
Research Article 1

Deep Reinforcement Learning-aided Multi-step Job
Scheduling in Optical Data Center Networks
CHE-YU LIU1, XIAOLIANG CHEN2,*, ROBERTO PROIETTI3, ZUQING ZHU2, AND S. J. BEN YOO4

1Department of Computer Science, University of California, Davis, CA 95616 USA
2,*School of Information Science and Technology, University of Science and Technology of China, Hefei, P. R. China
3Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
4Department of Electrical and Computer Engineering, University of California, Davis, CA 95616 USA
*xlichen@ieee.org

Compiled June 2, 2025

Orchestrating job scheduling and topology reconfiguration in optical data center networks (ODCNs) is
essential for meeting the intensive communication demand by novel applications, such as distributed
machine learning (ML) workloads. However, this task involves joint optimization of multi-dimensional
resources that can barely be effectively addressed by simple rule-based policies. In this paper, we leverage
the powerful state representation and self-learning capabilities from deep reinforcement learning (DRL)
and propose a multi-step job schedule algorithm for ODCNs. Our design decomposes a job request into
an ordered sequence of virtual machines (VMs) and the related bandwidth demand in between, and then
make a DRL agent learn how to place the VMs sequentially. To do so, we feed the agent with global
bandwidth and IT resource utilization state embedded with the previous VM allocation decisions in
each step, and reward the agent with both team and individual incentives. The team reward encourages
the agent to jointly optimize the VM placement in multiple steps to pursue successful provisioning
of the job request, while the individual reward favors advantageous local placement decisions, i.e., to
prevent effective policies being overwhelmed by few subpar decisions. We also introduce a penalty on
reconfiguration to balance between performance gains and reconfiguration overheads. Simulation results
under various ODCN configurations and job loads show our proposal outperforms the existing heuristic
solutions and reduces the job blocking probability and reconfiguration frequency by at least 7.35× and
4.59×, respectively.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Distributed machine learning (ML) workloads, particularly,
large language models that comprise billions to trillions of
parameters, involve distributed computing clusters executing
parallel computations and frequent parameter synchronization,
with individual connections generating data transfers at tens of
Gbps. As a result, bandwidth bottlenecking has emerged as a
critical factor limiting the performance of these communication-
intensive applications, highlighting the need for advanced data-
com architectures and flexible job scheduling strategies to orches-
trate multi-dimensional resources (e.g., CPU, memory, storage
and bandwidth) [1].

Earlier works on job scheduling have reported significant
advances in algorithm designs tailored to ML workloads [2–11].
However, they primarily focused on optimizing the allocation of
computing resources while overlooking bandwidth limitation,
which is key to accelerating the gradient synchronization pro-

cess. Recently, researchers have begun to dig into the synergistic
benefit of bandwidth-aware job scheduling [12–15], but pre-
dominantly considered traditional electronic packet-switched
(EPS) data center networks (DCNs). These EPS-based DCNs
face increasing challenges in terms of high latency and energy
consumption, poor scalability and adaptability when handling
today’s ML workloads that double every few months.

In this context, optical data center networks (ODCNs) have
emerged as promising solutions that naturally meet the above
challenges [16, 17]. Built on commercially available optical cir-
cuit switching technologies, ODCNs can provide large-capacity
and direct-connect communications between computing units
while sustaining high energy efficiency (by largely eliminating
power-hungry electrical-layer processing). Moreover, ODCNs
allow for dynamic topology reconfiguration to adapt to the time-
vary and skewed traffic patterns driven by the evolution of jobs
[18–23]. Indeed, the benefits of ODCNs have been validated in
production environment by leading high-tech enterprises like

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Research Article 2

Google and Meta. Nevertheless, job scheduling in reconfigurable
ODCNs, i.e., how to leverage the reconfigurability of ODCNs
to assist in bandwidth-aware job placement, so that network-
wide performance related to job throughput, latency and system
overheads is maximized, remains underexplored.

Building on the above insights, this work aims at develop-
ing a comprehensive framework for the joint optimization of
job scheduling and bandwidth allocation in reconfigurable OD-
CNs. Specifically, we extend our prior work in [24] and address
the limitations of the simple heuristic policy therein by propos-
ing a deep reinforcement learning (DRL)-based multi-step job
scheduling design in ODCNs. Our contributions include:

• we propose a multi-step job scheduling design that tack-
les the scalability limitation of standard DRL approaches
by decomposing the provisioning of a job into sequential
virtual machine (VM) placement tasks;

• we present a comprehensive DRL agent design including
the state representation, action space, reward function and
training mechanism, and particularly, we devise a novel
team and individual rewarding mechanism that drives the
agent to optimize the job-level performance while avoiding
discouraging performant local decision making;

• simulation results under various ODCN configurations (job
loads and network scales) show superior performance of
our proposal over the existing approaches.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief review of related work on job scheduling and optical
interconnects. Section 3 formulates the job scheduling problem
in reconfigurable ODCNs. Section 4 presents the DRL-aided
scheduling framework, including the agent design and reward
structure. Section 5 provides evaluations of the proposed ap-
proach against the heuristic baselines under various job loads
and network scales. Finally, Section 6 concludes the paper and
outlines future research directions.

2. RELATED WORK

The optimization of job scheduling has been widely studied in
literature, many of them targeting distributed ML workloads.
Early research primarily focused on computational job schedul-
ing to balance workload distribution and minimize training
time. Zhang et al. introduced SLAQ, a cluster scheduler optimiz-
ing resource allocation for ML training by leveraging quality-
runtime trade-offs, achieving up to 73% quality improvement
and 44% training time reduction [2]. Bao et al. proposed on-
line scheduling frameworks that minimize training time and
improve fairness using workload predictions, enhancing job
completion time and resource efficiency [3, 4]. Yu et al. devel-
oped an online scheduling algorithm optimizing locality and
resource allocation in distributed ML systems [5], while Zhou et
al. designed a dynamic scheduling algorithm to manage hetero-
geneous DML jobs across diverse resources, ensuring efficient
job allocation [7]. Lu et al. leveraged reinforcement learning
(RL) to dynamically adjust job assignments, significantly im-
proving training efficiency and system performance over heuris-
tic scheduling techniques [8]. Wang et al. integrates heuristic
scheduling with DRL to optimize job completion time and model
accuracy by prioritizing tasks based on spatial and temporal fea-
tures [9]. It also implements load control and an optimal DML
iteration stopping method, improving the model accuracy by up
to 64% while reducing job completion time by 52%. TapFinger

[10], a distributed scheduler for edge clusters, co-optimizes task
placement and multi-resource allocation using multi-agent RL.
By employing a heterogeneous graph attention network and
Bayesian optimization, TapFinger achieves a 54.9% reduction in
task completion time and improves resource efficiency. Luo et
al. proposed A-SRPT, a prediction-assisted online scheduling
algorithm for DML training in GPU clusters [11]. By modeling
jobs as graphs representing heterogeneous DNNs and training
configurations, A-SRPT minimizes inter-server communication
overheads and predicts training iterations using a random forest
model. It applies the shortest-remaining-processing-time-first
strategy, leading to provable scheduling efficiency.

Beyond the management of computing resources, optimizing
network bandwidth for DML job scheduling has gained atten-
tion due to the increasing data exchange required for distributed
gradient synchronization. Zhang et al. introduced Prophet, a
system that optimizes communication scheduling by leveraging
predictable communication patterns, reducing network over-
head and accelerating DML training [12]. Gu et al. proposed a
network-aware scheduling framework for DML workloads in
GPU clusters, enhancing job throughput and reducing network
congestion through intelligent resource estimation and schedul-
ing [13]. Guo et al. tackled joint job scheduling and bandwidth
augmentation in hybrid data centers, transforming a complex
mixed-integer nonlinear problem into an efficient Branch and
Bound solution [14]. This method reduces job completion time
by up to 10%, with performance gains influenced by data size.
Similarly, Bi et al. presented AISAW, an adaptive scheduling al-
gorithm for optimizing DL workload training in heterogeneous
distributed systems. AISAW reduces job co-location interference,
optimizes job-node matching, and minimizes migration over-
head under bandwidth constraints. Experiments show AISAW
cuts job completion time by 13.02% compared to the state-of-the-
art algorithms [15]. However, these works depend on traditional
electronic switching, which suffers from scalability, latency, and
energy limitations, restricting their adaptability to growing ML
workloads.

Traditional electrical packet switching architectures, con-
strained by their high latency, limited scalability, and energy
inefficiencies, have spurred research into reconfigurable optical
interconnects [16, 17]. Khani et al. introduced silicon photonics-
based optical interconnects to enhance DML training, result-
ing in a 9.1× speedup [18]. Our prior work, Sl-hyper-flex, in-
troduced a cognitive flexible-bandwidth optical interconnect
that utilizes silicon photonic switch fabrics and self-supervised
learning to optimize network performance [19]. It improves
throughput by 1.62× and reduces end-to-end latency by up to
3.84×. Zheng et al. developed a fast, nondisruptive reconfigu-
ration algorithm for topology migration in ODCNs, reducing
traffic disruption by 74.5× [20]. Ottino et al. introduced a high-
performance all-optical network for DML workloads, offering
full-bisection bandwidth with nanosecond reconfiguration [21].
Xie et al. proposed P4INC-AOI, an in-network computing ap-
proach integrated in all-optical interconnects for DML training
[22]. By optimizing AOI reconfiguration and resource allocation
using both mixed-integer linear programming and heuristic de-
signs, P4INC-AOI reduces job completion time by up to 56.34%.
Guo et al. proposed an all-optical switching architecture to over-
come communication bottlenecks in large-scale DML training,
enabling nanosecond-level reconfiguration and seamless sup-
port for different parallelization strategies [23].

Aside from the aforementioned works that perform com-
puting and bandwidth resource optimization, optimization of

Research Article 3

job scheduling under various system constraints has gained
increasing interest. Mahmoud et al. introduced a dynamic load-
balancing technique for heterogeneous cloud environments, en-
hancing resource utilization and reducing execution time [25].
Yao et al. proposed a job duplication strategy optimizing work-
flow execution under budget constraints, balancing cost effi-
ciency and performance [26]. Bal et al. presented a hybrid ML-
based approach addressing resource allocation, security, and
scheduling by dynamically adapting resource distribution based
on workload demand and security constraints [27]. Mangalam-
palli et al. developed a DRL-based job scheduling framework
for multi-cloud environments, efficiently allocating jobs based
on resource availability, job demands, and system performance
metrics [28]. Their results indicate that DRL-based schedul-
ing enhances execution efficiency and scalability in resource-
constrained environments. Despite these advancements, exist-
ing research has mainly focused on optimizing computation,
network bandwidth, or system constraints individually. The in-
terplay between job scheduling, adaptive bandwidth allocation,
and topology reconfiguration in reconfigurable network archi-
tectures, particularly for ODCNs, remains an underexplored
challenge.

3. NETWORK AND SERVICE MODELS

In this section, we describe the ODCN architecture and formally
present the job scheduling model therein.

A. ODCN Architecture
We consider an optical circuit switching (OCS)-based reconfig-
urable ODCN employing the spine and leaf architecture. As
shown in Fig. 1, the ODCN is composed of a set of racks, each
housing a certain number of servers equipped with IT resources.
The top-of-rack (ToR) switches are wired to a group of optical cir-
cuit switches (OCS’s). By reconfigurations of the OCS switching
matrices, the ODCN provides flexible-bandwidth optical inter-
connects to handle the time-varying and skewed traffic among
the ToRs.

The ODCN exploits a software-defined networking (SDN)-
based centralized control and management paradigm. In the
control plane, the cloud service manager (CSMgr) communicates
with the network manager (NMgr, which can be built on an SDN
controller) to orchestrate the IT and bandwidth resources for op-
timized job scheduling. Specifically, the CSMgr receives job
requests, each specifying a certain number of VMs with IT capac-
ity requirements and a bandwidth demand matrix between VM
pairs. Then, it inquires network information (e.g., connectivity
graph, bandwidth utilization) from the NMgr and combines
them with the IT resource distribution in its sovereignty to form
a global representation of the ODCN state. The ODCN state,
together with the job requests, are forwarded to the DRL-aided
job scheduling module for service provisioning calculation. The
DRL module suggests the placement of the VMs, which in turn
decides the additions of bandwidth demand among the ToRs.
The CSMgr validates the feasibility of the suggested service
schemes by verifying the IT resource viability and also request-
ing for bandwidth allocation by the NMgr. If either of the de-
manded IT and bandwidth resources is unavailable, the job is
blocked, otherwise, the CSMgr works with the NMgr to com-
mit the corresponding resource provisioning. Note that, the
NMgr may perform event-driven (e.g., upon failure of band-
width allocation) reconfigurations of the optical interconnects
to fit the evolving traffic demand in dynamic job scheduling.

Such reconfigurations facilitates successful bandwidth alloca-
tion but introduces nonnegligible control plane overheads [17],
and therefore, should be minimized. The CSMgr feeds back
key performance metrics related to the service schemes, such
as whether the jobs are successfully serviced, the reconfigura-
tion costs and the perturbations to end-to-end performance (e.g.,
latency), to the DRL module. Consequently, the DRL module
oversees long trajectories of operation samples and learns suc-
cessful state-aware provisioning policies from repeated trial and
error.

B. Job Scheduling Problem
We model an ODCN as G(V, W, E), where V and W denote
the sets of racks and OCS’s, respectively, and E describes the
connectivity among the racks which is determined by the con-
figuration of W. Specifically, each eu,v ∈ E gives the number of
OCS connections configured for the communication from rack
u to v and is bounded by N · |W|, with N being the number
of ports each rack uses to connect to an OCS. Let B be the ca-
pacity of an optical port/connection, then, the total bandwidth
from rack u to v is eu,v · B. Each rack comprises M servers that
provide IT resources in terms of computing units (e.g., CPUs,
GPUs), memory and disk. The IT resource of each server ϕi
can be signified by a triple Ci = [Ccu

i , Cmem
i , Cdisk

i]. Conse-
quently, given a set of dynamically arriving distributed com-
puting jobs R during a provisioning period, where each job

rj(tj, {[Qcu
j,k, Qmem

j,k , Qdisk
j,k]

Kj

k=1}, Dj, Tj) ∈ R is characterized by its
arrival time tj, a sequence of Kj VM requests with individual
resource demands, a bandwidth demand matrix Dj describing
inter-VM communication requirements, and a job duration Tj,
our problem is formulated as: optimizing the scheduling of R
and the dynamic reconfiguration of W for maximizing the job
acceptance ratio, while securing desirable quality-of-service
(e.g., end-to-end latency and packet loss rate) and system over-
heads, and complying with the resource constraints. Table 1
summarizes the major symbols and notations used throughout
the paper.

4. ALGORITHM DESIGN

A. Principle of DRL-aided Scheduling
Fig. 2 sketches the principle of DRL-aided multi-step job schedul-
ing. Leveraging DRL’s capability of optimizing long-term sys-
tem performance, we first decompose a job rj into a sequence of
VM requests (1⃝) and make the DRL agent decide the allocation
of the VMs sequentially through multi-step decision making
(2⃝). Compared with one-shot job placement where the agent
needs to handle a large and variable action space (which makes
the successful training of the agent extremely challenging), this
multi-step formulation significantly improves the model scala-
bility and hereby ease policy learning. The VM requests can be
ordered according to their IT resource requirements to facilitate
servicing higher demanding VMs. Note that, the communication
topology of the VMs in Fig. 2 is for illustrative purposes, and the
actual topologies are task-specific, for instance, being a ring for
a distributed ML task employing ring-based data parallelism. In
each step k, the DRL agent reads state data sj,k encompassing
the corresponding VM request and ODCN resource utilization
like the residual IT resource of each rack and the available band-
width among the racks, and generates with its policy neural
network a provisioning policy πj,k(sj,k, a) that guides the choice
of a rack (i.e., an action a) to which the VM should be deployed

Research Article 4

Optical Circuit
Switching:

ToR Switch:

Server:

CPU
RAM
DiskC1,1

CPU
RAM
DiskC1,2

CPU
RAM
DiskC1,M

CPU
RAM
DiskC2,1

CPU
RAM
DiskC2,M

CPU
RAM
DiskCN,1

CPU
RAM
DiskCN,M

...

...
VM Allocation

...

ToR1 ToR2
ToRN

Cloud Service
Manager

Reward System
Feedback

Service Provisioning
Policy/Action

• Pending Request
• Bandwidth Utilization
• Resource Utilization

Service
Schemes

DRL-aid Job Scheduling

Network Monitoring &
Telemetry Service

Network
Manager

Reconfiguration?

Task
Request

...
VM1 VM2 VM3 VMK

Manager Module

Reward

Network State
Data Database

Traffic Engineering

Fig. 1. ODCN architecture with DRL-aided job scheduling.

Data Plane

Reward System

DRL

Value

Agent

Policy

Experience Buffer

...
job1 jobjjob2

Training ak … a2, a5, a1

𝝆1 … 𝝆k

Feedback

<sj,1, a1, 𝝆1>

<sj,k, ak, 𝝆k>

…

...

VM2 VM3 VMK

VM1

... VM2 VM5 VM1

...

ODCN state

Cloud Service Manager

rj
1

2

3

4
5

6

7

Fig. 2. Schematic of DRL-aided multi-step job scheduling.

in. Here, since each decision step k ∈ [1, Kj] is tasked the place-
ment of the k-th VM within job rj, we use k indiscriminately to
denote the indices of VM and scheduling step. The agent also
employs a value neural network to later help judge the goodness
of the agent’s decisions by anticipating the future rewards. The
CSMgr decides the VM allocation aj,k ∼ πj,k(sj,k, a) (3⃝) and pro-
vides feedback indicating whether sufficient resources have been
withheld for the VM (4⃝). If there is not sufficient IT resource
for the VM, the provisioning phase is terminated and the job is
marked as blocked. Otherwise, the agent proceeds to the next
VM request. After all the VMs have been successfully processed,
the cloud service manager interacts with the network manager
to perform routing and bandwidth allocation for the job. If
this process fails, the network manager retrieves the demand
matrix and attempts to reconfigure the optical interconnect by

augmenting the hot-spot links. The topology reconfiguration
and bandwidth allocation results, together with the monitoring
of end-to-end performance, such as latency and packet loss rates,
are also fed back to the DRL agent (4⃝). Afterward, the agent
calls the reward system to translate these feedback into numeri-
cal rewards (5⃝). Note that, every action taken in the multi-step
decision making process is assigned a unique reward ρj,k based
on its individual performance (individual reward) as well as the
global provisioning outcome (team reward) to encourage the
agent pursuing job-level optimization. Next, the reward func-
tion will be detailed in the next section. The state, action and
reward tuples {[sj,k, aj,k, ρj,k]k∈[1,Kj]} are stored in the experience
buffer (6⃝). Finally, every time a certain number of jobs have
been serviced, we train the policy and value neural networks
with the samples in the experience buffer by reinforcing advan-
tageous actions (7⃝). This way, the DRL agent is able to learn
and adapt its policy from dynamic job scheduling operations.

B. DRL Agent Design
We design the DRL agent based on the advantage actor-critic
(A2C) framework [29], which decouples policy learning and
value estimation into two separate neural networks: a policy
network (actor) and a value network (critic). The actor selects
actions based on the current state, while the critic estimates
the expected cumulative reward from that state. To improve
sample efficiency and training stability, A2C uses the advantage
function to evaluate how much better an action turns out to
be than originally expected (by the critic, see Eq. 3). During
training, actions with higher advantage values are reinforced.
Next, we detail the key components of the agent.

1) State: Effective modeling of the ODCN states enables the
agent perceiving global resource utilization and hereby learning
effective scheduling policies. We construct sj,k for each rj as a
1× 2|V| array, where for each rack u, we calculate the minimum
residual IT and bandwidth capacities in percentage if the VM
in step k were deployed (i.e., hypothetical placement) in the

Research Article 5

Table 1. Summary of notations.

Symbol Description Symbol Description

V Set of racks (ToRs) in an ODCN W Set of optical circuit switches (OCSs)

E Set of optical connections among racks eu,v Number of connections between racks u and v

B Bandwidth capacity of a connection M Number of servers per rack

Ci IT resource of server i: [Ccu
i , Cmem

i , Cdisk
i] R Set of incoming job requests

rj The j-th job request Aj Set of VM allocation schemes for rj

tj Arrival time of job rj Tj Duration of job rj

Kj Number of VMs (steps) in job rj Dj VM bandwidth demand matrix of job rj

[Qcu
j,k , Qmem

j,k , Qdisk
j,k] Resource requirement of VM k in job rj sj,k State representation for VM k in job rj

aj,k Action (rack selection) for VM k in job rj ρj,k Reward for the k-th decision in job rj

Φreconf Cost of topology reconfiguration l Average end-to-end latency

α Scaling factor for latency term γ Discount factor for reward accumulation

β Entropy regularization weight in policy loss σn Discounted cumulative reward for sample n

ℵn Advantage estimate for sample n an Action taken in training sample n

Lθp Policy network loss Lθv Value network loss

Π Experience buffer storing training samples L Number of samples used in each training

ε, ε0, εmin Exploration rate, its variation step size and mini-
mum value

πθp (sj,k) VM allocation policy: probability distribution
over actions given state sj,k

fθp (·) Policy network fθv (·) Value network

rack. Specifically, we adopt the balanced load strategy for VM
allocation within a rack, and subsequently, the minimum IT
resource is taken from minima of available computing units,
memory and disk across all the servers in the rack to characterize
the bottlenecking effect. The minimum bandwidth capacity is
measured as the bottleneck of all the incoming and outgoing
links of u. If any of these resource requirements is unmet by a
rack, the corresponding feature value in sj,k is set as −1. Such
encoding provides distinct signals for the agent to distinguish
between infeasible solutions and situations where a rack can
provide just enough resources (with feature values close or equal
to 0). Then, sj,k will show an evident blocking case when all the
racks have at least one feature value of −1.

2) Action space: The agent selects one from the |V| racks as
the host for each VM request. Therefore, policy πj,k(sj,k, a) can
be a probability of choosing action aj,k = a, a ∈ V.

3) Neural network structures: The policy and value neural
networks employ the same structure (e.g., fully-connected or
convolutional neural networks) for feature extraction, and a
separate policy and value heads for outputting the provisioning
policy and value estimation, respectively.

4) Reward function: We define the reward function as,

ρj,k =

−Kj, if rj is blocked in step k,
0.5, if rj is blocked in step k′ > k,
1 + α

l , if rj is serviced without reconfiguration,
1 + α

l −Φreconf, otherwise.
(1)

where l denotes the average network-wide end-to-end latency
in nanoseconds, Φrecon f represents the additional cost associated
with topology reconfiguration, and α is a scaling factor. Since
multiple actions collectively determine the provisioning of a job,
we differentiate the credit (i.e., immediate reward) assigned to
each action by rewarding the agent both individual and team
incentives. In particular, we penalize an immediate blocking of
a job by a reward of −Kj (Line 1), while successful placement of
VMs prior to job blocking still receives a positive but discounted

reward of 0.5 (Line 2). Note that, if a job is blocked at step k, all
subsequent samples are discarded. These two terms correspond
to individual rewards which penalize invalid solutions while
avoiding discouraging performant local decision making due to
failure of a global task. Lines 3 and 4 of Eq. 1 define the cases of
successful job placement, where the agent receives not only an
individual reward of 0.5 but also a team reward of 0.5 + α/l in
each step. This team reward incentivizes successful servicing of
the job and also favors more advantageous solutions by incorpo-
rating an adaptive term based on the influence of the job on the
network-wide performance, i.e., end-to-end latency. Addition-
ally, we introduce a penalty of Φrecon f if accommodating the job
entails topology reconfiguration of the ODCN. Consequently, as
we will detail next, by optimizing the cumulative rewards, i.e.,
sum of ρj,k over a long term of service provisioning, we drive
the agent to learn to allocate the resources more reasonably for
maximizing the job acceptance ratio while minimizing latency
and reconfiguration operations.

5) Training mechanism: Algorithm 1 summarizes the overall
workflow of the DRL agent. In Lines 2, we initiate an empty ex-
perience buffer Π and set ε as 1 to encourage exploration. Then,
Lines 3 initiate the policy network fθp (·) and the value network
fθv (·). For each request rj ∈ R, the DRL agent first updates
the resource utilization state of the ODCN by releasing expired
requests (Line 5). Lines 6-7 set a flag gj to indicate whether the
job is blocked and initialize an empty set Aj to carry the VM
allocation action in each step. The for-loop spanning Lines 8-16
perform multi-step job scheduling with the assist of the DRL
agent. Specifically, for each VM k, the agent obtains sj,k (Line 9),
and calls its policy and value networks to calculate an allocation
policy fθp (sj,k) and a value estimation fθv (sj,k) (Line 10). In Lines
11-12, with a probability of ε, the agent samples an action using
the roulette method following the distribution of fθp (sj,k). Other-
wise, it selects the action associated with the highest probability
which represents the optimal action based on the agent’s current
knowledge. Hence, different values of ε represent different ex-

Research Article 6

Algorithm 1. Workflow of the DRL agent.

1: Input: G(V, W, E), B, M, Ci, R, ε0
2: Initialize Π = ∅, ε = 1;
3: Initialize policy and value networks fθp (·), fθv (·);
4: for each rj ∈ R do
5: Release resources occupied by expired jobs;
6: Set flag gj ← false;
7: Initialize the job scheduling solution Aj ← ∅;
8: for each step k ∈ Kj do
9: Obtain sj,k based on rj and current resource utiliza-

tion;
10: Compute fθp (sj,k) and fθv (sj,k);
11: Compute cumulative sum of fθp (sj,k) as Σ;
12: Select action aj,k:

aj,k =

{
arg min{Σ(a) ≥ rand()}, with probability ε,
arg max{πθp (sj,k)}, otherwise;

13: if aj,k is infeasible then
14: Set gj ← true and break;
15: else
16: Append aj,k to Aj;

17: if gj is false then
18: Check bandwidth availability according to Aj;
19: if bandwidth demand is unmet then
20: Re-check bandwidth availability with hypotheti-

cal ODCN reconfiguration;
21: Set gj ← true and continue if bandwidth demand

is still unmet;
22: Commit bandwidth/VM allocation according to Aj

and reconfigure the ODCN if necessary;
23: Compute ρj,k using Eq. 1 and store <

sj,k, aj,k, ρj,k, fθv (sj,k) > in Π for all k ∈ Kj;
24: if |Π| ≥ 2L− 1 then
25: for each < sn, an, ρn, fθv (sn) > in Π[: L] do
26: Compute σn and ℵn using Eqs. 2 and 3;
27: Compute Lθp and Lθv using Eqs. 4 and 5;
28: Apply gradients of Lθp and Lθv to update net-

works;
29: Remove the first L samples from Π;
30: Set ε← max(ε− ε0, εmin);

ploration/exploitation preferences of the agent. If the action is
infeasible, the job is marked as blocked in Line 14. Otherwise,
the action is recorded in Aj (Line 16). If feasible VM allocation
schemes have been found for all the VMs, the agent checks the
bandwidth availability with ODCN reconfiguration possibilities
in Lines 17-20. Only when sufficient bandwidth is also viable, we
commit bandwidth and VM allocation according to the actions
in Aj and reconfigure the ODCN if necessary (Line 22), other-
wise, the job is finally blocked in Line 21. After all the VMs have
been serviced or rj is blocked, we calculate the reward for each
action with Eq. 1 and store the corresponding sample in the
experience buffer (Line 23). Lines 24-30 perform training when at
least 2L− 1 samples have been collected. Wherein, the for-loop
from Lines 25-26 calculates the discounted cumulative reward
and advantage for each of the first L samples in the buffer by,

σn = ∑
t∈[0,L−1]

γtρn+t, (2)

ℵn = σn − fθv (sn), (3)

where γ ∈ (0, 1] is the discount factor. In other words, the goal
of the agent is maximizing its total reward within a provisioning
window L, while the advantage represents the gain of taking
this specific action an over the original estimation. Subsequently,
we can training the policy and value networks by computing
the policy loss Lθp and the value loss Lθv with Eqs. 4 and 5 and
by applying their gradients with respect to the neural network
weights (Lines 27-28).

Lθp =−E
[
log fθp (sn, an)ℵn

]
+ βE

[
∑
a

fθp (sn, a) log fθp (sn, a)

]
,

(4)

where β ∈ [0, 1] is a hyperparameter that controls the trade-
off between exploration and exploitation, i.e., the first term in
Eq. 4 favors actions with high advantage to maximize rewards,
while the second term serves as an entropy regularizer to en-
courage exploration. In particular, the entropy regularization
term promotes exploration by encouraging stochastic policies
and preventing early convergence to suboptimal deterministic
behaviors. This regularization helps the DRL agent maintain
action selection diversity and improves policy robustness during
training. The value loss function is defined as the mean squared
error (MSE) between the estimated and observed cumulative
rewards.

Lθv = E
[(

σn − fθv (sn)
)2
]

(5)

Finally, Lines 29-30 remove obsolete samples and update ε before
proceeding to the next job.

5. PERFORMANCE EVALUATION

We evaluated the proposed DRL-aided multi-stage job schedul-
ing design through numerical simulations under a 16-ToR setup.
Each ToR connects to the OCS plane with 30 ports (15 for input
and another 15 for output) and hosts 32 servers. Server con-
figurations were based on [30], with each server featuring 32
CPU cores, 256 GB memory, and 3, 584 GB storage. We assumed
a port capacity of 40 Gbps (i.e., B = 40). Each job requests for
[10, 21] VMs, randomly chosen from four specifications: [4 cores,
15 GB memory, 80 GB storage], [16 cores, 32 GB memory, 320
GB storage], [16 cores, 122 GB memory, 320 GB storage], and [16
cores, 122 GB memory, 3, 200 GB storage]. These VMs remained
unchanged during jobs’ life cycles. The bandwidth demand per
VM pair follows a uniform distribution within [6, 8] Gbps. We
tested different job loads and empirically selected task arrival
rates of [54, 60, 66, 72, 78] to represent operational regimes with
moderate resource contention, avoiding both underutilized and
heavily saturated conditions where scheduling decisions do not
play a significant role in determining the network performance.
For each training epoch, we generated 200, 000 job requests. The
job requests arrived according to a Poisson process, with the
inter-arrival time following an exponential distribution centered
at 1 time unit. We varied the mean value of job duration Tj to
produce different traffic load scenarios. We conducted a wide
range of ablation studies and selected the following hyperpa-
rameter configurations for the DRL agent. The policy and value
networks of the DRL agent consist of five fully-connected hid-
den layers, each with 128 neurons. The hidden layers use ELU as
the activation functions. α, β, γ, ε0, εmin, L and the learning rate
were set as 100, 10−2, 0.9, 10−5, 0.5, 50 and 10−3, respectively. We

Research Article 7

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

0.04

0.08

0.12

0.16

0.2

5 10 15 20 25 30

of R
econfigurations per Job (/10

2)

Jo
b

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

(%
)

Setup of !reconf

of Reconfigurations per Job

Job Blocking Probability

Fig. 3. Results of job blocking probability (left) and number of
reconfigurations per job (right) as functions of Φrecon f .

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

Jo
b

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

(%
)

Training Epochs

ALL2ALL-CCF ODCN-CCF
ODCN-JCB Multi-step DRL

Fig. 4. Evolution of blocking probability from the DRL agent
during training.

performed training with the Adam optimizer [31]. End-to-end
latency and packet loss rate were evaluated with the queuing
model presented in [32], considering the extreme cases where
VMs transmit data at full rates. We assumed the packet size to
be 296 bytes and buffer size to be 15 packets.

A. Evaluation on the Impact of Reconfiguration Cost
Despite higher frequencies of OCS reconfigurations may en-
hance the job acceptance ratio and end-to-end network per-
formance, they add notable control and data plane overheads.
Therefore, we first evaluated the impact of the setup of reconfig-
uration cost in Eq. 1 (i.e., Φrecon f) on the performance of the DRL
agent and sought to figure out the best configuration of Φrecon f .
Fig. 3 presents the results of job blocking probability and num-
ber of reconfigurations per job as functions of Φrecon f , when the
average job duration is 66. We can see that as we increase the
penalty on reconfiguration, the reconfiguration frequency drops
consistently, indicating that the DRL agent learns scheduling
policies that avoid excessive reconfigurations. The job blocking
probability increases as fewer reconfigurations are invoked and
its rising rate turns high when Φrecon f goes beyond 25. This

Table 2. Resource utilization ratio (%) from a 16-ToR ODCN
configuration under different job loads.

Load Policy CPU RAM Disk

54

ALL2ALL-CCF 64.4 45.0 43.7

ODCN-CCF 65.3 45.8 44.2

ODCN-JCB 65.0 45.3 43.5

Multi-step DRL 65.9 46.1 44.8

60

ALL2ALL-CCF 73.6 51.4 49.5

ODCN-CCF 72.7 50.8 49.1

ODCN-JCB 70.6 49.3 47.5

Multi-step DRL 74.3 51.9 50.1

66

ALL2ALL-CCF 79.1 55.4 53.3

ODCN-CCF 78.5 54.8 52.7

ODCN-JCB 79.3 55.6 53.3

Multi-step DRL 81.6 57.1 55.0

72

ALL2ALL-CCF 85.4 59.8 57.6

ODCN-CCF 85.1 59.5 57.9

ODCN-JCB 85.6 59.9 58.3

Multi-step DRL 88.9 62.2 59.9

78

ALL2ALL-CCF 87.9 61.2 59.0

ODCN-CCF 89.6 62.5 60.6

ODCN-JCB 88.9 62.3 59.5

Multi-step DRL 94.2 66.2 63.4

means that when Φrecon f > 25 (e.g., 30), the reconfiguration cost
gradually dominates the reward calculation so the agent is more
inclined to block certain jobs than reconfiguring the optical inter-
connects. This phenomenon is confirmed by the sharp decrease
in reconfiguration frequency at the same position. Following this
observation, we set Φrecon f to be 25 in the rest of the simulations
to allow the DRL agent to better balance between the blocking
probability and reconfiguration cost.

B. Comparison with Heuristic Baselines

We compared our proposal with three heuristic approaches from
prior works [24]: 1) ALL2ALL-CCF, which applies the comput-
ing capacity first (CCF) VM allocation policy in a fixed all-to-all
interconnect architecture (same port number and capacity con-
figuration as in the flexible-bandwidth ODCN); 2) ODCN-CCF,
which applies the CCF policy in the ODCN; and 3) ODCN-JCB,
which applies a resource and bandwidth-aware joint optimiza-
tion policy (JCB) in the ODCN. Hence, the baselines in this
paper are ALL2ALL-CCF, ODCN-CCF and ODCN-JCB. Fig. 4
shows the evolution of blocking probability from the DRL agent
during training when the average service duration is 66. The
performance from the baselines remains flat as they employ
fixed policies. It can be observed that our DRL design quickly
converges and beats the baselines after training of 10 epochs.
The DRL agent asymptotically reduces the blocking probability
by 10.33×, 5.9× and 5.25× over ALL2ALL-CCF, ODCN-CCF,
and ODCN-JCB, respectively. Further, we show the compar-
isons between our proposal and the baselines under different job
loads (by varying the job duration) in Fig. 5. From Fig. 5(a), we

Research Article 8

0

50

100

150

200

250

300

54 60 66 72 78
En

d-
to

-E
nd

 D
el

ay
 (n

s)
Task Arrival Rate

ALL2ALL-CCF
ODCN-CCF
ODCN-JCB
Multi-step DRL

0

0.2

0.4

0.6

0.8

1

54 60 66 72 78

Pa
ck

et
 L

os
s

R
at

e
(%

)

Task Arrival Rate

ALL2ALL-CCF
ODCN-CCF
ODCN-JCB
Multi-step DRL

0.00001

0.0001

0.001

0.01

0.1

54 60 66 72 78

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Task Arrival Rate

ALL2ALL-CCF
ODCN-CCF
ODCN-JCB
Multi-step DRL 0.00001

0.0001

0.001

0.01

0.1

54 60 66 72 78

of

 R
ec

on
fig

ur
at

io
n

pe
r R

eq
ue

st

Task Arrival Rate

ODCN-CCF
ODCN-JCB
Multi-step DRL

(a) (b) (c) (d)

Fig. 5. Results from a 16-ToR ODCN configuration: (a) job blocking probability, (b) end-to-end latency, (c) packet loss rate, and (d)
number of reconfigurations per job under different job loads.

0

0.4

0.8

1.2

1.6

ALL
2A

LL
-C

CF

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

(%
)

0

50

100

150

200

250

ALL
2A

LL
-C

CF

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL

En
d-

to
-E

nd
 D

el
ay

 (n
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

ALL
2A

LL
-C

CF

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL

Pa
ck

et
 L

os
s

R
at

e
(%

)

0

0.004

0.008

0.012

0.016

0.02

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL#
of

 R
ec

on
fig

ur
at

io
n

pe
r R

eq
ue

st

(a) (b) (c) (d)

Fig. 6. Results from a 32-ToR ODCN configuration: (a) job blocking probability, (b) end-to-end latency, (c) packet loss rate, and (d)
number of reconfigurations per job.

0

40

80

120

160

200

ALL
2A

LL
-C

CF

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL

En
d-

to
-E

nd
 D

el
ay

 (n
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

ALL
2A

LL
-C

CF

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL

Pa
ck

et
 L

os
s

R
at

e
(%

)

0

0.002

0.004

0.006

0.008

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL#
of

 R
ec

on
fig

ur
at

io
n

pe
r R

eq
ue

st

0

0.2

0.4

0.6

0.8

1

ALL
2A

LL
-C

CF

ODCN-C
CF

ODCN-JC
B

Mult
i-s

tep
 D

RL

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

(%
)

(a) (b) (c) (d)

Fig. 7. Results from a 64-ToR ODCN configuration: (a) job blocking probability, (b) end-to-end latency, (c) packet loss rate, and (d)
number of reconfigurations per job.

can see that our proposal consistently outperforms the baselines
due to its ability to sense the complex multi-dimensional re-
source state and learn adaptive scheduling policies. On average,
our proposal reduces the blocking probability by 7.35×, 5.24×,
and 4.59× compared with the three baselines, respectively. As
expected, ALL2ALL-CCF performs the worst among the four
algorithms due to lacking the ability to adapt the interconnect
topology. Because our reward definition also stimulates better

end-to-end performance, Figs. 5(b)-(c) show that the multi-step
DRL design also achieves the lowest end-to-end latency and
packet loss rate, i.e., achieving a latency reduction of 1.32× and a
packet loss rate reduction of 1.44× over the best baseline. Again,
ALL2ALL-CCF underperforms the rest by a large margin be-
cause it cannot steer bandwidth to obviate hot-spot links. The
superiority of our proposal is further verified by its advantage
in the number of reconfigurations as shown in Fig. 5(d). By

Research Article 9

Table 3. Resource utilization ratio (%) under a 32-ToR ODCN
configuration.

Policy CPU RAM Disk

ALL2ALL-CCF 87.1 60.8 58.1

ODCN-CCF 87.0 60.7 58.3

ODCN-JCB 87.8 61.4 59.1

Multi-step DRL 90.7 63.5 61.0

regularizing the reward function with a reconfiguration cost,
our proposal requires 16.22× and 9.38× fewer reconfiguration
operations than ODCN-CCF and ODCN-JCB, respectively. Ta-
ble 2 presents the utilization of individual IT resources (i.e., CPU,
memory, and disk) across all scheduling policies under varying
job load levels. As the job load increases, all policies exhibit a
consistent upward trend in resource utilization, reflecting inten-
sified system activity. The proposed multi-step DRL approach
consistently achieves the highest utilization of all the three re-
source types. Compared with the worst-performing baseline
in each category (ALL2ALL-CCF), our approach approximately
improves CPU, memory and disk utilization by 7%, 8% and
7%, respectively. These results highlight the DRL agent’s supe-
rior capability in orchestrating multi-resource allocations under
high-load conditions.

C. Scalability Studies

Last, we evaluated the scalability of the proposed approach
through simulations in larger ODCN configurations, i.e., a 32-
ToR and a 64-ToR ODCN, with each ToR hosting 64 and 128
servers, respectively. To maintain a reasonable level of resource
utilization, we set the job duration as 300 and 1, 320 respectively
in the two configurations. The setups for the rest of the parame-
ters remained the same as those used in the previous simulations.
Fig. 6 shows the comparison between our proposal and the base-
lines in the 32-ToR ODCN. The results are in line with those
obtained from the 16-ToR ODCN. In particular, our algorithm
reduces job blocking probability, end-to-end latency and packet
loss rate by at least 7.46×, 1.39× and 2.08× over the baselines,
respectively. When compared with ODCN-CCF and ODCN-JCB,
our design requires 17.33× and 5.44× fewer reconfiguration
operations as depicted in Fig. 6(d). Similar observations can be
drawn from the results obtained from the 64-ToR ODCN (see
Fig. 7). Indeed, the results show our multi-step DRL approach
maintains its advantages in larger-scale ODCNs, by reducing
the blocking probability and reconfiguration frequency by up
to 20.75× (over ALL2ALL-CCF) and 14.5× (over ODCN-CCF),
respectively. Tables 3 and 4 present the CPU, memory and disk
utilization under 32-ToR and 64-ToR ODCN configurations, re-
spectively. In both cases, the multi-step DRL design achieves the
highest utilization across all resource types. Under the 32-ToR
configuration, it improves the CPU, memory and disk utilization
by 3% over the best baseline. Under the 64-ToR configuration,
it further attains 96.3% CPU, 67.2% memory and 64.6% disk
utilization. These results demonstrate the scalability of the DRL
approach in effectively managing more complex network con-
figurations.

Table 4. Resource utilization ratio (%) under a 64-ToR ODCN
configuration.

Policy CPU RAM Disk

ALL2ALL-CCF 88.1 61.7 59.6

ODCN-CCF 89.2 61.9 59.3

ODCN-JCB 88.3 61.8 58.9

Multi-step DRL 96.3 67.2 64.6

6. CONCLUSION

In conclusion, this paper presents a novel multi-step job schedul-
ing algorithm for ODCNs leveraging DRL to address the com-
plexities of job scheduling and topology reconfiguration. By
decomposing job requests into VM placements and bandwidth
demands, our approach optimizes both VM placement and re-
source allocation sequentially. The DRL agent learns to make
informed decisions, balancing global resource utilization, lo-
cal placement, and reconfiguration overheads. The proposed
algorithm outperforms existing heuristic methods, achieving
significant reductions in job blocking probability and reconfig-
uration frequency. These results highlight the effectiveness of
our approach in enhancing the performance of ODCNs for de-
manding distributed ML workloads, paving the way for more
efficient, scalable, and adaptive data center architectures. Fu-
ture research directions include: (1) exploring joint optimization
of job scheduling for intra- and inter-POD systems in reconfig-
urable ODCNs to further enhance resource utilization and per-
formance; (2) enhancing DRL by integrating ensemble learning
or graph neural networks to improve decision-making efficiency
and generalization; (3) extending the framework to consider en-
ergy efficiency and sustainability by optimizing task placement
and network reconfiguration to reduce power consumption.

REFERENCES

1. F. Giroire, N. Huin, A. Tomassilli, and S. Pérennes, “When network
matters: Data center scheduling with network tasks,” in Proc. IEEE
Conf. Comput. Commun., (2019), pp. 2278–2286.

2. H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-
driven scheduling for distributed machine learning,” in SoCC, (2017), p.
390–404.

3. Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. IEEE Conf. Comput. Commun.,
(2018), pp. 495–503.

4. Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., (2019), pp. 505–513.

5. M. Yu, J. Liu, C. Wu, B. Ji, and E. S. Bentley, “Toward efficient online
scheduling for distributed machine learning systems,” IEEE Trans. Netw.
Sci. Eng. 9, 1951–1969 (2022).

6. M. Yu, Y. Tian, B. Ji, C. Wu, H. Rajan, and J. Liu, “Gadget: Online
resource optimization for scheduling ring-all-reduce learning jobs,” in
Proc. IEEE Conf. Comput. Commun., (2022), p. 1569–1578.

7. R. Zhou, J. Pang, Q. Zhang, C. Wu, L. Jiao, Y. Zhong, and Z. Li, “Online
scheduling algorithm for heterogeneous distributed machine learning
jobs,” IEEE Trans. Cloud Comput. 11, 1514–1529 (2023).

8. X. Lu, C. Liu, S. Zhu, Y. Mao, P. Lio, and P. Hui, “Rlpto: A reinforce-
ment learning-based performance-time optimized task and resource
scheduling mechanism for distributed machine learning,” IEEE Trans.
Parallel Distrib. Syst. 34, 3266–3279 (2023).

9. H. Wang, Z. Liu, and H. Shen, “Machine learning feature based job

Research Article 10

scheduling for distributed machine learning clusters,” IEEE Trans. Netw.
31, 58–73 (2023).

10. Y. Li, X. Zhang, T. Zeng, J. Duan, C. Wu, D. Wu, and X. Chen, “Task
placement and resource allocation for edge machine learning: A gnn-
based multi-agent reinforcement learning paradigm,” IEEE Trans. Par-
allel Distrib. Syst. 34, 3073–3089 (2023).

11. Z. Luo, J. Liu, M. Lee, and N. B. Shroff, “Prediction-assisted online
distributed deep learning workload scheduling in gpu clusters,” (2025).

12. Z. Zhang, Q. Qi, R. Shang, L. Chen, and F. Xu, “Prophet: Speeding up
distributed dnn training with predictable communication scheduling,” in
Int. Conf. Parallel Process., (2021), pp. 1–11.

13. R. Gu, Y. Chen, S. Liu, H. Dai, G. Chen, K. Zhang, Y. Che, and
Y. Huang, “Liquid: Intelligent resource estimation and network-efficient
scheduling for deep learning jobs on distributed gpu clusters,” IEEE
Trans. Parallel Distrib. Syst. 33, 2808–2820 (2022).

14. B. Guo, Z. Zhang, Y. Yan, and H. Li, “Optimal job scheduling and
bandwidth augmentation in hybrid data center networks,” in Proc. IEEE
Global Commun. Conf., (2022), pp. 5686–5691.

15. Y. Bi, Y. Xi, and C. Jing, “Aisaw: An adaptive interference-aware
scheduling algorithm for acceleration of deep learning workloads train-
ing on distributed heterogeneous systems,” Futur. Gener. Comput. Syst.
166, 107642 (2025).

16. G. Liu, R. Proietti, M. Fariborz, P. Fotouhi, X. Xiao, and S. Ben Yoo,
“Architecture and performance studies of 3d-hyper-flex-lion for recon-
figurable all-to-all hpc networks,” in Proc. IEEE Conf. Supercomput.,
(2020), pp. 1–16.

17. Q. Lv, Y. Zhang, S. Zhang, R. Li, K. Meng, B. Zhang, F. Huang, X. Chen,
and Z. Zhu, “On the TPE design to efficiently accelerate hitless recon-
figuration of OCS-based DCNs,” IEEE J. Sel. Areas Commun. (2025).

18. M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman,
A. Vahdat, B. Klenk, and E. Ebrahimi, “Sip-ml: high-bandwidth optical
network interconnects for machine learning training,” in ACM SIG-
COMM Comput. Commun., (2021), p. 657–675.

19. C.-Y. Liu, X. Chen, Z. Li, R. Proietti, and S. J. B. Yoo, “Sl-hyper-flex:
a cognitive and flexible-bandwidth optical datacom network by self-
supervised learning [invited],” J. Opt. Commun. Netw. 14, A113–A121
(2022).

20. W. Zheng, X. Chen, and Z. Li, “Fast and nondisruptive reconfiguration
design for optical datacom networks,” in PSC, (2023), pp. 1–3.

21. A. Ottino, J. Benjamin, and G. Zervas, “Ramp: A flat nanosecond opti-
cal network and mpi operations for distributed deep learning systems,”
Opt. Switch. Netw. 51 (2024).

22. X. Xie, B. Tang, X. Chen, and Z. Zhu, “P4INC-AOI: All-optical intercon-
nect empowered by in-network computing for DML workloads,” IEEE
Trans. Netw. pp. 1–16 (2025).

23. Y. Guo, X. Xue, B. Guo, D. Dang, S. Shen, Y. Zhao, B. Wei, C. Yang,
G. Wang, and S. Huang, “Awgr-based all-optical switching network for
distributed machine learning,” Opt. Express 33, 829–841 (2025).

24. X. Chen, C.-Y. Liu, R. Proietti, S. Chen, Z. Li, and S. B. Yoo, “When task
scheduling meets flexible-bandwidth optical interconnects: A cross-
layer resource orchestration design,” in Proc. Conf. Opt. Fiber Com-
mun., (2022), pp. 1–3.

25. H. Mahmoud, M. Thabet, M. H. Khafagy, and F. A. Omara, “An efficient
load balancing technique for task scheduling in heterogeneous cloud
environment,” J. Clust. Comput. 24, 3405–3419 (2021).

26. F. Yao, C. Pu, and Z. Zhang, “Task duplication-based scheduling al-
gorithm for budget-constrained workflows in cloud computing,” IEEE
Access 9, 37262 – 37272 (2021).

27. P. K. Bal, S. K. Mohapatra, T. K. Das, K. Srinivasan, and Y.-C. Hu, “A
joint resource allocation, security with efficient task scheduling in cloud
computing using hybrid machine learning techniques,” IEEE Sens. J.
22, 1242 (2022).

28. M. Sudheer, K. Reddy, M. V. Ratnamani, S. Mohanty, B. Jabr, Y. Ali,
S. Ali, and B. Abdullaeva, “Efficient deep reinforcement learning based
task scheduler in multi cloud environment,” Sci. Rep. 14, 21850 (2024).

29. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in Proc. 33rd Int. Conf. on Machine Learning, vol. 48 (2016),

pp. 1928–1937.
30. X. Dai, J. M. Wang, and B. Bensaou, “Energy-efficient virtual machines

scheduling in multi-tenant data centers,” IEEE Trans. Cloud Comput. 4,
210–221 (2016).

31. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
(2017).

32. L. Mason, T. Drwiega, and J. Yan, “Managing traffic performance in
converged networks,” in ITC, (2007).

	Introduction
	Related Work
	Network and Service Models
	ODCN Architecture
	Job Scheduling Problem

	Algorithm Design
	Principle of DRL-aided Scheduling
	DRL Agent Design

	Performance Evaluation
	Evaluation on the Impact of Reconfiguration Cost
	Comparison with Heuristic Baselines
	Scalability Studies

	Conclusion

