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The recent advances in machine learning (ML) have promoted data-driven automated fault management in
optical networks. However, existing ML-aided fault management approaches mainly rely on black-box
models that lack intrinsical interpretability to secure their trustworthiness in mission-critical operation
scenarios. In this paper, we propose an interpretable optical network fault detection and localization
design leveraging multi-task graph prototype learning (MT-GPL). MT-GPL models an optical network
and the optical performance monitoring data collected in it as graph-structured data and makes use of
graph neural networks to learn graph embeddings that capture both topological correlations (for fault
localization) and fault discriminative patterns (for root cause analysis). MT-GPL interprets its reasoning by:
i) introducing a prototype layer that learns physics-aligned prototypes indicative of each fault class using
the Monte Carlo tree search method, and ii) performing predictions based on the similarities between the
embedding of an input graph and the learned prototypes. To enhance the scalability and interpretability
of MT-GPL, we develop a multi-task architecture that performs concurrent fault localization and reasoning
with node-level and device-level prototype learning and fault predictions. Performance evaluations show
our proposal achieves > 6.5% higher prediction accuracy than the multi-layer perceptron model, while the
visualizations of its reasoning processes verify the validity of its interpretability.
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1. INTRODUCTION

Driven by the rapid development of 5G/6G, Internet of Things
(IoT) and artificial intelligence (AI) technologies, diverse appli-
cations have flourished and produced exponentially growing
traffic. According to Ericsson’s report, the global monthly net-
work traffic increased by 25% from Q1 2023 to Q1 2024, reaching
145 exabytes (EB) [1]. This surge solidifies optical networks as
the cornerstone of modern digital infrastructures, and in turn,
calls for powerful optical network fault management solutions
to secure high service availability.

Unlike fiber cuts or port failures that cause immediate sig-
nal losses, soft failures in optical networks have attracted more
research interest recently owing to their complex yet covert pat-
terns [2, 3]. In particular, soft failures caused by device malfunc-
tioning, aging or physical-layer attacks can lead to gradual signal
degradations or spatially correlated optical performance moni-
toring (OPM) data anomalies which cannot be easily discrimi-
nated from normal fluctuations using simple threshold-based
rules. Consequently, machine learning (ML), for its capability of
learning complex mappings automatically from data, is emerg-
ing as a promising technique for actuating data-driven cognitive

fault management in optical networks [4–6]. Previous studies
have reported various ML approaches (supervised [4], unsuper-
vised [6] and semi-supervised [7]) applied to fault detection [8],
identification [9] and localization tasks [10]. Despite these ML
designs have demonstrated superior performance (in terms of
accuracy, adaptability, etc.) over conventional solutions, they
mostly rely on black-box models (e.g., neural networks) that
barely provide any interpretability to their reasoning processes.
As a result, their trustworthiness [11], and thereby, applicability
to mission-critical operation conditions can hardly be secured.
Indeed, some ML algorithms like decision trees are intrinsically
interpretable, their simple structures restrict their representa-
tion capabilities and scalability, rendering them less effective for
processing high-dimensional data.

Lately, explainable AI has gained increasing attentions from
the optical network community. For instance, researchers have
attempted to improve the explainability of existing ML solutions
in fault localization [12] and quality-of-transmission (QoT) es-
timation [13]. Nevertheless, these works unanimously employ
post-hoc attribution methods like SHAP (SHapley Additive ex-
Planations) [14] to explain the models’ inferences rather than
enhancing the models’ intrinsic interpretability itself. In other
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words, insufficiency of intrinsic transparency remains a criti-
cal limitation of existing post-hoc explainable ML solutions for
optical networks.

In this paper, we aim at filling the aforementioned gap by
proposing an intrinsically interpretable ML design for fault de-
tection and localization in optical networks. Our design models
the OPM data in an optical network as a graph and makes use
of graph neural networks (GNNs) to learn graph embeddings
that capture both topological correlations and fault discrimina-
tive patterns. Then, we introduce a graph prototype layer to
identify physics-aligned prototypes (e.g., a subgraph or a subset
of features) decisive for classifying samples to each fault class.
A multi-task learning mechanism is also applied to enhance
the model interpretability and scalability by learning separate
prototypes for current node-level (for fault localization) and
device-level (for root cause analysis) predictions. Simulation
results show the effectiveness of our proposal while verifying
the validity of its interpretability.

The rest of this paper is organized as follows. In Section 2, we
provide a brief review of the state of the art on fault localization
and interpretable ML design in optical networks. In Sections 3
and 4, we describe the multi-task GNN-based framework and
the graph prototype learning method, respectively. We provide
and discuss the results in Section 5 and finally conclude the
paper with Section 6.

2. RELATED WORK

A. ML-aided Fault Localization in Optical Networks
Traditional fault localization methods in optical networks pri-
marily rely on rule-based expert systems and statistical analysis
of alarm correlations. For instance, when a device fails in an
optical network, conventional methods rely on experienced net-
work administrators to manually analyze alarm logs and locate
network faults[15]. These methods have a reliance on expert
experience and cannot analyze faults caused by the combined
effects of optical power, spectral efficiency, and nonlinear phase
noise.

In contrast, deep learning (DL) frameworks automate fea-
ture extraction from multi-dimensional telemetry data (e.g., opti-
cal spectrum analyzers, BER monitors). Convolutional neural
networks (CNNs) significantly improve the identification accu-
racy of polarization mode dispersion (PMD)-induced waveform
distortions by learning spatial patterns from two-dimensional
spectrograms, compared to traditional methods [16]. Recurrent
architectures, such as long short-term memory (LSTM), have
been used to capture temporal dependencies in OPM sequences,
enabling accurate detection and identification of soft faults asso-
ciated with Electro-optic Modulators (ECL), erbium-doped fiber
amplifiers (EDFA), and nonlinear interactions (NLI) [17].

Compared with traditional CNN or recurrent neural network
(RNN) models, GNNs have better topological perception and
dynamic adaptability, making them a powerful tool for fault
detection in optical networks. Literature [18] utilized GNNs to
achieve a distributed fault management design in optical net-
works, effectively addressing the issue of neuron expansion in
large-scale networks. In literature [19], GNNs and alarm knowl-
edge graphs were used to identify the root causes of alarms by
reasoning the relationships between alarms.

While DL models with attention mechanisms [20, 21] demon-
strate remarkable accuracy in soft failure detection, their lack
of interpretability hinders rapid root cause analysis in practical
scenarios – a critical operational imperative for high-reliability

optical networks where transparent decision logic is essential to
accelerate fault recovery cycles and mitigate cascading misdiag-
nosis risks [22].

B. Interpretable ML in Optical Networks
Currently, in optical network tasks, particularly in fault man-
agement, there are few research cases on interpretable methods.
Most of them involve using the SHAP method to analyze the
feature importance of existing model decisions. However, the
models themselves still lack interpretability.

The authors of [23] applied the SHAP method to perform
feature attribution analysis on the XGBoost model’s predictions,
which calculated the contribution of each feature to fault de-
tection outcomes. Experimental results demonstrated that this
approach achieved a high accuracy of 99.84% on the dataset. Fur-
thermore, it identified the average environmental temperature
as the most critical feature influencing model decisions, thereby
enabling precise localization of fault causes.

In [24], the authors also employed the SHAP method to un-
cover the critical feature importance of different fault types,
identifying specific timestamp events linked to connector faults,
stress faults, shutdown faults, and others. Through the ex-
plainer dashboard, the research provided global explanations of
the model and delves into local explanations, enhancing trans-
parency and trust in the model’s decision-making process.
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Fig. 1. Multi-task GNN-based fault management framework:
(a) an example of OPM data correlation in a six-node topology;
(b) graph modeling of the optical network in (a); and (c) multi-
task GNN structure for joint fault detection and localization.

3. MULTI-TASK GNN-BASED FAULT MANAGEMENT

Optical network faults can exhibit diverse and complex char-
acteristics while inducing correlated OPM data anomalies in
multiple monitoring positions over signal propagation paths.
Fig. 1(a) exemplifies the topological correlations among the
OPM data collected at different reconfigurable optical add-drop
multiplexer (ROADM) nodes in the presence of an EDFA mal-
functioning between nodes R5 and R4. The fault varies the
spectral signatures of λ4 observed at nodes R4 (port 2) and R3
(port 0), whereas those at R2 (port 0) remains normal because
lightpath R4 → R2 → R0 does not traverse the faulty ampli-
fier. Consequently, accurate detection and localization of these
faults necessitates not only powerful feature learning capabil-
ities to discriminate normal and abnormal behaviors, but also
multi-node data correlation analyses to pinpoint the root causes.
Unlike the work in [21] which deploys OPMs at almost all device
I/O ports, our method assumes installations of OPMs solely at
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ROADM ingress ports of each optical link. By utilizing graph
structural characteristics and fault-induced signal variation pat-
terns, this configuration maintains manageable data collection
scale while ensuring complete fault detection capability through-
out transmission paths.

To this end, we leverage GNNs’ speciality of learning graph
embedding to develop a multi-task GNN model for joint fault
detection and localization in optical networks. In particular, we
first model an optical network as a graph as shown in Fig. 1(b),
where every ROADM node and fiber link is modeled as a node
(denoted by red and blue circles, respectively) while the edges
represent the physical connectivity. The multi-dimensional spec-
tral data [e.g., optical power, amplified spontaneous emission
(ASE) noise and nonlinear impairment for each wavelength]
collected at each position are assigned to the corresponding
node as its feature representation. This way, we structure the
network-wide OPM data to create a topological representation
of the optical network, allowing for exploiting the spatial and
spectral features influenced by different network components.
The graph representation is fed as input to a multi-task GNN
(see Fig. 1(c)) for fault detection and localization.

Let G = (V , E , X) denote a graph model mentioned above,
where V denotes the set of ROADMs and optical links, and E
represents the edges. Each node vi ∈ V has a multi-dimensional
state xi ∈ X (X ∈ R|V|×d) which is formed as,

xi =
[

p0, . . . , pNch−1, a0, . . . , aNch−1, n0, . . . , nNch−1
]

, (1)

where pc, ac and nc represent the optical power, ASE noise
level and nonlinear impairment metrics of channel c, respec-
tively, and Nch is the total number of wavelength channels (i.e.,
c ∈ {1, . . . , Nch}). Then, the multi-task GNN processes G with
iterative message passing and aggregation operations following
the graph convolutional network (GCN) scheme [25], i.e.,

h(l+1)
i = σ

 ∑
j∈N (i)∪{i}

1√
δiδj

h(l)
j θ(l)

 , (2)

where h(l)
i ∈ Rd(l) denotes the state vector of node vi at layer

l (the l-th iteration), N (i) represents its neighbor set in G, and
δi = 1 + ∑j∈N (i) 1 is a normalization coefficient used for en-
suring stable gradient propagation across nodes with diverse

degrees. Note that, h(0)
i = xi. The trainable parameter matrix

θ(l) and nonlinear activation function σ(·) transform the states
into higher-level embeddings. Through such multi-layer embed-
ding, the GNN progressively captures local-to-global topolog-
ical patterns. Ultimately, we employ separate neural network
heads to perform hierarchical fault detection and localization
(multi-class classifications) with the learned graph embeddings.
Specifically, the node-level predictions tell whether a fault exists,
and if so, which node (a ROADM or a fiber link) is suspect of
the fault, while the device-level predictions further associate
the fault with a specific network component on that node. In
other words, the node-level task focuses on topological feature
analyses, whereas the device-level task pays more attention to
fault discriminative features. This hierarchical design secures
its scalability to larger networks by constraining the scale of the
output space to be O(|V|) rather than O(Ndevices · |V|), where
Ndevices is the number of device types involved.

4. INTERPRETABILITY ENHANCEMENT WITH GRAPH
PROTOTYPE LEARNING

We leverage graph prototype learning to enhance the multi-
task GNN framework in Fig. 1 with intrinsical interpretability
during fault detection and localization.

A. Prototype Graph Network

The proposed prototype graph network consists of three core
components: learnable prototype vectors that capture discrimi-
native fault patterns, a fixed-weight classification layer for the-
oretical guarantees, and a similarity computation module that
translates embedding distances into interpretable probabilities.

A.1. Prototype Layer Architecture

Let e = fθ(G) (e ∈ Rde ) denote the graph embedding generated
by the GNN encoder fθ(·), where de represents the embedding
dimension (empirically set to 128 in our implementation). The
prototype layer operates through the following components.

• Learnable Prototypes. For each of the C classes, we initial-
ize m prototype vectors {pm

k }
M
m=1 ∈ Rde that characterize

typical fault patterns. These prototypes are randomly ini-
tialized from a uniform distribution and updated during
training.

pm
k ∼ U (0, 1)de , k ∈ {1, . . . , C}, m ∈ {1, . . . , M}. (3)

• Similarity Activation. For an input embedding e, we com-
pute its similarity to each prototype through L2-based loga-
rithmic transformation:

sj = log(
exp(∥e− pj∥2

2) + 1

exp(∥e− pj∥2
2) + ϵ

), ϵ = 10−4, (4)

where ϵ ensures numerical stability in division. Here, for
the sake of clarity, we combine the subscript and superscript
of pm

k and unify the notation of a prototype as pj. We use
the two notations interchangeably in the rest of the paper.

• Phase-Adaptive Classifier. The classification layer utilizes
an initially prototyped weight matrix W ∈ RC×(C×M) gov-
erned by phased learning:

W(t)
k,j =



{
1, if pj ∈ {pm

k }
M
m=1,

−0.5, otherwise,
for 0 ≤ e ≤ Ewarm,

W(t−1)
k,j − η∇Wk,jL︸ ︷︷ ︸

learnable

, for e > Ewarm,

(5)
where Ewarm specifies the number of epochs for prototype
stabilization, and L is the total loss. Cross-task consis-
tency is maintained in similarity activation, while classifier
weights become trainable post warmup.

A.2. Loss Function

We employ a cross-entropy loss LCE to enhance classifica-
tion accuracy and a separation loss LSep to enforce that each
graph embedding e maintains distant from prototypes of non-
corresponding classes. By combining the two complementary
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terms, we jointly optimize classification accuracy [26] and proto-
type interpretability:

L = LCE + γLSep,

LCE =
1
N

N

∑
n=1

C

∑
k=1

yn,k log

(
exp(zn,k)

∑C
k′=1 exp(zn,k′ )

)
,

LSep = − 1
N

N

∑
n=1

min
pm′

k′ ∈{p
m
k }M

m=1,yn,k′=0
∥ fθ(Gn)− pm′

k′ ∥
2
2.

(6)

Here, N is the total number of training samples, Gn is the
graph input of sample n, zn,k is the logit output for sample n and
class k, and yn,k is the true label. The hyperparameters γ control
the importance of separation.

B. Active Learning for Prototype Refinement

The prototypes obtained with the aforementioned training pro-
cess do not correspond to physical significance. We next em-
ploy a prototype refinement process to establish physical in-
terpretability through Monte Carlo tree search (MCTS)-guided
subgraph discovery and active sample selection. The key proce-
dures are as follows.

B.1. Prototype-aware Sample Selection

We first apply active learning to select the most informative
samples Sm

k for each prototype m within class k to reduce the
search space of MCTS. Let {e}k ⊂ { fθ(Gn)}N

n=1 denote the GNN
embeddings of the graphs belonging to class k. We calculate M
medoids of {e}k in three phases [27],

Phase 1: Medoid Initializaiton. Randomly select Minitial
medoids from {e}k,

{ME(0)
1 , ME(0)

2 , . . . , ME(0)
M } ⊆ {e}k. (7)

Phase 2: Iterative Optimization. At iteration t, for each
ep ∈ {e}k, perform nearest-medoid assignment across all M

medoids {ME(0)
1 , ME(0)

2 , . . . , ME(0)
M }:

CL(t)
m = {ep : m = arg min

m′∈{1,2,...,M}
∥ep −ME(t)

m′ ∥2}, (8)

Then, compute new medoid for all M cluster

{CL(t)
1 , CL(t)

2 , . . . , CL(t)
M },

ME(t+1)
m = arg min

ep∈CL(t)
m

∑
eq∈CL(t)

m

∥ep − eq∥2
2 (9)

Phase 3: Convergence. Terminate when ME(t+1)
l =

ME(t)
m ,for all m = 1, . . . , M.

Then, the candidate set Sm
k is composed by ς (ς = 10) graph

samples closest to the medoid ME∗m,

Sm
k =

Gn
∣∣

ym
n,k=1,∥ fθ(Gn)−ME∗k∥2

2≤ ψς︸︷︷︸
global

 , (10)

where ψς is the ςth shortest distance across ∥ fθ(Gn)−ME∗m∥2
2,

∀yn,k = 1. As a result, we reduce the search space of MCTS from
O(N) to O(1).

B.2. MCTS-based Subgraph Rollout

For each candidate graph G ∈ Sm
k , MCTS discovers the minimal

fault-indicative subgraph Gsub as the refined prototype for class
k. Specifically, we initialize a coalition C = G as the root of the
Monte Carlo tree and then perform the following four-phase
explorations.

Phase 1: Node Expansion. Add K nodes with the highest
degrees in C to Vexp and expand the tree with K child vertices
using Vexp.

Phase 2: State Selection. For each child vertex, remove from
C a node in Vexp and preserve the largest connected subgraph
G′ after removal of the node to maintain structural validity.

Phase 3: Rollout Simulation. Calculate the subgraph-
prototype similarity as the reward of each child vertex,

r(G′) = ∥ fθ(G′)− pm
k ∥

2
2, vexp ∈ Vexp. (11)

Phase 4: Backpropagation. Node statistics are updated via
the polynomial upper confidence tree (PUCT) algorithm:

W(vexp)←W(vexp) + r(G′),

Count(vexp)← Count(vexp) + 1,

Q(vexp) =
W(vexp)

Count(vexp)
,

U(vexp) = cpuct · P(vexp) ·

√
Count(parent(vexp))

1 + Count((vexp)
.

(12)

Here Count(v) denotes the visit count of node vexp,
Count(parent(vexp)) is the parent node’s visit count, W(vexp)
accumulates the total reward, Q(vexp) calculates the average
reward per visit (exploitation factor), and U(vexp) promotes ex-
ploration of under-visited nodes. The hyperparameter cpuct gov-
erns the exploration-exploitation tradeoff, where larger values
encourage exploration while smaller values emphasize reward
exploitation.

Based on the selection citerion Q(vexp) + U(vexp), selecting
node vexp, upadating the coalition as C = C \ {vexp}. Then re-
turing to Phase 1 to repeat the four-step process. This iterative
pruning continues until the coalition size satisfies |C| ≤ τmin
(τmin = 4). The final step compares all candidate subgraphs G′

generated during the pruning iterations, where the subgraph
with maximum r(G′) value is selected to update the prototype
vector pm

k through pm
k ← fθ(G′)best, effectively aligning proto-

types with the most representative fault patterns.

C. Multi-Task Learning Architecture

Given a training dataset {Gn, ynode
n , ydevice

n }N
n=1 containing n la-

beled network snapshots, we formulate two complementary
learning objectives:

• Node-Level Fault Detection: For each graph Gn, the la-
bel ynode

n ∈ {0, 1, . . . , Nnodes − 1, Nnodes} identifies faulty
nodes, where:

ynode
n =

{
k (Node vk exhibits abnormality),
Nnodes (No fault detected in Gn).

Here Nnodes denotes the total number of optical link nodes
in the network.

• Device-Level Fault Detection: The label ydevice
n ∈

{0, 1, . . . , Ndevices− 1, Ndevices} specifies the malfunctioning
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component type (with predefined device-type mappings,
e.g., 0: Fiber, 1: EDFA). The label is defined as:

ydevice
n =

{
k (Type-k device fault),
Ndevices (No device-level fault).

We design two distinct prototype layers: 1) a node-
oriented layer Pnode ∈ R((Nnodes+1)×M)×de for topological
fault localization, and 2) a device-oriented layer Pdevice ∈
R((Ndevices+1)×M)×de for device-level detection, where M = 1
is implemented for both detection tasks in practical application.
Notably, the device-oriented prototypes adapt the MCTS-based
Feature-type Rollout mechanism, where instead of pruning net-
work nodes, we iteratively remove feature dimensions (e.g.,
Power, ASE noise, nonlinear impairment metrics) while preserv-
ing other phases.

Algorithm 1. Multi-Task Graph Prototype Learning(MT-GPL)

Require: Dataset D, number of tasks T = 2, learning rate η,
training epoch E

Ensure: Trained model parameters θ
1: Initialize model parameters θ with shared and task-specific

layers
2: Initialize prototype sets Pnode,Pdevice for two task, respec-

tively
3: for E = 1 to Emax do
4: Prototype Projection Phase (every 10 epochs):
5: if E ≥ Ewarm and epoch ≡ 0 (mod 10) then
6: for each task t ∈ {1, 2} do
7: Select candidate samples Sm

k via M-medoids
8: Update prototypes Pnode(Pdevice) using subgraph

search(feature sampling)
9: Multi-Task Training Phase:

10: for each batch B ⊂ D do
11: Compute task losses in Eq. 6 and Eq. 13
12: Gradient Coordination:
13: Compute task gradients in Eq. 14
14: Parameter Update:
15: θ ← θ − η · g

D. Gradient-Coordinated Uncertainty Optimization for Multi-
Task Learning

The learning framework integrates multi-task optimization
through homoscedastic uncertainty weighting [28] and PCGrad
gradient conflict resolution [29]. The composite loss function is
defined as:

L(W) =
1

2σ2
1
Lnode +

1
2σ2

2
Ldevice + log σ1σ2, (13)

where Lnode and Ldevice denote fault detection and localization
losses computed via Eq. 6. The noise parameters σ1, σ2 adap-
tively reweight tasks based on uncertainty.

Task-specific gradients are processed through PCGrad to re-
solve conflicts: For shared parameters θshared (e.g., GNN layers),
projected gradients are computed as:

Projection: g′c = gc −
⟨gc′ , gc⟩
∥gc′∥2 gc′ if ⟨gc′ , gc⟩ < 0,

Merging: gshared =
2

∑
c=1

ωc · g′c, ωc =
Lc

L1 + L2
,

(14)

where gc, gc′ are task gradients and ωc are dynamic weights
based on loss magnitudes. Task-specific parameters θtask (e.g.,
prototype vectors) retain original gradients without projection.

The optimization alternates between: 1) Forward-backward
passes to compute task losses, 2) PCGrad-based gradient pro-
jection for shared parameters, and 3) Parameter updates with
the Adam optimizer. This dual mechanism ensures conflict-free
feature learning in shared layers while preserving task-specific
prototype discriminability.

Furthermore, given the higher complexity of Task 1 com-
pared to Task 2, the network components for Task 1 – including
the shared GCN-based encoder and Task 1’s prototype layer
Pnode – undergo dedicated pre-training for 100 epochs before
joint optimization. This phased initialization ensures stable fea-
ture learning for the more complex task. The complete workflow
of Multi-Task Graph Prototype Learning is formalized in Algo-
rithm 1, where the prototype vectors are dynamically updated
through our subgraph search and feature-space sampling mech-
anism.

5. PERFORMANCE EVALUATION

A. Simulation Setup for Data Collection
We evaluated the performance of our interpretable fault de-
tection and localization design using data collected by the
GNPy platform [30] following a six-node configuration shown in
Fig. 1(a). The parameter configurations for the six-node topology
were determined in reference to the ‘German_Topology’ setup
in GNPy. The fiber length follows the actual configuration in the
GNPy toolkit. For example, the fiber between nodes Bremen and
Hamburg is 114.764 km. We established 16 lightpaths with four
wavelengths as detailed in Table. 1. The lightpaths operated
at 12.5 GBaud with 16-QAM in dual polarizations, maintaining
a net data rate of 60 Gbps. Transceiver output power, OSNR,
power fluctuations across channels, fiber nonlinear coefficient
γ and chromatic dispersion coefficient D were set as 3.0 dBm,
20 dB, 0.0 dB, 0.001270 W−1 ·m−1, and 16.7 ps/(nm · km), re-
spectively. Four ITU-T G.694.1 compliant wavelengths were
allocated at 193.20 THz (λ1), 193.25 THz (λ2), 193.30 THz (λ3),
and 193.35 THz (λ4) in the C-band.

Table 1. Lightpath configurations in the six-node topology.

Routing Wavelength Routing Wavelength

R5 → R1 → R2 → R0 λ1 R1 → R5 λ4

R0 → R2 → R1 → R5 λ1 R5 → R1 λ4

R0 → R5 → R4 → R3 λ1 R2 → R4 λ2

R0 → R3 → R4 → R5 λ1 R4 → R2 λ2

R4 → R2 → R1 λ3 R1 → R3 λ2

R1 → R5 → R4 λ3 R3 → R1 λ2

R2 → R0 → R3 λ4 R3 → R0 λ3

R3 → R1 → R2 λ4 R0 → R3 λ3

Fiber impairments were modeled with attenuation coeffi-
cients α ∈ [0.2, 0.3]dB/km for normal operations and α ∈
[0.3, 0.5]dB/km for faulty conditions. Amplifier faults were
emulated through first-stage noise figure (NF1) degradation,

NF1 =

{
7.0 dB ≤ NF1 ≤ 10.0 dB (Faulty),
5.0 dB ≤ NF1 ≤ 7.0 dB (Normal).

(15)
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For variable-gain amplifiers, the effective noise figure is cal-
culated as,

NFavg = lin2db
(

db2lin(NF1) +
db2lin(NF2)

db2lin(G1a)

)
,

G1a = Gtgt − ∆P− ∆G,

NF = NFavg + max(Gmin − Gtgt, 0) + NFripple,

(16)

where Gtgt and Gmin denote the target and minimum gains set by
the EDFA, respectively, and ∆P/G represents the power/gain
offset. The ASE noise power spectral density can be further
expressed by,

PASE = h · B · fopt · 10
NF
10 , (17)

where h is the Planck constant (h = 6.626 × 10−34 J · s), B is
the baud rate in Hz, fopt is the optical carrier frequency in Hz
( fopt = c/λ, with c = 3× 108 m/s).

Overall, we constructed a dataset containing 7, 000 optical
transmission samples: 6, 000 fault instances and 1, 000 normal
operation records that emulate normal operations with random
perturbations introduced by fluctuating the parameters within
the normal ranges. The fault samples were equally distributed
between two failure modes. Specifically, 3, 000 samples exhibit
abnormal fiber attenuation coefficients while the other 3, 000
samples demonstrate abnormal EDFA noise figures, with all the
faults distributed across the 16 fiber links.

B. Algorithm Configuration and Benchmarks

For our proposed algorithm, we set the hyperparameter γ in
Eq. 6 as 0.0001. Both task 1 (node-level prediction) and task
2 (device-level prediction) employ a single prototype per fault
class. In MCTS for prototype projection, the number of iterations
was set to 10. For prototype search for task 1, each vertex in the
Monte Carlo tree can expand up to three child vertices with
Nmin = 4, whereas for task 2, each tree vertex can expand up to
two child vertices with Nmin = 1.

We compared our multi-task graph prototype learning ap-
proach (denoted as MT-GPL) with three benchmark designs,
namely, GCN, GPL, and multi-layer perceptron (MLP). Specifi-
cally, GCN adopts the same architecture for graph embedding as
in our design (i.e., fθ(·)) without prototype layers, GPL adds pro-
totype layers but trains a single neural network head for direct
fault localization over all the devices in the network, while MLP
adopts a simple five-layer neural network structure, each with
128 neurons. For all the algorithms, we split the data set into
training, validation, and testing sets with a ratio of 0.8 : 0.1 : 0.1
and performed training for 1, 000 epochs using the Adam opti-
mizer (with a learning rate of 0.0007). An early stopping strategy
based on the validation accuracy was also adopted to prevent
overfitting.

Table 2. Comparisons of classification accuracy.

MLP GCN GPL MT-GPL

Task 1 0.992 0.995 0.994 0.999

Task 2 0.993 0.996 0.999 0.997

Table 3. Comparisons under modified EDFA fault boundaries.

MLP GCN GPL MT-GPL

Task 1 0.889 0.977 0.979 0.954

Task 2 0.902 0.982 0.986 0.972

Fig. 2. Recall and precision results from our algorithm for all
the fault classes.

C. Comparison with the Benchmarks
Table 2 shows the results of classification accuracy from different
algorithms. It can be seen that all the algorithms achieve accura-
cies of > 99% for both tasks, indicating that they learn successful
features to discriminate normal and faulty data while pinpoint-
ing the root causes. In this case, our approach performs equally
well to its counterparts, and hence, the distinctions mainly lie
in model interpretability, which we will discuss later. Next, to
evaluate the performance of the algorithms in handling more
complex tasks, we deliberately blurred the fault boundaries. In
particular, although the first-stage EDFA noise figure NF1 typi-
cally ranges between 5− 7 dB in practical engineering, our six-
node topology simulation environment exhibits NF1 ∈ [6.0, 6.3)
dB under normal operations. Thus, we defined anomalies as
NF1 ∈ [6.3, 8.0] dB instead of the range given by Eq. 15. The
results after boundary modification are shown in Table 3. We
can see that in this case, MLP can no longer provide accurate
predictions, whereas the three GCN-based designs still achieve
desirable accuracies. Our algorithm excels MLP by > 6.5% and
> 7.0% accuracy on tasks 1 and 2, respectively, but slightly un-
derperforms GCN and GPL. This can be attributed to the error
accumulation effect from our hierarchical multi-task arrange-
ment. We will provide more intrinsical interpretation to this
performance difference in Section 5. D.3. However, we should
note that the multi-task design allows for better scalability by
requiring much fewer trainable parameters for classification.
Specifically, our algorithm learns 20 prototypes (17 for task 1
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and 3 for task 2), but GPL needs to maintain 33 prototypes. Con-
sequently, the numbers of trainable parameters from our design
and GPL are 17× 17 + 3× 3 = 298 and 33× 33 = 1, 089, respec-
tively. This gap will further expand when we consider a larger
topology and more abundant failure scenarios.

To further examine our algorithm’s predictions for the results
in Table 3, we calculate class-specific recall and precision metrics
for task 1 and plot the results in Fig. 2. Here, recall and precision
are defined as,

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, (18)

where true positives (TP) are the number of correctly detected
fault samples, false negatives (FN) are the number of undetected
true faults, and false positives (FP) are the number of normal
samples mistakenly classified as faults. In the figure, we enu-
merate all the fault positions in our data set, for instance item
(0,3) represents the case where failures occur on the link from
ROADM R0 to R3. We can see that for all the fault classes, the
proposed design achieves ≥ 95% recall and nearly 100% preci-
sion (close to zero false alarms).

Fig. 3. Visualization of prototype-based reasoning in detecting
a fault between ROADMs R0 and R3. Prototypes for task 1
focus on the graph structures.

D. Interpretability Analysis

Next, we analyzed the interpretability of our design through
visualizations of its prototype-based reasoning and learned em-
beddings.

D.1. Visualization of Prototype-based Reasoning for Task 1

Both GPL and MT-GPL enable direct interpretability of classi-
fication decisions through their prototype-based architectures.
Fig. 3 interprets MT-GPL’s decisions by visualizing the proto-
types and the learned embedding in predictions. The input
data represents a fault on the fiber link between ROADM R0
and R3 (first column). The second column displays MT-GPL’s
fiber link fault prototypes targeting distinct fault locations, i.e.,
faults on 0 → 3, 2 → 3, and 4 → 3, which were generated by
applying the GCN encoder fθ(·) outputs of raw training data.
The third column quantifies the similarities between the input
data’s embeddings and the prototypes via Eq. 4. The fourth col-
umn lists the fully-connected layer weights, and the fifth column
calculates prototype contributions. The prototype for the class
associated with a fault on link 0→ 3 makes the highest contribu-
tion (i.e., 8.575), and consequently assists in correct localization
of the fault. The results demonstrate that prototype-driven attri-
butions align well with physical topology.

Fig. 4. Visualization of prototype-based reasoning in locating a
fiber fault. Prototypes for task 2 focus on the decisive features.

D.2. Visualization of Prototype-based Reasoning for Task 2

While GPL maintains equivalent interpretability across the
two tasks, MT-GPL provides enhanced explanatory capabilities
through its multi-task prototype alignment mechanism, partic-
ularly enabling detailed failure component analysis in task 2
via disentangled feature representations. As shown in Fig. 4,
the feature contribution analysis of the prototype layer reveals
discriminant mechanisms for different failure modes. The red-
highlighted features define the core decision criteria for the three
prototypes: the fiber fault prototype depends on joint analysis
of ASE noise and optical power features; in contrast, the EDFA
fault prototype relies solely on ASE characteristics; the normal
operation prototype also depends on ASE characteristics. Finally,
MT-GPL determines the classification result by identifying the
maximum similarity score and correctly detects the fiber fault
due to the highest similarity score of 1.135 between the projected
embedding and the fiber fault prototype. Notably, ASE features
maintain significant contribution values across all prototypes,
which aligns precisely with the physical principle. According
to Eq. 17, when the baud rate and optical carrier frequency
are fixed, EDFA-induced ASE is exclusively determined by the
noise figure, while fiber attenuation coefficient variations simul-
taneously alter both optical power and ASE features, which is
accurately captured by the prototype layer’s feature coupling
analysis.

D.3. Visualization of Prototype Distribution

Fig. 5 presents t-SNE visualizations [31] of graph embeddings
and their corresponding prototypes for task 1 and task 2, respec-
tively. Here, for the sake of clarity, we only show the prototypes
for faults on three links. The plots show that distinct fault types
form tightly clustered distributions in the latent space, with pro-
totype vectors (marked as red pentagrams) positioned in the
central regions of their respective fault clusters. This geometric
configuration confirms that the learned prototypes effectively
capture the patterns of each failure mode. Furthermore, the
distributions demonstrate that using 6 unified prototypes may
achieve stronger feature regularity compared with the multi-
task setting that produces 3 and 2 prototypes individually. This
intrinsically explains the slight performance degradation by MT-
GPL in Table 3. Again, although GPL achieves stronger pattern
consistency, MT-GPL’s hierarchical arrangement offers enhanced
interpretability and scalability. Meanwhile, the visualizations
reveal distinct cluster geometries, with fiber fault data exhibiting
cluster-like distributions, whereas EDFA faults present linear
or band-like structures. This suggests EDFA faults manifest
approximately continuous variations along a dominant feature
dimension, while fiber faults demonstrate discrete multi-modal
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(a) (b)

Fig. 5. Distributions of the projected embbeding for (a) task 1 and (b) task 2. Colored dots represent the t-SNE visualizations for the
embeddings of different fault classes. The corresponding prototypes are marked by red pentagrams.

patterns with heterogeneous feature interactions, which is in
line with the observations drawn from Fig. 4.

E. Scalability and Generalization Ability Studies
Finally, we experimented the models in a larger topology (17-
node, 52-link complete German topology) considering broader
fault scenarios to test their scalability and generalization ability.
In particular, we configured 23 lightpaths and introduced also
connector attenuation faults (i.e., attenuation of (0.5, 1.5] dB) in
addition to fiber and EDFA faults. Following similar setups
as in the previous evaluations, a total of 20, 800 samples were
collected, with each of the EDFA, fiber and connector faults and
the normal class accounting for 1/4 of the data. The accuracy
comparisons of the models are presented in Table. 4. We can
see that the GCN-based models still perform comparably but
excels MLP by larger margins (over 8% and 3% on tasks 1 and
2, respectively) in this larger topology setting. In line with the
results in Tables 2 and 3, incorporating interpretability and
multi-task learning does not evidently compromise the model
performance. Due to the more complex topology structure and
more failure scenarios introduced, the accuracy of MT-GPL for
task 1 drops slightly to 94.4%. To shed light on this performance
disparity, we plotted its recall and precision results with respect
to 17 (out of 53) representative classes for task 1 in Fig. 6. Notably,
the model undergoes significant declines in recall for certain
links, such as links 2 → 4 and 9 → 3. The results suggest that
the model fails to capture accurate topological characteristics
for diagnosing the faults on these links. We presume this is due
to the insufficient coverage and correlation that the limited set
of lightpaths can provide. For instance, a fiber fault on 1 → 2
may not be correctly identified with data from two lightpaths
1 → 2 → 3 and 4 → 5 → 0 → 1 if the pattern of 0 → 1
resemble that of 1→ 2 due to the cumulative loss over a longer
path, while an additional lightpath 0 → 1 → 2 can assist in
pinpointing the fault. Nevertheless, determining the right set
of lightpaths allowing for accurate fault management remains a
challenging task.

Table 4. Comparisons of classification accuracy under the 17-
node German Topology.

MLP GCN GPL MT-GPL

Task 1 0.863 0.957 0.955 0.944

Task 2 0.967 0.998 0.998 0.999

Fig. 6. Recall and precision results for 17 selected link-fault
classes evaluated under the 17-node German topology.

6. CONCLUSION

In this paper, we proposed an interpretable fault detection and lo-
calization design named MT-GPL for optical networks. MT-GPL
processes OPM data as graph samples and learns embeddings
that capture both topological correlations for fault localization
and fault discriminative patterns for pinpointing the root causes.
MT-GPL interprets its reasoning by identifying physics-aligned
prototypes for each fault class and comparing the similarity be-
tween an input graph’s embedding and the learned prototypes.
Simulation results verify the effectiveness of MT-GPL.

Potential future research directions include: 1) studying how
the configuration of lightpaths (number and routing paths)
would affect the accuracy of our GNN-based design and how to
optimize this configuration given an optical network topology;
2) improving the scalability of our approach to ultra-scale net-
works, for instance, by optimizing the time complexity of MCTS
leveraging optimized pruning heuristics [32], neural network
ensemble integration [33], or post-hoc Grad-CAM [34] masking
strategies; and 3) refining prototype learning to minimize the
adverse effect of interpretability on the raw performance, and
investigating the trade-offs between accuracy and interpretabil-
ity for mission-critical applications where predictive accuracy is
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paramount.
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