
1

Self-Adaptive SRv6-INT-Driven System Adjustment
in Runtime for Reliable Service Function Chaining

Xuefeng Yan, Nelson L. S. da Fonseca, and Zuqing Zhu, Fellow, IEEE

Abstract—Self-adaptation of service function chains (SFCs) has
been considered as an important attribute to ensure the resource-
efficiency and reliability of network function virtualization (NFV)
systems. In this work, we leverage the idea of integrating segment
routing over IPv6 (SRv6) and in-band network telemetry (INT)
seamlessly to realize SRv6-INT and explore the mutual benefits
of SRv6 and INT for achieving self-adaptive SFC deployment.
Specifically, we design and experimentally demonstrate a self-
adaptive SRv6-INT-driven SFC deployment system that orches-
trates network and IT resources timely to adapt to bursty traffic
and network changes. We first enhance our previous design of
SRv6-INT to better use it for self-adaptive SFC deployment, and
then propose an IT resource management technique for Kuber-
netes (K8s) to accomplish resource allocation and contention res-
olution without offline virtual network function (vNF) profiling.
Next, a closed-loop system is designed to manage SFCs in both the
local and global ways. As for the local way, we let servers make
local decisions based on the INT data encoded in packets to scale
the vNFs running on them vertically. The global way involves the
control plane, which oversees the SFC deployment in the whole
network to change the number and placement of vNFs and the
traffic routing through them. Finally, we prototype our proposal
with commodity servers and hardware PDP switches based on
Tofino ASICs, and experimentally demonstrate its effectiveness.

Index Terms—IPv6 segment routing (SRv6), In-band network
telemetry (INT), Programmable data plane (PDP), Service func-
tion chain (SFC), Resource management, Closed-loop control.

I. INTRODUCTION

OVER past decades, networking technologies have been
developing rapidly to adapt to the fast-growing traffic

and network services with stringent quality-of-service (QoS)
demands [1]. Specifically, the advances on physical-layer
innovations [2–6], software-defined networking (SDN) [7, 8],
network function virtualization (NFV) [9–11], and machine
learning and artificial intelligence (AI) [12] have enhanced the
performance of Internet to achieve seamless global coverage.
With SDN and NFV, a service provider (SP) can decompose a
network service into a series of virtual network functions (vN-
Fs), instantiate the vNFs on general-purpose network elements
(i.e., commodity servers, switches and storages), and route the
network service’s traffic through them in sequence, deploying
the network service with service function chains (SFCs) [13].

Despite the advantages, it is still challenging to realize cost-
efficient and reliable SFC due to the difficulty of orchestrating
network and IT resources timely to address bursty traffic and

X. Yan and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

N. Fonseca is with the Institute of Computing, State University of Camp-
inas, Campinas, SP 13083-852, Brazil.

Manuscript received on November 17, 2023.

dynamic network status. Therefore, segment routing (SR) [14]
has been proposed to facilitate adaptive traffic steering for
SFC. For a packet flow, the ingress switch of its SR domain
plans its routing path and operations along the path, encodes
the results as an ordered list of path segments, and encapsulates
the segment list as a stack of labels in each packet of the flow.
Then, the subsequent switches along the routing path process
each packet according to the segment list.

There are two typical implementations of SR, i.e., the SR
over multi-protocol label switching (SR-MPLS) [15] and SR
over IPv6 (SRv6) [16], to encode SR labels based on MPLS
labels and IPv6 addresses, respectively. Here, SRv6 can better
explore the advantages of SR [14], and thus it has attracted
much more research and development efforts. SRv6 defines
a Segment Routing Header field in the extension header of
IPv6, and encodes a stack of Segment Lists in it to indicate
the segments that assemble a flow’s routing path and how the
flow’s packets should be processed at the end of each segment.
Therefore, an SP can customize the Segment Lists of a flow to
steer it through an SFC and update its routing path in runtime.

In addition to SRv6, fine-grained network monitoring is
also indispensable for adjusting the configuration of an SFC
timely. Recently, programmable data plane (PDP) have led
to novel network monitoring techniques that can satisfy this
requirement, such as the in-band network telemetry (INT) [17].
INT realizes fine-grained and realtime network monitoring by
letting packets carry the telemetry instructions that will be
executed by the switches along the packets’ routing paths to
collect the corresponding monitoring results and insert them as
INT fields in the packets. Although INT is promising, it may
be incompatible with SRv6, because both techniques add fields
in packets and thus can generate packets whose lengths exceed
the maximum transmission unit (MTU) of a network. To solve
this problem, we designed SR-INT in [18], which makes SR
and INT share the fields in a packet in the time-division
multiplexing (TDM) manner such that the two techniques are
integrated seamlessly without resulting in excessively long
packets, accomplishing highly-efficient network monitoring
and adaptive traffic engineering simultaneously. However, the
SR-INT in [18] was not developed based on SRv6 and its
applications for SFC has not been explored yet.

On the other hand, the provisioning of SFC also involves
instantiating vNFs on servers, using the runtime environments
such as virtual machines (VMs) and containers. Compared
with VMs, containers usually incur less overheads and have
shorter deployment and migration time, offering a lightweight
and agile way for instantiating vNFs. Kubernetes (K8s) [19]
is widely-recognized as the de facto standard platform for



2

managing containerized vNFs. To maintain the QoS, cost-
effectiveness, and reliability of SFC, K8s needs to re-optimize
provisioning scheme in runtime [10], where both IT resource
allocation and contention resolution needs to be addressed. As
for resource allocation, K8s adjusts resource quotas of an SFC
vertically or horizontally to adapt to traffic fluctuation. The
vertical scaling changes the IT resources (e.g., CPU cycles and
memory) allocated to a single vNF, while horizontal scaling
adjusts the number of a vNF’s replicas to accommodate time-
varying traffic. As for contention resolution, the IT resources
allocated to multiple vNFs is changed dynamically to enable
highly-efficient resource sharing without starving any vNFs.

In this work, we expand our preliminary proposal of SRv6-
INT in [20] to design and experimentally demonstrate a self-
adaptive SRv6-INT-driven SFC deployment system that can
orchestrate network and IT resources timely to adapt to bursty
traffic and dynamic network changes. Specifically, the major
improvement is to facilitate “zero-touch" network control and
management (NC&M), i.e., leveraging closed-loop and auto-
matic system adjustment to optimize the provisioning of SFC
in both the IT and network aspects in runtime. We first enhance
the system design in [20] to better utilize SRv6-INT for self-
adaptive SFC deployment. Then, we propose an IT resource
management technique for K8s to realize resource allocation
and contention resolution without offline vNF profiling.

Next, a closed-loop NC&M system is designed to manage
SFC deployment in both the local and global ways. As for
the local way, we let servers make local decisions based on
the INT data encoded in packets to scale the vNFs running
on them vertically. The global way involves the control plane,
which oversees the SFC deployment in the whole network to
change the number and placement of vNFs (i.e., horizontal
scaling) and the traffic routing through them. To make our
system compatible with the standardized NFV frameworks, we
implement the control plane based on the management and or-
chestration (MANO) framework [21] of European telecommu-
nications standards institute (ETSI). We also leverage the idea
of zero touch network and service management (ZSM) [22]
provided by ETSI to separate the management and automation
of SFC into IT and network domains and coordinate them with
a global domain-wide orchestrator. Finally, we prototype our
proposal with commodity servers and hardware PDP switches
based on Tofino ASICs, and experimentally demonstrate its
capability of adjusting the provisioning schemes of SFCs
dynamically in runtime, to avoid QoS violations and precisely
balance the tradeoff between QoS and resource consumption.

The rest of the paper is organized as follows. Section II
briefly discusses the related work. We introduce the system
design of our proposal in Section III. The implementation of
our design is described in Section IV. In Section V, we present
the experimental demonstrations for performance evaluation.
Finally, Section VI summarizes the paper.

II. RELATED WORK

Since its inception, SR has been applied for various purpos-
es, including traffic engineering [23], network monitoring [24],
SFC [25], etc. Due to its advantages, SRv6 has become the

mainstream of SR. For a comprehensive survey on SRv6, one
can refer to [14], and standardization work on SRv6 can be
found in [16, 26], where Ref. [16] defines the programmability
of SRv6 and how to support SRv6 in 5G networks has
been discussed by 3GPP in [26]. As for the implementation
of SRv6, open-source projects like ROSE [27] have been
developed. Specifically, ROSE is dedicated to building an
open-source SRv6 system based on Linux kernel.

As it can achieve real-time, fine-grained, and flow-oriented
network monitoring, INT [17] has gained intensive research
interests recently. The combination of INT and SR was initially
considered in [28], where SR was leveraged to plan the routing
paths of INT probes. However, this work did not try to reduce
the increased overheads of running INT and SR together.
We proposed SR-INT in [18] to explore the mutual benefit
of SR and INT for adaptive network monitoring, without
increasing the overall overheads. Nevertheless, SR-INT was
not designed based on SRv6, and we did not consider to utilize
SR-INT for optimizing SFC provisioning. In addition to SR-
INT, the studies in [24, 29] also leveraged SR for network
monitoring, but they invoked INT to send probes to traverse
the concerned switches and links, which would induce much
more overheads than SR-INT. In [20], we extended SR-INT to
realize SRv6-INT, made it comply with SRv6, and prototyped
a preliminary system based on it for accomplishing timely SFC
re-optimization. To the best of our knowledge, this is the first
work that utilized INT for orchestrating IT and network re-
sources adaptively for SFC deployment. Compared with the IT
monitoring approaches that run monitoring tasks in in-service
tasks (e.g., Bubble-flux [20]), our approach could monitor
vNFs in the IT domain without inducing any adverse effects
on in-service vNFs and yield more precise QoS measurements
on throughput and latency. Nevertheless, closed-loop NC&M
mechanism was not developed in [20].

The lightweight and agile features of containers allow SPs to
deploy vNFs flexibly and cost-efficiently. vNFs at Layers 2 and
3 usually focus on packet forwarding, and thus they run in the
user space of operating systems and are supported by kernel
bypass techniques, such as the Data Plane Development Kit
(DPDK) [30]. On the other hand, vNFs for Layers 4-7 require
to handle the entire network protocol stack. Hence, flexibility
and functionality take precedence in this category of vNFs,
and a robust, kernel-based protocol stack is often required [31].
vNFs of different types can be formed into an SFC, which can
be deployed by using SRv6 as the network engine. Therefore,
previous studies [32–34] utilized SRv6 to deploy SFC and
extended the implementation of SRv6 in Linux kernel for
this purpose. However, they did not consider the performance
monitoring or dynamic runtime re-optimization of SFC.

Runtime re-optimization of SFC needs “zero-touch" NC&M
[22], which can realize self-configure, self-monitor, self-repair,
and self-optimize based on service-level policies and rules,
with minimum human intervention. More specifically, vNFs in
an SFC should be managed adaptively with vertical and hori-
zontal scaling. In [35], the authors explored data-based mod-
eling methods for vertical and horizontal scaling of container-
based jobs, but their proposal overlooked the issue of resource
contention, which can happen when multiple jobs are co-



3

Fig. 1. Packet format designed for SRv6-INT (adapted from [20]).

located on a same server and lead to significant performance
degradation [36, 37]. In order to address resource contention,
existing approaches studied contention-aware SFC deployment
[38–40], but the cost-efficiency of their solutions can be
further improved by adjusting the resource sharing among
vNFs in runtime, which often needs offline vNF profiling [39,
41]. Specifically, the dynamic resource quota and contention
mitigation has to understand the performance models of vNFs
in advance and collect necessary prior knowledge for resource
allocation. Nevertheless, offline vNF profiling can be difficult
or even infeasible, considering the variety of applications
and complexity of network environments used for service
provisioning [42]. Therefore, a model-free black-box approach
would be required to accomplish dynamic resource allocation
and adjustment without the need of offline vNF profiling.

III. SYSTEM DESIGN

In this section, we first review the protocol design of SRv6-
INT in [20], and then describe our design of the self-adaptive
SRv6-INT-driven SFC deployment system.

A. Protocol Design of SRv6-INT

Fig. 1 shows the packet format used for SRv6-INT [20],
which was designed based on the standard of SRv6. Specif-
ically, we modified the Segment Routing Header (SRH) in
IPv6 extension header, and the major modifications are marked
in blue in Fig. 1. We use the fields of Flags and Tag to
indicate the SRv6-INT behaviors that should be taken on a
packet. To reduce the length of each SRv6-INT packet, we
replace a Segment List with an INT Metadata after a packet has
traversed a segment on its routing path. Initially, the SRH of
a packet contains a stack of SL IPv6 addresses, each of which
denotes the last switch of a segment (i.e., an endpoint), and
thus there are SL segments on the packet’s routing path. INT
Metadata has the same length as Segment ID (i.e., 16 bytes),
and it includes the INT fields (five at most) that contains the
telemetry data collected on an endpoint, recording the status
of the last hop of an experienced segment.

The INT fields in each INT Metadata are illustrated in the
right subplot of Fig. 1. The type-length-value (TLV) tuple in
the modified SRH denotes the MapInfo that defines the INT
data collection scheme, where each of the last 5 bits in the
Value field tells whether a corresponding INT field should
be filed with telemetry data. In INT Metadata, Device_ID

stores the unique ID of the switch that performs the End.T.INT
action in the SRv6-INT protocol, i.e., the device ID of the
last switch in a segment, In_Time is for the time-stamp
when the packet arrives at the switch. vNF_Latency stores the
processing latency of the vNFs experienced by the packet on
the switch’s local server. Q_ID and Q_Length are for the ID
and length of the queue that stores the packet, respectively, and
Port_Counter stores the packet counts of the flow. Different
from the packet format in [20], we add a new field, Detection
Result, which uses the last 4 bytes of SRH to store the vNF
processing latency of the previous packet.

In order to facilitate SRv6-INT, we followed the princi-
ple of SRv6 to design three actions in [20]. Specifically,
H.Encaps.INT is used to encapsulate SRH at athe ingress
switch of the packet, End.DT.INT is to decapsulate SRH at the
egress switch, and End.T.INT is designed for the operation on
each endpoint, which performs normal INT operations with
two mechanisms, i.e., the “plain SRv6-INT" and “SRv6-INT
for SFC", and replaces a Segment List with an INT Metadata.
We store the processing latency of each vNF on the server
in an internal register of the PDP switch that attaches to
the server, and convey it to the local resource closed-loop
controller on the server by leveraging the Detection Result
in packets. Other than the modifications above, we change
the definition of a subfield in INT Metadata. Specifically, the
Out_Time defined in [20] is replaced with vNF_Latency, as
shown in Fig. 1, which stores the processing latency of all the
vNFs experienced by the packet on the server attached to the
last switch of a path segment, for global closed-loop control.

B. System Architecture

Fig. 2 shows the architecture of our proposed self-adaptive
SRv6-INT-driven SFC deployment system. Specifically, SRv6-
INT is used to route SFC traffic, monitor SFC performance
in runtime, and enable closed-loop resource management for
SFC. Specifically, the network system consider both the IT and
network domains to orchestrate resources for SFC deployment
and readjustment. The network domain (i.e., the SRv6 domain)
consists of the PDP switches that equip Tofino ASICs and can
be programmed with the P4 language [43]. We program the
PDP switches to implement the packet processing pipelines
for SRv6-INT in them, and manage them in runtime with an
ONOS-based SDN controller through P4Runtime. As for the
IT domain, we attach one or a cluster of Linux servers to some
of the PDP switches directly, which will be used to instantiate
vNFs. To ensure high resource efficiency, we choose to deploy
containerized vNFs and develop our IT resource management
system based on the container orchestrator of K8s [19].
Specifically, we deploy K8s master/workers in the servers,
and modify the management component in the K8s master to
manage the servers to instantiate, configure and remove vNFs.

With SRv6-INT, the working status of each vNF can be
monitored in realtime (i.e., the throughput and processing
latency of the vNF can be precisely obtained by the PDP
switch that connects directly to the vNF’s server, and then
encoded as INT fields in packets), and the packets that carry
INT fields will be mirrored to the domain-wide orchestrator



4

Fig. 2. Architecture of self-adaptive SRv6-INT-driven SFC deployment system.

before leaving the SRv6 domain. Then, the domain-wide
orchestrator will process the data in the INT fields and provide
suggestions to the SDN controller and SFC orchestrator to re-
optimize SFC provisioning schemes adaptively, realizing the
global closed-loop NC&M. To coordinate management of the
network and IT domains, we modify the ONOS-based SDN
controller and the K8s-based SFC orchestrator to make sure
that they can orchestrate IT and network resources for SFC
deployment and readjustment based on the real-time network
status analysis done by the domain-wide orchestrator.

C. Global and Local Closed-loop SFC Management

In order to realize self-adaptive SRv6-INT-driven SFC de-
ployment, we design two levels of closed-loop SFC manage-
ment (i.e., in the global and local manner). The local closed-
loop SFC management runs on the per-server basis and is
responsible for the vertical scaling of vNFs and mitigation of
resource contention on a single server. Specifically, each PDP
switch that directly connects to one or more servers will collect
the processing latencies of the vNFs running on the server(s)
and convey them to its local vNF controller by leveraging
the Detection Result field in packets. Then, the local vNF
controller will make timely decisions on vertical scaling of
the vNFs and mitigation of resource contention accordingly.

The global closed-loop SFC management runs on the
centralized domain-wide orchestrator to perform horizontal
scaling of vNFs running on any servers in the network
and rerouting of traffic through any SFC. Specifically, the
horizontal vNF scaling can increase or decrease the replicas
of a vNF to adapt to the traffic variation of an SFC. The
domain-wide orchestrator conducts the global closed-loop SFC
management based on the telemetry data encoded in SRv6-
INT packets. To coordinate the two levels of closed-loop SFC
management, we make them collaborate in the best-effort
manner. Specifically, only when the local closed-loop SFC
management cannot adapt to the traffic variation of an SFC,

the telemetry data encoded in SRv6-INT packets will report
abnormal work status continuously, which will trigger the
global closed-loop SFC management to kick in. The detailed
procedure of the collaboration will be explained in Section IV.

IV. SYSTEM IMPLEMENTATION AND OPERATION
PROCEDURE

In this section, we explain the implementation of our
proposed system and the details of its operation procedure.

A. Implementation and Functional Modules

Fig. 3 shows the implementation and functional modules of
our proposal. The control plane includes a global orchestrator
and a local vNF controller. The local vNF controller runs on
a server and checks the telemetry data encoded in SRv6-INT
packets to perform vertical scaling of vNFs and mitigation of
resource contention locally. The global orchestrator consists
of an ONOS-based SDN controller for global NC&M, a K8s-
based SFC orchestrator for global INT resource management,
and a domain-wide orchestrator that coordinates the manage-
ment of IT and network domains. The SDN controller manages
the PDP switches to steer traffic through SFCs, while the SFC
orchestrator locates on the K8s master for SFC management.
Here, each vNF is instantiated in the form of pod. As shown
in Fig. 3, the traffic forwarding between a server’s network
interface card (NIC) and its vNFs is implemented with Open-
vSwitch (OVS), which is configured by K8s network plugin.

B. Procedure of Local Closed-loop Control

As illustrated in Fig. 4, we abstract the IT resources relevant
to vNF deployment with the context of the non-uniform
memory access (NUMA) [44], which is widely-used to man-
age multi-core computing platforms. Specifically, the NUMA
architecture groups CPU cores into nodes, and the cores across
nodes are interconnected through high-speed connections such



5

Fig. 3. Implementation and functional modules of our proposed system.

Fig. 4. vNF deployment based on NUMA architecture.

as the quick path interconnect (QPI). In addition to CPU cores,
each node also contains local memory. The CPU cores of a
same node share an integrated memory controller (iMC) and
last level cache (LLC). To minimize the latency and bandwidth
overhead associated with memory access, we implement our
proposal to always place vNFs on the same NUMA node of the
server’s NIC. For the local closed-loop control, we implement
a local vNF controller on each K8s worker, which operates
based on the processing latencies of local vNFs (encoded
in Detection Result of SRv6-INT packets). The processing
latency of a vNF can be obtained by the PDP switch that
directly connects to the vNF’s server, by comparing the time
when each packet leaves the PDP switch for the first time
with the time when it re-enters the PDP switch after being
processed by its vNF. The local vNF controller checks this
performance metric and dynamically adjusts the IT resources
(e.g., CPU cycles and memory) assigned to in-service vNFs,
to mitigate resource contention among the vNFs in each pod.

Specifically, the local vNF controller parses SRv6-INT
packets to get the current processing latencies of all the co-

located vNFs, and computes the 95% tail latency1 of each vNF.
When it finds that a vNF’s 95% tail latency violates the vNF’s
QoS requirement, it will readjust the IT resources allocated to
the vNF until the tail latency is pushed back to normal. Our
design of the algorithm that tackles the problem of how to
readjust the IT resources allocated to vNFs adaptively is based
on the principle of not relying on any prior knowledge about
the performance models of vNFs (i.e., offline vNF profiling is
not needed). Specifically, we leverage the concept of resource
equivalence [42] to allocate IT resources to co-located vNFs.
For a specific vNF, there usually exist multiple resource
allocation schemes to satisfy its QoS demand on latency, if
we consider the four resource types (i.e., CPU frequency, CPU
quota, LLC, and memory bandwidth). Then, we can design
an algorithm based on a state machine to choose a type of
resource to adjust in each iteration and find a feasible resource
allocation scheme eventually. Table I lists the notations used
in the following algorithm design, where the tail latency and
processing rate (throughput) are in µs and Gbps, respectively.

TABLE I
NOTATIONS USED IN ALGORITHM DESIGN

Notations Descriptions

T [i] Type of resource required by vNF i
Lmax[i] Longest tail latency tolerated by vNF i
L[i] Current tail latency of vNF i
τ [i] Current tail latency slack of vNF i
R[i] Current processing rate of vNF i
Ci Current processing capacity of vNF i

The overall procedure of the local closed-loop SFC manage-
ment is shown in Algorithm 1, which optimizes the resource
allocations of vNFs running on a server based on their tail
processing latencies, in the way that prior knowledge about
the mapping between tail processing latency and resource
utilization of each vNF is not required. We make a PDP switch
continuously monitor and record the processing latencies of
all the local vNFs and feed the latencies to the local vNF
controller by leveraging SRv6-INT packets. Line 1 is for the
initialization, where we select a resource type empirically
and set it as the type of resource that needs to be adjust
for all the local vNFs. Then, the while-loop of Lines 2-28
explains how the local closed-loop control works when the
system is operational. Specifically, each in-service local vNF
i is checked during operation (Lines 3-27). Line 4 makes
the local vNF controller get the latest processing latency of
vNF i by parsing each SRv6-INT packet to the vNF. Then,
after processing N packets, the 95% tail latency of vNF i
is obtained as L95 (Lines 5-6). Line 7 gets the gap between
L95 and the longest latency that can be tolerated by vNF i
(Lmax[i]) as τ [i], and Line 8 finds the vNF î whose gap τ [̂i]
is the largest. Next, if L95 already exceeds Lmax[i], we first
use Lines 10-12 to find the right type of resource (T [i]) to add
to vNF i, and then try to allocate more type-T [i] resource to
vNF i in the best-effort manner (Lines 13-22). Otherwise, we
just free redundant type-T [̂i] resource from vNF î (Line 24).

1In this work, we choose 95% tail latency because it is a reasonably strict
performance indicator that can reveal the effect of “long tail" accurately.



6

Algorithm 1: Local Closed-loop SFC Management
1 select a resource type j empirically and set it as the type of resource to

be adjusted for each local vNF i (T [i] = j);
2 while the system is operational do
3 for each local vNF i do
4 parse each packet to vNF i to get the latest processing latency

in its Detection Result field;
5 if N packets have been processed for vNF i then
6 calculate 95% tail latency as L95 based on recorded

latencies, and reset the packet counter of vNF i;
7 τ [i] = Lmax[i]− L95;
8 î = argmax

∀i
(τ [i]);

9 if L95 > Lmax[i] then
10 if L95 does not decrease since last calculation then
11 run Algorithm 3 to get resource type T [i];
12 end
13 if there is enough type-T [i] resource to assign then
14 add more type-T [i] resource to vNF i;
15 else
16 run Algorithm 2 to free type-T [i] resource;
17 if there is enough type-T [i] resource to assign

then
18 add more type-T [i] resource to vNF i;
19 else
20 continue;
21 end
22 end
23 else
24 run Algorithm 2 to free type-T [i] resource from

vNF î;
25 end
26 end
27 end
28 end

Algorithm 2: Free a Type of Resource from a vNF
Input: resource type j, vNF i.

1 deallocate a fixed amount of type-j resource from vNF i;
2 parse each packet to vNF i to get the latest processing latency in its

Detection Result field;
3 if N packets have been processed for vNF i then
4 calculate 95% tail latency as L95 based on recorded latencies, and

reset the packet counter of vNF i;
5 if L95 > Lmax[i] then
6 revert the resource deallocation of vNF i;
7 run Algorithm 3 to update the type of resource T [i] to be

adjusted for vNF i;
8 end
9 end

Algorithm 2 is a sub-procedure of Algorithm 1, and it
tries to free type-j resource from a vNF i, which has the
largest performance margin on tail processing latency. Line 1
just deallocates a fixed amount of type-j resource from vNF
i. Then, Line 2 monitors the processing latency of vNF i
after the resource deallocation. After N packets have been
checked, we calculate the 95% tail latency as L95 based on
the recorded latencies (Lines 3-4). Note that, we need to
balance the tradeoff between accuracy and timeliness when
choosing N . Specifically, a larger N makes the computation
of 95% tail latency more accurate, but as it lets Algorithm
2 accumulate more packets before making a decision, the
timeliness of resource adjustment becomes worse, and vice
versa. However, the restriction on timeliness can be ignored
when the throughput or packets per second (pps) is reasonably

high (e.g., higher than 1 Gbps or 100, 000 pps). Hence, when
choosing N in our experiments, we only consider the statistical
accuracy of 95% tail latency and set N = 1, 500. Then, if
we find that L95 exceeds Lmax[i], the resource deallocation is
reverted and we run Algorithm 3 to update the type of resource
T [i] to be adjusted for vNF i in the next round (Lines 5-8).

Algorithm 3: State Machine to Determine Resource Type
Input: vNF i with resource type T [i].

1 map T [i] = {1, 2, 3, 4} to {CPU quota, LLC, memory bandwidth,
CPU frequency}, respectively;

2 T [i] = (T [i] + 1) mod 4;
3 return(T [i]);

The state machine that finds the type of resource T [i] to be
adjusted for vNF i in the next round is described in Algorithm
3, which works as the sub-procedure of Algorithm 2 based
on the idea of resource equivalence (i.e., different types of
resources can be interchanged to achieve the same QoS target).
We map T [i] = {1, 2, 3, 4} to CPU quota, LLC, memory
bandwidth, and CPU frequency, respectively (Line 1). Line 2
makes the state machine iterate the resource types in sequence,
and the new resource type is returned in Line 3.

C. Procedure of Global Closed-loop Control

The primary goal of the global closed-loop SFC manage-
ment is to perform horizontal scaling of vNFs running on
any servers in the network and rerouting the traffic of any
in-service SFCs. Meanwhile, the global closed-loop control
should coordinate with the local one to explore their mutual
benefits. Specifically, whenever the local closed-loop control
cannot resolve the resource contention on a server, the SRv6-
INT packets that traverse the vNFs on the server will convey
the abnormal network status to the domain-wide orchestrator,
which will then invoke the global closed-loop control. In this
way, we do not need to invoke network-wide re-optimization
frequently, making SFC readjustment more timely and reliev-
ing the complexity of network reconfiguration.

Algorithm 4: Global Closed-loop SFC Management
1 while the system is operational do
2 for each in-service vNF i do
3 parse each packet that has traversed vNF i to get the latest

telemetry data (in its INT Metadatas) regarding the vNF;
4 get current throughput and processing latency of vNF i as Ri

and Li, respectively;
5 update the maximum throughput and longest processing

latency of vNF i as R∗[i] and L∗[i], respectively;
6 set the maximum capacity of vNF i as C∗i = R∗[i] · L∗[i];
7 if (L[i] > Lmax[i]) AND (this exception of vNF i has been

persisted for more than t̂ seconds) then
8 get current capacity of vNF i as Ci = Ri · Li;
9 set the new number of vNF replicas as n = d Ci

C∗
i
e ;

10 instruct SFC orchestrator to deploy n replicas of vNF i;
11 tell SDN controller to reroute traffic over vNF replicas;
12 end
13 end
14 end

Algorithm 4 shows the detailed procedure of the global
closed-loop SFC management, which runs on the domain-



7

wide orchestrator. For each in-service vNF i, Lines 3-6 parse
each SRv6-INT packet that has traversed it to get the latest
telemetry data regarding it, and update the maximum through-
put, longest processing latency, maximum capacity of vNF i
accordingly. Then, if the current processing latency of vNF i
exceeds the longest latency that can be tolerated by vNF i and
this exception has lasted for a period that is longer than the
preset threshold t̂, the global SFC management will kick in to
scale vNF i horizontally and reroute the SFC traffic of vNF
i through the new replicas (Lines 7-12). Specifically, in Line
10, when the SFC orchestrator needs to deploy new replicas
of vNF i, it selects the server(s) with the most available IT
resources, while the rerouting of the SFC’s traffic in Line 11 is
accomplished with multi-path routing to distribute the traffic
evenly to all the replicas of vNF i. Specifically, we leverage
the longest common subsequence based algorithm in [13] to
place the vNF replicas and reroute traffic through them.

V. EXPERIMENTAL DEMONSTRATIONS

In this section, we conduct experiments to demonstrate the
effectiveness of our proposed system.

A. Experimental Setup

We set up a network testbed as shown in Fig. 5 to evaluate
the performance of our self-adaptive SRv6-INT-driven SFC
deployment system and demonstrate its effectiveness experi-
mentally. The testbed’s data plane consists of four 32-port PDP
switches based on Tofino ASICs, which are interconnected in
an SRv6 domain using 40-Gbps links, and three commodity
servers that are used for vNF deployment (i.e., two servers
work as K8s workers and one is configured as the K8s master).
Each local connection between a PDP switch and the server
attached to it operates at 10 Gbps. Each server contains two
NUMA nodes, each of which is equipped with an Intel 10-
core Xeon Silver-4210 2.20 GHz CPU, 32 GB of DDR4
memory, and a 4-port Intel 10GbE NIC. The control plane
includes an ONOS-based SDN controller, an SFC orchestrator
and a domain-wide orchestrator, which are all running on an
independent Linux server. The user equipment is also emulated
with a Linux server for traffic generation and result analysis.

TABLE II
PARAMETERS OF EXPERIMENTAL DEMONSTRATIONS

Parameters Settings
Port-count of PDP switch 32

Capacity of inter-switch link 40 Gbps
Capacity of server-switch link 10 Gbps

NUMA nodes in a server 2
CPU cores in an NUMA node 10
Memory in an NUMA node 32 GB

vNF types Snort, Fwd, ntopng, and nDPI
Packet sizes {200, 256, 512, 1024} Bytes

Our IT resource management system is developed based on
K8s v1.23.17 using containerd v1.7.2 as the container engine
and CAT [45] to allocate/adjust LLC resources to vNFs. Table
II summarizes the key parameters and their settings used in the
experiments. The experiments use four types of vNFs: packet

Fig. 5. Experimental setup.

forwarding based on OVS [46] (Fwd), intrusion detection
with Snort [47] (Snort), deep packet inspection via nDPI [48]
(nDPI), and network monitoring using ntopng [49] (ntopng).

B. Functional Verification

We first deploy SFC 1 in the testbed as shown in Fig. 5,
and set its routing path as Switch (SW) 1→SW 2→SW 3→SW
4, where its traffic experiences vNFs 1 and 2 on the servers
attached to SWs 2 and 3, respectively. According to our design,
the processing latency of each vNF in SFC 1 is measured by
its local PDP switch. For instance, when a packet arrives at
SW 2 for the first time, it time-stamps the packet as its ingress
time, and after the packet has been processed by vNF 1 and
reentered SW 2, it time-stamps the packet again as its egress
time. Then, by comparing the two time-stamps, SW 2 obtains
the processing latency of vNF 1, stores it locally, and encodes
the latency in the Detection Result field of the next packet
that is for SFC 1 to convey to K8s Worker 1. Fig. 6 shows the
Wireshark captures of a packet, when it is sent out from SW
2 for the first and second time. In Fig. 6(a), when the packet
is sent out from SW 2 to vNF 1, its Detection Result field is
encoded with the vNF processing latency of its previous packet
in vNF 1, which will be collected by K8s Worker 1. Next, in
Fig. 6(b), when the packet reenters SW 2, the vNF_Latency
field in the corresponding INT Metadata is encoded with the
processing latency of vNF 1, which can be collected by the
domain-wide orchestrator for the global closed-loop control.

Next, we benchmark the largest-achievable packet process-
ing throughput of the four vNFs, i.e., the packet forwarding
(Fwd), Snort, nDPI and ntopng. Here, the largest-achievable
throughput of a vNF is obtained when we assigning the most
computing resources to it (i.e., letting it use all the 10 CPU
cores in the NUMA node that the network interface card is
assigned to). The results in Fig. 7 show that the throughput of
each vNF increases with the packet size.

C. Self-Adaptive SFC Adjustment

Then, to verify that our proposal can achieve self-adaptive
SFC adjustment, we conduct experiments on SRv6-INT-driven
horizontal scaling of vNFs first. As explained in Section IV-
C, the horizontal scaling of a vNF is invoked by the global
closed-loop control, which happens when the local closed-loop



8

(a) Packet from SW 2 to vNF 1

(b) Packet from SW 2 to SW 3

Fig. 6. Wireshark captures to verify vNF processing latency collection.

200 256 512 1024

Packet Size (Bytes)

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

Fwd
Snort
nDPI
ntopng

Fig. 7. Largest-achievable throughput of vNFs running on an NUMA node.

control on a server cannot resolve the abnormal processing
latency increase of a vNF within a period of t̂ (i.e., we set
t̂ = 4 seconds in the experiments). This time, we deploy all
SFCs 1-4 in the testbed with the schemes shown in Fig. 5,
where the routing path and vNFs of each SFC are plotted with
a unique color. The vNFs deployed on K8s Worker 1 are Fwd,
Snort, nDPI and ntopng, for vNFs 1, 3, 5, and 7, respectively.
And the vNF 2 deployed on K8s Worker 2 is nDPI.

In this experiment, we increase the throughput of the traffic
to the SFCs as that in Fig. 8(a), where the traffic to SFCs 1,
3 and 4 stay at 1 Gbps for the whole experiment, but that
to SFC 2 is increased by 1 Gbps at t = 10 and 25 seconds,
respectively. In Fig. 8(b), it can be seen that when the traffic
to SFC 2 is increased for the first time, its end-to-end (E2E)
latency does not change, attributing to the fact that the impact
of the traffic increase is successfully resolved by the local
closed-loop control on K8s Worker 1 to adjust the resources
allocated to the vNF 3 (Snort) in SFC 2. However, when the
traffic is increased again at t = 25 seconds, the local closed-

loop control cannot mitigate the impact anymore and thus the
E2E latency of SFC 2 surges from several hundred µs to above
7 ms and stays there, as shown in Fig. 8(b). Hence, the global
closed-loop control kicks in to duplicate a vNF 3 on K8s
Worker 2 and reroute half of the traffic to SFC 2 to it by letting
the SDN controller modify the corresponding SRv6-INT flow
entries on SWs 1 and 2. Specifically, Fig. 8(b) indicates that
the abnormal E2E latency of SFC 2 lasts for ∼8 seconds, in
which 4 seconds are used to satisfy the condition to invoke the
global closed-loop control, and thus it takes the global closed-
loop control ∼4 seconds to scale vNF 3 horizontally and bring
the E2E latency of SFC 2 back to normal.

0 5 10 15 20 25 30 35 40 45 50
Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

T
ho

ug
hp

ut
 o

f T
ra

ffi
c 

to
 S

F
C

s 
(G

bp
s)

SFC1
SFC2
SFC3
SFC4

(a) Throughput of traffic to SFCs 1-4

(b) Tail E2E latencies of SFCs

Fig. 8. Experimental results of horizontal scaling of vNF.

Next, we conduct experiments to demonstrate SRv6-INT-
driven vertical scaling of vNFs, which is accomplished by the
local closed-loop control on each server. Moreover, to better
evaluate the performance of our proposal, we consider two
benchmarks, i.e., the one without vertical vNF scaling and
the one that realizes vertical scaling of vNFs with the native
vertical pod autoscaler in K8s (K8s-VPA).

We first consider the simple scenario that there is only one
vNF running on a server, and plot the 95% tail latency of
each vNF in Fig. 9. Here, we design the experiments to make
all the vNFs experience abnormally long processing latency
at the beginning. It can be seen that if vertical vNF scaling
is not included, the 95% tail latency of each vNF just stays
abnormally long for the whole experiment. As for K8s-VPA,
it cannot stably reduce the tail latency of each vNF either, due
to the fact that it cannot adjust all the four types of resources
adaptively as our proposal does. Our proposal performs the
best in Fig. 9. Specifically, it leverages the local closed-loop
control to reduce the 95% tail latency of each vNF below 1
ms within 2 seconds and maintain the latency at the low level
thereafter. Hence, the results in Fig. 9 verify that our proposal
can adjust the 4-dimensional resources allocated to each vNF



9

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(a) Fwd

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(b) Snort

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(c) nDPI

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(d) ntopng

Fig. 9. Results of managing a single vNF on sever with local closed-loop control.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(a) Fwd-Snort

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(b) Fwd-nDPI

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(c) Fwd-ntopng

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(d) Snort-nDPI

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104

9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(e) Snort-ntopng

0 2 4 6 8 10 12 14 16 18 20

Time (s)

103

104
9
5
%

 T
a
il 

L
a
te

n
c
y
 (

s
)

Our proposal
w/o vertical scaling
K8s-VPA

(f) nDPI-ntopng

Fig. 10. Results of managing an SFC that contains two vNFs with local closed-loop control.

adaptively to maintain its packet processing performance.
Then, we repeat the experiments to consider an SFC that

contains two vNFs, each of which runs on an independent
server. Specifically, the experiments consider the SFC 1 in
Fig. 5 with its two vNFs deployed on K8s Workers 1 and 2,
respectively, where the two vNFs can be any of the six possible
combinations of Fwd, Snort, nDPI, and ntopng, and we still
make each SFC experience abnormally long E2E latency at
the beginning. The results on the tail E2E latency of each
SFC are plotted in Fig. 10, and similar trends as those in Fig.
9 can be observed. Specifically, our proposal can reduce the
95% tail E2E latencies of all the SFCs below 1 ms within 4
seconds and maintain the latency at the low level thereafter,
outperforming the two benchmarks significantly.

Next, we consider the situation where the four vNFs are
co-located on a single server, to check the capabilities of the
three approaches on mitigating the resource contention among
the vNFs. Specifically, each experiment measures the largest-
achievable throughput of a vNF under the condition that the
throughput of each of the three remaining vNFs is fixed at
1 Gbps using the packet size of 1, 024 bytes. The results in
Fig. 11(a) indicate that our proposal can achieve the largest
throughput except for the case of Snort, where its throughput is
slightly smaller than that of K8s-VPA. This is because K8s-
VPA can allocate CPU quota aggressively to a vNF, while
the performance of Snort is very sensitive to this type of

resources. We also repeat the experiments to measure the E2E
throughput of SFC 1 (with different vNF configurations) when
it is colocating with SFCs 2-4 in the network as shown in Fig.
5. The results are shown in Fig. 11(b), indicating that the E2E
throughput achieved by our proposal is always higher than
those by the benchmarks. Fig. 11 confirms that our proposal
can effectively mitigate the resource contention among co-
located vNFs to improve their packet processing performance.

In all, the superiority of our proposal over the two bench-
marks in Figs. 9-11 is attributed to three reasons. First, we
optimize resource allocations of vNFs in a more comprehen-
sive way (i.e., Algorithm 1 adjusts the 4-dimensional resources
used by each vNF adaptively, while K8s-VPA only considers
the usages of CPU and memory of each vNF). Second,
the benchmarks either do not adjust the resources allocated
to vNFs or only adjust the resources based on historical
information, while Algorithm 1 realizes local closed-loop SFC
management in runtime by monitoring the QoS metrics of
each vNF proactively and making adaptive changes to avoid
QoS violations. Lastly, when seeing a QoS violation, K8s-VPA
only tries to assign unused resources to the related vNF, while
Algorithm 1 can take resources from the vNFs that still have
performance margin to allocate to the concerned vNF.

Finally, we conduct experiments to verify that our proposal
can achieve self-adaptive resource adjustment according to
dynamic traffic changes. We still have the four vNFs co-



10

Fwd Snort nDPI ntopng

Type of vNFs

0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

 Our proposal
 K8s-VPA
 w/o vertical scaling

(a) Throughput of a vNF when colocating with three other vNFs.

Fwd-Snort
Fwd-nDPI

Fwd-ntopng
Snort-nDPI

Snort-ntopng
nDPI-ntopng

Type of SFCs

0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

 Our proposal
 K8s-VPA
 w/o vertical scaling

(b) E2E Throughput of an SFC when colocating with other SFCs.

Fig. 11. Throughput in colocating scenarios.

located on a single server, but make the traffic throughput to
them change according to the curves plotted in Fig. 12(a). Figs.
12(b)-12(d) shows the results on 95% tail latency of without
vertical scaling, K8s-VPA and our proposal, respectively. In
Fig. 12(b), as there is no vertical scaling to adjust the resources
allocated to the vNFs according to their traffic volumes,
resource contentions happen during the periods of [42, 57]
seconds and [70, 90] seconds, where the 95% tail latencies of
all the vNFs increase dramatically. The situation of using K8s-
VPA is better in Fig. 12(c), as the aforementioned resource
contentions only increase the 95% latency of nDPI and that
of Fwd during the two periods, respectively, while the packet
processing performance of Snort and ntopng can always be
maintained well. The 95% tail latencies in Fig. 12(d) verify
the effectiveness of our proposal when there are dynamic
traffic changes, as the 95% tail latencies of all the vNFs are
maintained at the low level all the time, no matter how the
traffic volumes to the vNFs change.

Furthermore, Fig. 13 shows how our proposal adjusts the
CPU quota, memory bandwidth, CPU frequency and LLC
allocated to the vNFs to adapt to their dynamic traffic changes.
Initially, as the traffic volumes to the vNFs are all low, our
proposal allocates a small amount of resources in each type
to all the vNFs. Then, at t = 10 seconds, the traffic to nDPI
starts to increase, thus the local closed-loop control tries to
consolidate the CPU quota and CPU frequency allocated to
nDPI and ntopng, and allocates more resources to Fwd to
cope with the resource contention caused by the increase of
the traffic to nDPI. At t = 42 seconds, our proposal finds that
the performance of ntopng can no longer be maintained if the
CPU frequency and CPU quota allocated to them are still kept
at a low level, and thus the trends of the resource allocations

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (s)

1

1.5

2

2.5

3

T
h

o
u

g
h

p
u

t 
o

f 
T

ra
ff

ic
 t

o
 v

N
F

s
 (

G
b

p
s
)

Fwd
Snort
nDPI
ntopng

(a) Dynamic traffic to vNFs

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (s)

103

104

9
5

%
 T

a
il 

L
a

te
n

c
y
 (

s
)

Fwd

Snort

nDPI

ntopng

(b) 95% tail latency of vNFs without vertical scaling

(c) 95% tail latency of vNFs with K8s-VPA

(d) 95% tail latency of vNFs with our proposal

Fig. 12. Experimental results of dynamic traffic scenario.

to it gets reverted. When the time reaches t = 55 seconds, the
input traffic of ntopng starts to increase. The local closed-loop
control quickly detects this and starts to allocate more CPU
quota and LLC to ntopng. By repeating such adaptive resource
adjustment, our proposal maintains the 95% tail latency of all
the vNFs at the low level throughout the experiment. Similarly,
in Fig. 10, we observe that for the E2E processing tail latency
metric, only our proposed solution addresses the issue of high
tail latency under the initial configuration.

VI. CONCLUSION

In this work, we designed and experimentally demonstrated
a self-adaptive SRv6-INT-driven SFC deployment system that
can orchestrate network and IT resources timely to adapt to
bursty traffic and dynamic network changes. Specifically, our
proposal leveraged closed-loop and automatic system adjust-
ment to optimize the provisioning of SFC in both the IT and
network aspects in runtime. We first proposed an IT resource
management technique for K8s to realize resource allocation
and contention resolution without offline vNF profiling. Then,
based on the technique, a closed-loop NC&M system was
designed to manage SFC deployment in both the local and
global ways. We prototyped our proposal with commodity



11

(a) Memory bandwidth allocated to vNFs

(b) CPU frequency allocated to vNFs

(c) LLC allocated to vNFs

(d) CPU quota allocated to vNFs

Fig. 13. Local closed-loop control for vNFs with dynamic traffic changes.

servers and hardware PDP switches based on Tofino ASICs,
and experimentally demonstrated its capability of adjusting
the provisioning schemes of SFCs dynamically in runtime,
to avoid QoS violations and precisely balance the tradeoff
between QoS and resource consumption.

ACKNOWLEDGMENTS

This work was supported by the NSFC project 62371432.

REFERENCES

[1] Cisco Annual Internet Report (2018-2023). [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html.

[2] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[3] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[4] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[5] P. Marsch et al., “5G radio access network architecture: Design guide-
lines and key considerations,” IEEE Commun. Mag., vol. 54, pp. 24–32,
Nov. 2016.

[6] Z. Zhu et al., “Impairment- and splitting-aware cloud-ready multicast
provisioning in elastic optical networks,” IEEE/ACM Trans. Netw.,
vol. 25, pp. 1220–1234, Apr. 2017.

[7] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, pp. 87–98, Apr. 2014.

[8] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[9] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[10] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[11] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[12] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[13] W. Fang et al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[14] P. Ventre et al., “Segment Routing: A comprehensive survey of research
activities, standardization efforts, and implementation results,” IEEE
Commun. Surveys Tuts., vol. 23, pp. 182–221, First Quarter 2021.

[15] X. Xu et al., “MPLS segment routing over IP,” RFC 8663, Dec. 2019.
[Online]. Available: https://datatracker.ietf.org/doc/rfc8663/.

[16] C. Filsfils et al., “Segment routing over IPv6 (SRv6) network
programming,” RFC 8986, Feb. 2021. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc8986/.

[17] C. Kim et al., “In-band network telemetry (INT),” Tech. Spec., Jun.
2016. [Online]. Available: https://p4.org/assets/INT-current-spec.pdf.

[18] Q. Zheng, S. Tang, B. Chen, and Z. Zhu, “Highly-efficient and adaptive
network monitoring: When INT meets segment routing,” IEEE Trans.
Netw. Serv. Manag., vol. 18, pp. 2587–2597, Sept. 2021.

[19] Kubernetes. [Online]. Available: https://kubernetes.io/.
[20] X. Yan, Z. Xu, B. Chen, and Z. Zhu, “SRv6-INT: Runtime monitoring

for green service function chaining in B5G-MEC,” in Proc. of ICC 2023,
pp. 3145–3150, May 2023.

[21] ETSI GR NFV-MAN 001 (v1.2.1). [Online]. Avail-
able: https://www.etsi.org/deliver/etsi_gr/NFV-MAN/001_099/001/01.
02.01_60/gr_NFV-MAN001v010201p.pdf.

[22] M. Liyanage et al., “A survey on zero touch network and service
management (ZSM) for 5G and beyond networks,” J. Netw. Comput.
Appl., vol. 203, pp. 68–81, Jul. 2022.

[23] S. Previdi et al., “Source packet routing in networking SPRING
problem statement and requirements,” RFC 7855, May 2016. [Online].
Available: https://datatracker.ietf.org/doc/rfc7855/.

[24] P. Loreti et al., “SRv6-PM: A cloud-native architecture for performance
monitoring of SRv6 networks,” IEEE Trans. Netw. Serv. Manag., vol. 18,
pp. 611–626, Mar. 2021.

[25] A. Abdelsalam et al., “SERA: Segment routing aware firewall for service
function chaining scenarios,” in Proc. of IFIP Netw. Workshops 2018,
pp. 46–54, May 2018.

[26] D. Chandramouli and T. Sun, “System architecture for the 5G system,”
3GPP Specification #: 23.501 (v17.4.0), Mar. 2022.

[27] ROSE Project. [Online]. Available: https://netgroup.github.io/rose/.
[28] T. Pan et al., “INT-path: Towards optimal path planning for in-band

network-wide telemetry,” in Proc. of IEEE INFOCOM 2019, pp. 487–
495, Apr. 2019.

[29] F. Aubry et al., “SCMon: Leveraging segment routing to improve
network monitoring,” in Proc. of IEEE INFOCOM 2016, pp. 1–9, Apr.
2016.

[30] DPDK. [Online]. Available: https://www.dpdk.org/.
[31] K. Yasukata, M. Honda, D. Santry, and L. Eggert, “StackMap: Low-

latency networking with the OS stack and dedicated NICs,” in Proc. of
USENIX ATC 2016, pp. 43–56, Jun. 2016.

[32] A. Mayer et al., “An efficient Linux kernel implementation of service
function chaining for legacy VNFs based on IPv6 segment routing,” in
Proc. of NetSoft 2019, pp. 1–9, Jun. 2019.



12

[33] A. Abdelsalam et al., “Implementation of virtual network function
chaining through segment routing in a linux-based NFV infrastructure,”
in Proc. of NetSoft 2017, pp. 1–5, Jul. 2017.

[34] F. Duchene, D. Lebrun, and O. Bonaventure, “SRv6Pipes: enabling in-
network bytestream functions,” in Proc. of IFIP Netw. 2018, pp. 1–9,
May 2018.

[35] K. Rzadca et al., “Autopilot: workload autoscaling at Google,” in Proc.
of ACM EuroSys 2020, pp. 1–16, Apr. 2020.

[36] C. Sieber et al., “Towards optimal adaptation of NFV packet processing
to modern CPU memory architectures,” in Proc. of ACM CAN 2017, pp.
7–12, Dec. 2017.

[37] Q. Cai et al., “Understanding host network stack overheads,” in Proc.
of ACM SIGCOMM 2021, pp. 65–77, Aug. 2021.

[38] R. Rahman and P. Graham, “Compatibility-based static VM placement
minimizing interference,” J. Netw. Comput. Appl., vol. 84, pp. 68–81,
Apr. 2017.

[39] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in Proc. of
ACM SIGCOMM 2020, pp. 270–282, Jul. 2020.

[40] H. Yu et al., “Octans: Optimal placement of service function chains in
many-core systems,” IEEE Trans. Parallel Distrib. Syst., vol. 32, pp.
2202–2215, Sept. 2021.

[41] V. Chintapalli, M. Adeppady, and B. Tamma, “RESTRAIN: A dynamic
and cost-efficient resource management scheme for addressing perfor-
mance interference in NFV-based systems,” J. Netw. Comput. Appl., vol.
201, p. 103312, May 2022.

[42] S. Chen, C. Delimitrou, and J. Martinez, “PARTIES: QoS-aware re-
source partitioning for multiple interactive services,” in Proc. of ACM
ASPLOS 2019, pp. 107–120, Apr. 2019.

[43] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[44] Non-uniform memory access. [Online]. Available: https://en.wikipedia.
org/wiki/Non-uniform_memory_access.

[45] CAT. [Online]. Available: https://github.com/intel/intel-cmt-cat/.
[46] Open vSwitch. [Online]. Available: https://www.openvswitch.org/.
[47] Snort. [Online]. Available: https://www.snort.org/.
[48] nDPI. [Online]. Available: https://github.com/ntop/nDPI.
[49] ntopng. [Online]. Available: https://github.com/ntop/ntopng/.


