
OptRec: An Efficient DRL-based SFC
Reconfiguration Optimization Framework in

Programmable Networks
Huaqing Tu1, Ziqiang Hua1, Qi Xu 1, Tao Zou 1, Huifeng Zhang1, Hongli Xu2, Zuqing Zhu3

1Zhejiang Lab, China
2School of Computer Science and Technology, University of Science and Technology of China, China

3School of Information Science and Technology, University of Science and Technology of China, China

Abstract—Service function chain (SFC) consists of multiple
ordered network functions (e.g., firewall, load balancer) and
plays an important role in improving network security and
ensuring network performance. Offloading SFCs onto pro-
grammable switches can bring significant performance improve-
ment, but it suffers from unbearable reconfiguration delays,
making it hard to cope with network workload dynamics in a
timely manner. To bridge the gap, this paper presents OptRec,
an efficient SFC reconfiguration optimization framework based
on deep reinforcement learning (DRL). OptRec predicts future
traffic and places SFCs on programmable switches in advance
to ensure the timeliness of the SFC reconfiguration, which
is a proactive approach. However, it is non-trivial to extract
effective features from historical traffic information and ensure
efficient and stable model training. To this end, OptRec intro-
duces a multi-level feature extraction model for different types
of features. Additionally, it combines reinforcement learning
and autoregressive learning to enhance model efficiency and
stability. Results of in-depth simulations based on real-world
datasets show the average prediction error of OptRec is less
than 3% and OptRec can increase the system throughput by
up to 69.6%∼72.6% compared with other alternatives.

Index Terms—Programmable Networks, Network Function,
Service Function Chain, Reconfiguration, Deep Reinforcement
Learning

I. INTRODUCTION

As an essential component of today’s network, network
functions (NFs) [1], such as firewall and load balancer,
are interconnected as a service function chain (SFC) [2] to
ensure network security and improve network performance.
In network function virtualization (NFV) [3], SFCs are im-
plemented as software on general-purpose servers. However,
the general-purpose servers are not dedicated forwarding
devices, resulting in poor performance for software-based
SFCs. For example, the maximum throughput of a general-
purpose server is only O(10 Gbps) [4] and software-based
SFCs incur latency ranging from 100 µs to 1 ms [5]. To
improve SFC performance, recent research [5]–[7] offloads
NFs onto programmable switches, which can bring significant
SFC performance improvement in throughput (up to 6.4 Tbps
[5]) and forwarding latency (less than 1 µs [4]).

This work was supported by the National Key Research and Development
Project of China (No. 2022YFB2901503), the National Natural Science
Foundation of China (No. U22A2005), Key Research Project of Zhejiang
Lab (No. 2021LE0AC02). Corresponding authors: Ziqiang Hua, Tao Zou.

In real network scenarios, network workload changes dras-
tically over time [2], resulting in overloaded NFs and poor
quality of service. Thus, the NFs offloaded on programmable
switches should be reconfigured so as to optimize network
performance (e.g., system throughput). For example, when
network workload increases, it is necessary to offload more
NFs on programmable switches to process more traffic; and
when network load decreases, it is important to release redun-
dant NFs to other applications (such as parameter aggregation
[8]). Nevertheless, programmable switches suffer from poor
flexibility [7], making it difficult to quickly reconfigure NFs
when dealing with time-varying network workload.

Although there are already mature elastic scaling methods
[9]–[11] to realize rapid NF reconfiguration in NFV scenar-
ios, these methods cannot be applied to the programmable
networks due to different underlying implementation mech-
anisms of NFs. To solve the reconfiguration problem of
programmable switches, Xing et al. [7] proposes a runtime
programmable framework, which enables partial reconfigu-
ration of switch data planes at runtime without service dis-
ruption. Despite it supports seamlessly incorporating function
changes at any time, the reconfiguration delay is unbearable.
For example, when upgrading a telemetry application with
30K entries, the reconfiguration delay is about 10s [7].
Experimental results in various data centers show that more
than 80% of traffic last for less than 10s [12]. Thus, such
a long reconfiguration delay makes the SFC reconfiguration
out-of-date. How to ensure the timeliness of NF configuration
is still a challenge yet critical issue when dealing with
network workload dynamics.

In this paper, we present OptRec, an SFC reconfiguration
optimization framework based on deep reinforcement learn-
ing (DRL). To ensure the timeliness of NF configuration, Op-
tRec aims to predict network workload changes in the future
based on historical traffic information and reconfigure NFs on
programmable switches in advance. However, achieving effi-
cient SFC reconfiguration poses several challenges, even with
access to historical traffic data. First, since separating predic-
tion and reconfiguration procedures may introduce additional
errors, it is crucial to achieve end-to-end NF reconfiguration.
Second, due to the diversity of network information types
(e.g., traffic and switch), extracting effective features from
network information is another challenge. Lastly, the training

process should be optimized to guarantee both efficiency and
stability, enabling reliable predictions and reconfigurations.

To conquer these challenges, (1) OptRec adopts an end-
to-end reconfiguration approach, utilizing multiple discrete
action spaces to cover all the behaviors required for SFC
deployment. This eliminates the need for additional manual
rules and avoids introducing extra errors. (2) OptRec in-
troduces a multi-level feature extraction model for different
types of data and uses transformer encoder to obtain both
a global overview and detailed features. (3) OptRec simul-
taneously utilizes reinforcement learning and autoregressive
learning, which allows the model to learn from environmental
feedback and proactively predict the traffic in the next time
period, thereby improving model efficiency and stability.

We conduct extensive experiments based on real-world net-
work topology and dataset. The results show that the average
prediction error of OptRec is less than 3%. Moreover, OptRec
can increase the system throughput by up to 69.6%∼72.6%
compared with other alternatives.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

We model a typical programmable network as a graph
G = (V, E), where V is the set of programmable switches
and E is the set of links connecting programmable switches.
Each programmable switch provides computational resources
(e.g., actions units) and memory resources (e.g., TCAM and
SRAM) for network function offloading. We use Cv to denote
the resource capacity (including memory and computational
resources) of programmable switch v ∈ V . Moreover, let Ce

be the bandwidth capacity of link e ∈ E . As SFC requests
will come and go as they run, we use L, O and B to denote
the set of existing SFC requests, the set of new arrival SFC
requests and the set of expired SFC requests in a future time
interval ∆t. Let γ represent a SFC request in L, O or B.
The SFC requirement and traffic size of each request γ are
denoted as Fγ and t(γ), respectively.

B. Problem Statement

Given a programmable network topology and history in-
formation of SFC requests, we aim to predict future traffic
changes (that is, predict SFC request sets L, O and B
in the next time interval ∆t) and pre-configurate network
functions on programmable switches to cope with dynamic
traffic changes. Since the network functions required by SFC
requests in L have been configured and the SFC requests in B
will expire, we only need to pre-configure network functions
required by SFC requests in O. The input includes a network
topology G = (V, E), history SFC request information, the
resource consumption (denoted as φf) of network function f
when offloaded on programmable switches, link transmission
delay (denoted as τe) on link e ∈ E , network function
processing delay (denoted as τv) on programmable switch
v ∈ V . Here, τe and τv can be obtained by periodically
measured, and φf can be obtained through pre-testing. The
output is two sets of binary decision variables, {xv

γ,f} and
{ypγ}. Binary variable xv

γ,f indicates the mapping between

network functions and programmable switches: xv
γ,f = 1

if the network function f ∈ Fγ required by SFC request
γ ∈ O is offloaded on programmable switch v ∈ V; xv

γ,f = 0
otherwise. Binary variable ypγ indicates whether the SFC
request γ ∈ O will be routed through path p ∈ Pγ , where
Pγ is a candidate routing path set and can be constructed by
the shortest k-path algorithm.

C. Constraints

The SFC reconfiguration problem should satisfy the fol-
lowing constraints:

1) Routing Path Constraint: Each SFC request γ ∈ O will
be assigned a feasible path set, denoted as Pγ , and be
routed through at most one feasible path in Pγ . This
constraint can be formalized as follows:∑

p∈Pγ

ypγ ≤ 1,∀γ ∈ O (1)

2) Network Function Offloading Constraint: Once an net-
work function f ∈ Fγ required by SFC request γ ∈ O
is offloaded onto programmable switch v ∈ V , the
routing path p ∈ Pγ which passes through v should
be selected. We use Ivp to indicate whether routing path
p passes through v (i.e., Ivp=1) or not (i.e., Ivp = 0).
This constraint is expressed as:

xv
γ,f ≤ ypγ · Ivp ,∀γ ∈ O, f ∈ Fγ , v ∈ V, p ∈ Pγ (2)

3) Programmable Switch Resource Constraint: Since the
resource of each programmable switch is limited, the
resource consumption cannot exceed its capacity. We use
Ivγ,f to indicate whether the network function f ∈ Fγ

required by SFC request γ ∈ L ∪ B was offloaded on
programmable switch v ∈ V (i.e., Ivγ,f = 1) or not (i.e.,
Ivγ,f = 0) in the last time interval ∆t. This constraint
can be formulated as:∑

γ∈L

∑
f∈Fγ

φf · Ivγ,f +
∑
γ∈O

∑
f∈Fγ

φf · xv
γ,f

−
∑
γ∈B

∑
f∈Fγ

φf · Ivγ,f ≤ Cv,∀v ∈ V
(3)

4) Bandwidth Resource Constraint: The total traffic on any
link e ∈ E should not exceed its bandwidth capacity.
We use Ieγ to indicate whether the routing path of SFC
request γ ∈ L ∪ B passed link e ∈ E (i.e., Ieγ = 1) or
not (i.e., Ieγ = 0). We formulate this constraint as:∑

γ∈L
t(γ) · Ieγ +

∑
γ∈O

∑
e∈p:p∈Pγ

t(γ) · ypγ

−
∑
γ∈B

t(γ) · Ieγ ≤ Ce,∀e ∈ E
(4)

5) End-to-End Transmission Constraint: In order to ensure
the quality of services in the network, each SFC re-
quest γ is associated with an end-to-end transmission
threshold Tγ . The transmission delay of SFC request
γ ∈ O consists of two parts: link transmission delay and
network function processing delay on programmable

switches. The transmission delay of SFC request γ ∈ O
should not exceed its transmission threshold Tγ . This
constraint is expressed as:∑

p∈Pγ

∑
e∈p

τe · ypγ +
∑
p∈Pγ

∑
v∈p

τv · ypγ ≤ Tγ ,∀γ ∈ O (5)

D. Objective

The objective consists of two parts: the overall throughput
and the number of reconfigurations. The overall throughput is
the total traffic of SFC requests inO accepted by the network,
which can be formulated as

∑
γ∈O

∑
p∈Pγ

ypγ ·t(γ). The num-
ber of reconfigurations is the total number of reconfigured
NFs, which can be expressed as

∑
γ∈O

∑
f∈Fγ

∑
v∈V xv

γ,f ·
(1−Ifv), where Ifv denotes where there is a network function
f belonging to an expired SFC request on programmable
switch v (Ifv = 1) or not (Ifv = 0). When Ifv = 1, it
means that there is no need to configure network function f
on programmable switch v, since there is already a network
function that is not used. The SFC reconfiguration problem
is formalized as follows:

max η1 ·
∑
γ∈O

∑
p∈Pγ

ypγ · t(γ)−η2 ·
∑
γ∈O

∑
f∈Fγ

∑
v∈V

xv
γ,f ·(1−Ifv)

s.t. Eqs. (1) ∼ (5) (6)

where η1 and η2 are positive weighted parameters, which
can be set by network administrator to get a good trade-off
among two parts. Since a larger throughput is desirable and
a smaller number of reconfigurations is preferred, the two
parts of the objective are connected using a minus sign.

III. ALGORITHM DESIGN

If the SFC request sets L, O, and B are known, the
network function reconfiguration problem can be solved by
designing a approximate algorithm. However, due to the
dynamic nature of SFC requests at future time intervals,
traditional approximate algorithms are not suitable. There-
fore, we propose OptRec, an efficient SFC reconfiguration
optimization framework in programmable networks, which
utilizes DRL to predict future traffic and proactively place
network functions to ensure timely SFC configuration.

A. Overview

In this section, we introduce the workflow of OptRec.
We define the interaction with the network to occur once
or multiple times per period, with a fixed time interval
∆t. During each period, the network state (e.g., traffic,
capacity usage of programmable switch) is collected at the
granularity of each SFC. Next, this collected network state is
preprocessed and fed into the transformer-based multi-level
neural network of OptRec. The network structure consists
of linear transformations, a pooling layer, and a backbone
transformer encoder. This multi-level structure allows for the
extraction of various features at a fine granularity, resulting
in a more accurate representation of the network state.
Employing the neural network, OptRec makes deployment
decisions regarding whether to deploy the NFs of the SFC

Fig. 1: Illustration of the Interaction between OptRec and Environ-
ment

and where to place each NF. These decisions are made
end-to-end without the need for additional artificial rules.
The interaction process is illustrated in Fig. 1. During this
process, training data and reward are collected and stored
in the replay memory for model training. Once the training
is completed, OptRec can provide efficient SFC deployment
decisions during the running process.

B. Neural Network Architecture

1) Feature Aggregation Network: Since the collected
data is heterogeneous, they need to be processed before
sending into the model. For numerical features with a wide
range of variations and uneven distribution, such as the queue
length of SFC requests waiting for scheduling, we employ
equal frequency binning to group values within specific
ranges and perform one-hot encoding on them. For con-
tinuous values with limited amplitude, such as computation
and memory capacity, we discretize them and apply one-
hot encoding to enhance the significance of these features.
In the context of NF information on a switch, there exist
various states, including not deployed, deployed and used,
and deployed but not used. To represent these categorical
features, we introduce a set of trainable parameters known
as NF state embeddings. Each state of a specific NF type
is represented by a vector and learned during the end-to-
end training process. Considering the possibility of multiple
identical network functions on a switch, the state of each NF
type is categorized into two situations: (1) all functions are
in use; (2) there is at least one unused function.

Figs. 2 and 3 illustrate the networks used for extracting
traffic features and switch features, respectively. The rectan-
gles in the figures represent vectors. Apart from the one-hot
encoded vector, the elements of the other vectors are real
numbers. The inputs are initially fed into a preprocessing
network to standardize the format for aggregation.

The aggregated traffic feature in Fig. 2 consists of three
components: feature historical traffic, embedding of queued
requests length, and embedding of live request number in
network. Each component is a transformation of the initial
input information. The historical traffic feature is obtained
by extracting historical traffic information from a time series.
The network utilizes a linear transformation with a Sigmoid-
weighted linear unit (SiLU) activation function, which can
be expressed as:

fFFN1(x) = (x ·W + b)⊗ σ(x ·W + b) (7)

where ⊗ represents the element-wise product, and σ denotes
the Sigmoid function. W is the model weight and b is the
bias. The FFN1 (feed-forward network) maps the original
features to a fixed length of dhidden. Similarly, the length of

Fig. 2: Feature Engineering and Aggrega-
tion Network for Traffic Information

Fig. 3: Feature Engineering and Aggrega-
tion Network for Switch Information

Fig. 4: Neural Network Architecture

queued SFC requests and the number of live SFC requests
are binned, encoded, and transformed into vectors of length
dhidden. The FFN2 and FFN3 are both linear transformations.
After aligning the features, they are summed up to form a
vector that represents the aggregated traffic feature.

For switch feature extraction, we employ an attentional
pooling network to capture NF information. The attentional
pooling consists of two stages: the attention stage and the
pooling stage. Let’s define the shape of NF embeddings as
|F| × dhidden, where F represents the set of NF types. The
attention stage can be represented as:

fAtten(X) = ReLU(X ·W + b)⊗ Softmax1st(X · V + c) (8)

The subscript “1st” indicates the operation on the first di-
mension. ReLU and Softmax are both activation functions.
The matrices W and V represent model weights of shape
dhidden × dhidden and dhidden × 1, respectively. The vectors b
and c represent biases. Next, the pooling stage sums the |F|
reweighted vectors along each elemental dimension, which
can be denoted as fPool(X) = Sum1st(X). This results in an
aggregated NF feature with a shape of 1×dhidden. The FFN4

and FFN5 are both linear transformations, and information
of the capacity usage and bandwidth usage aggregated by
switches are embedded and summed with the NF feature to
produce the overall switch feature.

2) Backbone Network Structure: Once the traffic feature
and switch feature are formed, along with an SFC embedding,
they are input into a transformer encoder [13] to capture mu-
tual correlation. The neural network architecture is depicted
in Fig. 4.

The SFC embedding represents the type of SFC to be
inferred for deployment and is a vector with trainable pa-
rameters of length dhidden. The “Pos|V| Embed” refers to the
position embedding for |V|-th switch. Since explicit topolog-
ical features are not introduced by network architecture, we
utilize the position embedding vector to learn the location
features of switches in an end-to-end manner. The position
embedding and the switch feature have the same shape and
are fused together through element-wise addition.

The backbone network consists of a 2-layer transformer
encoder. The input sequence is a matrix with dimensions
(|V|+ 2)× dhidden. All feature tokens are crossed and prop-
agated to capture the global network states, enabling com-

munication and information exchange between the feature
tokens. This process produces corresponding hidden states for
the final outputs. FFN6-8 are linear transformations. Notably,
the network parameters of FFN8 are shared by each switch
feature token for parameter reuse.

There are three types of generated outputs. The deployment
decision is a vector of length 2, where a higher value
represents a different action: either Idle or Deploy. The term
Idle signifies that there is no need to deploy new network
functions for the SFC in the current state, indicating that the
current deployment capacity is sufficient to handle the traffic
requests for the next time period. The next traffic output is a
scalar value that represents the predicted traffic bias for the
next period based on the current traffic. Each switch score
is a vector of length |F|. The i-th element in the vector
represents the placement weight of the i-th network function
of the SFC on this switch. All switch scores form a matrix
Yscore ∈ R|V|×|F|, and the placement locations of the network
functions can be determined using Argmax1st(Yscore). If the
number of network functions in an SFC is less than |F|, any
excess locations should be skipped.

C. Training and Running Process

The training process is to train the neural network of
OptRec, and then running process is to produce SFC deploy-
ment decisions based on the trained model. To tackle the
optimization problem with a multi-discrete action space, we
utilize the dueling deep Q learning network (dueling DQN)
[14] as the underlying framework for our algorithm. The
action space encompasses decisions related to the behavior of
deploying or not and the specific locations for each NF within
the SFC. In addition, we incorporate multi-task learning to
expedite training and improve interpretability. This approach
involves autoregressive learning to predict traffic at the next
period. Consequently, the overall loss function comprises the
temporal difference (TD) loss associated with each action
space and an error loss for traffic prediction.

According to the outputs, deploy decision and switch
scores are two kind of action spaces to interact with networks,
which are optimized by dueling DQN algorithm. The predic-
tion of next period traffic bias is an autoregressive problem
and is optimized by supervised learning.

Algorithm 1 Training Process

1: θ,θ− ← Initialize weights of online and target network;
2: for each step do
3: (S,A, r,S′)← Choose a mini-batch from database;
4: loss← 0;
5: for ai ∈ A = {adecision, aloc1 , ..., aloc|F|} do
6: Accumulate loss for action space ai by weighted

Eq. (9);
7: Accumulate loss for traffic prediction by weighted Eq.

(10);
8: Perform a gradient descent step on accumulated loss

and update network parameter θ;
9: Periodically update target network parameters with θ;

The loss for an action a is defined as:

Ja(θ) = E
[(

r + α ·Q
(
S′, argmax

a
Q
(
S′, a|θ

)
|θ−)

−Q(S, a|θ)
)2]

(9)

where r represents the reward received after taking action
a and is calculated as log(η1 · throughput + 1) − log(η2 ·
queue length+1)−η3 ·place cost. Here, η is a hyperparam-
eter, and place cost is a boolean value that indicates whether
placement occurs. α is the discount factor. Q(S, a|θ) is the
current estimate of the action-value function. The parameters
θ and θ− represent the policy model weights and target
model weights, respectively. S′ represents the next state.

We utilize the mean square error (MSE) to optimize
traffic prediction, as shown in Eq. (10). In this equation, ŷ△
represents the predicted traffic bias by the model, while y
and y′ represent the actual traffic in the current period and
the next period, respectively.

Jy(θ) = [ŷ△ − (y′ − y)]2 (10)

The entire training process is summarized in Algorithm
1. It is worth noting that the importance order of loss
weights is deployment decision, deployment location and
traffic prediction, which are set according to actual training
status.

The running process, as depicted in Algorithm 2, is de-
signed to continuously execute a series of steps for managing
the deployment of SFCs. The algorithm first enters a perpet-
ual loop. Within the loop, it iterates over each type of SFC,
denoted as ωi, from a SFC set denoted as Ω. For each type,
the algorithm performs a number of placement attempts, with
a maximum limit defined as N ′, based on the current state
of the network. It is worth noting that |F|ωi represents the
number of NFs in a specific SFC type ωi.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

In the simulations, we select two typical and practical
topologies as running examples. The first one is a data
center topology, called Fat-Tree [15], which consists of 128

Algorithm 2 Running Process
1: while True do
2: for each SFC type ωi ∈ Ω do
3: for j = 1, 2, ..., N ′ do
4: S ← Collect state from network;
5: adecision, aloc1 , aloc2 , ..., aloc|F| ← Get deploying

decision and placing locations for ωi from model
θ according to state S;

6: if adecision = Idle then
7: break;
8: for k = 1, 2, ..., |F|ωi do
9: Place the k-th NF of ωi according to alock ;

10: Wait for the next deployment period;

servers and 80 switches. This topology has been widely
used by works like [16] to conduct experiment. The second
one is a backbone network topology, called USANet [17],
which consists of 24 switches and 47 links. For these two
typologies, the data traces of abilene [18] are adopted to
generate SFC requests. Note that there is no SFC information
in the data traces. Thus, We generate the SFC information of
each request according to the real SFCs [5]. Similar to [5],
we set the resource capacity of switches: each programmable
switch has 6400 action units and 50 ∼ 100 MB SRAM. An
NF consumes 1000 ∼ 1500 action units and 6 ∼ 12 MB
SRAM. Moreover, the throughput of a programmable switch
is set to 6.4 Tbps. The link latency is set to 0.1 µs ∼ 0.5 µs
and the processing latency of programmable switch is set to
1 µs [5].

B. Benchmarks

In the evaluation, we compare our proposed method with
the following two DRL-based algorithms.

1) VNFPA [19] divides the network into regions and
identifies the candidate region that requires optimization in
each run. However, due to its threshold-based policy, VNFPA
cannot achieve end-to-end network function deployment.

2) ADDPG [20] uses the remaining resources of links and
nodes as input to predict the optimal placement locations
for SFC requests. However, ADDPG does not consider time
information and does not provide a decision on whether to
deploy network functions in advance. This limitation hinders
its ability to proactively deploy network functions.

Additionally, neither VNFPA nor ADDPG utilize NF-type
information in their models. As a result, they are unable to
perform targeted optimization for NF deployment, which can
potentially lead to a decrease in placement accuracy.

C. Simulation Results

(Exp #1) The Accuracy Performance of OptRec. We first
evaluate the gap between the traffic predicted by OptRec and
the actual traffic. Fig. 5(a) shows that the average error of
traffic prediction is less than 3%, which reflects the high
accuracy of OptRec’s traffic prediction. Then, we evaluate the
practical utilization of the pre-deployed NFs by OptRec. Fig.
5(b) shows that the average utilization rate of NFs deployed
in advance is up to 99.62%.

(a) Traffic Prediction Accuracy (b) NF Placement Accuracy

Fig. 5: (Exp #1) Algorithm Performance

(a) Fat-Tree (b) USAnet

Fig. 6: (Exp #2) Throughput vs. Time

(Exp #2) Throughput Performance: We assess the through-
put performance of the proposed method. Fig. 6 illustrates the
throughput performance over time, while Fig. 7 demonstrates
the decrease in throughput due to network congestion caused
by increased traffic. The results indicate that OptRec achieves
a significant improvement in average throughput compared
to ADDPG and VNFPA, with an increase of 69.63% and
72.62%, respectively.
(Exp #3) Delay Performance: We assess the delay per-
formance of the proposed method. Fig. 8 illustrates that
OptRec achieves an average reduction in end-to-end delay of
0.17 µs ∼ 0.20 µs compared to the benchmark methods. This
result demonstrates the superior NF placement effectiveness
of the proposed algorithm.

V. CONCLUSION

In this paper, we have presented OptRec, an efficient SFC
reconfiguration optimization framework in programmable
networks to deal with traffic dynamic. We propose a novel
neural network algorithm based on deep reinforcement learn-
ing to reconfigurate NFs. Results of in-depth analyses based
on real-world network topology and dataset show the efficacy
of our algorithm compared with other solutions.

REFERENCES

[1] H. Tu, G. Zhao, H. Xu, Y. Zhao, Y. Qiu, and L. Huang, “Rons: Robust
network function services in clouds,” Computer Networks, vol. 215, p.
109212, 2022.

[2] H. Tu, G. Zhao, H. Xu, Y. Zhao, and Y. Zhai, “A robustness-aware real-
time sfc routing update scheme in multi-tenant clouds,” IEEE/ACM
Transactions on Networking, vol. 30, no. 3, pp. 1230–1244, 2022.

[3] K. Kaur, V. Mangat, and K. Kumar, “A review on virtualized infras-
tructure managers with management and orchestration features in nfv
architecture,” Computer Networks, vol. 217, p. 109281, 2022.

[4] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan,
“Tea: Enabling state-intensive network functions on programmable
switches,” in Proc. SIGCOMM, 2020, pp. 90–106.

[5] X. Chen, Q. Huang, P. Wang, Z. Meng, H. Liu, Y. Chen, D. Zhang,
H. Zhou, B. Zhou, and C. Wu, “Lightnf: Simplifying network function
offloading in programmable networks,” in Proc. IWQOS. IEEE, 2021.

[6] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in Proc. USENIX Security, 2021.

(a) Fat-Tree

(b) USAnet

Fig. 7: (Exp #2) Throughput vs. Traffic Scale of SFC Requests

(a) Fat-Tree (b) USAnet

Fig. 8: (Exp #3) Delay vs. Time

[7] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime programmable switches,” in Proc. NSDI, 2022.

[8] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, and A. Akella, “Atp: In-
network aggregation for multi-tenant learning,” in Proc. NSDI, 2021.

[9] G. P. Katsikas, T. Barbette, D. Kostić, J. G. Q. Maguire, and R. Steinert,
“Metron: High-performance nfv service chaining even in the presence
of blackboxes,” ACM Transactions on Computer Systems (TOCS),
vol. 38, no. 1-2, pp. 1–45, 2021.

[10] J. Wang, G. Zhao, H. Xu, Y. Zhao, X. Yang, and H. Huang,
“Trust: Real-time request updating with elastic resource provisioning
in clouds,” in Proc. INFOCOM. IEEE, 2022, pp. 620–629.

[11] W. Chen, Z. Wang, H. Zhang, X. Yin, X. Shi, and L. Sun, “Joint
optimization of service function chain elastic scaling and routing,” in
IEEE INFOCOM WKSHPS. IEEE, 2020, pp. 1306–1307.

[12] X. Fan, H. Xu, H. Huang, and X. Yang, “Real-time update of joint sfc
and routing in software defined networks,” IEEE/ACM Transactions
on Networking, vol. 29, no. 6, pp. 2664–2677, 2021.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[14] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016.

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM computer commu-
nication review, vol. 38, no. 4, pp. 63–74, 2008.

[16] S. Wang, H. Xu, L. Huang, X. Yang, and J. Liu, “Fast recovery for
single link failure with segment routing in sdns,” in HPCC. IEEE,
2019, pp. 2013–2018.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[18] “abilene,” http://sndlib.zib.de/home.action.
[19] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement

via deep reinforcement learning in sdn/nfv-enabled networks,” IEEE
JSAC, vol. 38, no. 2, pp. 263–278, 2019.

[20] N. He, S. Yang, F. Li, S. Trajanovski, L. Zhu, Y. Wang, and X. Fu,
“Leveraging deep reinforcement learning with attention mechanism for
virtual network function placement and routing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 34, no. 4, pp. 1186–1201, 2023.

