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Abstract—This work describes a novel data-center network
(DCN) architecture (namely, P4-ORDC) to explore the mutual
benefits of optical rackless data center (ORDC) and in-network
computing (INC) for accelerating DML training jobs effective-
ly. We elaborate on the operation principle, system design,
and implementation of P4-ORDC, and prototype a small-scale
network system to demonstrate its effectiveness experimentally.
The experimental results indicate that P4-ORDC reduces job
completion time (JCT) over existing benchmarks.

Index Terms—Rackless data-center, Distributed machine learn-
ing, P4, In-network computing, Collective communications.

I. INTRODUCTION

Despite the fast development of the Internet over the past
decade [1-10], the recent popularity of artificial intelligence
(AD) has led to fast development of large language model
(LLMs), whose training can hardly be handled by single
graphic processing units (GPUs) [11] and thus brings in new
networking challenges. Hence, distributed machine learning
(DML) jobs (e.g., distributed training of LLMs) became the
fastest-growing applications in data-center networks (DCN5s)
[12]. Other than legacy DCN applications, DML jobs rely
more on collective communications, each instance of which
organizes a cluster of processes to take part in synchronized
computing and communication phases iteratively [13]. In a
computing phase, each process finishes its share of training
task, and thus very little traffic is induced. On the oth-
er hand, the processes exchange their training results in a
communication phase, generating huge volumes of traffic in
skewed patterns. Then, the rising of DML jobs significantly
changes traffic patterns in DCNs, pushing harder for network
reconfigurability, throughput and energy efficiency.

Introducing optical circuit switching (OCS) into DCN can
potentially address the challenges DML jobs brought to D-
CNs [14-27]. This is because other than traffic engineering
(TE), OCS-based DCN (ODCN) enables topology engineering
(TPE) to allow for extra flexibility [28]. As described in [29-
34], an ODCN can interconnect top-of-rack (ToR) switches
using OCS switches (e.g., optical cross-connects (OXCs)),
with which TPE steers inter-rack connectivity to adapt to
dynamic and skewed traffic, offering another level of net-
work reconfigurability. However, such an ODCN configuration
might not fully resolve the major network bottleneck caused by
DML jobs at the rack-level. Specifically, the topological rack
boundaries in a DC can still fragment DML jobs across racks,
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Fig. 1.

Example on optical rackless data-center (ORDC) pod.

while inter-rack network bottleneck will restrict the throughput
of their communication phases and eventually prolong their
training time. This dilemma can be solved by considering
the optical rackless data-center (ORDC) [35] that removes
the topological rack boundaries in DCs by putting an OCS
switch in between servers and ToR switches to adapt to the
dynamic traffic patterns generated by DML jobs. An ORDC
pod example is shown in Fig. 1, where an OCS switch
connects 8 servers in the pod to three ToR switches, facilitating
various rack configuration to adapt to application demands.
Although the existing work in [35] has verified the advan-
tages of ORDC, the training of DML jobs can be performed
more efficiently if we can integrate P4-based in-network com-
puting (INC) [36] into ORDC. The advances on programmable
data plane (PDP) [37] have facilitated aggregation and arith-
metic operations on packet fields at line-rate directly in PDP
switches. Hence, people can leverage INC to offload certain
computing tasks in DML training from servers to PDP-based
ToR switches (namely, P-ToR switches), achieving effective
acceleration [38]. Taking the DML training in the parameter-
server framework as an example, Fig. 2 illustrates the INC-
based acceleration. The each iteration of the training includes
four phases: 1) map (the master broadcasts data to workers),
2) local compute by the workers, 3) upload (the workers
incast their results to the master), and 4) reduce (the master
aggregates workers’ results). As the aggregation operation
in the fourth phase can be realized with simple arithmetic
operations, it can be offloaded to a P-ToR switch with INC
such that the fourth phase is performed simultaneously with
the third one and accelerates the DML training effectively. In
the meantime, as the P-ToR switch only needs to send INC-
aggregated results to the master, it essentially absorbs half of
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the worker-to-master traffic in the third phase.

To this end, we propose to integrate ORDC with INC for
a novel pod-level DC architecture (namely, P4-ORDC), to
explore their mutual benefits as follows. The reconfigurability
enabled by ORDC enables time sharing of INC resources
(i.e., registers and arithmetic logic units (ALUs)) on P-ToR
switches, improving their utilization over time to accelerate
offloadable computing phases in DML training better. The
traffic absorption achieved by INC relieves network bottle-
necks in each ORDC pod, shortening communication phases
of DML training. In this work, we elaborate on the design
and implementation of P4-ORDC, which partially replaces
ToR switches in an ORDC pod with P-ToR switches, program
P4-based packet processing pipelines in them to enable INC,
and develop a control plane to explore the mutual benefits
of ORDC and INC. In order to demonstrate its performance,
we prototype P4-ORDC with commercial products and build
a small-scale ORDC pod. Experimental results show that our
proposed P4-ORDC significantly outperforms existing bench-
marks (ORDC without INC [35] and optically-interconnected
P-ToR switches [28]) on average job completion time (JCT).

The rest of this paper is organized as follows. Section II
explains the operation principle of P4-ORDC and the system
design, while the experimental results are discussed in Section
III. Finally, Section IV summarizes the paper.

II. OPERATION PRINCIPLE AND SYSTEM DESIGN

The data plane of P4-ORDC is shown in Fig. 3, which gen-
erally follows the architecture of the ORDC pod in [35], except
that we replace certain ToR switches in it with P-ToR switches
and implement a packet encoder in each server to assist
INC operations in the P-ToR switches. We leverage the data
plane development kit (DPDK) to develop the packet encoder
for ensuring high-speed packet processing and transmitting.
Specifically, we program the DPDK-based packet encoder to
1) intercept all the workers-to-master packets in the third phase
(upload) and 2) encode them in a customized packet format
for INC. Meanwhile, we also design and implement the P4
pipeline in the P-ToR switch to realize INC, which makes the
third and fourth phases in Fig. 2 happen concurrently.

Worker | Worker \ | Master \

©)

Example in INC-based computing acceleration with PDP switches.

Parser P4 Pipeline Deparser

T W el N R T I ey, |
Aggregate/ : |

Forward | : LTk

¥ Packets ! ) I:D';,

kO Rack1l Rack2

Fig. 3. Data plane design of P4-ORDC.

Fig. 4 illustrates the control plane of P4-ORDC, which is
crucial to explore the mutual benefits of ORDC and INC to
accelerate DML training. As for the ToR switches, servers,
and OCS, we allocate the ToR controller, job handler, and
OCS controller to respectively manage them, through corre-
sponding south-bound interfaces. The ToR controller collects
the statistics of traffic through ToR switches (both traditional
ToR and P-ToR switches) to update the traffic engineering
database (TED). The servers in the P4-ORDC pod register
their DML jobs to the job handler, which checks the JobID
database to assign a unique JobID to each job and forward the
jobs’ information (durations of their computing phases, data
sizes of their communication phases, etc.) to the TED. The
job handler also interacts with the INC scheduler to assign
INC resources in P-ToR switches to offloadable computing
phases. The TED analyzes the information about traffic and
jobs in the data plane to abstract a 3-dimensional (3D) traffic
matrix that represents the data transfers between server pairs
over a series of future time periods. Then, as shown in the
top subplot of Fig. 4, the topology engineering (TPE) module
obtains a sequence of OCS configurations, each of which
has been optimized to group servers into racks such that the
DML training during the corresponding future period can be



accelerated the most. Finally, the OCS configurations will be
applied to the OCS as planned by the OCS controller, and
the TED will calculate the routing schemes for traffic based
on each OCS configuration and implement them in the ToR
switches through the ToR controller.
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Fig. 4. Control plane design of P4-ORDC.

III. EXPERIMENTAL DEMONSTRATION

We build a small-scale P4-ORDC pod with 8 servers, three
ToR switches, and a 32x32 optical cross-connect (OXC), and
the line-rate of the links to connect them is 10 Gbps. One
ToR switch is a P-ToR switch based on Tofino ASICs. The
physical setup of the P4-ORDC pod is the same as that in
Fig. 3, where the P-ToR switch connects to the OXC with
four ports and each traditional ToR allocates two ports to the
OXC. For convenience, we index the servers in Fig. 3 from
left to right as Servers 0-7, respectively, and for simplicity, we
run Hadoop WordCount jobs instead of DML training jobs on
them, which have similar collective communication pattern but
with much simpler INC procedure. We first conduct a simple
experiment to demonstrate the mutual benefits of ORDC and
INC on accelerating collective communications illustratively.
Specifically, we place two sets of jobs on Servers 0-3 and
4-7, respectively, and let PA-ORDC orchestrate the collective
communications of the jobs to share INC resources on the
P-ToR switch over time. Fig. 5 shows the jobs’ traffic that
goes through the P-ToR switch, indicating that the control

plane schedules the upload phases of the two server groups
alteratively over time. In this experiment, the mutual benefits
of ORDC and INC achieve an average JCT reduction of 66%.
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Fig. 5. Results on interleaving jobs with collective communications.

We then conduct experiments to compare P4-ORDC to three
existing architectures: 1) FatTree, which removes the OXC,
replaces the P-ToR switch with a normal ToR switch, and
interconnects the ToR switches with Ethernet switches in a
fat-tree, 2) ORDC [35], the traditional ORDC without INC,
and 3) P4INC-AOQOI [28], which interconnects P-ToR and ToR
switches from the top with an OXC. For fair comparisons,
the numbers of servers, ToR switches and ports on each
ToR switch are kept the same in the four architectures. The
results on average JCT are plotted in Fig. 6. Due to the
lack of network reconfigurability and INC, FatTree provides
the longest JCT in all the experimental scenarios, and it is
followed by ORDC, justifying the necessity of network re-
configurability in serving collective communications. INC can
accelerate collective communications effectively, since P4INC-
AOI and P4-ORDC achieve significantly shorter JCTs than the
other two, but compared with PAINC-AOI, P4-ORDC further
reduces the average JCT by 23.4% to 26.4%, confirming the
mutual benefits of ORDC and INC.

IV. CONCLUSION

In this paper, we discussed P4-ORDC, which is a novel
DCN architecture to explore the mutual benefits of ORDC
and INC for accelerating DML training jobs with collective
communications. We prototyped a small-scale P4-ORDC with
off-the-shelf network elements, and our experimental results
verified that P4-ORDC can effectively reduce JCT over a few
existing benchmark DCN architectures.
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