into Ψ;
7 end
8 while flag = 0 do
9 solve the HPR to obtain {b̄u,v}, {yhf,p} and

{ohf,p,i};
10 solve the lower-level optimization with {b̄u,v} to

obtain {ylf,p} and {olf,p,i};
11 calculate the lower-level objectives with Eq. (7)

as Ωh
d with {yhf,p} and as Ωl

d with {ylf,p};
12 if Ωh

d = Ωl
d then

13 flag = 1;
14 {b̄u,v = b̄u,v};
15 {yf,p = yhf,p};
16 {of,p,i = ohf,p,i};
17 else
18 select the φ corresponding to {yhf,p} from Ψ;
19 add φ to the HPR;
20 end
21 end
22 return {b̄u,v}, {yf,p}, {of,p,i}.

In Algorithm 2, Lines 1-2 solve the r-HPR and obtain
{b̄ru,v} and Ω̂n in real numbers. Then with {b̄ru,v}, Lines 3-
4 solve the r-LLO and obtain {yrf,p}, {orf,p,i} and Ωd in
real numbers. Line 5 initializes Ωn. The for-loop covering
Lines 6-27 describes the procedure of randomized rounding,
where each iteration tries to generate a feasible solution of
the BMILP and the solution with the best Ωn is selected
over iterations as the desired one. Specifically, the inner for-
loop covering Lines 7-12 first rounds zf of each flow to 1
or 0, determining whether the flow can be accepted or not.
To avoid infeasible solutions of {yf,p}, Lines 9-11 scale zf
with ϵ before rounding. Although this can only reduce but not
definitely eliminate the probability that the constraints in Eq.
(4) are violated, an appropriate ϵ could keep such probability
in an acceptable level. In case of infeasible solutions, Lines
13-14 continue to the next iteration. Lines 16-19 guarantee an
approximation ratio of the lower-level optimization to its LPR.
Then Line 20 invokes Algorithm 3 and get the results of Ω̃n,
{b̃u,v}, {ỹf,p} and {õf,p,i}. Finally, Lines 21-26 update Ωn,
{b̄u,v}, {yf,p} and {of,p,i} if necessary. In Algorithm 3, the
for-loop covering Lines 1-16 leverages randomized rounding
to produce a feasible solution of RS. Specifically, for each
flow that are temporarily treated as accepted in Algorithm 2,
Lines 3-7 determine {ỹf,p}, and Lines 8-12 determine {õf,p,i}.

Otherwise, Line 14 updates {ỹf,p} to correctly implementing
the following calculations. Then in Lines 17-20, a feasible
solution of bandwidth allocation is determined as {b̃u,v}.
Finally, Line 21 calculates Ω̃n with Eq. (1).

Algorithm 2: Approximation Algorithm Based on
LPR and Randomized Rounding

input : Parameters in Table I and parameters ϵ1, ϵ2,
I and ζ.

output: BaRS results as {b̄u,v}, {yf,p} and {of,p,i}.

1 relax the HPR in Eq. (18) as r-HPR;
2 solve r-HPR to obtain {b̄ru,v} and Ω̂n in real

numbers;
3 relax the lower-level optimization in Eqs. (7)-(15) as

r-LLO;
4 solve r-LLO with {b̄ru,v} to obtain {yrf,p}, {orf,p,i}

and Ωd in real numbers;
5 initialize Ωn = 0;
6 for i = 0 to I do
7 for each flow f ∈ F do
8 calculate zf =

∑
p y

r
f,p with {yrf,p};

9 if 0 < zf < 1 then
10 set zf = 1 randomly with the probability

of ϵ · zf ;
11 end
12 end
13 if Eq. (4) is violated then
14 continue;
15 end
16 calculate Ω̃d with Eq. (7);
17 if Ω̃d ≤ ζ · Ωd then
18 continue;
19 end
20 invoke Algorithm 3 and get Ω̃n, {b̃u,v}, {ỹf,p}

and {õf,p,i};
21 if Ω̃n > Ωn then
22 Ωn = Ω̃n;
23 {b̄u,v} = {b̃u,v};
24 {yf,p} = {ỹf,p};
25 {of,p,i} = {õf,p,i};
26 end
27 end
28 return {b̄u,v}, {yf,p} and {of,p,i}.

B. Theoretical Analysis

Theorem 2. The overall procedure of Algorithm 2 is
polynomial-time.

Proof. We first consider the time complexity of Algorithm
3. In Algorithm 3, the outer for-loop covering Lines 1-16
will run |F | times. Each time, the inner for-loop covering
Lines 8-12 will run at most max(|Pf |) · (|V | − 1) times. In
Lines 17-20, the for-loop will run |E| times. Hence, the time
complexity of Algorithm 3 is O(|F | · |V | ·max(|Pf |) + |E|).
With regard to Algorithm 2, Lines 1-4 for solving r-HPR
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and r-LLO can be executed in polynomial-time [37], and
we denote the time complexity of solving them as O′ for
convenience. The outer for-loop in Lines 6-27 will iterate I
times. Each iteration, the inner for-loop in Lines 7-12 will
run F times. Then the time complexity of the Algorithm 2 is
O(O′+I · |F | · |V | ·max(|Pf |)+I · |E|). Therefore, the overall
procedure of Algorithm 2 is polynomial-time. ■

Algorithm 3: Subprocedure of Algorithm 2
input : Parameters of Algorithm 2, {zf}, {yrf,p}

and {orf,p,i}.
output: Results of the BaRS problem as Ω̃n, {b̃u,v},

{ỹf,p} and {õf,p,i}.

1 for each flow f ∈ F do
2 if zf = 1 then
3 find the paths P̃f ⊂ Pf whose propagation

delays satisfying τf ;
4 calculate σ1 = 1−

∑
p̃∈P̃f

yrf,p̃;
5 select a path p̃ from P̃f randomly with the

probability of yrf,p̃ +
σ1

|P̃f |
;

6 set ỹf,p̃ = 1;
7 set ỹf,p = 0 where p ∈ Pf\p̃;
8 for each orf,p̃,i do
9 obtain the decimal of orf,p̃,i as σ2;

10 set õf,p̃,i = ⌈orf,p̃,i⌉ randomly with the
probability of σ2;

11 set õf,p̃,i = ⌊orf,p̃,i⌋ randomly with the
probabilities of 1− σ2;

12 end
13 else
14 set ỹf,p = 0 where p ∈ Pf ;
15 end
16 end
17 for each link eu,v ∈ E do
18 calculate the maximum utilized bandwidth of all

cycles in a hypercycle;
19 set b̃u,v as the minimum feasible value;
20 end
21 calculate Ω̃n with Eq. (1);
22 return Ω̃n, {b̃u,v}, {ỹf,p} and {õf,p,i}.

Lemma 3. Let {Xi} be a set of independent random binary
variables, and S =

∑
i αiXi. Provided χi = E[Xi] and 0 <

t < E[S], we have

P[S ≤ E[S]− t] ≤ exp

(
− t2

2[
∑

i α
2
i (χi − χ2

i )]

)
. (26)

where P[·] and E[·] represent probability and mathematical
expectation respectively [38], [39].

Theorem 4. Algorithm 2 can converge to ensure a preset
lower bound in the probability of P.

Proof. We first prove that the algorithm can converge to a
lower bound, and then derive the probability P. We introduce
a coefficient as ε. With the optimum of the r-HPR as Ω̂n, we

define the probability that Algorithm 2 can obtain a solution
whose upper-level objective Ω̃n is no more than E[Ω̃n]−ε ·Ω̂n

in each iteration as P1 = P(Ω̃n ≤ E[Ω̃n] − ε · Ω̂n), where
E[Ω̃n] is the mathematical expectation and 0 < ε · Ω̂n <
E[Ω̃n]. According to [36], we can have P1 < 1 if setting
ε appropriately. Then, the probability that Algorithm 2 can
obtain a solution whose upper-level objective Ω̃n is more than
E[Ω̃n] − ε · Ω̂n within I iterations is P = 1 − PI

1. Hence,
we have lim

I→+∞
(1 − PI

1) = 1, proving that Algorithm 2 can

converge to ensure a preset lower bound.
Each iteration in Algorithm 2, we can obtain a feasible Ω̃n,

{b̃u,v}, {ỹf,p} and {õf,p,i}. To calculate E[Ω̃n], we have

E[Ω̃n] = E[Ω̃1
n] + E[Ω̃2

n]

=
∑

eu,v∈E

bu,v + (λ− 1)
∑

eu,v∈E

E[b̃u,v]−

λ
∑
f∈F

∑
p∈Pf

H−1∑
i=0

ℓf ·Qf,i

H · c
· |p| · E[ỹf,p],

(27)

Then, for E[b̃u,v], we have

E[b̃u,v] =
∑
i

bu,v ·Bi · P(x̃u,v,i = 1)

= bu,v ·B0 · P(Ru,v,j ≤ bu,v ·B0 · c)+∑
i>0

bu,v ·Bi · P(bu,v ·Bi−1 · c ≤ Ru,v,j ≤ bu,v ·Bi · c),

(28)
where Ru,v,j denotes the amount of data in cycle j on link
eu,v . To derive P(·) in Eq. (28), we define R̃max

u,v and R̃min
u,v

as a maximum and a minimum estimation of R respectively,
which can be estimated as

R̃max
u,v =

∑
f,p

ỹf,p ·max
j

(ℓf ·Qf,j), ∀eu,v,

R̃min
u,v =

∑
f,p

ỹf,p ·min
j

(ℓf ·Qf,j), ∀eu,v.

Then for link eu,v , we have

P(Ru,v,j ≤ bu,v ·B0 · c) ≥ P(R̃max
u,v ≤ bu,v ·B0 · c)

= P2.
(29)

To calculate P2, we consider the problem in Definition 2.

Definition 2: Assume there are a set of items, each with a
weight as max

j
(ℓf · Qf,j). We select some from the items

such that the total weight of the selected ones is no more than
bu,v · B0 · c. If we use ỹ∗f,p = 1 to denote that an item is
selected and 0 otherwise, a feasible selection can be written
as {ỹ∗f,p, ∀f, p}. The problem is to figure out all feasible
selections.

The problem in Definition 2 actually constitutes the well-
known 0-1 knapsack problem, and can be solved with dynamic
programming, during which all feasible solutions can be
collected. Then back to Eq. (29), we have

P2 =
∑

{ỹ∗
f,p}

∏
ỹ∗
f,p

ŷ∗f,p (30)
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where ŷ∗f,p is defined as

ŷ∗f,p =

{
ỹrf,p, ỹ∗f,p = 1,

1− ỹrf,p, ỹ∗f,p = 0.

Similarly, for link eu,v , we have

P(bu,v ·Bi−1 · c ≤ Ru,v,j ≤ bu,v ·Bi · c)
= 1− P(Ru,v,j ≥ bu,v ·Bi · c)− P(Ru,v,j ≤ bu,v ·Bi−1 · c)
≥ 1− P(R̃max

u,v ≥ bu,v ·Bi · c)− P(R̃min
u,v ≤ bu,v ·Bi−1 · c)

= 1−P3 −P4.
(31)

To calculate P3 and P4, we consider the problems in Def-
inition 3 and Definition 4, which are similar to Definition
2.

Definition 3: Assume there are a set of items, each with a
weight as max

i
(ℓf ·Qf,i). We select some from the items such

that the total weight is no less than bu,v · Bi · c. If we use
ỹ⋄f,p = 1 to denote that an item is selected and 0 otherwise, a
feasible solution can be written as {ỹ⋄f,p, ∀f, p}. The problem
is to figure out all feasible selections.

Definition 4: Assume there are a set of items, each with a
weight as min

i
(ℓf ·Qf,i). We select some from the items such

that the total weight is no more than bu,v ·Bi−1 · c. If we use
ỹof,p = 1 to denote that an item is selected and 0 otherwise, a
feasible solution can be written as {ỹof,p, ∀f, p}. The problem
is to figure out all feasible selections.

Then back to Eq. (31), we have P3 as

P3 =
∑

{ỹ⋄
f,p}

∏
ỹ⋄
f,p

ŷ⋄f,p (32)

where ŷ⋄f,p is defined as

ŷ⋄f,p =

{
ỹrf,p, ỹ⋄f,p = 1,

1− ỹrf,p, ỹ⋄f,p = 0,

and have P4 as
P4 =

∑
{ỹo

f,p}

∏
ỹo
f,p

ŷof,p (33)

where ŷof,p is defined as

ŷof,p =

{
ỹrf,p, ỹof,p = 1,

1− ỹrf,p, ỹof,p = 0.

Then with Eq. (29) and Eq. (31), E[b̃u,v] in Eq. (28) can be
written as

E[b̃u,v] ≥ bu,v ·B0 ·P2 +
∑
i>0

bu,v ·Bi · (1−P3 −P4). (34)

Back to Eq. (27), we have

E[Ω̃n] = E[Ω̃1
n] + E[Ω̃2

n]

≥
∑

eu,v∈E

bu,v + (λ− 1)·

∑
eu,v∈E

(bu,v ·B0 ·P2 +
∑
i>0

bu,v ·Bi · (1−P3 −P4))

−λ
∑
f∈F

∑
p∈Pf

H−1∑
i=0

ℓf ·Qf,i

H · c
· |p| · ỹrf,p, (35)

According to Lemma 3, we set {αi} =

{ |E||B|︷ ︸︸ ︷
..., (λ− 1) · bu,v ·Bi, ...,

H
∑

f |Pf |︷ ︸︸ ︷
...,

λ · ℓf ·Qf,i

H · c
· |p|, ...

}
, {χi} ={

{P[x̃u,v,i = 1], ∀eu,v ∈ E, i ∈ [0, |B|)}, {ỹrf,p, ∀f ∈ F, p ∈
Pf}

}
, and t = ε · Ω̂n. Then,

P[Ω̃n ≤ E[Ω̃n]− ε · Ω̂n] ≤ exp

(
− (ε · Ω̂n)

2

2
∑
i

α2
iχi

)
= P1,

where E[Ω̃n], Ω̂n and
∑
i

α2
iχi can be obtained with Algorithm

2. Finally, the probability P that Algorithm 2 can converge
to ensure a preset lower bound E[Ω̃n] − ε · Ω̂n is at least
1−PI

1. ■

VII. PERFORMANCE EVALUATION

In this section, we perform both small-scale and large-
scale simulations to evaluate the performance of the proposed
algorithms.

A. Simulation Setup

We adopt two real-world network topologies for simula-
tions, i.e., Netrail and Sprint. The topologies are shown in
Fig. 4, where link lengths are provided in kilometers. In
each topology, each egress port of nodes has N = 3 queues
dedicated for deterministic traffic. Each link has a bandwidth
of 10 Gbps and the set of possible portions of bandwidth on
each link is assumed as B = [20%, 40%, 60%, 80%]. We take
link lengths as weights and precompute at most 5 shortest
paths for each pair of nodes. Temporally, we assume that each
hyper-cycle consists of 12 cycles and each cycle has a duration
of 10 µs.

Under each topology, deterministic flows are generated. For
each flow, its source and destination are randomly selected. Its
maximum tolerable end-to-end delay is generated randomly to
be larger than the smallest propagation delay from the source
to destination, which ensures that any flow has at least a
candidate path. All flows have their packet sizes distributed
within [64, 1500] Bytes, where 30% of them have their packet
sizes fixed as 64 Bytes, 30% of them have their packet sizes
fixed as 1500 Bytes and the others have their packet sizes
randomly selected from (64, 1500) Bytes. We assume that the
traffic of all flows repeats per hyper-cycle. During each cycle,
each flow can have either some packets or no packet to sent.
In case there are some packets to be sent, we set the number
of packets as 1 or 2 randomly, corresponding to a maximum
traffic of 2.4 Gbps.

We evaluate the performance of the bilevel optimization by
comparing it with two single-level optimizations, which are
the one that only optimizes the lower-level objective and the
one that only optimizes the upper-level objective. Specifically,
the first one is adapted from [9] with bandwidth allocated
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Fig. 4. Network topologies (link lengths are marked in kilometers): (a) Netrail,
(b) Sprint.

in a one-size-fits-all approach, and can be formulated with
Eqs. (8)-(16). The second one can be formulated with Eq.
(1), Eqs. (2)-(7) and Eqs. (9)-(16). In the following, we use
BLO, SLO-d and SLO-n to represent the three optimizations
for simplicity. For BLO and SLO-n, we set λ = 0.3 in Eq. (1)
to weigh Ω1

n and Ω2
n. Our simulations are implemented in a

Python environment with DOcplex [40] and then run on virtual
machines with 2.5/3.2 GHz 8 vCPU and 32 GB RAM. To
reduce statistical fluctuations, we average over 5 independent
traffic realizations to get each data point of the simulation
results.

B. Small-scale Simulations

The small-scale simulations use the Netrail topology to
compare the performance of four algorithms, which are 1) the
one that BLO is solved exactly with Algorithm 1 (BLO/Exact),
2) the one that SLO-n is solved exactly with Cplex (SLO-
n/Exact), 3) the one that SLO-d is solved exactly with Cplex
(SLO-d/Exact), and 4) the one that BLO is solved approx-
imately with Algorithm 2 (BLO/Approx), where we perform
iterations to ensure that the relative gap between Ω̃n and Ω̂n is
less than 10%. Due to the time complexity of exact algorithms,
we set the number of deterministic flows to be provisioned as
6, 9 and 12 respectively. In this scenario, we also change the
ratio of accepted deterministic throughput from ρ = 100% to
ρ = 80% to explore its effects.

Table IV summarizes the simulation results of the four
algorithms of Ωn, the number of accepted flows, Ω1

n, and
the running time. Note that to save space, we only show the
results of SLO-d/Exact obtained under the circumstance that
60% of bandwidth is allocated on each link for deterministic
flows. And we have confirmed that under the circumstances,
the performance in balancing Ωn and the number of ac-
cepted flows is the best when compared with the other three
circumstances where 20%, 40% and 80% of bandwidth are
allocated. As expected, SLO-n/Exact achieves the largest Ωn

while SLO-d/Exact achieves the largest number of accepted
flows. Comparing the results on Ωn, we can see that no matter
what the number of total flows and ρ are, the performances of
BLO/Exact and BLO/Approx always approach that of SLO-
n/Exact, and are always much better than that of SLO-d/Exact.
From the results on the number of accepted flows, we can
observe that both BLO/Exact and BLO/Approx achieve similar

performance to SLO-d/Exact, and perform the same as or
better than SLO-n/Exact. Furthermore, with ρ decreasing, the
performance gap between SLO-n/Exact and BLO/Exact or
BLO/Approx widens. These results verify the correctness and
effectiveness of BLO/Exact and BLO/Approx in balancing the
tradeoff between the upper-level and the lower-level objec-
tives, which benefits from the two-level optimization structure.
Among the four algorithms, the running time of BLO/Exact is
the longest, and moreover increases rapidly with ρ decreasing,
which confirms the necessity of proposing the approximation
algorithm.

Tables V-VI list the detailed results of BaRS of the four
algorithms under ρ = 100% and ρ = 80% respectively, which
are obtained manually by analyzing the simulations. To save
space, we only show the results of a group of 6 flows, which to
the largest extent exhibit the differences among the algorithms
and hence can help analyze the algorithms better. Under ρ =
100%, we can see that compared with SLO-d/Exact, the other
three algorithms implement flexible and compact bandwidth
allocation to provision deterministic traffic and therefore will
produce more opportunities for normal traffic. When ρ = 80%,
BLO/Exact and BLO/Approx can still provision deterministic
traffic as much as possible as the lower-level optimization
directs, while SLO-n/Exact provision just enough deterministic
traffic. These results explicitly suggest that BLO/Exact and
BLO/Approx always produce similar solutions, but different
solutions from those of SLO-n/Exact and SLO-d/Exact.

C. Large-scale Simulations

We perform large-scale simulations with Sprint. Due to the
time complexity of exact algorithms, we compare the perfor-
mances of approximation algorithms, i.e., BLO/Approx, SLO-
n/Approx and SLO-d/Approx, where the latter two correspond
to solving the SLO-n and SLO-d optimizations with LPR
and randomized rounding whose procedures are similar to
Algorithm 2 and the algorithm in [9] respectively. Specifically
for SLO-d/Approx, we set the bandwidth allocation portions
as those in B, and denote the algorithm counterparts as SLO-
d/Approx/20%, SLO-d/Approx/40%, SLO-d/Approx/60% and
SLO-d/Approx/80% respectively. As proved in Theorem 4,
randomized rounding can converge to ensure a preset lower
bound in certain probability, and the more iterations the
higher probability. For time-efficiency and fair comparison, we
prepare the LPRs in advance, and conduct the same number
of iterations (i.e., 103) for rounding in all the algorithms. In
this scenario, we change the number of flows within the range
[100, 400], and set ρ as a small value of 20% to better reveal
the efficiency of BLO.

Figs. 5-7 provide the results of Ωn, Ω1
n, and the results of

the average ratio of accepted deterministic flows, respectively.
These results further verify that BLO/Approx can balance the
tradeoff between the upper-level and lower-level objectives
than the benchmarks. Specifically, since SLO-n/Approx con-
centrates on optimizing the upper-level objective, it achieves
higher Ωn than BLO/Approx as Fig. 5 illustrates. However,
it also results in much lower average ratio of accepted de-
terministic flows than BLO/Approx. As for SLO-d/Approx,
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TABLE IV
RESULTS OF SMALL-SCALE SIMULATIONS.

Metrics Tn (Gbps) T 1
n (Gbps) Average Accepted Flows Running Time (s)

Total Flows 6 9 12 6 9 12 6 9 12 6 9 12

ρ = 100%

BLO/Exact 165.139 161.101 160.241 153.200 148.800 148.800 6.000 9.000 12.000 3.538 7.392 11.879

SLO-n/Exact 165.139 161.101 160.241 153.200 148.800 148.800 6.000 9.000 12.000 2.167 4.706 6.482

BLO/Approx 164.865 160.693 159.349 152.800 148.000 147.600 6.000 9.000 12.000 3.116 8.320 12.948

ρ = 90%

BLO/Exact 165.142 161.101 160.605 153.200 148.800 149.200 6.000 9.000 11.800 10.931 57.737 284.442

SLO-n/Exact 165.325 161.419 161.009 153.200 148.800 149.200 4.200 5.600 8.800 2.029 5.068 7.269

BLO/Approx 164.753 160.689 160.113 152.800 148.000 148.400 6.000 9.000 11.800 3.719 8.570 13.450

ρ = 80%

BLO/Exact 165.142 164.387 163.465 153.200 152.400 152.400 6.000 8.000 11.000 15.591 21.655 198.145

SLO-n/Exact 165.478 164.450 164.004 153.200 152.400 152.800 3.200 6.200 8.400 1.936 4.747 8.355

BLO/Approx 164.724 160.693 160.109 152.800 148.000 148.400 6.000 9.000 11.800 4.043 7.186 13.304

SLO-d/Exact 113.719 112.567 111.627 80.000 80.000 80.000 6.000 9.000 12.000 1.545 3.169 5.389

TABLE V
BARS RESULTS OF 6 FLOWS UNDER ρ = 100%.

Results BLO/Exact SLO-n/Exact SLO-d/Exact BLO/Approx

20%: All links\[1→7, 3→5], 20%: All links\[1→7, 3→5], 20%: None, 20%: All links\[1→7, 3→5, 5→3]

Bandwidth Allocation 40%: [1→7, 3→5], 40%: [1→7, 3→5], 40%: None, 40%: [1→7, 3→5, 5→3],

60%: None, 80%: None 60%: None, 80%: None 60%: All links, 80%: None 60%: None, 80%: None

f1: 5→7→2→3, f2: 1→7 f1: 5→7→2→3, f2: 1→7 f1: 5→7→2→3, f2: 1→7 f1: 5→3, f2: 1→7

Routing f3: 3→5, f4: 4→5→6 f3: 3→5, f4: 4→5→6 f3: 3→5, f4: 4→5→6 f3: 3→5, f4: 4→5→6

f5: 5→3→2, f6: 5→7 f5: 5→3→2, f6: 5→7 f5: 5→3→2, f6: 5→7 f5: 5→3→2, f6: 5→7

f1: [1, 1, 1], f2: [0] f1: [1, 1, 1], f2: [0] f1: [0, 0, 0], f2: [0] f1: [1], f2: [1]

Scheduling f3: [0], f4: [1, 0] f3: [0], f4: [1, 0] f3: [0], f4: [0, 1] f3: [0], f4: [1, 1]

f5: [0, 0], f6: [0] f5: [0, 0], f6: [0] f5: [1, 1], f6: [0] f5: [1, 1], f6: [1]

Ωn decreases but the average ratio of accepted deterministic
flows increases with more bandwidth allocated for deter-
ministic traffic. When compared with SLO-d/Approx, BLO-
d/Approx achieves comparable Ωn to SLO-d/Approx/40%.
But it admits more deterministic flows into the network than
SLO-d/Approx/40%, and as Fig. 6 shows, the average ratios
of accepted deterministic flows even reach to that of SLO-
d/Approx/60%. For example, when the numbers of flows are
100 and 150, the ratios are almost the same as those of SLO-
d/Approx/60%, and approximately 10% higher than those of
SLO-d/Approx/40%. Fig. 7 also provides the results of Ω1

n,
which suggests that such performance of BLO/Approx over
SLO-n/Approx and SLO-d/Approx arises from both bandwidth
allocation and routing and scheduling. To analyze the con-
vergence performance, we fix the number of flows as 100
and plot the results of the upper-level objective under all 5
traffic realizations for BLO/Approx. As Fig. 8 shows, the
upper-level objective exhibits rapid improvement within the
initial hundreds of iterations and gets converged with more
iterations, which numerically confirms Theorem 4. The results
of running time are shown in Table VII, where the algorithms
consume time in similar time-scale.
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Fig. 5. Results of Ωn.

VIII. CONCLUSION

In this work, we studied the BaRS problem, and modelled
this problem as a bilevel optimization which consists of
an upper-level optimization and a lower-level optimization.
The upper-level optimization addressed bandwidth allocation
between deterministic and normal traffic to maximize the
bandwidth available for normal traffic; the lower-level opti-
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TABLE VI
BARS RESULTS OF 6 FLOWS UNDER ρ = 80%

Results BLO/Exact SLO-n/Exact SLO-d/Exact BLO/Approx

20%: All links\[1→7, 3→5], 20%: All links\[1→7, 3→5], 20%: None 20%: All links\[1→7, 3→5],

Bandwidth Allocation 40%: [1→7, 3→5], 40%: [1→7, 3→5], 40%: None 40%: [1→7, 3→5],

60%: None, 80%: None 60%: None, 80%: None 60%: All links, 80%: None 60%: None, 80%: None

f1: 5→4→3, f2: 1→7 f1: None, f2: 1→7 f1: 5→7→2→3, f2: 1→7 f1: 5→3, f2: 1→7

Routing f3: 3→5, f4: 4→5→6 f3: 3→5, f4: None f3: 3→5, f4: 4→5→6 f3: 3→5, f4: 4→5→6

f5: 5→3→2, f6: 5→7 f5: 5→3→2, f6: 5→7 f5: 5→3→2, f6: 5→7 f5: 5→4→3→2, f6: 5→7

f1: [1, 1], f2: [0] f1: None, f2: [0] f1: [0, 0, 0], f2: [0] f1: [1], f2: [1]

Scheduling f3: [0], f4: [1, 1] f3: [0], f4: None f3: [0], f4: [0, 1] f3: [0], f4: [1, 1]

f5: [0, 0], f6: [0] f5: [0, 0], f6: [1] f5: [1, 1], f6: [0] f5: [1, 1, 1], f6: [1]
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Fig. 6. Results of average ratio of accepted to total deterministic flows.
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Fig. 7. Results of Ω1
n.

mization addressed RS for deterministic traffic to maximize
the number of accepted flows. We first formulated the bilevel
optimization as a BMILP. Then, we proposed an exact algo-
rithm based on cutting planes to solve it exactly, and proposed
an approximation algorithm based on two-level relaxations
and randomized rounding to solve it time-efficiently. Extensive
simulations were conducted and the results verified the effec-
tiveness of our proposals in balancing the tradeoff between
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Fig. 8. Results of convergence performance for BLO/Approx under 100 flows.

TABLE VII
RUNNING TIME (SECONDS) IN LARGE-SCALE SIMULATIONS.

Total Flows BLO/Approx SLO-n/Approx SLO-d/Approx/·

100 53.338 19.672 42.006

150 110.282 35.774 96.236

200 179.091 66.982 152.388

250 255.434 105.620 233.466

300 355.822 150.246 332.924

350 446.564 262.115 450.188

400 568.810 281.366 554.915

the bandwidth available for normal traffic and the number of
accepted deterministic flows.
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