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Abstract—As deep space exploration missions grow in com-
plexity, efficient data transfer in interplanetary networks (IPNs)
becomes paramount. However, the vast distances, limited band-
width, and dynamic nature of IPNs pose significant challenges for
the routing and data scheduling of interplanetary data transfers
(IP-DTs). To address these challenges, this work proposes a novel
distributed, graph neural network (GNN) based multi-agent deep
reinforcement learning (DRL) approach that can jointly optimize
the routing and scheduling of IP-DTs. Our proposal is based on
the proximal policy optimization (PPO) framework along with
the graph attention networks (GATs). We make the DRL agents
for IPN nodes in each subnetwork around a celestial body learn
and operate independently, for making intelligent routing and
scheduling decisions to properly trade off between average end-
to-end (E2E) latency and delivery ratio of IP-DTs while ensuring
good scalability. Extensive simulations confirm that our proposal
handles the routing and scheduling of IP-DTs much better than
existing benchmarks. Further, by modifying the interplanetary
overlay network (ION) software platform developed by NASA,
we build a semi-physical IPN emulator based on Raspberry Pi
boards, implement our proposal in it, and conduct experiments
with real data transfers between IPN nodes. Experimental results
verify that our proposal can work for practical IPNs without
causing excessive overheads and prove its advantages.

Index Terms—Interplanetary networks, deep reinforcement
learning, graph attention networks, distributed routing.

I. INTRODUCTION

FUELED by continuous emergence of new technologies,
the Internet has been undergoing swift evolution to adapt

to the rising demands from both on and around Earth [1–7].
Meanwhile, as humanity constantly explores the mysteries of
deep space (DS) for monumental breakthroughs, it becomes
crucial to extend the Internet’s boundaries to encompass in-
terplanetary networks (IPNs) [8]. This expansion is necessary
to accommodate the burgeoning demands for DS explorations
whose scopes experience ongoing enlargement [9].

In the universe, celestial bodies engage in a constant dance
of motion, making it challenging to realize high-performance
data transfer in IPNs. Fig. 1 provides an example of IPN,
which covers a five-star system, including Earth, the Moon,
Mars, Mercury, and Jupiter. The IPN enables communications
among the DS objects, which can be mission operation centers
(MOCs), ground stations, satellites, landers, and rovers [10].
Compared with the networks on and around Earth, IPN brings
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Fig. 1. An example on IPN.

in the following new challenges due to its unique charac-
teristics. First, the vast distances separating DS bodies far
exceed those between the network elements on and around
Earth. Consequently, IPN exhibits significantly longer link
lengths, resulting in substantially long communication delays
and restricted data rates. For instance, the average distance
between Earth and Mars is about 225 million kilometers,
resulting in a one-way transmission delay of ∼12.5 minutes
[11], and transmission data rate being just a few tens to hun-
dreds of kbps (e.g., {8, 32, 128, 256} kbps [12]). Second, the
movement of celestial bodies can lead to temporary disruptions
in links due to occlusion. The vast network coverage, ultra-
long communication delays, and unpredictable link disruptions
make IPN topologies dynamic and heterogeneous. While such
challenges can be partially addressed by recent innovations in
space communications, particularly, delay tolerant networking
(DTN) protocols [13–15] based on the store-carry-forward
mechanism, they still present significant obstacles for applying
centralized network control and management (NC&M).

Hence, it is inevitable to consider distributed routing and
data scheduling for IPN. Specifically, to achieve interplanetary
data transfers (IP-DTs), we need to divide data into bun-
dles and route and schedule each bundle independently [16].
Previously, researchers have developed a few deterministic
algorithms to tackle the distributed routing and data schedul-
ing in IPNs, such as NASA’s contact graph routing (CGR)
[16], enhancements of CGR [17–20], MARS [21], Lyapunov
optimization based approach [22], and fine-grained distributed
routing and data scheduling (FD-RDS) [23]. These approaches
optimize the routing path of each bundle and realize bundle
scheduling in each IPN node to improve the delivery ratio of
IP-DTs as well as to reduce their average end-to-end (E2E)
latency. Among them, only the studies in [21–23] considered
joint optimization of routing and data scheduling of bundles in
each IPN node. Nevertheless, the dynamic and heterogeneous
nature of IPN makes the joint optimization quite complex,
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especially when the network scope scales, and thus the existing
deterministic algorithms might not be sufficiently adaptive and
can require manual and empirical tuning of key parameters.

On the other hand, recent advances in deep reinforcement
learning (DRL) have made it a powerful tool for tackling
complex optimization problems in dynamic and heterogeneous
environments with minimal human interventions [24]. There-
fore, in our preliminary work [25], we proposed to place a
DRL agent in each IPN node to achieve distributed routing
and scheduling with multi-agent DRL, such that the tradeoff
between the delivery ratio and E2E latency of IP-DTs can be
properly and automatically balanced. The multi-agent DRL
design was based on the asynchronous advantage actor-critic
(A3C) framework [26], and its advantages over deterministic
policies have been validated in IPNs covering a three-star
system (i.e., Earth, Mars and the Moon).

In this paper, we extend our previous work in [25] and
present an enhanced multi-agent DRL design for distributed
routing and data scheduling of IP-DTs. Specifically, we in-
troduce a DRL-based routing model and a hierarchical data
scheduling model, where the upper-level and lower-level DRL
agents in each IPN node perform sequential bundle sorting
from both macro and micro perspectives, to ensure the scala-
bility of our proposal and its adaptivity to the heterogeneous
nature of IPN. The DRL agents are built based on graph
neural networks (GNNs), which allows for exploiting the
complex topological characteristics of IPNs and potentially
generalizing evolving IPN conditions (e.g., topology changes
due to link failures). We train the agents with the state-of-the-
art proximal policy optimization (PPO) framework [27]. By
employing a clipped objective function, PPO has been proved
to offer improved stability and sample efficiency, particularly
beneficial in our hierarchical multi-agent setting involving
time-varying and noisy environment. Performance evaluations
through both numerical simulations and experiments verify the
effectiveness and superiority of our proposal.

The major contributions over our work in [25] are:
• We devise a novel hierarchical data scheduling model.
• We refine the DRL agent design with GNNs.
• We rearchitect the DRL framework from A3C to PPO,

overcoming A3C’s defect of prone to unstable training.
• We develop a semi-physical IPN emulator by modifying

the interplanetary overlay network (ION) software sys-
tem [28] to embed our proposal and implementing the
software system in Raspberry Pi boards.

The rest of the paper is structured as follows. Section II
provides a brief survey of the related work. We elaborate on
the network model for distributed routing and scheduling of
IP-DTs in Section III. The proposed GNN-based multi-agent
DRL-based approach is described in Section IV. Numerical
simulations for performance evaluation are discussed in Sec-
tion V, and in Section VI, we present the implementation of
our semi-physical IPN emulator and the experimental results
with it. Finally, Section VII concludes the paper.

II. RELATED WORK

Since its inception in late 2000s, the pursuit of effective
routing and scheduling solutions for IP-DTs remains an active

and ongoing area of research. The pioneering work was done
by NASA to define the Bundle Protocol [29] and propose
CGR [16] to route bundles for IP-DTs. Specifically, CGR
builds a contact graph to represent the potential connection
opportunities between IPN nodes and then employs a modified
version of Dijkstra’s algorithm to plan the routing path of
each bundle in the contact graph. However, CGR suffers
from a crucial limitation of ignoring the queuing delay of
each bundle in an IPN node, and this oversight restricts its
scalability to handle heavy traffic loads and IPNs with rela-
tively large topologies. Therefore, researchers have designed
several enhanced versions of CGR [17–20] to make routing
calculations more accurate with the consideration of queuing
delays in IPN nodes. Nevertheless, these CGR enhancements
all process bundles in queues in the first-in-first-out (FIFO)
manner, without addressing bundle-level scheduling in queues.

The joint optimization of routing and data scheduling of
bundles in each IPN node has been tackled in [21–23]. Al-
though they can be more effective after incorporating bundle-
level scheduling, these works make use of deterministic al-
gorithms that still lack flexibility and adaptivity to cope with
the dynamic and heterogeneous nature of IPN. In particular,
MARS [21] relies on manual tuning of system parameters,
which significantly restricts its adaptivity and effectiveness in
large-scale and complex real-word scenarios. The Lyapunov
optimization-based approaches [22] incorporate queue states
and link quality in their routing and data scheduling designs
but still employ deterministic modeling that can barely adapt
to the evolving IPN conditions. To the best of our knowledge,
our preliminary work in [25] was the first in the literature
that leveraged multi-agent DRL to solve the joint optimization
of distributed routing and scheduling of bundles in IPNs.
However, as we will show later in Section V, there is still
room for further performance improvement. Recently, GNNs
have emerged as an effective tool within the machine learning
landscape, specifically tailored to process graph-structured
data and extract valuable features for applications related to
networks. Among GNNs, graph attention networks (GATs)
have demonstrated powerful generalization capabilities for
network-related optimizations [30].

III. PROBLEM FORMULATION

In this section, we first explain the network model of IPN
and then describe the overall procedure of multi-agent DRL-
based distributed routing and scheduling for IP-DTs.

A. Network Model

To capture the time-varying nature of the topology of each
IPN, we represent it as a temporal graph Gt (ℵ, ξt), where
ℵ is the set of all the IPN nodes and ξt denotes the set of
temporal links at time t. Here, an IPN can be viewed as a
discrete-time system, whose operations rely on distinct time-
slots (TS’), each of which lasts for ∆t. Hence, the system
time becomes t ∈ {0,∆t, 2∆t, . . .}, which can be normalized
as t ∈ T = {0, 1, 2, . . .} for simplification [31–34].

As for IP-DTs in an IPN, we still assume that bundles serve
as the atomic units [29], and they are transmitted through IPN
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nodes with the store-carry-forward (SCF) mechanism, which
means that each bundle can be temporarily stored at interme-
diate nodes as it is transmitted across an IPN, waiting for the
next transmission opportunity. The generation of bundles in
each IPN node can be modeled by a Poisson process. Each
bundle, denoted as B, should reach its destination before a
specified deadline, indicating that the current IP-DT has been
successfully completed. Following the same paradigm that
we modeled in [23], each IPN node v ∈ ℵ leverages two
types of queues: 1) a single queue, denoted as Qv , acting
as the primary buffer for outgoing bundles including bundles
generated locally and those traversing v as an intermediate
node, and 2) a set of outgoing queues, denoted as {Qv,u}, each
of which stores bundles that need to be transmitted through
a specific link v→u during future contacts. The performance
of routing and data scheduling of bundles can be evaluated
with two key metrics, i.e., the delivery ratio and average E2E
latency. Table I lists the major notations used in this paper.

TABLE I
MAJOR NOTATIONS

Notation Description

v ∈ ℵ A node in the IPN

ev,u ∈ ξt Temporal link v→u (v, u ∈ ℵ) at time t ∈ T

rv,u Capacity of ev,u for v→u

Bs, Bd, Blast-hop Source, destination and last hop of bundle B

Bdead, Bsize Deadline and data size of bundle B

Bttl Current time-to-live of bundle B

Bproj Projected delivery time of bundle B

Bpath Current routing path of bundle B

Bmode Flag to tell whether use Algorithm 2 on bundle B

Qv Local queue on node v to buffer bundles

Qv,u Outgoing queue on node v for v→u

Lv,u Current length of Qv,u

Ta
v,u Time needed to transfer data buffered in Qv,u

TB
v,u Time needed to transfer bundle B through ev,u

Tv,B Queueing delay of bundle B on node v{
SR
B , A

R
B , R

R
B

}
Elements of DRL agents for routing bundle B{

SU
v,u, A

U
v,u, R

U
v,u

}
Elements of DRL agents for upper-scheduling in Qv,u

Setv,u Set of values AU
v,u of all bundles belonging to Qv,u

C ∈ Ω A cluster in Qv,u{
SL
v,u, A

L
v,u, R

L
v,u

}
Elements of DRL agents for lower-scheduling in Qv,u

B. Multi-Agent DRL-based Routing and Scheduling

To adapt to the heterogeneous nature of IPN, we categorize
the IPN nodes on/around each planet as belonging to a spe-
cific planet-centric subnetwork. For example, ground stations
located on Earth, and satellites around Earth all belong to
the Earth-centric subnetwork. As the IPN nodes in a same
subnetwork are relatively close to each other, we assume that
the DRL agents on them can share the same experience pool
through intra-subnetwork communications. This is because
the operations of IPN nodes in a same subnetwork possess
certain similarities, and thus making their DRL agents share
an experience pool can improve their training efficiency.

Algorithm 1: DRL-based Routing and Data Scheduling
1 load topology and contact plan of IPN;
2 initialize local queues and outgoing queues on IPN nodes;
3 for each TS t do
4 refresh Gt (ℵ, ξt) according to current contact states;
5 insert newly generated/received bundles in {Qv};
6 for each node v ∈ ℵ do
7 for each bundle B ∈ Qv with Bmode = 0 do
8 if Bpath = ∅ then
9 compute Bpath with CGR;

10 end
11 fetch next hop u from Bpath;
12 move B from Qv to outgoing queue Qv,u;
13 end
14 end
15 for each node v ∈ ℵ do
16 for each bundle B ∈ Qv with Bmode = 1 do
17 apply Algorithm 2 to get next hop u for B;
18 update Bpath;
19 move B from Qv to outgoing queue Qv,u;
20 end
21 end
22 for each link ev,u ∈ ξt do
23 if ev,u is available then
24 apply Algorithm 3 to schedule bundles;
25 send bundles as scheduled;
26 else
27 for each bundle B ∈ Qu,v do
28 set Bmode = 1;
29 move B from Qv,u back to Qv;
30 end
31 end
32 end
33 update the TTL values of bundles;
34 remove expired bundles in {Qv, {Qv,u}};
35 record successful IP-DTs and their E2E delays;
36 end

The overall procedure of our proposed multi-agent DRL-
based routing and scheduling for IP-DTs is detailed in Algo-
rithm 1. The core idea is that at each TS, all the nodes first
perform concurrent and local IP-DT routing with CGR or DRL
(only for bundles missed their previously-planned transmission
windows) and move bundles to the corresponding outgoing
queues, and then schedule bundles in each outgoing queue with
the two-level DRL. Lines 1-2 are for the initialization. Then,
the for-loop spanning Lines 3-36 iterates through each TS to
route and schedule bundles in IPN nodes. In each iteration,
Lines 4-5 update the IPN’s status at the beginning of each TS
t. Next, we use two for-loops, covering Lines 6-14 and Lines
15-21, respectively, to handle the routing and scheduling of IP-
DTs in each node, and the for-loop of Lines 22-32 schedules
bundles in each outgoing queue for a specific link. It can be
seen that the operations in different IPN nodes are actually
independent, and thus Algorithm 1 is a distributed algorithm,
allowing for it to potentially work for IPNs in very large sizes.

The for-loop of Lines 6-14 iterates through each node v ∈ ℵ
and checks the Bmode of each bundle B ∈ Qv . We define Bmode
as the flag to indicate whether DRL-based routing, specifically,
Algorithm 2, should be applied to the corresponding bundle B.
By default, Bmode is set as 0, indicating that CGR should be
used to find the routing path of B, and Algorithm 2 is not



4

necessary. Lines 8-10 find a routing path for B if it has not
been assigned one yet. Following this, Lines 11-12 manage
the movement of bundles between local queues and outgoing
queues. The subsequent for-loop, spanning Lines 15-21, deals
with the bundles whose Bmode flags were set to 1, i.e., their
routing paths should be determined by Algorithm 2.

Next, bundle scheduling and transmission for each link is
managed by the for-loop of Lines 22-32. When a link ev,u is
available and suitable for IP-DTs, we sort the bundles in the
corresponding outgoing queue Qv,u using a DRL-based data
scheduling algorithm (Algorithm 3), which is a hierarchical
algorithm accomplishing bundle scheduling in three steps:
sorting, clustering, and intra-cluster re-sorting. Specifically,
Algorithm 3 (i) first sorts to establish a relative order among
the bundles with the upper-level DRL data scheduling, (ii)
then the sorted bundles are clustered using the hierarchical
density-based spatial clustering of applications with noise
(HDBSCAN) method [35], leveraging the ordering informa-
tion from the previous sorting stage, and (iii) finally, within
each cluster, bundles are resorted according to the information
of the cluster, with the lower-level data scheduling (DRL-
based data scheduling with GNN). This approach can enhance
data scheduling and transmission efficiency, particularly in
scenarios where a large number of bundles are queued and
awaiting forwarding. When a link ev,u is unavailable, we
examine each nonempty queue Qv,u at node v, i.e., the queue
contains bundles that will miss their transmission windows in
the current contact of the link. For these bundles, we set Bmode
to 1, to trigger rerouting for them in the next TS. Finally, Lines
33-35 update IPN status at the end of the current TS.

IV. GNN DRL-BASED ROUTING AND DATA SCHEDULING

This section delves into the details of our proposed DRL-
based algorithms. We first explain the proximal policy opti-
mization (PPO) framework [27] by outlining its key features
and describe the principle of GNNs. Then, we elaborate on
the design of our proposed routing and hierarchical data
scheduling algorithms implemented within this framework.

A. Background of Proximal Policy Optimization (PPO)

Reinforcement learning (RL) enables agents to learn optimal
actions to respond to a dynamic environment, such that their
cumulative reward can be maximized. DRL integrates deep
neural networks into this process to architect agents, helping
agents to learn from high-dimensional complex inputs and
make more intelligent decisions. As for the training of the
DRL agents, we leverage the PPO framework. Empirically,
smaller and incremental policy updates during training can
promote better convergence towards optimal solutions. There-
fore, to ensure stable and reliable learning, PPO implements a
mechanism for conservative policy updates, involving calcu-
lating a ratio that quantifies the magnitude of policy changes.
In particular, a clipped surrogate objective function LCLIP(θ)
is introduced for limiting the magnitude of policy changes
between iterations [27]. Formally, LCLIP(θ) is defined as,

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
,

(1)

where At is the advantage function (i.e., At > 0 means that
the current action is the best among those for the current state),
rt(θ) is the probability ratio between the current and previous
policies (see Eq. 2) for measuring the divergence between
them, and function clip(·) clips the value of rt(θ) to penalize
moving rt(θ) outside the interval of [1− ε, 1 + ε].

rt(θ) =
πθ (at | st)
πθold (at | st)

. (2)

The combination of the clipped objective function, efficient
advantage estimation, on-policy learning, and relative easy
implementation ensures the performance of PPO [27].

B. Structures of Graph Neural Networks (GNNs)

We architect the DRL agents based on graph attention net-
works (GATs) [30], which elevate the capabilities of traditional
GNNs by incorporating the attention mechanism. This enables
GATs to learn richer representations of nodes in a graph.
Unlike traditional GNNs that consider neighboring nodes with
equal importance, a GAT intelligently weights the contribution
of each neighbor based on its relevance to the target node. This
targeted focus on the most informative edges empowers GATs
to achieve superior performance in various graph-related tasks.

In a GAT, each node recursively calculates node embeddings
taking a feature vector as the initial input. Specifically, the n-
ode embedding of layer-(l+1) is obtained from the embedding
of layer-l as follows. The first step is,

z
(l)
i = W (l)h

(l)
i , (3)

where h(l)
i is the embedding of layer-l and W (l) is its learnable

weight matrix. Then, the GAT computes a pair-wise un-
normalized attention score between two adjacent nodes by,

e
(l)
ij = LeakyReLU

(−→a (l)T
(
z
(l)
i ‖z

(l)
j

))
. (4)

Here, the || operator concatenates z embeddings of the two n-
odes, and the dot product of the concatenated embedding and a
learnable weight vector a(l) is fed to the LeakyReLU function.
We normalize the attention scores of a node’s incoming edges

α
(l)
ij =

exp
(
e
(l)
ij

)
∑

k∈N (i)

exp
(
e
(l)
ik

) . (5)

Finally, each node updates its embedding by aggregating the
embeddings from neighbors weighted by the attention scores,

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij · z

(l)
j

 , (6)

where σ(·) is the chosen activation function.

C. DRL-based Routing for IP-DTs

For the routing of IP-DTs, the major drawback of existing
deterministic algorithms (e.g., CGR and its enhancements) lies
in that they can hardly adjust the routing paths of bundles
adaptively, especially after a bundle has missed its scheduled
transmission window. To mitigate this limitation, we propose a
novel GNN-based DRL routing algorithm that can dynamically
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Fig. 2. Architecture and operation principle of our GNN-based DRL model.

update the routing paths for the bundles that have missed their
scheduled transmission windows. We place a DRL agent in
each IPN node, and then by aggregating available information
about the nodes in its subnetwork and its own contact plan
using a GNN, the agent is able to make accurate routing
decisions based on a broader understanding of the IPN status.
• Agent: Each GNN-based DRL agent handles the rout-

ing of the bundles that have missed their transmission
windows in the previous TS. Specifically, we deploy an
Actor neural network (NN) and a Critic NN in each agent,
where the former selects an action ARB based on SRB while
the latter evaluates the pros and cons of the chosen action.

• State: Each state SRB of a bundle B consists of two
elements, i.e., the features of B and the IPN status at
TS t. The features of bundle B are represented by a
vector BR = {Bsize, Bd, Blast-hop}, and we model the IPN
status as graph-structured data Gt (V,E). Here, each node
v ∈ V corresponds to an IPN node, and its features are
updated according to the current topology, with infor-
mation about all neighboring nodes in its subnetwork.
Specifically, for each neighboring node u, the nearest
contact deadline, the length of its outgoing queue Qv,u
(Lv,u), and the time required to transmit all the bundles
in Qv,u (T av,u) are included. Each edge e ∈ E denotes a
specific contact in the current IPN. We put Gt (V,E) in
the GNN of the agent in node v.

• Action: Each action ARB determines the bundle’s routing
path by selecting a suitable and available neighboring
node u as the next hop for bundle B.

• Reward: The reward RRB is obtained after bundle B has
been scheduled in the outgoing queue Qv,u. We set RRB to
be proportional to the gap between the original projected
delivery time without invoking the DRL-based routing
and the new projected delivery time by using the next
hop from the DRL-based routing. Note that, the new
projected delivery time also includes the queuing delay
for B, which is caused by its scheduled order in Qv,u
and can be calculated along with Algorithm 3.

Algorithm 2 describes the training process of GNN-based
DRL for routing IP-DTs, which involves policy calculation
and decision making, state update, reward computation, and
GNN parameter tuning with PPO by each agent. Lines 1-2
initialize the DRL agents, each of which contains a GNN,
an Actor-NN, and a Cirtic-NN as shown in Fig. 2. The for-
loop of Lines 3-26 explains the online training of agents in
each TS. In each node v, we first get all the bundles that
are in Qv and need to be rerouted (Lines 4-5). The agent in
node v leverages its GNN to handle the current status of IPN
together with feature vector BR to get the current state SRB .

Then, the agent receives SRB , puts it into its Actor-NN to get
an action ARB (i.e., a proper next hop u for bundle B) and
moves B from Qv to Qv,u (Lines 6-9). Lines 12-25 are the
subsequent operations of online training, where Lines 15-17
explain how to get RRB . After performing hierarchical DRL-
based data scheduling on each link ev,u, we get Tv,B (i.e., the
queuing delay of bundle B), and add it to the new projected
delivery time to update Bproj. Then, the agent computes reward
RRB , and pushes

{
SRB , A

R
B , R

R
B

}
into its experience buffer

as a training sample (Lines 17-18). Adhering to the training
principle of PPO, we run an iteration of online training after
enough samples have been collected.

Algorithm 2: Training of GNN-based DRL for Routing
1 initialize parameters of each DRL agent randomly;
2 empty all the experience buffers of DRL agents;
3 for each TS t do
4 for each node v ∈ ℵ do
5 for each bundle B ∈ Qv with Bmode = 1 do
6 get state SRB and input it to corresponding agent;
7 agent outputs a proper action ARB ;
8 perform ARB and get the next hop u;
9 move B to the outgoing queue Qv,u;

10 end
11 end
12 for each link ev,u ∈ ξt do
13 for each bundle B ∈ Qv,u do
14 perform hierarchical DRL-based data scheduling;
15 if Bmode = 1 then
16 get Tv,B and update Bproj;
17 agent computes reward RRB ;
18 push

{
SRB , A

R
B , R

R
B

}
into agent’s experience

buffer as a training sample;
19 if enough samples have been collected then
20 agent updates parameters based on PPO;
21 agent empties its experience buffer;
22 end
23 end
24 end
25 end
26 end

D. Hierarchical DRL-based Data Scheduling for IP-DTs
For the scheduling of bundles in each IPN node, we propose

a hierarchical DRL-based data scheduling algorithm that ac-
complishes data scheduling with the sorting, clustering, and
intra-cluster re-sorting pipeline, optimizing bundle schedul-
ing from both macro and micro perspectives. Specifically,
the sorting step is carried out by the upper-level DRL-based
scheduling, followed by the clustering that employs the HDB-
SCAN [35] method, and finally, the lower-level GNN-based
DRL scheduling is responsible for intra-cluster re-sorting.

Both the upper- and lower-level data scheduling algorithms
adhere to the following principles, which are derived from the
fundamental characteristics of IPNs and the SCF paradigm.
I Bundles with larger TTL values should be sent out earlier

because of their greater chances of arriving at destinations
before deadlines.

I Smaller-sized bundles should be sent out earlier to avoid
head-of-line blocking for shorter average queuing delay.
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TABLE II
METRICS FOR EVALUATING THE STATUS OF AN OUTGOING QUEUE

Metric Definition and Formula

Cosine similarity (CS) It measures the similarity between two multi-dimensional vectors A and B as SC(A,B) := A·B
||A||||B|| .

Coefficient of variation (CV) It measures the dispersion of a probability distribution as CV (X) =
mean(X)
var(X)

, where X is a random variable,

mean(X) is its mean value, and var(X) is its standard deviation.
Normalized discounted cumulative
gain (NDCG)

It measures the effectiveness of a ranking system by considering the position of each item in the ranked list, and
can be used to evaluate the scheduling result for an outgoing queue. We calculate the NDCG value nDCG(Q, Y )

of a queue Q in terms of attribute Y of each bundle in it with the method in [36].

I Bundles with earlier projected delivery time should be
sent earlier, because it suggests a better routing path with
fewer link disruptions.

Meanwhile, we utilize the three metrics listed in Table II to
evaluate the status of an outgoing queue.

1) Upper-level DRL-based Data Scheduling: The elements
of the upper-level DRL-based data scheduling are as follows.
• Agent: A DRL agent is placed in each IPN node to

make preliminary decisions regarding the specific order
of bundles in each outgoing Qv,u.

• State: Each state SUv,u is denoted as a vector. For each
bundle B in outgoing queue Qv,u, we define SUv,u as:

SUv,u =
{
Lv,u, T av,u,B,C, SC(B,B∗)

}
, (7)

where Lv,u represents the queue length of Qv,u, and T av,u
denotes the average transmission time of bundles as:

T av,u =

1
rv,u

∑
B∈Qv,u

Bsize

Lv,u
. (8)

Here, we have B = {Bsize, Bttl, Bproj} as the attribute
vector of B, and C = {CV (Bsize), CV (Bttl), CV (Bproj)}
as the coefficient of variation (CV) vector of the bundle
attributes in Qv,u. The function SC(B,B∗) in Eq. (7)
calculates the cosine similarity (CS) between B and the
ideal normalized vector B∗ = [1, 1, 1].

• Action: Each action AUv,u is defined as the ranking
assigned to bundle B in Qv,u, conveyed by a real value
between [0, 1]. A smaller value of AUv,u signifies that
bundle B is scheduled for later transmission, i.e., B is
placed at a later position in Qv,u. Specifically, when AUv,u
approaches 0, bundle B will be transmitted towards the
end of the service time of Qv,u, and vice versa.

• Reward: We define the reward of each action as,

RUv,u =α · nDCG(Qv,u, Bsize) + β · nDCG(Qv,u, Bttl)

+ γ · nDCG(Qv,u, Bproj) + µ · e−k·Tv,B ,
(9)

where α, β, and γ are weights determined by the CVs
of attributes {Bsize}, {Bttl}, and {Bproj}, respectively, of
bundles in Qv,u, µ is a positive coefficient, and k is
a constant used to rescale Tv,B , which represents the
queuing delay of bundle B after scheduling. The first
three terms of Eq. (9) measures the overall performance
of the scheduling for Qv,u by applying the normalized
discounted cumulative gains (nDCGs) on different bundle
attributes (i.e., the size Bsize, TTL Bttl, and projected
delivery time Bproj). Here, nDCG assesses how well the

scheduling result aligns with the ideal sorting in terms of
these attributes. The last term, µ · e−k·Tv,B , evaluates the
scheduling result of bundle B. As Tv,B is the queuing
delay of B after scheduling, a smaller value of Tv,B
leads to a larger contribution to the reward due to the
exponential decay function. In all, the reward function
considers both the overall scheduling performance of
Qv,u and ranking of a bundle in it.

2) Clustering: When there is a high volume of bundles in
Qv,u, the performance of the upper-level DRL-based schedul-
ing may be compromised due to the presence of similar
bundles. This similarity can result in less-than-optimal sorting
decisions, highlighting the need for a further sorting process.
Since HDBSCAN offers several advantages in clustering tasks,
we choose it for the further sorting. Specifically, with HDB-
SCAN, we cluster the bundles in Qv,u based on the values of
AUv,u, and then after the clustering, bundles in Qv,u are divided
into several clusters C in set Ω.

3) Lower-level DRL-based Data Scheduling: The lower-
level DRL further optimizes the data scheduling by obtaining
an effective ordering of bundles in each cluster. The elements
of the lower-level DRL-based scheduling are as follows.
• Agent: A DRL agent is placed in each IPN node to

precisely sort the bundles in a cluster C.
• State: Each state SLv,u contains information about the

characteristics in cluster C and features of bundles in
it. The information of C is represented by a vector
CL = {LC ,C}, where LC is the number of item-
s in C and C = {CV (Bsize), CV (Bttl), CV (Bproj)} is
the CV vector of bundle attributes in C. The details
of C is modeled as a graph GC (VC , EC). Each n-
ode in GC symbolizes a bundle in C and its features
B =

{
Bs, Bsize, Bd, Bttl, Bproj, SC(B,B∗), TBv,u

}
. When

the CS value of two bundles exceeds 0.5, a link is inserted
to connect the nodes representing them. We put GC into
a GNN to get the output CL to generate each state SLv,u.

• Action: Each action ALv,u is defined as the ranking of
bundle B within its cluster, similar to AUv,u.

• Reward: RLv,u is calculated by the same method for RUv,u,
using the information of cluster C after resorting.

4) Hierarchical DRL-based Data Scheduling for IP-DTs:
We use PPO for the training of upper- and lower-level DRLs.
The training of the DRL for upper-level data scheduling can
be done with an approach similar to that used in our previous
work [25]. After training of the upper-level agents, we cluster
the bundles sorted by them in each outgoing queue, and
proceed to train the lower-level agents. The training proce-
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dure of GNN-based lower-level scheduling is summarized in
Algorithm 3, which adopts a state calculation, action, feedback
and parameter tuning pipeline that resembles Algorithm 2.

Algorithm 3: Training of Lower-level DRL for Scheduling
1 initialize parameters of each DRL agent randomly;
2 empty all the experience buffers of DRL agents;
3 for each TS t do
4 for each link ev,u ∈ ξt do
5 for each bundle B ∈ Qv,u do
6 perform the upper-level DRL-based scheduling;
7 end
8 cluster bundles in Qv,u with HDBSCAN method;
9 put all the clusters in set Ω;

10 for each cluster C ∈ Ω do
11 for each bundle B ∈ C do
12 get state SLv,u;
13 get a proper action ALv,u according to the

corresponding upper-level DRL agent;
14 end
15 sort bundles by ALv,u;
16 agent computes reward RLv,u;
17 push

{
SLv,u, A

L
v,u, R

L
v,u

}
into agent’s lower-level

experience buffer as a training sample;
18 if enough samples have been collected then
19 agent updates its parameters based on PPO;
20 agent empties its experience buffer;
21 end
22 end
23 end
24 end

After training the upper-/lower-level agents, we perform
hierarchical DRL-based data scheduling for IP-DTs with the
procedures in Algorithm 4. Specifically, Algorithm 4 invokes
the upper-level DRL, clustering and lower-level DRL progres-
sively, to optimize the ordering of bundles in the outgoing
queues while differentiating similar bundles through two-level
inspections. We first set up all the upper-/lower-level DRL
agents with trained parameters (Line 1). Lines 4-7 explain
the procedures of the initial ranking with the upper-level
agents and how to acquire the information needed for the
subsequent clustering. Then, we use HDBSCAN to cluster
bundles according to the distribution of their AUv,u values, and
form set Ω to include all the clusters in Qv,u (Lines 8-9).
We set AUC as the median of the AUv,u values of bundles in
each cluster C (Line 10). Lines 11-15 leverage the lower-level
agents to resort bundles in each cluster C. Finally, Line 16
implements the overall sorting.

E. Convergence and Complexity of Our Proposal

In Section V, we will demonstrate the training performance
through simulations to show that our GNN-based multi-agent
DRL proposal converges well, even in large-scale topolo-
gies1. Especially, it is extremely difficult to establish formal
theoretical proofs for the convergence and bounds of our
proposed DRL framework in the complex, multi-agent, and
hierarchical setting and stochastic IPN environments. Despite

1It is intractable to provide the theoretical analysis to formally prove the
convergence of our proposal, which is a common challenge in this field.

these challenges, our proposal indeed shows its efficiency
and effectiveness in numerical simulations and experimental
demonstrations, as we will explain in Sections V and VI below.

The overall algorithm consists of three main steps: GNN-
based routing, upper-level data scheduling, and lower-level
data scheduling (GNN-based), all of which are based on
the PPO framework. The complexity of the algorithm can
be analyzed as follows. The complexity of an Lg-layer
GNN can be denoted as O(Lg(|E|F + |V |F 2)), where |V |
and |E| are the numbers of nodes and edges of graph-
structured data Gt(V,E), respectively, and F is the number
of features per node. An Actor network with La layers and
Pa parameters per layer, when processing a batch of N
samples, runs in O(NLaPa), including both forward and
backward propagations. Similarly, a Critic network with Lc
layers and Pc parameters per layer, when processing a batch
of N samples, runs in O(NLcPc). In the upper-level and
lower-level data scheduling, the complexity of single reward
calculation (i.e., the complexity of NDCG calculation) is
O(M logM), where M is the maximum length of current
outgoing queue. In Ep epochs, the overall complexity of our
algorithm based on GNN encoding and the PPO framework is:
O
(
EpN

(
Lg(|E|F + |V |F 2) + LcPc + LaPa +M logM

))
.

We have tested our algorithm on various network topologies,
and the results (see Figs. 8, 9 and 10) show that it can effective-
ly generalize across different network topologies. Remarkably,
our GNN-based DRL framework can directly apply to larger
topologies without requiring additional retraining. We have
tested the models trained by a small-scale five-star topology
(with 14 nodes) on a larger five-star one (with 25 nodes), and
the results (see Fig. 10) remain reasonably good, verifying the
scalability and generalization capability of our proposal.

V. NUMERICAL SIMULATIONS

We performed simulations to compare our proposal with the
state-of-the-art algorithms in the literature for routing and data
scheduling of IP-DTs, including CGR [16], MARS [21], the
Lyapunov optimization based approach (Lyapunov) [22], our
previous scheme based on A3C (A3C) [25], and the PPO-
based scheme (PPO) that uses the design of DRL models
in [25] but trains them with PPO. Specifically, CGR simply
schedules bundles with FIFO, while MARS considers both
scenarios in [21] (MARS-1 and MARS-2). We computed each
data point in the simulations by averaging the outcomes of 10
independent runs to guarantee sufficient statistical accuracy.

A. Simulation Setup

We conducted simulations on three IPNs: a four-star system
with 12 nodes and two five-star ones with 14 and 25 nodes,
and the Satellite Tool Kit (STK) [37] was used to generate
24-hours contact plans of them. In the four-star topology,
Earth, the Moon, Mars and Jupiter are included, while the
five-star topology consists of Earth, the Moon, Mars, Mercury
and Jupiter. The source and destination of each bundle were
randomly selected. The key parameters are listed in Table III.
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Algorithm 4: Hierarchical DRL-based Scheduling
1 load parameters of DRL agents;
2 for each TS t do
3 for each link ev,u ∈ ξt do
4 for each bundle B ∈ Qv,u do
5 get state SUv,u;
6 get a proper action AUv,u for B according to the

corresponding upper-level agent;
7 end
8 cluster bundles in Qv,u with HDBSCAN method;
9 put all the clusters in set Ω;

10 use the median value of {AUv,u} of all bundles in a
cluster as AUC for them;

11 for each cluster C ∈ Ω do
12 for each bundle B ∈ C do
13 get state SLv,u;
14 get a proper action ALv,u according to the

corresponding upper-level agent;
15 end
16 sort bundles in Qv,u first by AUC and then by ALv,u;
17 end
18 end
19 end

TABLE III
KEY SIMULATION PARAMETERS

Parameter Value

TS 64 seconds

Data rate of a link [64, 2048] Kbps

TTL of bundles 6 hours

Size of bundles [1 KB, 8 MB]

B. Training Performance

We show the training performance under the five-star system
with 14 nodes to explore the scalability of our proposal. All
the DRL agents in a same subnetwork (in nodes on or around
a same celestial body) could share the same experience buffer
to expedite training. Hence, the agents in a same subnetwork
were equivalent, and we denote those with Earth, the Moon,
Mars, Jupiter and Mercury as Agents 1-5, respectively.

1) GNN-based DRL for Routing IP-DTs: We used RELU
as the activation function for each hidden layer and the Adam
optimizer for training. We set the batch size as N = 32, the
discount factor as γ = 0.9, the epsilon clip as clip = 0.2, and
the learning rates for Actor-NN and Critic-NN as α = 0.001
and β = 0.0001. Fig. 3 shows the training performance of the
agents. During the period between [1000, 3000] epochs, the
rewards of all the agents exhibit significant fluctuations, indi-
cating that the agents are actively learning and refining their
strategies to achieve higher rewards, but when their training
approaches 7, 000 epochs, their rewards stabilize gradually.

2) Upper-level DRL for Scheduling: We set α = 0.001,
β = 0.0001, N = 256, γ = 0.99, and clip = 0.2. Fig. 4 show
that the normalized rewards of agents converge very quickly.

3) Lower-level GNN-based DRL for Scheduling: The train-
ing of these DRL agents includes two stages: the pre-training
and online training. In the pre-training, we conducted offline
training with the data collected from historical operations, set
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Fig. 3. Training performance of GNN-based DRL for routing IP-DTs.
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Fig. 4. Training performance of upper-level DRL for scheduling IP-DTs.

α = 0.01, β = 0.001, N = 256, γ = 0.99, and clip = 0.3, and
used LeakyRELU as the activation function. Fig. 5 indicates
that after 600 epochs, the pre-training stabilizes and thus can
be ended. Then, during online training, we loaded the pre-
trained model in each agent and trained each agent separately,
by setting α = 0.0001, β = 0.00001, N = 128, γ = 0.99,
and clip = 0.3. The performance of the online training is
shown in Fig. 6. By combining Figs. 5 and 6, we can see that
the pre-training significantly improves the efficiency of overall
training, speeding up subsequent online training effectively.
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Fig. 5. Performance of pre-training of lower-level DRL for scheduling.

C. Simulations in the Four-star IPN

Fig. 7 depicts the four-star IPN system, which consists
of four subnetworks for Earth, the Moon, Mars and Jupiter,
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Fig. 6. Performance of online training of lower-level DRL for scheduling.
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Fig. 7. Four-star IPN topology used in the simulations.

respectively, where the Earth subnetwork contains an MOC,
three base stations (BS’), and two satellites, each of the Moon
and Mars subnetworks consists of a rover and a satellite,
and the Jupiter subnetwork includes two satellites. Fig. 8
summarizes the results on delivery ratio and average E2E
latency of bundles. As the traffic load increases, the delivery
ratios of all the algorithms gradually decrease. It can be seen
that our proposed scheme (Proposed) effectively optimizes
the delivery ratio for all the traffic loads and outperforms
all the benchmarks, and it also achieves the lowest average
E2E latency in general, balancing the tradeoff between the
two metrics the best. Note that, when the traffic load is 1.2
bundles/minute/node, the average E2E latency from Lyapunov
is slightly lower than that from our proposal, but at this point
its delivery ratio is much lower. Besides, the results show
consistent advantages of PPO over A3C, and hereby justify
our design choice of replacing A3C with PPO.

D. Simulations in the Five-star IPNs

The five-star IPNs cover Earth, the Moon, Mars, Mercury
and Jupiter. In the 14-node configuration, the subnetworks of
Earth, the Moon, Mars, and Jupiter use the same settings as
those in the four-star IPN, and that of Mercury owns two
satellites. We also expanded the 14-node configuration by
adding 5, 3 and 3 satellites to the Earth, Moon and Mars
subnetworks, respectively, to obtain a 25-node topology. As
for the 14-node topology, the results in Fig. 9 exhibit similar
trends as those in Fig. 8, further confirming the benefits of
our proposal. The superior performance of our proposal lies
not only in its thorough consideration of the characteristics
and traffic patterns in IPNs, but also in its emphasis on
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Fig. 8. Simulation results with four-star IPN.

leveraging the heterogeneity of different subnetworks and
the connections among them. The results with the 25-node
topology are presented in Fig. 10. In line with the observations
drawn from the smaller-scale simulations, the proposed design
exhibits good scalability and outstands all the benchmarks.

Note that, the delivery ratios from all the algorithms de-
crease gradually with the traffic load, which is attributed to
the inherent limitations of IPNs (e.g., smaller E2E bandwidth
and more frequent link disruptions as the network scales),
rather than the algorithms’ scalability. Actually, the results in
Figs. 8(a), 9(a) and 10(a) indicate enlarged performance gains
achieved by our proposal over the benchmarks as IPN scales
up, highlighting its robustness in handling larger and more
complex network configurations.

VI. EXPERIMENTS WITH SEMI-PHYSICAL IPN EMULATOR

In this section, by leveraging NASA’s ION software plat-
form [28], we came up with a semi-physical IPN emulator,
integrated our multi-agent DRL-based proposal in it, and
conducted experiments with real data transfers between IPN
nodes to further validate the performance of our proposal.

A. Implementation of IPN Emulator and Experimental Setup

NASA’s ION is an open-source software platform designed
to explore the challenges of DS communications in IPNs, by
leveraging bundle segmentation and delay-tolerant networking
(DTN) to address ultra-high latency and intermittent con-
nections. ION supports various transport protocols, including
TCP, UDP, and customized IPN-specific protocols, offering
a reliable and autonomous networking framework with the
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Fig. 9. Simulation results with five-star 14-node IPN.
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Fig. 10. Simulation results with five-star 25-node IPN.

flexibility and adaptability to satisfy different requirements
from DS exploration missions. We implemented our multi-
agent DRL-based proposal in ION. As shown in Fig. 11, we
modified the IP-DT Forwarding module (marked in yellow)
and added a new DRL-based Routing and Scheduling module
(marked in green) in ION v4.1.2. Then, in order to verify that
our proposal is lightweight enough such that excessive power,
storage and computing overheads will not be introduced, we
deployed the modified ION in Raspberry Pi boards, each of
which contains ARM Cortex-A72 CPU and 8GB memory and
runs Linux Ubuntu 20.04.5 as the operating system.

DRL-based

Routing and Scheduling

IP-DT Forwarding module

Applications

Sending Bundles Receiving Bundles

Incoming

Queues
Outgoing

QueuesTransmission QueuesForwarding Rules

Routing Table

Service Data Units
LTP Segment

(Outbound )
LTP Segment

(Inbound )

Input PortsOutput Ports

Fig. 11. Implementation of our proposal in ION.

Each Raspberry Pi board emulates the IPN nodes in a
same subnetwork, and inter-subnetwork links in an IPN are
emulated with the Ethernet connections between Raspberry Pi
boards. Our experimental setup consists of three Raspberry
Pi boards to simulate a three-star IPN that covers Earth, the
Moon, and Mars with the configuration in Fig. 12. Specifically,
the IPN consists of 18 nodes, where the Earth subnetwork
includes three BS’, an MOC, three low-orbit satellites, and
one medium-orbit satellite, while the each of the Moon and
Mars subnetworks has two rovers and three low-orbit satellites.

Mars

Moon

Raspberry Pi 

Inter-subnetwork Connection

Earth

Fig. 12. Three-star topology used by the semi-physical IPN emulator.

B. Experimental Results

In the experiments, we loaded trained DRL agents in the
semi-physical emulator and made IPN nodes in it generate
bundles with sizes within [1 KB, 4 MB] and random sources
and destinations to emulate real file transfers between IPN
nodes. Each experiment covers 24 hours in the IPN and
processes [40000, 48000] bundles in total, and we obtained
each data point by averaging the results from 10 independent
runs. Fig. 13 shows the experimental results, which still
suggest that our proposal outperforms the benchmarks. As
the three-star IPN has shorter inter-subnetwork distances, the
results on average E2E latency are significantly lower than the
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simulation results in Section V, and for the same reason, the
delivery ratios in Fig. 13 are much higher.
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Fig. 13. Experimental results with semi-physical IPN emulator.

C. Practical Challenges

Despite the successful implementation and validation over
the semi-physical emulator, deploying our multi-agent DRL
system in a real IPN still faces several challenges.

First, IPN nodes like rovers and satellites have limited
power budgets and processing capabilities, which presents as a
major obstacle to the deployment of computing-intensive DRL
agents. This challenge can be expressed by,

Pbgt ≤ Pchg · γ, (10)

where Pbgt denotes the power budget for uninterrupted run of
an IPN node, Pchg is the charging power, and γ is the charging
duration over a unit period. Potential solutions include pre-
training the agents in an IPN digital twin (e.g., the semi-
physical platform) offline and developing lightweight DRL
models (for instance, leveraging ensemble learning).

Second, the extreme DS environment can cause unpre-
dictable link conditions, and thereby, stochastic variations in
link bandwidth and delay. We assume that disruptions occur
at a rate of λ following a Poisson process, and the expected
link bandwidth can be modeled as,

E[bv,u,t] = bv,u ·
(

1− e−λt
)
, (11)

where bv,u signifies the bandwidth of v → u in the ideal case.
Further, the delay of a link can be formulated by,

τv,u,t = τ
prop
v,u,t + τ tran

v,u,t + τ
queue
v,u,t . (12)

Here, τ prop
v,u,t denotes the propagation delay between nodes v

and u, which can be calculated by,

τ
prop
v,u,t =

dv,u
c
, (13)

where dv,u is the physical distance of the link and c is the
light speed. τ tran

v,u,t represents the transmission delay as,

τ tran
v,u,t =

Bsize
bv,u,t

. (14)

τ queue
v,u,t represents the queuing delay, being formulated by,

τ
queue
v,u,t =

ρ

µ(1− ρ)
, (15)

where ρ = λB

µ represents the ratio of the arrival rate of bundles
per node λB to the service rate µ.

With the modifications above, the network model of an IPN
will be more realistic, ensuring more robust DRL designs that
can react promptly to environment changes and learn generic
(topology-invariant) knowledge. However, as the actual values
of the stochastic parameters in a practical IPN are not publicly
available to the best of our knowledge, we can only consider
them in our future work. Last but not least, data integrity and
reliable decision making are imperative for proving the prac-
tical deployment of our proposal, and thus further researches
into attack proof DRL designs are necessary.

VII. CONCLUSION

In this work, we proposed a GNN-based multi-agent DRL
approach to jointly optimize the routing and scheduling of
IP-DTs in the distributed manner. Extensive simulations con-
firmed that our proposal can handle the routing and scheduling
of IP-DTs more adaptively and balance the trade-off between
delivery ratio and average E2E latency of bundles much better
than the baselines. Meanwhile, by leveraging the ION devel-
oped by NASA, we built a semi-physical IPN emulator based
on Raspberry Pi boards, implemented our proposal in it, and
conducted experiments with real data transfers between IPN
nodes, to verify that our proposal can work for practical IPNs
without causing excessive overheads. Experimental results
further proved the advantages of our proposal.
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