
1

SFCache: Hybrid NF Synthesization in Runtime
with Rule-Caching in Programmable Switches

Zhihuang Ma, Tingyu Li, Zichen Xu, Nelson L. S. da Fonseca, and Zuqing Zhu, Fellow, IEEE

Abstract—Data plane programmable (PDP) switches are be-
coming increasingly popular for network function virtualization
(NFV), for their programmability and high packet processing
performance. However, the inherent limitations of PDP switches,
such as limited memory space, make it challenging to implement
certain types of network functions (NFs) (i.e., the stateful ones)
on them. This paper proposes SFCache, which combines PDP
switches and commodity servers to achieve self-adaptive SFC
deployment. SFCache aims to exploit the high packet processing
performance of PDP switches while supporting the flexible
deployment of a wide range of SFCs (including the stateful ones)
with servers. Specifically, SFCache can dynamically improve the
packet processing performance of the SFCs that were deployed on
servers by selectively caching SFC-level packet processing rules
on PDP switches. We design a few key components to facilitate
SFCache, including an NF-destructed P4 pipeline that allows
customizing packet processing rules in a match-rewrite pattern,
a runtime NF synthesis method that can transform a set of NF-
level match-rewrite rules into an equivalent SFC-level rule, and
a count-min selection strategy to choose the best synthesized rule
for being cached in PDP switch pipeline. We prototype SFCache
with a PDP switch based on Tofino ASIC and a server, and
demonstrate the effectiveness of our proposal experimentally.

Index Terms—Network function virtualization, Service func-
tion chain, Programmable data plane switch, Rule caching.

I. INTRODUCTION

RECENTLY, the Internet is undergoing rapid development
to adapt to the unprecedented volumes of network traffic,

users, and services [1–6]. Middleboxes, also known as network
functions (NFs), play a critical role in the process to enhance
performance, enforce policies, etc [7]. Specifically, a complex
network service can be decomposed into atomic NFs based on
middleboxes (e.g., firewall and load-balancer), and application
traffic will be steered through the NFs in sequence, realizing
the network service through a service function chain (SFC) [8,
9]. However, this way of implementing network services with
special-purpose middleboxes is becoming increasingly chal-
lenging because of the prohibitively-high expenses, intolerable
maintenance complexity, and long time-to-market. Therefore,
service providers (SPs) have switched to network function
virtualization (NFV) [10], which can leverage general-purpose
hardware/software platforms (i.e., commodity servers, switch-
es and storages) to realize NFs.

Although NFV greatly improves the flexibility of NF in-
stantiation, it can degrade the packet processing performance

Z. Ma, T. Li, Z. Xu and Z. Zhu are with the School of Information Science
and Technology, University of Science and Technology of China, Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

N. Fonseca is with the Institute of Computing, State University of Camp-
inas, Campinas, SP 13083-852, Brazil.

Manuscript received on February 2, 2024.

of NFs due to the intrinsic performance gap between general-
purpose platforms and special-purpose middleboxes, especial-
ly when the NFs run on software platforms [11–13]. Hence,
NFV acceleration has attracted intensive research efforts, to
speed up the packet processing in NFs without sacrificing their
flexibility [14]. For instance, a few software NFV platforms
[15, 16] and ways to optimize NFV implementations [17–20]
have been proposed. Nevertheless, they still cannot completely
make up for the aforementioned performance gap, even with
the support of high-performance packet I/O techniques such
as data plane development kit (DPDK) [21] and netmap [22].

In addition to commodity servers, NFs can also be instan-
tiated on programmable data plane (PDP) switches based on
P4 [23] (e.g., those using Tofino ASIC [24]), achieving packet
processing throughput at 100 Gbps and extremely low latency
(<1 µs). Previously, people have realized various specific NFs
on PDP switches, such as DDoS mitigation [25], firewall [13],
heavy-hitter detection [26, 27], and load-balancer [28, 29].
Meanwhile, studies have also integrated multiple types of NFs
into a packet processing pipeline, thereby deploying one SFC
on a single PDP switch [30, 31]. However, these proposals
were mainly for stateless NFs, which do not need to store
or update extensive state information. A PDP switch usually
has limited memory resources [31], which makes it difficult
to instantiate stateful NFs on it. Therefore, researchers tried
to address this challenge by leveraging external memory with
the help of remote direct memory access (RDMA) [32, 33].
There were also studies that introduced hybrid processing for
packet headers and payloads, where the headers are send to
commodity servers for stateful processing and the payloads
are stored in PDP switches with stateless pipelines [34, 35].

Nevertheless, the existing approaches on instantiating NFs
or SFCs on PDP switches still bear a few drawbacks. First,
most of them were designed specifically for certain types of
NFs (e.g., the stateful packet filters in [13, 39]) but did not try
to achieve the generic support of a wide range of NF types,
especially for both stateless and stateful NFs. Second, they
either cannot or are not flexible enough to deploy SFCs on
a single PDP switch, due to the difficulty of pre-deploying
various types of NFs in PDP switch pipelines and realizing
agile routing through them in different sequences. Hence, it
is relevant and necessary to study how to design an NFV
acceleration system that supports a wide range of NF types and
facilitates flexible SFC deployment with the NFs. Specifically,
the system should be generic, transparent and efficient:

• Generic: The system should support a wide range of
NF types, including both stateless and stateful NFs, and
also adapt to different SFC compositions. When the NF

2

TABLE I
COMPARISON BETWEEN EXISTING NFV ACCELERATION SYSTEMS AND OUR PROPOSED SFCACHE

Support of NF Types Flexible SFC Deployment Packet Processing
OpenNetVM [18] a wide range of full support on server only

Metron [36] a wide range of partial support on OpenFlow switch and server
TEA [32] no support to payload-involved NFs no support on PDP switch

RIBOSOME [34] no support to payload-involved NFs partial support on PDP switch and server
Dejavu [31] no support to stateful NFs partial support on PDP switch
Tiara [29] stateful load-balancer only no support on PDP switch and server

LightNF [37] a wide range of no support on PDP switch and server
P4SFC [38] a wide range of full support on PDP switch with recirculation and server

Our SFCache a wide range of full support on PDP switch and server

arrangement in an SFC changes in runtime, the PDP
switch should not have to be reprogrammed and reloaded.

• Transparent: When deploying an SFC, the SP does not
need to worry about where/how to instantiate the NFs.

• Efficient: The system should be able to adjust the deploy-
ment of SFCs adaptively according to the current network
status, so as to optimize the throughput and latency of
packet processing under the resource constraints.

In this paper, in order to realize such an NFV acceleration
system, we propose SFCache, which combines PDP switches
and general-purpose servers for self-adaptive SFC deployment.
Specifically, SFCache dynamically improves the packet pro-
cessing performance of the SFCs that are initially deployed on
servers by selectively caching their SFC-level processing rules
on PDP switches. We design a few key techniques to enable
SFCache, including the NF-destructed P4 pipeline that allows
customizing the packet processing rules of SFCs in a match-
rewrite pattern, the runtime NF synthesis method to transform
a set of NF-level match-rewrite rules into an equivalent SFC-
level rule, and a count-min selection strategy to choose the best
synthesized rule to cache in the pipeline of a PDP switch.

We integrate the proposed techniques to prototype SFCache
with a PDP switch based on Tofino ASIC and a commodity
server, and experimentally demonstrate that the techniques
can work together to achieve significant performance gain on
packet processing. Specifically, the results obtained with real-
world testbed indicate that 1) for a stateless SFC, SFCache
increases its throughput by up to 41.32% and reduces its
average latency by 48.91%, and 2) for a stateful SFC, SFCache
respectively decreases the 99% tail and average values of its
latency by up to 91.03% and 90.37%.

The rest of the paper is organized as follows. Section II
discusses the related work. We present the system design and
operation principle of SFCache in Section III. The imple-
mentation of SFCache is described in Section IV. In Section
V, we show the experimental demonstrations for performance
evaluation. Finally, Section VI summarizes this paper.

II. RELATED WORK

A stateful NF typically needs to maintain the state informa-
tion for each incoming flow, and thus its implementation has to
address the scalability challenge posed by the large number of
active flows and limited memory in a PDP switch. According
to the traffic statistics of recent investigations [34], 1 Gbps of
network traffic can contain hundreds of thousands active flows

per second, while a stateful load-balancer needs to consume
64 bytes per flow to store the state information [29]. When it
comes to deploy an SFC of multiple NFs on a PDP switch,
one needs to route packets through consecutive match-action
tables in the switch’s pipeline [30, 31], where one or more
match-action tables correspond to an NF. However, such a
scheme only has limited flexibility. Specifically, when we need
to add/update an NF, the pipeline has to be reprogrammed and
reloaded, which may interrupt the PDP switch’s operation for
tens of seconds [40]. Moreover, reloading a PDP switch will
clear all the state information on it, even though some of the
information should be preserved for managing stateful SFCs.

To address the aforementioned challenges, there have been a
number of investigations on NFV acceleration in the literature.
OpenNetVM [18] leveraged DPDK for high-speed packet I/O
and realized agile SFC deployment. However, as a software-
based approach purely relying on servers, its packet processing
performance is still not comparable to that of hardware-based
approaches. Metron [36] synthesized an SFC by running all of
its NFs on a consolidated set of CPU cores, and it processed
packets with both OpenFlow switches and servers. However,
it does not allow a match field that has been rewritten earlier
being used by subsequent NFs, making certain combinations
of NFs (e.g., a network address/port translator followed by a
load-balancer) not suitable for being implemented in an SFC.

TEA [32] considered PDP switches for NFV acceleration
and utilized RDMA to offload the state information of each
stateful NF to the external memory on servers, thereby decou-
pling packet processing from state management. Nevertheless,
since its packet processing relies entirely on PDP switches,
supporting payload-involved NFs is challenging for it, and
it only focuses on instantiating NFs but does not consider
SFC deployment. RIBOSOME [34] sent the headers of pack-
ets to commodity servers for stateful processing and stored
their payloads in PDP switches, which cannot accelerate the
processing of payload-involved NFs. Dejavu [31] proposed to
leverage in-switch pipeline routing for rearranging the NFs in
an SFC dynamically, but it did not consider to support stateful
NFs or to add NFs into an SFC in runtime. Tiara [29] only
addressed a specific type of NFs (the stateful load-balancer),
and designed the mechanism to offload the core processing of
these NFs to PDP switches. LightNF [37] also combined PDP
switches and servers for SFC deployment, but it did not try
to improve the versatility of PDP switch pipeline for flexible
SFC deployment (i.e., it might still need to shut down the PDP

3

switch for reprogramming when deploying new SFCs).
The P4SFC in [38] also tried to realize generic and flexible

SFC deployment by combining the advantages of PDP switch-
es and commodity servers. The pipeline design of P4SFC used
serially connected and runtime-configurable modules to realize
NFs, which would introduce dependencies not only within
the modules due to the requirements on configurability but
also between tandem modules, exhausting the stages in a PDP
switch quickly. Moreover, when a large number of NFs need
to be offloaded, P4SFC will have to use the recirculation that
makes packets pass through the pipeline repeatedly.

In summary, Table I compares our SFCache with several
representative NFV acceleration systems in the literature, and
thus highlights the novelty and contribution of this work.

III. SYSTEM DESIGN

In this section, we first present the overall design of SF-
Cache, then describe the three data paths in the data plane,
and finally explain the detailed designs of key components.

A. System Overview and Workflow

Fig. 1 shows the overall system design of SFCache, which
consists of a PDP switch and a commodity server in terms of
physical devices. Then, SFCache can implement SFCs with
hardware- and software-based processing, respectively. The
software-based SFC deployment platform on the commodity
server is developed by modifying OpenNetVM [18], and can
carry SFCs independently. As shown in Fig. 1, the software
system follows a multi-process design based on DPDK, where
the processes are NFs and an NF Manager. The NF Manager
is in charge of initializing shared memory, managing the life-
cycle of each NF, and transferring packets between NFs and
network interfaces. The communications between NFs and the
NF Manager are accomplished through shared memory.

The NF Manager collaborates with the runtime systems
of SFCache, which are also exposed to NFs, allowing SF-
Cache to cache the SFC-level packet processing rules on the
PDP switch. The receiving (RX) thread of the NF Manager
classifies the packets received from the PDP switch based
on whether any of their processing rules have been cached
in the PDP switch1. The packet whose rules have not been
cached completely will be forward to the ingress NF of its
SFC on the server, while that has already been processed
by certain rules cached on the PDP will be steered solely
through the remaining NFs of its SFCs. As for the NFs
on the server, they can be programmed with a high-level
programming language such as C, and be instantiated as
processes or containers. Therefore, flexible SFC deployment
with runtime readjustment capability can be achieved by the
software system, which also contains the user interface of
SFCache, to enable SPs to implement, deploy and adjust SFCs.
With SFCache, SPs only need to instantiate NFs as software
on commodity servers, while offloading the NFs adaptively to

1When a packet enters, the PDP switch checks whether its rules have been
cached. If not, the PDP switch changes its EtherType to 0x2023 before
sending it to the server, and restores the field to 0x0800 when it is sent back.

explore the benefits of PDP switches is handled automatically,
ensuring the transparency of SFC deployment.

On the other hand, the PDP switch carries a packet process-
ing pipeline for instantiating SFCs too. We design a P4 runtime
agent and leverage it to accomplish two tasks: 1) processing
the CacheREQ messages from the NF Manager to cache the
corresponding NFs as SFC-level match-rewrite rules in the
PDP switch’s pipeline, and 2) removing the cached rules that
have been idle for a specified time period. The workflow of
SFCache is summarized as follows, where the bullet numbers
correspond to the steps marked with red circles in Fig. 1.

1) An SP develops NFs and deploys an SFC with them
on the commodity server, using a set of application
programming interfaces (APIs) provided by SFCache. We
design the APIs to enable registering the match-rewrite
pattern of each NF, looking up match-action tables to
collect packet statistics, and generating CacheREQs for
caching NFs’ match-rewrite rules on the PDP switch.

2) SFCache uses a runtime NF synthesis method to merge
all the matches and rewrites that a packet will encounter
when traversing its SFC into an SFC-level match-rewrite
rule. Meanwhile, it runs count-min selection in the SF-
Cache runtime of each NF to identify hot rules.

3) The caching helper in SFCache generates a CacheREQ
upon receiving a hot rule message from the SFCache
runtime of an NF, and sends it to the P4 runtime agent.

4) The P4 runtime agent on the PDP switch processes the
CacheREQ, retrieves a set of table entries, and inserts
them into the NF-destructed P4 pipeline. Once a rule has
been cached, the traffic associated with it will be either
fully or partially processed by the PDP switch.

B. Data Paths in Data Plane

SFCache is designed to provide three types of data paths,
which are the hardware-only, software-only, and hybrid ones
and are explained as follows, to realize generic support of NFs.

• Hardware-only Data Path: This type of data path is
realized with the PDP switch (i.e., the SFC-level rules
have been cached on there), where packets first undergo
the corresponding processing of their SFCs and are then
sent out directly, bypassing the server. Note that, SFCache
only handles the processing rules of the NFs that only
involve 5-tuple operations in this data path, while the
NFs that need to process packet payloads or complex
state transitions (e.g., the deep packet inspection (DPI)
and stateful firewalls) are considered as uncacheable and
are placed in the software-only data path of SFCache.

• Software-only Data Path: This type of data path takes
place completely in the server. The packets of an SFC
can be processed in this data path for three reasons: 1)
all the NFs in the SFC are uncacheable, 2) the processing
rules of the SFC are not popular enough for being cached,
and 3) there are no enough resources in the hardware-only
data path to cache the rules of the SFC.

• Hybrid Data Path: This type of data path combines the
server and PDP switch in SFCache to address scenarios
where an SFC consists of both cacheable and uncacheable

4

Fig. 1. Overall system design of SFCache.

NFs. In these cases, SFCache is designed to segment the
SFC into the parts before, containing, and after the un-
cacheable NFs. Then, SFCache independently synthesizes
and caches the cacheable segments of the SFC on the PDP
switch, and leaves the uncacheable NFs on the server.

C. NF-destructed P4 Pipeline
To realize the hardware-only and hybrid data paths, we need

to solve two questions: 1) how to make the packet processing
pipeline in a PDP switch carry multiple NFs to form an SFC?
and 2) how to run multiple SFCs simultaneously in the pipeline
of a PDP switch for flexible SFC deployment? Previously, to
address the first question, the studies in [30, 31] proposed to
implement the required NFs one by one in the pipeline of a
PDP switch. However, it is known that supporting many NFs
with the limited memory resources in a PDP switch is difficult.
As for the second question, the approaches designed in [40,
41] tried to virtualize the memory resources in the pipeline
of a PDP switch to accommodate various P4 programs for
NFs, but they still bear the issues of degraded performance on
bandwidth and latency and extra resource overheads.

Based on the observation that most NFs process packets
by the actions of matching and rewriting based on the 5-tuple
[20], we propose a pipeline design that ignores individual NFs
but focuses on the process of matching and rewriting, as shown
in Fig. 1. The pipeline (namely, NF-destructed P4 pipeline)
decomposes the match-action tables of NFs into match and
rewrite tables for distinct header fields. Ultimately, different
processing rules can be realized by combining these field-
grained tables, replacing the sequential execution of NFs in an
SFC with an equivalent match-rewrite rule at the SFC-level.

To realize the NF-destructed P4 pipeline, we divide the
pipeline’s main body into sections specifically for matching
and rewriting purposes. The matching section uses two tables
for ternary and exact matching of the 5-tuple, respectively.
The ternary matching is realized by using the ternary content-
addressable memory (TCAM) on the PDP switch, to support
masked matching for adapting to various matching patterns.
The exact matching is accomplished with the static random-
access memory (SRAM) on the PDP switch, and specifically,

we design the NF-destructed P4 pipeline to use SRAM to
accomplish exact 5-tuple matching for certain types of NFs
that need to differentiate flows (e.g., the stateful load-balancer).
A successful match in the matching section assigns a unique
index to a packet, and then each table in the rewriting section
matches against the index, where the related packet fields are
rewritten according to the table entry upon a successful match.

Meanwhile, in the control plane of the PDP switch, P4
runtime is used to modify the entries in each table, provid-
ing the flexibility of adjusting the rules (i.e., matching and
rewriting behaviors) in the pipeline. Note that, these rules are
not restricted to a single NF but can also be at the SFC-level.

D. Runtime NF Synthesis Method
In this subsection, we explain our design of converting an

SFC deployed on the server into an equivalent set of match-
rewrite rules to adapt to the NF-destructed P4 pipeline.

Previously, a number of studies have tackled how to synthe-
size an SFC by leveraging the directed acyclic graph (DAG).
Specifically, they first traverse all the NFs in an SFC, abstract-
ing the entire packet process as a DAG, and then iteratively
derive a set of equivalent SFC-level processing rules based
on the DAG. However, the time needed to build a DAG and
perform synthesis can be relatively long, especially when there
are many NFs to process (e.g., for the traffic classifier that
needs to distinguish 4, 000 traffic classes, the synthesis time
can be as long as 10 seconds [36]). Moreover, the DAG-based
approach can hardly convert stateful NFs into the processing
rules that can be accommodated in a P4 pipeline. This is
because certain stateful NFs, like the stateful load-balancer,
need to rewrite the destination IP address of every packet,
resulting in each flow matching to a specific processing rule.
Then, to minimize the size of a DAG, we have to consolidate
the rules by representing their matches with a range that can
cover a variety of potential flows. However, this type of rules
can hardly be executed on a P4 pipeline, which needs precise
definition of each entry of a match-action table.

To address this issue, we design a runtime synthesis method
whose procedure is depicted in Fig. 2. When a packet enters
an SFC on the server, the ingress NF of the SFC initializes

5

Fig. 2. Procedure of our runtime NF synthesis method.

the metadata for the packet in the shared memory to enable
the subsequent synthesis process. The metadata contains the
original 5-tuple of the packet and a bitmap array that tracks
all the matching and rewriting operations that the packet will
experience. Each field of interest (A), such as the source IP
address, is assigned a bitmap, where each bit in it corresponds
to a specific field (B), and we set the bit as 1 if B can impact
the rewriting of A and 0 otherwise. After completing the
required match-rewrite operations on a packet, an NF updates
the bitmap array. Specifically, the bitmap that corresponds to
each field rewritten by the NF is combined with the bitmaps
of all the fields involved in the NF by using the logical OR.
If a field’s bitmap has an initial value of 0’s, indicating that
it has not yet been used for matching in this SFC, the bit
corresponds to the field itself in its bitmap has to be set to 1
before we combining it with the bitmaps of other fields.

After the packet exits the SFC, a bitmap array is obtained,
which has been iteratively updated by each NF in the SFC.
This bitmap array indicates which field has been rewritten
and identifies the fields that are responsible for the rewriting,
essentially mapping the original 5-tuple to the processed 5-
tuple after executing the SFC. Then, a match-rewrite rule at
the SFC-level can be obtained, which is equivalent to all the
match-rewrite rules encountered by the packet at the SFC’s
NFs. This can be accomplished by utilizing the bitmap array,
the initial 5-tuple, and the processed 5-tuple of the packet.

Considering the fact that most NFs have fixed match-rewrite
patterns, we further optimize the NF synthesis method. Specif-
ically, we make each NF register its match-rewrite pattern
to the NF Manager to get a unique ID for the pattern. For
instance, in the example shown in Fig. 2, NFs 1 and 2 (i.e.,
for DNAT and router, respectively) have fixed match-rewrite
patterns as {(DIP, DPORT), (DIP, DPORT)} and {(DIP),
(MAC)}, respectively. The synthesized match-rewrite rule at
the SFC-level for NFs 1 and 2 is {(DIP, DPORT), (MAC, DIP,
DPORT)}, corresponding to the two unique IDs assigned to
NFs 1 and 2. Then, when a packet of the two NFs arrives,
we store the IDs in the metadata for the packet. Hence, the
SFC-level match-rewrite patterns can be retrieved with the IDs,
avoiding the need of updating the bitmap array for each packet

Fig. 3. Example on the mismatch between heaviest flow and hottest rule.

Fig. 4. Count-min selection strategy with 1-second EWindow length.

going through an NF of the SFC.

E. Count-Min Selection Strategy

This subsection describes the strategy by which SFCache
determines whether the match-rewrite rules at the SFC-level
should be cached on the PDP switch.

At first glance, it appears possible to leveraging existing
methods such as the heavy-hitter detection [26, 27] to deter-
mine which of the match-rewrite rules should be cached on the
PDP switch. However, we hope to point out that heavy-hitter
detection usually operates on the per-flow basis and can only
find the flows whose packet counts are the highest. As we opt
to cache packet processing rules, a flow with a high packet
count does not necessarily mean that its processing rules are
the hottest. Specifically, as shown in Fig. 3, it is possible for
multiple small flows to collectively make one or more rules
the hottest. In such cases, heavy-hitter detection may not be a
suitable solution to address the problem.

Hence, we propose to evaluate the cache-worthiness of an
SFC-level match-rewrite rule based on the usage frequencies

6

Algorithm 1: Count-min Selection Strategy
State: wid: index of current EWindow, te.mpw: MPW of

table entry te, te.wid: index of the most recent
EWindow when te.mpw was updated.

1 while a packet p arrives do
2 store wid in p.wid and set p.mpw = UINT32_MAX;
3 for each table entry te of SFC of p in sequence do
4 if p.wid > te.wid then
5 if p.wid = te.wid+ 1 then
6 p.mpw = min(p.mpw, te.mpw);
7 else
8 p.mpw = 1;
9 end

10 te.wid = p.wid, te.mpw = 1;
11 else
12 p.mpw = 0, te.mpw = te.mpw + 1;
13 end
14 end
15 if (p.mpw ∈ (Mth,UINT32_MAX)) then
16 synthesize table entries experienced by p to get

an SFC-level match-rewrite rule r;
17 generate a CacheREQ to cache r in PDP switch;
18 end
19 end

of the table entries that are related to it. To achieve this, we
first consider fixed-duration time slots, each of which serves
as an evaluation window (EWindow). Then, we leverage the
well-known count-min selection strategy to find the smallest
“matches per EWindow” (MPW) among all the match-rewrite
table entries that a packet encounters in an SFC, as shown in
Fig. 4. The rationale behind choosing the count-min selection
strategy is twofold. First, as an SFC-level match-rewrite rule is
synthesized with related match-rewrite table entries, using the
minimum of the entries’ MPWs as the MPW of the SFC-level
match-rewrite rule can reduce the overestimation errors that
arise from multiple flows referring to the same table entries.
Second, the low complexity of the count-min selection strategy
ensures the packet processing performance of SFCache.

In each EWindow, the MPW of a table entry accumulates,
which makes the MPWs of different EWindows independent,
ensuring their timeliness. When an EWindow ends, the MPWs
of table entries are collected by the control plane to determine
the rule caching scheme. In general, a longer EWindow implies
a more conservative way of choosing hot rules, and vice versa.

Algorithm 1 explains the count-min selection strategy, which
obtains the MPW of an SFC-level match-rewrite rule r and
decides whether to cache it on the PDP switch based on the
MPW. Here, for each table entry te, we assign two variables:
its current MPW te.mpw, and the index te.wid to record the
index of the most recent EWindow when te.mpw was updated.
When a packet p arrives, we update the variables of all the
table entries that it is processed by in its SFC, and finally
get the MPW of the packet’s SFC-level match-rewrite rule r,
using the while-loop of Lines 1-19.

Line 2 initializes the variables associated with packet p.

Here, p.wid stores the index of the EWindow that p ex-
periences, and it will be compared with the te.wid of a
table entry te to ascertain the timeliness of te.mpw. We use
p.mpw to denote the estimated MPW of the packet’s SFC-
level match-rewrite rule, which is initialized as a relatively
large value to facilitate subsequent updates. Then, when packet
p is processed by each table entry te of its SFC in sequence,
we update te.wid, te.mpw, and p.mpw according to the differ-
ence between p.wid and te.wid, which implies the timeliness
of te.mpw (Lines 3-14). Specifically, if p is the first packet
processed by te in the current EWindow and te has processed
packet(s) in the previous EWindow, we update p.mpw as the
minimum of p.mpw and te.mpw (Lines 5-6). Otherwise, if te
has not processed packet(s) in the previous EWindow (i.e., the
table entry has been idle for more than one EWindows), we
set p.mpw = 1 (Line 8). On the other hand, if p is not the
first packet processed by te in the current EWindow, we set
p.mpw = 0 and increment te.mpw by 1 (Line 12). Finally,
after packet p has been processed by all the table entries in
its SFC, we compare p.mpw with a preset threshold Mth to
determine whether the SFC-level match-rewrite rule r should
be cached on the PDP switch or not (Lines 15-18).

The complexity of Algorithm 1 is O(N ·M), where N is the
maximum number of table entries of the SFC of a packet and
M is the number of packets that need to be processed. As N
can be treat as a constant in SFCache, the actual complexity
of Algorithm 1 is O(M). Meanwhile, in the worst case, each
incoming packet can lead to a CacheREQ.

IV. IMPLEMENTATION OF SFCACHE

In this section, we describe the implementation of SFCache,
including the P4 pipeline and P4 runtime agent running on the
PDP switch and the software SFC platform on the server.

A. P4 Pipeline on PDP Switch

We implement the NF-destructed P4 pipeline of SFCache
on a PDP switch based on Intel Tofino ASIC, which consists
of the following components (as shown in Fig. 5).

1) Ingress Pipeline: After experiencing the ingress parser,
each packet moves on to the matching section. The packet
first seeks a match in the exact match table and then proceeds
to the ternary match table. A hit in either table grants the
packet a unique index and specifies the egress port for it. If
no match is found in both tables, the packet is designated
to the server. Following the matching section, the packet
drop module decides whether to drop the packet based on
its egress port, and this is needed for certain types of NFs
such as firewalls. Next, the egress redirection module checks
whether the packet is from the server. If yes, the packet is
redirected to the external network. This step is essential when
the packet has to undergo NFs running on the server, because
in this case, the egress port specified in the matching section
is connected to the server, even when the packet just left the
server. Specifically, the redirection is achieved by the bypass
table, which can be configured to bypass packets from the
egress pipeline (i.e., sending them directly to the server or to
external network). The EtherType rewrite module modifies

7

Fig. 5. Implementation of NF-destructed P4 pipeline of SFCache.

Fig. 6. Packet format of CacheREQ message.

the EtherType field of a packet if necessary. For the packets
whose rules have not been cached in the PDP switch, it
changes their EtherType fields to 0x2023 (i.e., signaling
SFCache that each of the packets should be evaluated to see
whether its processing rule needs to be cached in the PDP
switch). Otherwise, when it sees a packet with EtherType
as 0x2023, it will restore the EtherType to 0x0800.

2) Egress Pipeline: The egress pipeline is where packet
header is modified. The rewriting section includes several
match-action tables that use the packet’s index obtained from
the matching section to rewrite certain fields in its header (e.g.,
the 5-tuple and the time-to-live (TTL) field). Finally, the egress
deparser updates the checksum of the packet.

3) Resource Usage: In the PDP switch, the Tofino ASIC
has 4 independent pipelines, each of which contains 12 match
action units (MAUs) that each has 10 Mbits of SRAM and 528
Ktrits of TCAM. With 15, 000, 5, 000, and 20, 000 entries in
the exact match table, ternary match table, and other tables,
respectively, the pipeline implementation of SFCache uses 7
MAU stages, 13.5% of SRAM, and 10.4% of TCAM.

B. P4 Runtime Agent

In the control plane, we develop a P4 runtime agent, which
is a multi-threaded program based on C++ and runs on the
CPU of the PDP switch. The agent handles CacheREQs from
the server, extracts SFC-level rules from them to install in the
PDP switch, and removes outdated rules when necessary.

Specifically, the agent consists of three threads, i.e., the
socket thread, the table thread, and the aging thread. The
socket thread parses each CacheREQ with the packet format
in Fig. 6. The Action field denotes the rule cache action
encoded in the CacheREQ, which can be either caching a
new rule (ADD) or removing existing rules (CLEAR). Then,
the Egress_Port field specifies the egress port of the
packets associated with the corresponding SFC-level rule. If
the packets will only be processed by the PDP switch, this
field port stores their egress port to the external network.
Otherwise, if the packets still require processing on the server,

their egress port is the one that connects to the server. Next,
Match_Field and Rewrite_Field are two bitmaps, each
bit in which indicates whether a header field is used for
matching and rewriting in this cached rule, respectively.

The table thread translates the parsed fields into P4 ta-
ble entries. Specifically, it first checks Match_Field and
Raw_Value in the CacheREQ to identify the fields and
values for matching, and then acquires an available ID for this
match-rewrite rule from a thread-safe ID manager. Following
this, it uses Rewrite_Field and Rewritten_Value to
determine the fields to rewrite and their new values, finalizing
the table entries in the rewriting section accordingly.

The aging thread employs the table entry aging mechanism
of Tofino ASIC to clear inactive processing rules via a callback
function. Each processing rule in SFCache correlates with
multiple table entries. Specifically, each rule ID maps to an
entry in the matching section and may be related to multiple
entries in the rewriting section. We use the ID as a clue for
when a processing rule should be deleted. The ID manager
keeps track of all the table entries linked to a particular ID.
When the callback function begins to process aging events
from the pipeline, it consults the ID manager using the ID tied
to the event to identify which table entries should be removed.

C. Software SFC Platform on Server

In SFCache, the software SFC platform on the server is an
extension of OpenNetVM [18], to enable SFCache features.
With our modifications, the SFC platform offers a compre-
hensive API suite within the DPDK framework, enabling SPs
to create NFs with SFC-level rule caching capabilities. The
APIs support NF match-rewrite pattern registration, as well as
the generation and dispatch of CacheREQs. We also introduce
an extended table lookup API to collect MPW statistics. We
allocate a dedicated core to handle CacheREQs solely.

V. EXPERIMENTAL DEMONSTRATIONS AND EVALUATIONS

In this section, we evaluate our SFCache experimentally on
a real-world network testbed for the following purposes:

• Assessing the overheads imposed by the runtime NF
synthesis method and the count-min selection strategy on
the commodity server (Section V-A).

• Measuring the time needed for cached rules to become
operational on the PDP switch (Section V-B).

• Examining the performance enhancements that SFCache
achieves for various SFC types, with a particular focus on
packet processing throughput and latency (Section V-C).

• Evaluating the service disruption during switching the
processing of SFCs within the SFCache (Section V-D).

• Analyzing the effect of the length of EWindow on the
rule caching in the PDP switch and the overall packet
processing performance of SFCache, and assessing the
scalability of SFCache roughly (Sections V-E and V-F).

• Comparing SFCache to P4SFC [38], which is the existing
approach that also combines PDP switches and servers for
generic and flexible SFC deployment (Section V-G).

The testbed for experimental evaluation consists of a PDP
switch with 40 Gbps ports, which are connected to the server

8

3.0 3.5 4.0 4.5 5.0 5.5 6.0

10

100

1000

99
%

 T
ai

l L
at

en
cy

 (
s)

Input Data-Rate (Gbps)

 Baseline
 SFCache

Fig. 7. Per-packet overheads of SFCache in terms of 99% tail latency.

10 20 30 40 50Baseline

4.8

5.2

5.6

6.0

0.64

0.68

0.72

0.76

0.80

99
%

 T
ai

l L
at

en
cy

 (m
s)

Th
ro

ug
hp

ut
 (G

bp
s)

CacheREQ Generation Rate (k/s)

 Throughput
 99% Tail Latency

Fig. 8. Overheads of CacheREQ generation in SFCache.

and an external packet processing performance test system.
The server is equipped with two Intel Xeon Silver 4210
CPUs running at 2.20 GHz with 64 GB of memory. We let
SFCache use the CPU cores of a single non-uniform memory
access (NUMA) node in the server exclusively, and reserve
16 hugepages, each of which is 1 GB, there for DPDK. The
performance testing system consists of a PDP switch for time-
stamping packets, a hardware traffic generator, a server that
runs pktgen-dpdk [42]. The hardware traffic generator and the
server running pktgen-dpdk are used to replay traffic traces at
40 Gbps, which include both synthetic and real-world traces.
Specifically, the real-world trace is taken from the WIDE
project [43], and it contains the statistics of 2.97 million flows.

A. Overheads Introduced by SFCache

To implement SFCache, we develop additional features on
OpenNetVM, which introduces computational overheads. We
first design an experiment to assess the overheads on a per-
packet basis, where we deploy an SFC consisting of three NFs
on the server, each of which is allocated a CPU core. The ex-
periment sends 64-byte packets according to a synthetic trace
to the SFC, and measures packet processing latency in terms
of the 99% tail latency. We use the original OpenNetVM [18]
as the baseline. The experimental results indicate that SFCache
results in 4.16% drop in packet processing throughput. Fig. 7
shows the results on latency, suggesting that compared with
the baseline, SFCache only induces an average increase of
5.44% in 99% tail latency across various input rates.

According to our design, when an SFC-level processing rule
becomes sufficiently hot, SFCache will generate a CacheREQ
to the PDP switch, which brings in overheads. Therefore,
we design another experiment to measure the overheads, by
changing the rate of CacheREQ generation on the server. Note
that, to emulate the worst case scenario, the experiment does

TABLE II
LATENCY FOR CACHED RULES TO BECOME OPERATIONAL

Minimum (msec) Maximum (msec) Average (msec)

0.70 1.09 0.85

not let the P4 runtime agent handle CacheREQs or offload any
SFC-level rules to the PDP switch, i.e., all the traffic (64-byte
packets) is still processed by the SFCs on the server by the
same CPU core that is used to generate CacheREQs.

The experimental results are plotted in Fig. 8. We can see
that compared with the baseline (i.e., the case in which the
feature of CacheREQ generation is removed from the server
part of SFCache), there is no significant decrease in throughput
when CacheREQ generation rate increases, and among all the
scenarios, the maximum throughput reduction is only 1.52%.
On the other hand, the results on 99% tail latency in Fig. 8
indicate that the maximum increase on latency is only 1.54%,
when comparing the cases with CacheREQ generation with
the baseline. Meanwhile, we also observe that the results on
throughput and latency generally do not change when the
CacheREQ generation rate increases. This is due to the low
complexity of the procedure of processing packets to generate
CacheREQs and the fact that the CacheREQ generation rates
in Fig. 8 are the way below the threshold above which the
generation of CacheREQs can impact the performance of the
server. Specifically, the maximum CacheREQ generation rate
of 50, 000 per second in Fig. 8 is chosen according to the
intrinsic table entry insertion capacity of the PDP switch.

B. Latency for Cached Rules to become Operational

After the server generates a CacheREQ to cache an SFC-
level rule on the PDP switch, it takes certain time for the
rule to become operational. In order to measure this latency,
we conduct 20 independent tests and the results are listed in
Table II. It can be seen that the average latency is only 0.85
msec. Note that, the rules cached in SFCache are primari-
ly for elephant flows, which are typically long-lasting and
bandwidth-intensive, a latency at the sub-millisecond level will
be acceptable and will not affect their performance noticeably.

C. Performance of SFC Deployment

In the following, we discuss two experiments to evaluate
the performance of SFCache on SFC deployment.

1) Stateless SFC with Restricted CPU Core Usage: This
experiment utilizes SFCache to deploy a stateless SFC that
incorporates a firewall followed by a DPI. According to the
operation principle of SFCache, the DPI can only be carried
by the software SFC platform on the server, while the firewall
is stateless and thus its match-action rules can be fully cached
on the PDP switch. Note that, when the stateless SFC runs
completely on the server, its two NFs should be assigned with
dedicated CPU cores to avoid frequent CPU context switching
and cache pollution. However, after the stateless firewall has
been offloaded to the PDP switch, the cores assigned to it will
become idle, making the dedicated core assignment inefficient.

9

64 128 256 512 1024
0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

 Baseline
 SFCache without core sharing
 SFCache with core sharing

Fig. 9. Results on throughput of experimental scenario with stateless SFC.

TABLE III
LATENCIES FROM EXPERIMENTAL SCENARIO WITH STATELESS SFC

99% Tail Latency (µs) Average Latency (µs)

Baseline 162.76 137.03

SFCache without core sharing 163.73 128.77

SFCache with core sharing 167.45 70.01

Therefore, the experiment considers three scenarios, which
are the original OpenNetVM (the baseline), and the SFCache
implementations that enable and disable CPU core sharing in
the server. All the scenarios are configured to utilize 5 CPU
cores for the two NFs, but the way of allocating the CPU
cores is different per scenario. Specifically, for the baseline and
SFCache without core sharing, we allocate 3 and 2 cores to
the DPI and stateless firewall, respectively, while the SFCache
with core sharing assigns 3 cores to the DPI and makes it share
the remaining 2 cores with the stateless firewall.

Fig. 9 compares the throughput results of the three sce-
narios, which shows that the SFCache without core sharing
provides similar throughput as that of the baseline. This is be-
cause even though SFCache can offload the stateless firewall to
the PDP switch, the DPI is still heavily loaded with only three
cores and thus remains the bottleneck. This issue is alleviated
by SFCache with core sharing, leading to significantly higher
throughput in Fig. 9 when the packet size is 512 bytes or
less. For example, when the packet size is 64 bytes, SFCache
with core sharing improves the throughput by 41.32% over the
baseline. This verifies the advantage of SFCache on adjusting
resource allocation in the software SFC platform adaptively in
run-time, for optimizing SFC performance.

As the throughput results in Fig. 9 indicates that all the
three scenario can achieve the line-rate of 40 Gbps with
the packet size of 1, 024 bytes, we fix the packet size as
1, 024 bytes to measure the packet processing latencies of the
scenarios. This not only ensures apple-to-apple comparisons
but also tells the smallest performance gaps on latency between
SFCache with core sharing and the other two scenarios. The
latency results are listed in Table III. We can see that the
baseline and SFCache without core sharing perform similarly
in terms of both the 99% tail and average values of packet
processing latency, but SFCache with core sharing reduces the
average latency by 48.91% over the baseline. Meanwhile, it
is interesting to notice that the 99% tail latency of SFCache
with core sharing is slightly longer (2.88%) than that of the
baseline. This can be attributed to the abnormal latencies

200 400 600 800 1000 No-Cache
0

40

80

120

160

La
te

nc
y

(
s)

Caching Threshold (MPW)

 99% Tail Latency
 Average Latency

Fig. 10. Results on latency of experimental scenario with stateful SFC.

1 2 3 4 5
0

1000

2000

3000

4000

5000

U
se

d
Ta

bl
e

En
tie

s

Time (s)

 200 MPW 400 MPW 600 MPW
 800 MPW 1000 MPW

Fig. 11. Changes of table entry usage on PDP switch over time.

induced by CPU context switching in some corner cases.
2) Stateful SFC with Long-Tail Distribution Traffic: In this

experiment, we consider a stateful SFC that consists of a
network address/port translator (NAPT) and a stateful load-
balancer, which dynamically generate stateful processing rules
in run-time. Therefore, it would be impractical to cache all
of their rules on the PDP switch, especially when the input
traffic distribution is long-tail. This time, we allocate four CPU
cores to each NF in the software SFC deployment platform,
and the input traffic is generated according to the real-world
trace collected in the WIDE project [43]. Meanwhile, we make
sure that the server is capable to process traffic for the NFs at
line-rate, and thus latency becomes the only metric of interest.

As for rule caching, we set the length of EWindow as 100
msec and gradually increase the threshold Mth in Algorithm
1 from 200 to 1, 000 MPW, and the no-cache scenario is used
as the baseline. Fig. 10 shows the results on latency, which
indicate that rule caching on the PDP switch stabilizes the
99% tail and average latencies at 14.56 µs and 11.09 µs,
respectively, regardless of the threshold used in SFCache, and
it respectively reduces the 99% tail and average latencies by
up to 91.03% and 90.37% over the baseline. This is because in
SFCache, the NFV acceleration provided by the PDP switch
greatly relieves the processing load of the software-only data
path on the server. Fig. 11 plots how the number of table
entries, which are used for caching SFC-level rules on the PDP
switch, changes over experimental time. It can be seen that
the table entry usage increases rapidly after the first EWindow
(i.e., 100 msec in this experiment), regardless of the threshold
Mth, and a smaller Mth leads to a larger table entry usage
when the ruling caching has become stable. This confirms the
benefit of Algorithm 1 for achieving timely and efficient rule
caching. Meanwhile, Fig. 11 also suggests that offloading SFC
processing rules from commodity servers to the PDP switch
is handled automatically by SFCache at runtime, verifying the
transparency of SFCache in SFC deployment, i.e., SPs do not

10

TABLE IV
EFFECT OF EWINDOW LENGTH

Length of EWindow (msec) 200 400 600 800 1000

Cache Efficiency (%) 88.52 95.86 98.78 99.35 99.82

Selected Rules (‰) 1.00 0.68 0.54 0.46 0.36

Table Entry Insertion (entries/s) 1854 1083 785 634 532

200 400 600 800 1000
8

10

12

14

16

18

La
te

nc
y

(
s)

Length of EWindow (msec)

 99% Tail Latency
 Average Latency

Fig. 12. Impact of EWindow length on latency performance of SFCache.

need to worry about the operations related to PDP switches.

D. Switching SFC Processing in SFCache

As one important design goal of SFCache is to support
flexible SFC deployment, we allow the existing pipeline in the
PDP switch to adapt to different SFCs without reprogramming
or reloading. Specifically, the change of SFC processing rules
is accomplished by replacing the match-rewrite rules of the
old SFCs with those of the new ones. Therefore, to evaluate
the service disruption during switching the processing of SFCs
within SFCache, we design an experiment with stateless SFCs,
and measure the service interruption duration of deploying a
new SFC to replace an old one in SFCache. Note that, the
old SFC can run on either the server or the PDP switch, we
record the longer service interruption between the two cases.
Our results indicate that the average service interruption is
3.062 seconds, which is acceptable for most elephant flows.

E. Effect of Evaluation Window Length

As explained in Section III-E, the length of EWindow in
Algorithm 1 determines how aggressive it chooses hot SFC-
level match-rewrite rules to cache on the PDP switch. We
define a cache efficiency as the ratio of the number of flows
processed by cached rules to the total times that rules have
been selected for being cached by Algorithm 1. Note that, if a
cached rule has become aged and is then re-cached, we count
it being cached twice. Since the rule aging time on the PDP
switch is set to the length of an EWindow, a shorter EWindow
means that cached rules will age quickly, reducing the cache
efficiency as rules might be re-cached more frequently.

We perform experiments to evaluate the effect of EWindow
length. This time, we use 8 CPU cores for two NFs, which
perform flow table matching operations on the flows that are
generated according to the traces in [43] with a constant total
throughput of 40 Gbps. Here, the processing rule of each flow
consumes 3 table entries in the PDP switch. The preset caching

threshold is set as Mth = 1, 000 · wlen MPWs, where wlen
is the length of EWindow in seconds.

Table IV shows the effect of EWindow length on the cache
efficiency, selected rules (i.e., ratio of rules selected for being
cached), and insertions of table entries in the PDP switch.
We can see that the cache efficiency increases with the length
of EWindow. This is because a shorter EWindow can make
Algorithm 1 select more rules of short-lived flows. Meanwhile,
increasing EWindow also reduces the speed of table entry
insertion to the PDP switch, which relieves the pressure on
the control plane (i.e., the workload of the P4 runtime agent).
In order to further confirm the packet processing performance
of SFCache when we use a relatively long EWindow, we plot
the results on per-packet processing latency in Fig. 12, which
are obtained by ignoring the latency results in the first second
of each experiment (i.e., the transition time before the rule
caching has been stable). Fig. 12 indicates that the length
of EWindow only affects the per-packet processing latency
slightly, either in terms of the tail latency or average latency.

F. Scalability of SFCache

When the volume of input traffic increases, the scalability
of SFCache might face the challenges from three perspectives:
1) the processing capacity of the software-based data path, 2)
the speed of the P4 runtime agent on table entry insertion, and
3) the memory space of the PDP switch for rule caching. As
there are numerous techniques in the literature to improve the
capacity of software data paths, we will focus on the bottle-
necks related to the PDP switch in the following discussions.

We analyze the aforementioned bottlenecks based on the
experimental results in the previous subsection, since they are
obtained with a real-world traffic trace and thus representative
to certain extent. The results in Table IV suggest that when
we set the length of EWindow as one second and the caching
threshold as Mth = 1, 000 MPWs, the average insertion rate
of table entries is 532 per second. Meanwhile, in this case, the
PDP switch caches an average of 661 processing rules.

According to our measurements, the maximum capacity
of processing rules of the SFCache pipeline implementation
is ∼150, 000, and the maximum table entry insertion rate
supported by the P4 runtime agent is ∼50, 000 entries per
second. Hence, the experimental results on cached processing
rules and table entry insertion rate correspond to 0.44% of
the processing rule capacity and 1.06% of the maximum table
entry insertion rate, i.e., the latter is the actual bottleneck.
Then, if we assume that the input traffic follows the statistics
of the used real-world trace, the bottleneck in the PDP switch
of SFCache would not occur until the total input traffic volume
exceeds 40/1.06% ≈ 3770 Gbps or 3.77 Tbps. Note that, this
is just a very approximate analysis, and the actual scalability
of SFCache will be explored in future work.

G. Benchmarking against Existing Approach

Finally, we benchmark SFCache against P4SFC [38], which
also aims to realize generic and flexible SFC deployment with
commodity servers and PDP switches. The primary difference
between SFCache and P4SFC lies in their approaches for

11

TABLE V
RESOURCE UTILIZATION IN PDP SWITCH PIPELINE

SFCache P4SFC

MAU stage 7 of 12 (NF-independent) 12 of 12 (two NF modules)

SRAM 13.5% 27.7%

TCAM 10.4% 0%

1 2 3 4 5 6
0

400

800

1200

1600

A
ve

ra
ge

 L
at

en
cy

 (n
s)

Number of NFs in SFC

 Native P4
 SFCache
 P4SFC

Fig. 13. Average latency that packets encounter in PDP switch pipeline.

achieving versatility in PDP switch pipeline. SFCache uses an
NF-destructed P4 pipeline, where the match-rewrite tables are
not targeted at individual NFs, but rather at the packet fields.
In contrast, the pipeline design of P4SFC focuses on individual
NFs by stringing together runtime-configurable “stages”, each
of which represents a configurable NF module that can act as
an NF. Hence, packet recirculation might be needed to reuse
certain stages to support a relatively long SFC.

We first perform experiments to compare the resource us-
ages of the two approach, when 20, 000 SFC-level processing
rules for two NF modules (i.e., each NF module can support
multiple NFs) need to be offloaded to the PDP switch. Note
that, the limitation of two NF modules comes from P4SFC,
because we find that it can only accommodate two NF modules
in the 12 MAU stages of our PDP switch with Tofino ASIC,
due to the dependencies between different parts of its pipeline.
Table V summarizes the results on the usages of MAU stages,
SRAM and TCAM. We can see that P4SFC indeed exhausts
all the 12 MAU stages, while SFCache only uses 7 stages
and delivers a much more efficient stage usage. Meanwhile,
SFCache saves 51.3% SRAM usage over P4SFC, but some of
the saving might be attribute to the fact that P4SFC does not
use any TCAM while the TCAM usage of SFCache is 10.4%.

Then, we compare the results on the average latency that
packets encounter in the pipeline of the PDP switch. Here,
as P4SFC can only place two NF modules in the pipeline, it
will introduce recirculation if a flow’s SFC consists of more
than 2 NFs. Fig. 13 shows the latency results. We can see that
when the number of NFs increases, the latency of the native
P4 pipeline increases slightly, primarily due to the proportional
increase in the number of tables that packets need to match to.
On the other hand, the latency of SFCache remains unchanged
and is even slightly lower than that of the native P4 when the
SFC includes 5 or more NFs. This is because our runtime NF
synthesis method merges all the cacheable NF rules in an SFC,
and thus the number of tables that a packet needs to traverse in
SFCache pipeline only depends on the packet fields of interest
to the SFC, not the number of NFs. Finally, due to the need

of recirculation, the latency of P4SFC increases dramatically
when there are 3 or more NFs in the SFC.

H. Discussions and Future Work

1) Adaptive Cached Rule Replacement in the PDP Switch:
Currently, we design the cached rule replacement scheme in
the PDP switch based on Tofino ASIC’s built-in table aging
mechanism, which might not be adaptive enough, especially
when the traffic is highly dynamic or/and the memory re-
sources are limited on the PDP switch. In our future work,
we will try to design more adaptive cached rule replacement
scheme to optimize memory allocation more effectively.

2) Static versus Dynamic Stateful NFs: Stateful NFs can
be categorized into static and dynamic types based on the
frequency of their state updates. Static stateful NFs, such as
NAPT and load-balancers, only alter their states upon new flow
arrivals. In contrast, dynamic stateful NFs, like flow monitors
or stateful firewalls, continuously update their states. Within
the context of SFCache, caching on the PDP switch is currently
limited to the rules associated with static stateful NFs, while
dynamic stateful NFs can only be implemented on the server.
This stems from SFCache’s primary design goal of providing
generic SFC deployment support, which leads to the decision
of not pursuing the optimizations for specific NFs on a PDP
switch. As a result, offloading dynamic stateful NFs in such
a generic design would require using many registers to store
and frequently update per-flow states, but this can hardly be
achieved with current PDP switches.

3) Cache-Hiding Problem: Offloading SFC-level process-
ing rules from the server to the PDP switch can lead to the
cache-hiding problem [44, 45], which happens occurs when
lower-priority rules are unintentionally given precedence due
to the offloading, negating the intended priority of the rules
on the server. This problem is particularly noticeable when the
matching space of processing rules is overlapped. Hence, the
cache-hiding problem can also be an issue in our SFCache.
Fortunately, there have already been studies on this problem
[44, 45], and their solutions can be leveraged by SFCache.

VI. CONCLUSION

In this paper, we presented SFCache, a flexible SFC de-
ployment system that combines the superior packet processing
performance of PDP switches with the software flexibility
of commodity servers. By offloading SFC-level processing
rules from the server to the PDP switch, SFCache allows the
related traffic to benefit from the performance gain offered
by the PDP switch. Meanwhile, the rule caching on the PDP
switch relieves the processing load on the server, allowing
all the SFCs running in SFCache to perform well. Moreover,
SFCache supports flexible SFC deployment, meaning that
deploying a new SFC does not require reprogramming and
reloading the packet processing pipeline in the PDP switch. We
prototyped SFCache with a PDP switch based on Tofino ASIC
and a commodity server, and demonstrated its performance
experimentally. The experimental results obtained with real-
world testbed indicated that 1) for a stateless SFC, SFCache
increased its throughput by up to 41.32% and reduced its

12

average latency by 48.91%, and 2) for a stateful SFC, SFCache
decreased the 99% tail and average values of its latency by up
to 91.03% and 90.37%, respectively.

ACKNOWLEDGMENTS

This work was supported by the NSFC project 62371432.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[3] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[4] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[5] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[6] Z. Zhu et al., “Impairment- and splitting-aware cloud-ready multicast
provisioning in elastic optical networks,” IEEE/ACM Trans. Netw.,
vol. 25, pp. 1220–1234, Apr. 2017.

[7] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, pp. 13–24, Oct. 2012.

[8] T. Barbette, C. Soldani, and L. Mathy, “Combined stateful classification
and session splicing for high-speed NFV service chaining,” IEEE/ACM
Trans. Netw., vol. 29, pp. 2560–2573, Dec. 2021.

[9] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. of ACM SIGCOMM 2016, pp. 511–524, Aug. 2016.

[10] M. Chiosi et al., “Network functions virtualisation,” 2012. [Online].
Available: https://portal.etsi.org/nfv/nfv white paper.pdf.

[11] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 27–38,
Oct. 2014.

[12] B. Li et al., “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. of ACM SIGCOMM
2016, pp. 1–14, Aug. 2016.

[13] J. Cao et al., “CoFilter: High-performance switch-accelerated stateful
packet filter for bare-metal servers,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, pp. 2249–2262, Dec. 2021.

[14] X. Fei et al., “Paving the way for NFV acceleration: A taxonomy, survey
and future directions,” ACM Comput. Surv., vol. 53, pp. 1–42, Jan. 2020.

[15] D. Eisenbud et al., “Maglev: A fast and reliable software network load
balancer,” in Proc. of USENIX NSDI 2016, pp. 523–535, Mar. 2016.

[16] P. Patel et al., “Ananta: Cloud scale load balancing,” ACM SIGCOMM
Comput. Commun. Rev., vol. 43, pp. 207–218, Oct. 2013.

[17] S. Palkar et al., “E2: A framework for NFV applications,” in Proc. of
ACM SOSP 2015, pp. 121–136, Oct. 2015.

[18] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. of ACM HotMIddlebox 2016, pp. 26–
31, Aug. 2016.

[19] H. Li et al., “LemonNFV: Consolidating heterogeneous network func-
tions at line speed,” in Proc. of USENIX NSDI 2023, pp. 1451–1468,
Apr. 2023.

[20] C. Sun et al., “NFP: Enabling network function parallelism in NFV,” in
Proc. of ACM SIGCOMM 2017, pp. 43–56, Aug. 2017.

[21] Data Plane Development Kit (DPDK) of Intel. [Online]. Available:
https://www.dpdk.org.

[22] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in Proc. of
USENIX Security 2012, pp. 101–112, Aug. 2012.

[23] P4 Specification. [Online]. Available: https://github.com/p4lang/p4-spec.
[24] Intel Tofino Series. [Online]. Available: https:

//www.intel.com/content/www/us/en/products/details/network-io/
intelligent-fabric-processors/tofino.html.

[25] Z. Liu et al., “Jaqen: A High-Performance Switch-Native approach for
detecting and mitigating volumetric DDoS attacks with programmable
switches,” in Proc. of USENIX Security 2021, pp. 3829–3846, Aug.
2021.

[26] V. Sivaraman et al., “Heavy-hitter detection entirely in the data plane,”
in Proc. of ACM SOSR 2021, pp. 164–176, Apr. 2017.

[27] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “An incrementally-
deployable P4-enabled architecture for network-wide heavy-hitter de-
tection,” IEEE Trans. Netw. Service Manage., vol. 17, pp. 75–88, Jan.
2020.

[28] R. Miao et al., “Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching ASICs,” in Proc. of ACM SIGCOMM 2017,
pp. 15–28, Aug. 2017.

[29] C. Zeng et al., “Tiara: A scalable and efficient hardware acceleration
architecture for stateful layer-4 load balancing,” in Proc. of USENIX
NSDI 2022, pp. 1345–1358, Apr. 2022.

[30] X. Chen et al., “P4SC: Towards high-performance service function chain
implementation on the P4-capable device,” in Proc. of IFIP/IEEE IM
2019, pp. 1–9, Apr. 2019.

[31] D. Wu et al., “Accelerated service chaining on a single switch ASIC,”
in Proc. of ACM HotNets 2019, pp. 141–149, Nov. 2019.

[32] D. Kim et al., “TEA: Enabling state-intensive network functions on
programmable switches,” in Proc. of ACM SIGCOMM 2020, pp. 90–
106, Jul. 2020.

[33] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
of USENIX NSDI 2017, pp. 97–112, Mar. 2017.

[34] M. Scazzariello et al., “A high-speed stateful packet processing approach
for Tbps programmable switches,” in Proc. of USENIX NSDI 2023, pp.
1237–1255, Apr. 2023.

[35] S. Goswami et al., “Parking packet payload with P4,” in Proc. of ACM
CoNEXT 2020, pp. 274–281, Nov. 2020.

[36] G. Katsikas et al., “Metron: High-performance NFV service chaining
even in the presence of blackboxes,” ACM Trans. Comput. Syst., vol. 38,
pp. 1–45, Jul. 2021.

[37] X. Chen et al., “LightNF: Simplifying network function offloading in
programmable networks,” in Proc. of IWQOS 2021, pp. 1–10, Jun. 2021.

[38] J. Ma, S. Xie, and J. Zhao, “Flexible offloading of service function
chains to programmable switches,” IEEE/ACM Trans. Serv. Comput.,
vol. 16, pp. 1198–1211, Mar. 2022.

[39] G. Li et al., “Enabling performant, flexible and cost-efficient DDoS
defense with programmable switches,” IEEE/ACM Trans. Netw., vol. 29,
pp. 1509–1526, Aug. 2021.

[40] C. Zhang et al., “Hyperv: A high performance hypervisor for virtual-
ization of the programmable data plane,” in Proc. of ICCCN 2017, pp.
1–9, Jul. 2017.

[41] D. Hancock and J. Merwe, “Hyper4: Using P4 to virtualize the pro-
grammable data plane,” in Proc. of ACM CoNEXT 2016, pp. 35–49,
Dec. 2016.

[42] pktgen-dpdk - Traffic generator powered by DPDK. [Online]. Available:
https://git.dpdk.org/apps/pktgen-dpdk/.

[43] MAWI Working Group Traffic Archive (wide.ad.jp). [Online]. Available:
https://mawi.wide.ad.jp/mawi/samplepoint-F/2023/202307041400.html.

[44] Y. Liu, S. Amin, and L. Wang, “Efficient FIB caching using minimal
non-overlapping prefixes,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 43, pp. 14–21, Jan. 2013.

[45] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
of ACM SOSR 2016, pp. 1–12, Mar. 2016.

