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Abstract—This paper explores the benefits of in-network com-
puting (INC) empowered all-optical interconnects (AOI) in accel-
erating distributed machine learning (DML) jobs. We describe
the network architecture and service model, and present a large-
job-first and a grouping-based interleaved scheduling policy for
minimizing job completion time. The results verify the superiority
of our scheduling policies and show the effectiveness of INC and
AOI in mitigating bandwidth bottlenecking during DML training.

Index Terms—Distributed machine learning, all-optical inter-
connect, topology engineering, in-network computing.

I. INTRODUCTION

Nowadays, networking technologies have been developing
very with numerous innovations [1–9]. Meanwhile, with the
rapid growth of artificial intelligence, especially the rapid pop-
ularization of large language models (LLMs), the past years
has witnessed exponentially expanding model and training data
sizes. For instance, Meta’s Llama 3 model [10] comprises up to
70 billion parameters and was pretrained on over 15T tokens.
Such vast model size and data volume have rendered training
on single computing units (e.g., graphics processing unit
(GPU)) impractical, and thereby, call for distributed machine
learning (DML) training paradigms [11].

In traditional data center networks (DCNs), GPU servers
communicate via electrical packet switches (EPS) that inter-
connect to form multi-tier fabrics (e.g., fat trees) [12–15].
However, unlike legacy DCN workloads, DML applications
involve regular collective communications, which significantly
transform traffic patterns by producing skewed, periodic, and
megaflows. This shift poses great challenges for EPS-based
DCNs that rely solely on traffic engineering (TE) to accom-
modate bandwidth-intensive DML applications, let alone their
high energy consumption and end-to-end latency.

To address the aforementioned challenges, DCN operators
have begun integrating optical circuit switching (OCS) tech-
nologies [16–28] into their infrastructures and building optical
DCNs (ODCNs) [29]. Particularly, OCS allows for building
low-diameter ODCNs by provisioning large-capacity optical
links directly to inter-unit communications and dynamically
reconfiguring the all-optical interconnect (AOI) to fit skewed
traffic distributions [30–36]. However, AOI reconfiguration
often results in service interruptions, considering the fiber-level
switching granularity and millisecond-scale reconfiguration la-
tency of current commercial OCS switches. These limitations,
if not properly addressed, will diminish the benefits of ODCNs
and impede their ability to support the rapid expansion of

large-scale DML training, for instance, LLMs that employ
hybrid parallelism and may use tens of thousands of GPUs.

On the other hand, recent studies have revealed that in-
network computing (INC) on programmable data plane (PDP)
can reshape DML traffic patterns and mitigate the bottleneck
due to incast communication in parameter aggregation phases
[37–40], and hereby, potentially reduce AOI reconfiguration
frequency. It is worth exploiting the mutual benefits of INC
and AOI to further accelerate DML training. Nevertheless, how
to orchestrate the multi-dimensional resources (i.e., GPU, INC
and bandwidth) in DML job scheduling and AOI configura-
tions remains an underexplored yet challenging area [41, 42].

In this paper, we investigate how to accelerate DML training
in INC-empowered ODCNs. We first detail the ODCN archi-
tecture and the principle of DML training aided by INC. Then,
we discuss two DML job scheduling policies tailored for INC-
empowered ODCNs, namely, large-job-first and grouping-
based interleaved scheduling. The former prioritizes jobs with
larger bandwidth demand, while the latter groups jobs and
interleaves the communication phases of jobs from different
groups to ease bandwidth contention. Performance evaluations
verify the superiority of our algorithm over benchmarks in
terms of job completion time and reconfiguration frequency.

II. PROBLEM DESCRIPTION

A. ODCN Architecture

Fig. 1(a) shows the architecture of an ODCN of racks
dedicated for DML training. Each rack houses a few tens
of GPU servers wired to a top-of-rack (ToR) switch. The
GPUs within each server are directly linked in full mesh
via high-speed links (e.g., NVLink) and managed by a job
scheduler. Consequently, inter-rack communications present
the primary bottlenecks in a DML cluster. In the ODCN, ToRs
connect to several OCS switches, which can be dynamically
reconfigured to provide diverse connectivity (all-to-all, Torus,
etc.) among ToRs for serving the time-varying and skewed
traffic in DML training. Note that, while such flexibility, also
known as topology engineering (TPE) [32], helps ease inter-
rack bandwidth bottlenecking, the nonnegligible reconfigura-
tion time of commercial OCS switches (e.g., 50 ms) makes the
TPE optimization for DML training a nontrivial task. To this
end, we further bring in INC and replace legacy ToRs with the
PDP switches that can execute certain parameter aggregation
operations of DML training in line rate without adding extra
costs or power consumption [43], while effectively reshaping
inter-rack traffic to relieve the stress in the OCS plane.
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Fig. 1. System overview: (a) ODCN architecture, (b) INC-empowered data-plane, and (c) control plane workflow.

Fig. 1(b) illustrates the aggregation pipeline of an INC-
empowered PDP switch for jobs using PS-based data paral-
lelism. Specifically, the switch memory resources are parti-
tioned to serve as aggregators for gradient aggregation. Each
worker i of a job first computes its local gradients (denoted by
∇θi), which are then segmented into packets and transmitted
to the PDP switch. The switch uses a service ID to identify
the appropriate aggregator memory block for the job, performs
aggregation, and returns the aggregated result to workers for
gradient updates. As such, INC accelerates DML training by
eliminating the incast communication bottleneck inherent in
PS framework and enabling line-rate aggregation operations.

B. DML Service Model

Based on aforementioned ODCN architecture, DML tasks
can be serviced according to the control plane workflow
depicted by Fig. 1(c). We adopt a time-slotted scheduling
mechanism, where both DML job scheduling and all-optical
interconnect (AOI) reconfiguration are executed at the gran-
ularity of time slots. We also assume that job placement is
determined by the service layer in prior and is taken as an
input to our scheduling problem. At the beginning of each time
slot, the network monitoring module first collects information
such as switch status and link bandwidth and forwards it to the
job scheduling algorithm module. Then, given a set of DML
jobs along with their GPU placements, the scheduling module
determines which jobs should leverage INC, when each job’s
communication should commence, how to allocate bandwidth
among these jobs, whether and how to reconfigure the AOI,
with the goal of minimizing the overall completion time for
the batch of jobs. Finally, the output of the scheduling module
is transmitted to the data-plane job scheduler, PDP switches,
and OCS for execution and configuration.

III. ALGORITHM DESIGN

The optimal job scheduling and TPE solution can be de-
rived by solving an integer linear programming (ILP) model.
However, ILP is computationally prohibitive in large-scale
setting, hindering its applicability to online operations. Al-
ternatively, we resort to time-efficient heuristic algorithms. In
particular, we target PS-based data parallelism in this work,
which comprises four phases: local computation, push, aggre-
gation, and pull. Local computation is performed by GPUs

and persists deterministic durations contingent upon DML
configurations (e.g., model size, batch size and optimizer) and
GPU computing power. Gradient aggregation, when executed
in PDP switches, incurs negligible temporal overhead, as it is
done concurrently with push/pull communications at line rate.
The durations of push/pull phases depend on the amounts of
bandwidth allocated. Next, we will outline two optimization
strategies for DML job scheduling.

a) Large-job-first scheduling: Allocating INC resources
to jobs with more inter-worker demand cuts down inter-worker
traffic, and thereby, reduces AOI reconfigurations. The Large-
job-first scheduling strategy operates as follows: 1) prioritize
INC resource allocation for jobs with larger worker counts
and data transmission volumes; 2) allocate CPU resources as
PS aggregators for the remaining jobs when INC resources
exhaust; 3) optimize the bandwidth distribution to minimize
the overall job completion time; 4) reoptimize the AOI recon-
figuration dynamically to mitigate bandwidth bottlenecking.

b) Grouping-based interleaved scheduling: Interleaving
the communication phases of overlapping jobs can effec-
tively resolve bandwidth contention. Therefore, we devise a
grouping-based optimization strategy: 1) group jobs into two
cohorts with comparable computation-communication ratios
to avoid latency tail effects; 2) interleave the communication
phases of the two cohorts by delaying the starting time of one
cohort; 3) perform OCS reconfiguration upon the rotation of
the communication phases of the two cohorts.

IV. PERFORMANCE EVALUATION

We evaluated the performance of our algorithm through
simulations over a 64-rack ODCN setup. Each rack contains 64
servers and one PDP switch with INC capacity that supports
up to 4 jobs concurrently. The PDP switches connect to an
optical cross-connect (OXC) via 24 40-Gbps optical ports. We
assumed DML jobs arrive according to a Poisson process with
an average arrival rate of 20 jobs per time slot, each lasts for 1
second. For each job, the number of workers was randomly se-
lected from {2, 4, 8, 16} according to the Philly traces [44]. We
made the push data size for each worker uniformly distributed
within {0.552, 3.096, 4.0} GB, to simulate the VGG16, GPT2-
large, and Meta Llama3 models, respectively. The workers
were randomly placed in each simulation, but we attempted
to co-locate the workers of each job in the same rack to
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Fig. 2. Results of different numbers of DML jobs.

maximize traffic locality. We compared our algorithm, namely,
INC-empowered ODCN with large-job-first (LJF) scheduling
(INC-LJF), with three benchmark designs:

• INC-FCFS: INC-empowered ODCN with first-come-
first-served (FCFS) scheduling, which greedily allocates
multi-dimensional resources to sequentially arriving jobs
to minimize each job’s completion time.

• noINC-LJF: ODCN without INC, LJF scheduling.
• noINC-FCFS: ODCN without INC, FCFS scheduling.

Fig. 2 shows the results of AOI reconfiguration frequency
and overall job completion time when the number of DML job-
s increases from 800 to 1, 400. INC-LJF consistently delivers
the shortest completion time with the fewest number of AOI
reconfigurations. Remarkably, INC-LJF respectively reduces
the number of AOI reconfigurations and completion time by
96.4% and 93.2% over noINC-FCFS. This strikingly confirms
the effectiveness of the symbiosis between INC and our
algorithm. The introducing of INC helps reduce the overall job
completion time by up to 49.4% for INC-FCFS over noINC-
FCFS and 46.8% for INC-LJF over noINC-LJF, demonstrating
INC’s efficacy in reshaping cross-rack traffic and expediting
job training. Regarding the scheduling algorithm, our solution
reduces the completion time by an average of 87.3% and
86.3% in the noINC and INC scenarios, respectively, which
indicates that our LJF algorithm substantially decreases job
completion time by improving overall resource utilization.

V. SUMMARY

In this paper, we presented an INC-empowered AOI archi-
tecture and two optimization strategies for accelerating DML
jobs. Performance evaluations proved the mutual benefits of
INC and AOI in mitigating communication bottlenecking
while showing superior performance of our proposal.
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