
1

Traffic-aware Configuration of All-Optical Data
Center Networks based on Hyper-FleX-LION

Hao Yang and Zuqing Zhu, Fellow, IEEE

Abstract—Due to the advantages of optical circuit switching
(OCS), all-optical data center networks (DCNs) have attracted
intensive research interests recently. Hyper-FleX-LION is a
highly-flexible all-optical DCN architecture that operates with
the OCS based on wavelength-division multiplexing (WDM). In
this work, we study how to realize traffic-aware configuration
of all-optical DCNs in Hyper-FleX-LION. We formulate an
integer linear programming (ILP) model for the problem to
jointly optimize the configuration of Hyper-FleX-LION and the
provisioning schemes of demands in it for minimizing its port
usage. To ensure the practicalness of the optimization, we assume
that each top-of-rack (ToR) switch can not only receive the traffic
targeting to its rack but also forward traffic to other racks as an
intermediate node. We also classifier traffic demands as normal
and latency-sensitive ones, and set the maximum hop-count for
routing latency-sensitive demands. By analyzing the complexity of
the problem theoretically, we prove its APX -hardness, i.e., there
does not exist a polynomial-time approximation algorithm for it
unless P = NP . Then, we propose a polynomial-time heuristic
JTRO based on iterative optimization to solve the problem
effectively and time-efficiently. Extensive numerical simulations
verify the effectiveness of our proposed algorithm. We also build a
small-scale but real all-optical DCN testbed in Hyper-FleX-LION
to interconnect four racks, and leverage distributed machine
learning (DML) as the network services in it to demonstrate
the performance of our proposal experimentally.

Index Terms—Data center networks (DCNs), All-optical DCNs,
Traffic-aware Configuration, Distributed machine learning.

I. INTRODUCTION

NOWADAYS, the rapid development of 5G and data-
/bandwidth-intensive network services has stimulated

people to build data centers (DCs) globally [1]. As DC-related
traffic has already contributed the largest portion of Internet
traffic [2], the quality-of-service (QoS) demands of network
services running in/across DCs put forward increasingly strin-
gent requirements on the performance of DC networks (DCNs)
[3]. For instance, large-scale distributed machine learning
(DML) cannot run well in a DCN whose inter-rack bandwidth
capacity is not sufficient [4], while the emerging network ser-
vices such as virtual reality cannot be supported without inter-
rack communications that satisfy low-latency requirements.

Therefore, the infrastructure of DCNs is facing many chal-
lenges, among which the mismatch between QoS demands of
network services and capacity/latency of inter-rack networks
and the ever-increasing energy consumption are mainly due

H. Yang and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230027, China (Email: zqzhu@ieee.org).

H. Yang is also with the Department of Information Engineering, Southwest
University of Science and Technology, Mianyang, Sichuan 621010, China.

Manuscript received on April 30, 2022.

to the fact that traditional DCNs solely rely on electrical
packet switching (EPS) to build inter-rack networks [3]. Note
that, optical circuit switching (OCS) provides larger bandwidth
capacity, shorter data forwarding latency, and higher energy
efficiency than EPS [5–9]. This motivated people to introduce
OCS in inter-rack networks for hybrid optical/electrical DCNs
(HOE-DCNs) [10, 11] and all-optical DCNs [12–14]. These
new DCN architectures can address the inter-rack bottlenecks
in EPS-based DCNs, especially when huge amounts of ele-
phant flows can be generated to stress out inter-rack networks
(e.g., large-scale DML [4]). Specifically, recent research has
shown that EPS-based DCNs built with fat-tree may have
difficulty to support certain DML scenarios efficiently due to
the inter-rack bottlenecks caused by DML-induced congestions
[15].

Compared with HOE-DCNs, all-optical DCNs further im-
prove the performance of inter-rack networks on bandwidth
capacity, data forwarding latency, and energy efficiency, but
they are also less flexible due to the relatively large switching
granularity [7]. Although the issues with switching granularity
can be relieved by leveraging network virtualization to groom
similar network services to virtual network slices [16–19], the
lack of flexibility in all-optical DCNs might still limit their
capability of adapting to various inter-rack traffic patterns [14].

Recently, people have demonstrated that by leveraging the
Flex-LIONS switch devices [20, 21], all-optical DCNs can
be built with the Hyper-FleX-LION architecture to facilitate
reconfigurable all-to-all optical interconnects for supporting
various inter-rack traffic patterns efficiently [14]. Fig. 1 shows
an illustrative example on all-optical DCNs in Hyper-FleX-
LION. Here, the all-optical DCN interconnects four racks,
and for the sake of explanation, we illustrate its schematic
with discrete optical components in Fig. 1(a). Meanwhile, we
hope to point out that the optical inter-rack network can also
be built with integrated chips [21] for a more compact and
cost/energy-efficient solution. There is an arrayed waveguide
grating router (AWGR) working as the core of the optical inter-
rack network, and the transmitting/receiving structures of each
rack are respectively located at its left/right sides.

In the Hyper-FleX-LION interconnecting N racks (N = 4
in Fig. 1(a)), the top-of-rack (ToR) switch of each rack equips
N transceivers (TRXs), each of which transmits in a unique
wavelength-division multiplexing (WDM) channel and can
receive the optical signal in any of the N WDM channels.
Hence, Fig. 1(a) uses different numbers to label the WDM
channels used by the TRXs and colors each number to indicate
the source rack of each optical connection. For instance, we
color the ToR switch of Rack 1 as red, and thus the red “0” in

2

(a) Network architecture

(b) Configurations for two different traffic matrices

Fig. 1. All-optical DCN in Hyper-FleX-LIONS that interconnects four rack-
s, MUX/DEMUX: wavelength multiplexer/demultiplexer, WSS: wavelength
selective switch, AWGR: arrayed waveguide grating router.

Fig. 1(a) represents the optical connection from the first TRX
on the ToR switch of Rack 1. In the transmitting structure,
all the outputs of a ToR switch are multiplexed by a WDM
multiplexer (MUX) before being sent to a 1×N wavelength
selective switch (WSS). One of the WSS’ outputs goes to the
AWGR, while the other N − 1 outputs are directly connected
to the N − 1 WSS’ that belong to the receiving structures of
other racks, respectively. For example, the second output of the
WSS in the transmitting structure of Rack 1 goes to the second
input of the WSS in the receiving structure of Rack 2. Then,
in the receiving structure of each rack, the optical signals from
the WSS’ in the transmitting structures of other racks and the
AWGR are distributed to the TRXs of the rack’s ToR switch
with a WSS and a WDM demultiplexer (DEMUX).

Hence, we can get various optical interconnections among
the racks by adjusting the WSS’ in the transmitting/receiving
structures and leveraging the wavelength switching capability
of the AWGR. For instance, Fig. 1(b) shows two configurations
of the Hyper-FleX-LION in Fig. 1(a) and the traffic matrices
that they support. The left configuration is just the one in
Fig. 1(a), where each WSS in the transmitting structures sends
all the WDM signals from the TRXs of a ToR switch to the
AWGR, which demultiplexes the WDM signals at each of its
input ports and switches them to its outputs according to their
wavelengths. Specifically, as a passive wavelength switching
device, AWGR operates based on a fixed wavelength mapping
between its inputs and outputs, e.g., λ0 and λ1 entering at
Input 1 will go to Outputs 1 and 2, respectively. Therefore, the
left configuration supports the traffic matrix whose elements
are all identical, as shown in Fig. 1(b). On the other hand,

the right configuration in Fig. 1(b) makes each WSS in the
transmitting structures only send two WDM signals from the
TRXs of a ToR switch to the AWGR, while the remaining
two WDM signals go to one WSS in the receiving structures
directly (marked with boxes). For example, λ0 and λ2 from
Rack 1 are sent to Rack 2 directly (i.e., bypassing the AWGR).

Although existing studies have already addressed the hard-
ware [20, 21], architecture [14], and applications [22] of all-
optical DCNs in Hyper-FleX-LION, the problem of how to
explore its flexibility to efficiently adapt to various patterns
of inter-rack traffic has not been studied yet. This problem is
relevant because if we do not leverage a traffic-aware algorithm
to configure the inter-rack network of a DCN properly, the link
utilization there could be severely unbalanced [23], which not
only degrades the QoS of active network services but also
makes the DCN’s operation less cost-efficient. Meanwhile, due
to the unique architecture of Hyper-FleX-LION, the problem
is also different from its counterparts that have been studied
for HOE-DCNs [24–26] and other all-optical DCNs [27, 28].

In this work, we study how to realize traffic-aware con-
figuration of all-optical DCNs in Hyper-FleX-LION. We first
formulate an integer linear programming (ILP) model for the
problem, which jointly optimizes the configuration of Hyper-
FleX-LION and the provisioning schemes of demands in an
arbitrary traffic matrix to minimize the port usage in the all-
optical DCN for high cost-efficiency. To ensure the practical-
ness of the optimization, we assume that each ToR switch can
not only receive the traffic targeting to it but also forward
traffic to other racks as an intermediate node. Meanwhile,
we classifier demands as normal and latency-sensitive ones,
where the latter are generated by the network services such
as web search [29]. Note that, when multi-hop routing is
enabled, additional latency can be caused by the repeated
optical-to-electrical-to-optical (O/E/O) conversions and packet
processing in ToR switches. Hence, we restrict the maximum
number of hops that latency-sensitive demands can be routed.

Then, we analyze the time complexity of the problem
theoretically, and prove its APX -hardness, i.e., there does
not exist a polynomial-time approximation algorithm for it
unless P = NP . Hence, we propose a polynomial-time
heuristic (namely, JTRO) to solve the problem effectively and
time-efficiently. Extensive numerical simulations confirm the
performance of our algorithm and show that it can outperform
existing benchmarks. Finally, we build a small-scale but real
all-optical DCN testbed in Hyper-FleX-LION to interconnect
four racks, and leverage DML as the network services in it to
demonstrate the effectiveness of our proposal experimentally.

The rest of the paper is organized as follows. We first
conduct a brief survey on the related work in Section II. Then,
in Section III, we provide the problem description, formulate
the ILP model to solve it exactly, and analyze the problem’s
complexity. Section IV discusses our algorithm design for the
heuristic. The numerical simulations and experimental demon-
strations are presented in Sections V and VI, respectively.
Finally, Section VII summarizes the paper.

3

II. RELATED WORK

The idea of introducing OCS in inter-rack networks of
DCNs for HOE-DCNs and all-optical DCNs has already been
studied for more than a decade. In the early days, Helios [10]
and c-Through [11] were proposed as HOE-DCNs and OSA
[27] was developed for all-optical DCNs. Since then, many
new architectures have been proposed [3, 12–14]. Based on
these architectures, people have considered how to explore
their reconfigurability to adapt to various patterns of inter-rack
traffic, and designed a number of algorithms [24–28].

In [27], the authors developed traffic-aware configuration
algorithms for all-optical DCNs in OSA. They formulated an
ILP model and proposed a heuristic that solves the problem
by computing the inter-rack topology, routing of demands, and
wavelength assignments in three sequential steps. However,
as the steps are handled independently in the heuristic, they
might not fully explore the flexibility of OSA, and moreover,
the authors did not consider latency-sensitive traffic in the
network model. Zhao et al. [25] leveraged a hierarchical
approach to schedule the inter-rack traffic in an HOE-DCN
where OCS is realized with an optical cross-connect (OXC).
Nevertheless, it is known that OXC can usually provide 1-
to-1 connectivity, which will greatly restrict the flexibility of
OCS for traffic routing [30]. The studies in [26, 28] considered
multi-hop traffic routing in all-optical DCNs and HOE-DCNs,
respectively, and proposed heuristics for the problems. Similar
as the approach used in [27], the heuristics also planned the
multi-hop traffic routing in independent steps sequentially.
In [24], we proposed an adaptive algorithm based on deep
reinforcement learning (DRL) to schedule the traffic demands
in an HOE-DCN, where the OCS part was based on an OXC.

Previous studies also addressed the provisioning of specific
network services in HOE-DCNs and all-optical DCNs [22, 31,
32]. We designed a knowledge-defined orchestration scheme
based on DRL in [31] to optimize the provisioning of Hadoop
jobs in an HOE-DCN, for reducing job completion time. Wang
et al. [32] showed that the DML jobs in an HOE-DCN could
be accelerated when its OCS part was reconfigured adaptively.
In [22], we experimentally demonstrated that an all-optical
DCN in Hyper-FleX-LION could accelerate DML jobs better
than an HOE-DCN based on OXC.

Finally, to the best of our knowledge, all the existing studies
in this area did not consider the algorithm design for Hyper-
FleX-LION, which makes the algorithms proposed in them not
suitable for the problem considered in this work. Although our
work in [22] did consider the service provisioning in Hyper-
FleX-LION, it was mainly for proof-of-concept demonstration.
We did not address algorithm design in it either, and multi-hop
routing in inter-rack networks was not considered.

III. PROBLEM DESCRIPTION

In this section, we first explain the network model of traffic-
aware configuration for Hyper-FleX-LION, and then formulate
an ILP model to describe the optimization for it.

A. Network Model
In this work, we consider an all-optical DCN in Hyper-

FleX-LION that interconnects N racks and operates with the

principle shown in Fig. 1(a). Hence, each ToR switch equips N
TRXs, which transmit in N adjacent WDM channels (denoted
as {λi, i ∈ [1, N]}). The capacity of the i-th TRX on a ToR
switch is denoted as C. Similar as previous studies in [25–28],
we model the traffic among racks as an N×N traffic matrix
D, where each element represents the bandwidth demand that
needs to be satisfied between a rack pair. To ensure that the
network model is generic, we do not specify the unit of C and
traffic amounts in D here. As the traffic matrix D contains the
traffic from various network services, we assume that it can
be further divided into two traffic matrices as D = Dlt+Dls,
where Dlt denotes the matrix of latency-tolerant traffic (e.g.,
for Hadoop file streams [33]) while Dls is the latency-sensitive
traffic matrix (e.g., for virtual reality and online games [34]).

To fully utilize the capacity of each TRX, we assume that
multi-hop routing is allowed in the inter-rack network, i.e.,
each ToR switch can not only receive the traffic targeting to it
but also forward traffic to other racks as an intermediate node.
Note that, as the multi-hop routing makes a flow go through
repeated O/E/O conversions and electrical processing in ToR
switches, additional latency can be induced to prolong its flow
completion time (FCT). Hence, we restrict the hop-count of
latency-sensitive traffic in Dls to not exceed H .

The operation principle of Hyper-FleX-LION in Fig. 1(a)
determines that any WDM channel from a source ToR switch
can potentially reach any destination ToR switch (including
itself). However, there are also a few constraints. First, one
TRX on a source ToR switch can only connect to one TRX
on a destination ToR switch. Second, the TRXs connecting
to a same destination ToR switch should use different WDM
channels. In other words, we can model the inter-rack network
of Hyper-FleX-LION as a graph G(V,E), where each vertex
v in set V represents a ToR switch, and each directed edge e
in set E denotes a used unidirectional transmission from the
optical transmitter (TX) in one TRX to the optical receiver
(RX) in another TRX and is a partially determined element.
Specifically, the source and color (i.e., the WDM channel) of
each directed edge e is predetermined by the corresponding
TRX, while its destination should be optimized in the traffic-
aware configuration. Hence, the traffic-aware configuration can
be viewed as a problem of finalizing edges in E to obtain
a proper graph G(V,E) and routing traffic in G(V,E) to
satisfy all the demands in D, such that the total number
of used ports is minimized1. Here, each “used port” refers
to a unidirectional transmission that carries traffic between
a TX/RX pair. We select such an optimization objective for
two reasons. First, the number of used ports in a DCN is an
important metric for evaluating its operational complexity and
energy consumption (i.e., the operational expenses (OPEX))
[3, 23]. Second, if an algorithm that can serve the same amount
of traffic demands with a lower port usage enables a DCN
operator to provision more network services with the same
capital expenses (CAPEX), i.e., bringing in more revenue.

1We assume that each element dv,v ∈ D for the loop-back traffic of ToR
switch v is 0. This is because the loop-back traffic can be forwarded internally
by ToR switch v without going through the Hyper-FleX-LION.

4

Fig. 2. Examples on correlation between topology design and traffic routing.

B. Topology Design and Traffic Routing

The traffic-aware configuration basically includes two sub-
problems, i.e., the topology design and traffic routing. Here,
the topology design refers to setting up/tearing down con-
nections among the racks to adapt to the traffic matrix, by
configuring the optical components in Hyper-FleX-LION. The
traffic routing is to plan forwarding paths for each demand by
labeling packets and configuring the flow tables in ToR switch-
es. Note that, although Hyper-FleX-LION uses OCS, each
ToR switch operates based on EPS. Therefore, a ToR switch
can split the traffic of a demand to multiple routing paths
by labeling the demand’s packets accordingly and forwarding
them to the output ports corresponding to the paths [35,
36], achieving traffic splitting on a per-packet basis. Hence,
our network model considers not only the multi-hop routing
through intermediate rack(s) but also multi-path routing.

We hope to point out that due to the flexibility of Hyper-
FleX-LION, the subproblems are more correlated than those
considered in existing studies [25–28]. Hence, they should be
tackled jointly, which can also be justified with the examples
in Fig. 2. The example in Fig. 2(a) explains how an improper
topology design can make traffic routing infeasible. Here,
there are three demands among the ToR switches, as 1→2,
1→3, and 2→3 for capacities of 15, 5, and 5, respectively
(marked as dashed arrows). The capacity of each TRX is 10,
and each black arrow denotes a unidirectional transmission2

between a TX/RX pair, which delivers a capacity of 10. Then,
with the left configuration in Fig. 2(a), the demand of 1→2
cannot be satisfied, while all the demands can be served in the
right configuration in Fig. 2(a). The two configurations send
traffic though the same number of unidirectional transmissions
between TRXs (i.e., their port usages are both 3), but their
supports to the demands are different.

2Note that, real-world TRXs do not support unidirectional transmissions. In
Fig. 2, we omit irrelevant unidirectional transmissions for clearer illustration,
but they are actually not turned off.

Fig. 2(b) explains why proper traffic routing can help to
optimize the topology design. This time, the demands are
still for 1→2, 1→3, and 2→3, but their capacities become
5, 11, and 5, respectively. Then, to support the traffic routing
in the left configuration, we need to use three TXs on ToR
Switch 1, while the traffic routing in the right configuration
only requires two TXs. Hence, the proper traffic routing in
the right configuration helps to save one TX/RX pair over
that in the left one. Fig. 2(c) explains why multi-hop routing
should be considered. Here, we assume that all the racks are
involved in a DML whose architecture is the Ring-AllReduce
[37]. The traffic demands form a ring, i.e., each ToR switch
sends/receives data to/from its next/previous ToR switch with
capacities of 5 and 1, respectively. If multi-hop routing is not
allowed, the port usage of the left configuration needs to be 6
(the scheme in [22]), while with multi-hop routing, the right
configuration only needs 3 TX/RX pairs.

C. Integer Linear Programming Model

In order to solve the traffic-aware configuration for Hyper-
FleX-LION exactly, we formulate an ILP model. Table I lists
the parameters and variables of the ILP.

TABLE I
PARAMETERS AND VARIABLES OF ILP

Parameters

N Number of racks interconnected by Hyper-FleX-LION.
V Set of ToR switches (|V | = N).
Dls Matrix of latency-sensitive traffic (N×N).
Dlt Matrix of latency-tolerant traffic (N×N).
dv,u Traffic demand from v to u (v, u ∈ V).
H Maximum hop-count for latency-sensitive traffic.
C Bandwidth capacity of each TRX on a ToR switch.
M A large positive constant.

Variables

Li
(u,v)

Binary variable that equals 1 if ToR switch u uses the
i-th TRX to set up an connection to ToR switch v.

f
(u,v)
s,t Non-negative integer variable that represents the amount

of traffic, which is for s→t ({s, t ∈ V, s 6= t}) and gets
routed over an optical connection (u, v) (u, v ∈ V).

x
(u,v)
s,t Binary variable that equals 1 if the demand for s→t does

not use an optical connection (u, v).
T v
s,t Non-negative integer variable that denotes the maximum

hop-count for routing the demand for s→t to reach ToR
switch v (v ∈ V).

Objective:
The objective is to minimize the port usage (i.e., the number

of used TX/RX pairs) in the Hyper-FleX-LION.

Minimize
∑
u∈V

∑
v∈V

N∑
i=1

Li
(u,v). (1)

Constraints:
1) Constraints for Topology Design:∑

v∈V

Li
(u,v) ≤ 1, ∀u ∈ V, ∀i ∈ [1, N]. (2)

5

Eq. (2) ensures that the optical signal from each TRX on a
ToR switch can only be switched by the WSS’ and AWGR in
the Hyper-FleX-LION to at most one ToR switch.∑

u∈V

Li
(u,v) ≤ 1, ∀v ∈ V, ∀i ∈ [1, N]. (3)

Eq. (3) ensures that all the optical signals forwarded by the
WSS’ and AWGR in the Hyper-FleX-LION to one ToR switch
can only use different WDM channels.

2) Constraints for Traffic Routing:

∑
v∈V \u

f
(u,v)
s,t −

∑
v′∈V \u

f
(v′,u)
s,t =

ds,t, u = s,

− ds,t, u = t,

0, otherwise,

∀u ∈ V, {ds,t ∈ D = Dls +Dlt, s 6= t}.

(4)

Eq. (4) is the flow conservation constraint for multi-hop traffic
routing, to ensure that all the demands in D are served
correctly, and it supports multi-path routing for each demand.

∑
{s,t∈V,s6=t}

f
(u,v)
s,t ≤

N∑
i=1

Li
(u,v) · C, ∀u, v ∈ V. (5)

Eq. (5) ensures that the total amount of traffic, which is routed
over the optical connection (u, v), cannot exceed the available
capacity provided by the Hyper-FleX-LION for (u, v).

M ·
(
1− x(u,v)s,t

)
≥ f (u,v)

s,t ≥ 1− x(u,v)s,t , ∀u, v ∈ V,

T v
s,t ≥ Tu

s,t −M · x
(u,v)
s,t + 1, ∀u, v ∈ V,

T v
s,t = 0, v = s,

T v
s,t ≤ H, v = t,

∀{ds,t ∈ Dls, s 6= t}.

(6)

Eq. 6 ensures that latency-sensitive demands will not be routed
for more than H hops.

D. Complexity Analysis

We then analyze the complexity of the traffic-aware config-
uration for Hyper-FleX-LION. First of all, we set H = +∞ to
relax the constraint in Eq. (6) and obtain a special instance of
the original problem. Hence, if we can prove that the special
instance is APX -hard, i.e., there does not exist a polynomial-
time approximation algorithm for it unless P = NP , the
original problem is also APX -hard [38]. Next, to describe
our analysis clearly, we define the following two questions:

Definition 1. For a traffic matrix D and a Hyper-FleX-
LION interconnecting N racks, the Accommodation Problem
is defined as: Whether a topology design can be found to allow
the Hyper-FleX-LION to accommodate all the demands in D?

Definition 2. For a traffic matrix D and a Hyper-FleX-LION
with N racks, Traffic-aware Configuration Problem is defined
as the optimization in the ILP where Eq. (6) has been relaxed,
i.e., a special instance of the original problem.

We can verify that the Accommodation Problem is the de-
cision problem of the Traffic-aware Configuration Problem.

Theorem 1. The Accommodation Problem is NP-complete.

Proof: We prove the NP-completeness of the Accom-
modation Problem by the restriction method [38], i.e., con-
structing a special instance for it and prove that the special
instance is a general case of a known NP-complete problem.
Specifically, we build the special instance by first considering
a special traffic matrix D, which is generated as follows.

• Assume that there are only two source ToR switches in
D, denoted as s1 and s2.

• Add (N−1) random positive demands in D for the traffic
from s1 to each ToR switch v ∈ V \ s1.

• Add (N−1) random positive demands in D for the traffic
from s2 to each ToR switch v ∈ V \ s2.

• Randomly select a ToR switch t1 from V \ s1, and
increase the demand for s1→t1 to be greater than the
capacity of a TRX (i.e., C) if it is not.

• Randomly select a ToR switch t2 from V \ s2, and
increase the demand for s2→t2 to be greater than the
capacity of a TRX (i.e., C) if it is not.

Now, we obtain a traffic matrix D with 2·(N−1) demands,
and can verify that no matter how the Hyper-FleX-LION is
configured, at least two demands (e.g., ds1,t1 and ds2,t2) cannot
be served with single-hop routing. Then, we further restrict
the special instance by assuming that the topology has been
designed as G = (V,E) and all the demands in D except for
ds1,t1 and ds2,t2 have been served in it. Hence, the special
instance of the Accommodation Problem becomes: For a
directed graph G = (V,E), is it possible to find suitable
routing paths for two traffic demands ds1,t1 and ds2,t2? This is
equivalent to the problem of two-commodity integral flow in
directed graphs (D2CIF), which is known to be NP-complete
[39]. Therefore, we prove that the Accommodation Problem
is also NP-complete.

Then, based on Theorem 1, we can get Theorem 2 below.

Theorem 2. The Traffic-aware Configuration Problem is
APX -hard.

Proof: We prove that the Traffic-aware Configuration
Problem is APX -hard with contradiction. We first assume
that there exists a polynomial-time approximation algorithm
A, which can find a k-approximation solution for the Traffic-
aware Configuration Problem. In other words, A can find a
edge set EA to make G = (V,EA) accommodate the traffic
matrix D in polynomial time, which guarantees that |E

A|
|E∗| ≤ k,

where |EA| is the number of edges in EA, |E∗| is the number
of edges in the optimal solution E∗, and k ≥ 1.

Then, we consider a general instance of the Traffic-aware
Configuration Problem, and denote it as I . The analysis
above suggests that if the optimal solution E∗ exists for I , we
can use A to find an approximation solution EA for I , which
is also a feasible solution. Otherwise, if a feasible solution
does not exists for I , we can also use A to get the right
conclusion as A will not provide a feasible solution in this case
either. Therefore, we can use A to check whether there exists a
feasible solution for I (i.e., solving the decision problem of the
Traffic-aware Configuration Problem) in polynomial time,
because A runs in polynomial time. However, this contradicts
to Theorem 1 (i.e., the Accommodation Problem is NP-

6

complete) unless P = NP . Hence, there does not exist a
polynomial-time approximation algorithm A for the Traffic-
aware Configuration Problem, and it is APX -hard.

Finally, as Theorem 2 confirms that a special case of the
original problem is APX -hard, we prove that the original
problem (i.e., the ILP in Section III-C) is also APX -hard.

IV. ALGORITHM DESIGN

As Section III-D suggests that the traffic-aware configura-
tion for Hyper-FleX-LION is APX -hard, we do not try to
design a polynomial-time approximation algorithm but will
propose an effective heuristic for it in this section, which is
named as joint topology design and traffic routing optimization
(JTRO). Different from the ILP, which cannot obtain a feasible
solution if the traffic load in D is too high, JTRO is a heuristic
and thus can serve part of the demands in D in such a case.

A. Algorithm based on Heuristic Iterative Optimization

To solve the traffic-aware configuration for Hyper-FleX-
LION, the exact way is to enumerate all the feasible inter-rack
topologies, find the traffic routing scheme in each topology for
serving D such that the port usage is minimized, and select
the topology and the routing scheme in it, which provides the
least port usage among all the cases. Although the exhaustive
search runs in exponential time, it provides the idea for our
algorithm design. We first introduce a theorem.

Theorem 3. For any topology G that can satisfy D but does
not use all the TRXs in Hyper-FleX-LION, we can find another
topology G′, which uses all the TRXs and still satisfies D, such
that we can remove unnecessary edges in G′ to get a topology
whose size3 is the same as or smaller than that of G.

Proof: For an arbitrary topology G that can satisfy D
but does not use all the TRXs in a Hyper-FleX-LION, we
arbitrarily add a new edge e in it to get a larger topology G1.
Then, we can easily verify that the best traffic routing scheme
in G1 will not use more TRXs than those used by the best
traffic routing scheme in G. In other words, the new edge e
might make the best traffic routing of D uses less TRXs, but
in the worst case, the numbers of TRXs used by the best traffic
routing schemes in G and G1 should be the same. Therefore,
we can keep adding new edges in G until obtaining another
topology G′ that uses all the TRXs in the Hyper-FleX-LION,
and use the analysis above repeatedly to prove Theorem 3.

Theorem 3 tells us that to solve the traffic-aware config-
uration for Hyper-FleX-LION, we only need to enumerate
all the largest topologies, which uses all the TRXs (i.e.,
|E| = N2). Although this greatly reduces the number of inter-
rack topologies that we need to enumerate, the exhaustive
search still cannot be done in polynomial time. Hence, we
propose a heuristic based on iterative optimization.

Algorithm 1 describes the overall procedure of our proposed
heuristic. Lines 1-2 are for the initialization, where we assign
a unique index i to denote each ToR switch in V as vi and

3For simplicity, we define the size of an inter-rack topology G(V,E) as
the number of directed edges in it (i.e., |E| or the used TX/RX pairs).

Algorithm 1: Overall Procedure
Input: N , Dls, Dlt, C, K, γ.
Output: G = (V,E), WE .

1 V = {vi, i ∈ [1, N]}, E = ∅, D = Dls +Dlt;
2 {N+

i = N, N−i = N, ∀i ∈ [1, N]} ;
3 for each i ∈ [1, N] do
4 sort all demands from vi (dvi,t ∈ D) in descending

order, and store their destinations in set V ′;
5 while (N+

i 6= 0) AND (there is dvi,vj > 0) do
6 for each vj ∈ V ′ do
7 if (dvi,vj > 0) AND (N−j > 0) then
8 N+

i = N+
i − 1, N−j = N−j − 1;

9 dvi,vj = dvi,vj − C, (vi, vj)→ E;
10 end
11 end
12 end
13 end
14 for each i ∈ [1, N] do
15 if N+

i 6= 0 then
16 add feasible edges randomly until N+

i = 0, and
insert the newly-added edges in E;

17 end
18 end

19 g̃ =
N∑
i=1

N∑

j=1
dvi,vj

C

, G∗ = G(V,E);

20 while K > 0 do
21 K = K − 1;
22 apply Algorithm 2 to G to find minimal subgraph

G′ = (V ′, E′) and remaining bandwidth set RE′ ;
23 G∗ = min(G∗, G′);

24 if (|E
′|

g̃ ≤ 1 + γ) OR (K = 1) then
25 use available wavelengths to color edges in G∗;
26 if a feasible assignment WE can be got then
27 break;
28 end
29 end
30 find edge e∗ = (s∗, t∗) with the smallest Re∗ in E′;
31 find edge e1 = (s∗, t1) with the largest Re1 in E′;
32 find edge e2 = (s1, t

∗) with the largest Re2 in E′;
33 remove e1 and e2 from E;
34 insert (s∗, t∗) and (s1, t1) into E;
35 end
36 G = G∗;

initialize the available numbers of input/output ports on each
vi ∈ V as N . Here, N−i /N+

i denote the available numbers
of input/output ports on ToR switch vi, respectively. Then, in
Lines 3-18, we greedily construct a topology G(V,E) that uses
all the TRXs (i.e., |E| = N2) and can satisfy the traffic matrix
D. In each iteration of the for-loop covering Lines 3-13, we
determine the edges that go out of a ToR switch. For each ToR
switch vi, we first sort the demands from it in descending order
of their bandwidth (Line 4), and then set up a directed edge
for each demand in turn until all the output ports of the ToR

7

switch have been used (Lines 5-12). The available numbers of
input/output ports on the ToR switches ({N+

i , N
−
i = N, ∀i ∈

[1, N]}) are also updated in the process (Line 8).
Lines 14-18 establish directed edges randomly until all the

TRXs have been used. Then, we calculate the lower-limit of
the number of TRXs that should be used to support D as g̃, and
set the current optimal topology G∗ as the G(V,E) obtained
until now (Line 19). Next, Lines 20-35 describe the procedure
for iterative optimization, in which if the solution obtained in
an iteration satisfies the expected approximation ratio γ or the
number of iterations reaches the upper-limit K, we will stop
the iteration and output the current optimal solution.

Algorithm 2: Find Minimal Subgraph G′

Input: G = (V,E), Dls, Dlt, C, H , δ, η.
1 RE = {Re = C, ∀e ∈ E};
2 input {G,Dls, C,RE , H} to Algorithm 3 for RE ;
3 input {G,Dlt, C,RE ,−1} to Algorithm 3 for RE ;
4 if no feasible solution then
5 return(G, RE);
6 end
7 while E 6= ∅ do
8 remove all the edges in Ẽ = {e : e ∈ E,Re ≥ δ · C}

from E, and update G(V,E);
9 RE = {Re = C, ∀e ∈ E};

10 input {G,Dls, C,RE , H} to Algorithm 3 for RE ;
11 input {G,Dlt, C,RE ,−1} to Algorithm 3 for RE ;
12 if no feasible solution then
13 if δ < 1.0 then
14 add edges in Ẽ back to E;
15 δ = δ + η;
16 else
17 break;
18 end
19 end
20 end
21 return(G, RE);

Specifically, in each iteration, we first apply Algorithm 2 to
G to find the minimal subgraph G′ (Line 22) and then check
whether it can satisfy the condition to stop the iteration (Lines
24-29). Here, Line 25 tries to assign available wavelengths
to color the edges in the current optimal topology G∗ (i.e.,
determining the right TRX that should be used for each
directed edge in G∗). Note that, this is a typical edge coloring
problem [40], which can be easily solved by many time-
efficient algorithms [41]. Lines 30-34 represents our heuristic
approach for optimizing the edges in E, i.e., replacing two
edges with two better ones. Specifically, we believe that the
edge e∗ with the smallest remaining bandwidth (Re∗) in the
minimal subgraph G′ can indicate that its source/destination
ToR switches are essential for traffic routing. Therefore, Lines
31-32 find the edges with the most remaining bandwidth on
each of these two ToR switches in G′, and Lines 33-34 replace
their counterparts in G with two better ones to increase the
bandwidth between the two ToR switches. Fig. 3 illustrates
the procedure in Lines 30-34. Note that, as Lines 33-34 only

Fig. 3. Heuristic approach for optimizing edge establishment.

replace two edges in E, the total number of edges in G(V,E)
stays unchanged (i.e., we still have |E| = N2). Finally, we
proceed to the next iteration with the newly-obtained G.

B. Sub-procedures for Traffic Routing

We design Algorithm 2 to serve all the demands in D in
an inter-rack topology G(V,E) with |E| = N2, such that
the TRXs are used as few as possible. Line 1 is for the
initialization, where the remaining bandwidth on each edge
e ∈ E is initialized as Re = C. In Lines 2-3, we try to use
Algorithm 3 to find the routing schemes for latency-sensitive
traffic matrix Dls and latency-tolerant traffic matrix Dlt in
sequence, and RE is updated sequentially too. If a feasible
solution can be found, the while-loop covering Lines 7-20 tries
to remove unnecessary edges in iterations. In each iteration, we
first remove all the edges in set Ẽ = {e : e ∈ E,Re ≥ δ · C}
from E, where δ ∈ (0, 1) is a preset coefficient to control
the edge removal process, and update G(V,E) accordingly
(Lines 8-9). Lines 10-11 try to use Algorithm 3 to find the
routing schemes for Dls and Dlt in the updated G(V,E) in
sequence. If a feasible solution cannot be found and we still
have δ < 1, we add the edges in Ẽ back to E and increase
δ by a preset step of η (Lines 12-15). If we cannot find more
edges to remove from E, we will terminate the while-loop and
return the current G (i.e., the minimal subgraph G′ for serving
D) and the corresponding RE to Algorithm 1 (Line 21).

The basic idea of Algorithm 2 is to first remove the edge that
has the most available bandwidth. Therefore, we deliberately
spread out the demands in a traffic matrix when computing
their routing paths with Algorithm 3. Specifically, we take
the bandwidth usage on each edge as its weight, and find the
least-weighted paths for the demands. In Algorithm 3, we first
initialize the weight of each edge e ∈ E based on its current
bandwidth usage (Line 1). Then, the while-loop that covers
Lines 2-21 finds routing schemes for the demands in traffic
matrix D until all the demands there have been served. If the
demand is for latency-sensitive traffic, we use Algorithm 4 to
find the least weighted path P for it (Line 5). Otherwise, we
use the Dijkstra’s Algorithm to find the least weighted path P
for it (Line 7). Next, if P can be found, Lines 12-20 serve the
whole or partial demand of ds,t with it and update the network
status accordingly. Finally, after all the demands in D having
been served, we return the remaining bandwidth on each edge
(i.e., RE) to Algorithm 2.

In Algorithm 4, we leverage the breadth-first search (BFS)
method [42] to obtain the least-weighted routing path for a

8

Algorithm 3: Find Traffic Routing Scheme
Input: G = (V,E), D, C, RE , H .

1 assign a weight le = C −Re + 1 to each e ∈ E;
2 while there are still non-zero elements in D do
3 select a non-zero element ds,t ∈ D;
4 if H 6= −1 then
5 input {G, s, t, {le}, H} to Algorithm 4 to find the

least weighted path P for s→t;
6 else
7 find the least weighted path P for s→t in G with

Dijkstra’s Algorithm;
8 end
9 if P cannot be found then

10 return(FALSE);
11 end
12 find the bottleneck edge e∗ on P;
13 if R∗e ≥ ds,t then
14 b = ds,t, ds,t = 0, and update D;
15 else
16 ds,t = ds,t −R∗e , b = R∗e ;
17 end
18 for each edge e ∈ P do
19 Re = Re − b, le = le + b;
20 end
21 end
22 return(RE);

latency-sensitive traffic demand under the maximum hop-count
constraint of H . Lines 1-7 are for the initialization, where we
initialize the set for the starting points of BFS (S) as the source
s and set the known distance from s to each of the other nodes
in V as {Lv = +∞,∀v ∈ V \ s}. Then, Algorithm 4 starts
from s and searches H hops with BFS (Lines 8-20). We use set
Pv to record the shortest-path from s to v. When BFS spreads
to a node v, we update the known distance for s→v (i.e.,
Lv) and Pv in Lines 12-14. When the H-hop BFS has been
completed, the least-weighted routing path, which is for s→t
and satisfies the maximum hop-count constraint of H , can be
found in Pt. In Line 11, the condition of le < C is introduced
to ensure that edges without any available bandwidth should
not be considered in the routing path calculation.

C. Complexity Analysis

In the worst case, Algorithm 1 needs to perform K itera-
tions, each of which Algorithm 2 runs once and conduct |E|
iterations at most. For each iteration in Algorithm 2, Algorithm
3 finds the least weighted path for each traffic demand,
by invoking Algorithm 4 (O(H · |V |2)) or the Dijkstra’s
algorithm (O(|V |2)). Therefore, the complexity of Algorithm
1 is O(K · |E| · (|Dls| ·H · |V |2+ |Dlt| · |V |2)), which verifies
that it is in polynomial time.

V. PERFORMANCE EVALUATION

In this section, we perform numerical simulations to evalu-
ate the performance of our proposals.

Algorithm 4: Shortest-Path Routing with Hop Constraint
Input: G = (V,E), s, t, {le}, H , C

1 starting point set S = {s}, S′ = ∅;
2 for each node v ∈ V do
3 Lv = +∞, Pv = ∅;
4 if v = s then
5 Lv = 0, insert s into Pv;
6 end
7 end
8 for each i ∈ [1, H] do
9 for each node u ∈ S do

10 for each node v ∈ V do
11 if (edge e = (u, v) ∈ E) AND (le < C) then
12 if Lu + le < Lv then
13 Lv = Lu + le, Pv = Pu;
14 insert v into Pv and S′;
15 end
16 end
17 end
18 end
19 S = S′, S′ = ∅;
20 end
21 return(Pt);

A. Simulation Setup

We use the number of racks N to denote the scale of an
optical DCN in Hyper-FleX-LION. Specifically, an N -Hyper-
FleX-LION has N racks and each ToR switch in it has N
TRXs for building the inter-rack topology through the WSS’
and AWGR. The simulations consider 5 types of Hyper-FleX-
LION in different scales4, i.e., N = {4, 8, 16, 32, 64}. The
bandwidth capacity of each TRX is set as C = 100 Gbps
[43]. To ensure practicalness of the simulations, we leverage
the traffic patterns of real-world network services in DCNs
to generate Dls and Dlt. The unit of data-rates in C, D and
all the other related parameters and variables is 1 Mbps. We
consider two types of latency-sensitive traffic with point-to-
multipoint pattern, which are the Nvidia cloud gaming [44]
and YouTube 4K video streaming [45], and set the demands of
each of their jobs as 20 and 35 Mbps, respectively, according
to [44, 45]. As for the latency-tolerant traffic, we address
the data-transfers generated by DML in Ring-AllReduce and
Parameter-Server architectures [37], and set their data-rates
randomly distributed in [1, 25] Gbps [46]. To generate Dls and
Dlt, we randomly select source and destination racks for the
latency-sensitive and latency-tolerant demands. The latency-
sensitive demands in Dls have their maximum hop-count as
H = 3. To quantify the amount of traffic in the overall matrix
D = Dls +Dlt, we define the traffic load as

4In practice, the scale of Hyper-FleX-LION is restricted as N ≤ 64
due to the number of available wavelength channels and the port-counts of
optical devices [20]. However, with the modular scaling scheme proposed
in [14], large-scale DCNs in 3D-Hyper-FleX-LION can be built. Specifically,
by interconnecting 64-Hyper-FleX-LIONs in a 3D-Hyper-FleX-LION, we can
realize a large-scale DCN that contains 643 = 262, 144 racks.

9

ξ =

max
u∈V

(∑
v∈V

du,v

)
N · C , (7)

where du,v ∈ D denotes the total demands for u→v.
The simulations consider the following four algorithms to

solve the traffic-aware configuration for Hyper-FleX-LION.
• ILP: the ILP model in Section III-C.
• JTRO: Our proposed heuristic in Algorithm 1.
• OSAR: We modify the algorithms in [27] to adapt to our

problem. Specifically, we consider the traffic demands in
D as edge weights and use the b-matching scheme in [27]
for topology design (i.e., b = N in a Hyper-FleX-LION).
Then, with the inter-rack topology determined, we use
shortest-path routing to serve all the demands in D.

• MiniEdge: We first design the inter-rack topology with
Lines 1-18 in Algorithm 1. Then, we get a subgraph with
minimum edges in the topology with the algorithm in
[47] to further optimize it. Finally, we use shortest-path
routing to serve D in the optimized topology.

Since OSAR and MiniEdge do not consider latency-sensitive
traffic, we prioritize the demands in Dls when planning traffic
routing in OSAR and MiniEdge to ensure fair comparisons.

To evaluate the results of traffic-aware configuration, we
introduce two metrics. First, the utilization of TRXs (i.e., the
port usage) is defined as |E|N2 , where |E| is the number of
edges in inter-rack topology G(V,E) and N2 is the total
available TRXs in an N -Hyper-FleX-LION. Second, if the
QoS requirements (i.e., bandwidth and hop-count) of a demand
cannot be satisfied in a configuration of Hyper-FleX-LION,
we will not serve it and label it as one without satisfied QoS.
Hence, we use the ratio of the amount of the demands with
satisfied QoS to the total traffic amount in D to represent
the satisfaction ratio of traffic demands. The simulations are
programmed with C++ and run on a computer with 4 GHz
Intel Core i7-6700K CPU and 64 GB memory. To maintain
sufficient statistical accuracy, we average the results from 60
independent runs to get each data point. In each run, we
randomly generate a traffic matrix D according to the current
parameters. To show the stability of the algorithms, we mark
the range of 95% confidence interval in our results.

B. Performance with Different Hyper-FleX-LION Scales
We first evaluate the algorithms with Hyper-FleX-LIONs

in different scales. The traffic load is fixed as 0.5. Fig. 4
shows the results on port usage and satisfaction ratio of traffic.
Due to the time complexity of ILP, we can only solve it in
the 4-Hyper-FleX-LION. In Fig. 4(a), we can see that JTRO
achieves similar port usage as ILP in 4-Hyper-FleX-LION,
and it always outperforms OSAR and MiniEdge significantly
in all the scenarios. Specifically, JTRO always maintains the
port usage at ∼60%, while the port usages from OSAR
and MiniEdge can easily exceed 80%. The performance gaps
between JTRO and OSAR/MiniEdge in Fig. 4(a) confirm that
the sequential heuristics, which tackle the topology design and
traffic routing in traffic-aware configuration of Hyper-FleX-
LION in sequential steps, might not fully explore the flexibility
of Hyper-FleX-LION for cost-efficient traffic provisioning.

4 8 16 32 64

Scale of Hyper-Flex-LION (N)

0%

20%

40%

60%

80%

100%

P
o
rt

 u
s
a
g
e

(a) Port usage

4 8 16 32 64

Scale of Hyper-Flex-LION (N)

0%

20%

40%

60%

80%

100%

S
a
ti
s
fa

c
ti
o
n
 R

a
ti
o

(b) Satisfaction ratio of traffic demands

Fig. 4. Results for Hyper-FleX-LIONs in different scales.

Moreover, the smallest confidence intervals from JTRO in
Fig. 4(a) further justify its advantages. In other words, OSAR
and MiniEdge have much worse stability than JTRO, i.e., their
performance depends severely on the actual traffic matrix D
even though the traffic load is the same. Meanwhile, it is
interesting to notice that although we fix the traffic load as 0.5,
the port usages from all the algorithms increase with the scale
of Hyper-FleX-LION (N). This is because the traffic matrix
D in a larger Hyper-FleX-LION contains more columns and
rows to denote demands between more racks, and thus we will
need to use more TRXs to serve the demands.

TABLE II
RUNNING TIME OF ALGORITHMS PER DEMAND (du,v ∈ D) (MSEC)

Network Scale (N) 4 8 16 32 64

ILP 4258.664 - - - -
JTRO 0.317 1.022 17.308 40.687 60.773
OSAR 0.006 0.156 1.617 3.138 2.740

MiniEdge 0.006 0.234 3.683 9.922 6.410

Fig. 4(b) shows the results on the satisfaction ratio of traffic
demands, which indicate that JTRO always achieves 100%
satisfaction ratio no matter how large the Hyper-FleX-LION
is. However, OSAR and MiniEdge can hardly realize this goal.
This is because they accomplish the traffic-aware configuration
in sequential steps and do not consider latency-sensitive traffic
when performing the topology design. Table II shows the
average running time of the algorithms, when the traffic load is
fixed as 0.5. Here, we show the average running time because
the worst-case and best-case running time for each simulation
scenario is always in the same order of magnitude.

It can be seen that for 4-Hyper-FleX-LION, all the heuristics

10

are much more time-efficient than ILP. As JTRO is based
on iterative optimization, it takes longer running time than
OSAR and MiniEdge. The running time of all the algorithms
generally increases with the network scale, because D is more
complex in a larger Hyper-FleX-LION. However, when N
increases from 32 to 64, the running time of OSAR and
MiniEdge actually decreases. This is because more demands
cannot be served with satisfactory QoS by using OSAR and
MiniEdge at N = 64, which saves certain running time for
them. This analysis can be verified by checking the results
on satisfaction ratio in Fig. 4(b). Hence, although JTRO takes
more running time, it also obtains better DCN configurations
by optimizing inter-rack topology and traffic routing jointly.
Meanwhile, providing the fact that the frequency of topology
changes in a DCN will only be a few times per day [48], the
running time of JTRO will be acceptable for practical usage.

C. Performance with Different Traffic Loads

Then, we fix the scale of network scale as the largest (N =
64), investigate the performance of Hyper-FleX-LION using
different configuration algorithms, and also benchmark Hyper-
FleX-LION with two other architectures for all-optical DCNs
(i.e., OSA [27] and Sirius [13]). Since the routing strategy in
Sirius only considers two-hop routing, we set H = 2 in the
simulations in this subsection for fair comparisons.

We first apply different configuration algorithms to Hyper-
FleX-LION, and in Fig. 5, LION-JTRO, LION-OSAR, and
LION-MiniEdge denote the schemes of using JTRO, OSAR,
and MiniEdge in Hyper-FleX-LION, respectively. The results
in Fig. 5(a) suggest that the port usages of all the three schemes
increase with traffic load and LION-JTRO always provides
the smallest port usage with the smallest confidence interval.
Among the three schemes, LION-OSAR always provides the
largest port usage. LION-MiniEdge can obtain similar results
as those of LION-JTRO when the traffic load is 0.1, but its
performance gap to LION-JTRO increases significantly with
traffic load. As for the results on satisfaction ratio in Fig. 5(b),
LION-JTRO always ensures a satisfaction ratio of 100%, while
the satisfaction ratios of LION-OSAR and LION-MiniEdge
reduce significantly when the traffic load is 0.3 or higher.

Next, we discuss the performance comparison of Hyper-
FleX-LION and other architectures. OSA-OSAR and Sirius-
SiriusR represent the schemes of OSA and Sirius5 using their
own configuration algorithms. Similar to OSAR, we also let
SiriusR prioritize the demands in Dls. To ensure a fair compar-
ison, we assume that Sirius is built with 64-port AWGRs, OSA
uses 64-port optical switches, and each ToR switch in them
has 64 ports. Fig. 5(a) shows that the port usages of LION-
OSAR and OSA-OSAR are similar, which again illustrates the
importance of configuration algorithms for reconfigurable all-
optical DCNs. Sirius-SiriusR always occupies the most ports
among all the schemes, which is reasonable considering its

5As Sirius is actually an approach based on fixed time-division multiplexing
(TDM), we, in the simulations, first transform the time-varying topology of
Sirius into a static one by replacing the time-varying links between source-
destination pairs with the static ones whose bandwidths are set according to
the time ratio provided by the network schedule table of Sirius [13]. Then, the
comparison between Sirius and our proposal becomes fair and meaningful.

operation principle (i.e., spraying packets randomly to inter-
mediate nodes in the TDM manner). As for the satisfaction
ratio in Fig. 5(b), Sirius-SiriusR performs better than OSA-
OSAR but it still cannot reach 100% when the traffic load is
0.3 or higher. In summary, the results in Fig. 5 suggest that
JTRO performs the best in Hyper-FleX-LION in terms of both
the port usage and satisfaction ratio, and the scheme of Hyper-
FleX-LION using JTRO outperforms all the other schemes no
matter which reconfigurable architecture is considered.

0.1 0.2 0.3 0.4 0.5

Traffic Load

0%

20%

40%

60%

80%

100%

P
o
rt

 u
s
a
g
e

(a) Port usage

0.1 0.2 0.3 0.4 0.5

Traffic Load

0%

20%

40%

60%

80%

100%

S
a
ti
s
fa

c
ti
o
n
 R

a
ti
o

(b) Satisfaction ratio of traffic demands

Fig. 5. Results for 64-racks network with various traffic loads.

JTRO OSAR MiniEdge

Algorithms

0%

20%

40%

60%

80%

100%

R
a
ti
o

Fig. 6. Results for 64-Hyper-FleX-LIONs with traffic load at 0.8.

Next, we further stress the 64-Hyper-FleX-LION with traffic
load at 0.8, and show the results in Fig. 6. Although there is
seldom such a high inter-rack traffic load in real-world DCNs
[49], we simulate it to observe the algorithms’ performance in
extreme cases. Fig. 6 indicates that OSAR and MiniEdge use
all the TRXs in the Hyper-FleX-LION, while the satisfaction
ratios of traffic demands achieved by them are pretty low. On
the other hand, the average port usage from JTRO is still less

11

than 100%, and it achieves the highest satisfaction ratios for
demands in both Dls and Dlt. Meanwhile, it can be seen that
for all the algorithms, the satisfaction ratios of the demands
in Dls are higher than those of the demands in Dlt. This
is because all the algorithms give a higher priority to the
demands in Dls during traffic routing.

D. Performance of JTRO with Different Settings
Finally, we explore the JTRO’s algorithm performance. We

first focus on the convergence performance, we still set the
scale of Hyper-FleX-LION as the largest (N = 64) and fix the
traffic load as 0.5 to investigate the convergence performance
of JTRO. Fig. 7 shows how the port usage and satisfaction
ratio from JTRO change in different iterations of Algorithm 1,
related to the results from OSAR and MiniEdge. We observe
that the performance of MiniEdge is similar as that of the
initial result from JTRO at Iteration 0. As for JTRO, the
performance of the traffic-aware configuration obtained by it
increases quickly in iterations. Specifically, the satisfaction
ratio of traffic demands reaches 100% at Iteration 20, while
the port usage decreases to ∼65% at Iteration 80. These results
verify the effectiveness of our proposed iterative optimization,
i.e., it can fully explore the flexibility of Hyper-FleX-LION to
optimize the topology design and traffic routing in it jointly,
for improving the cost-efficiency of provisioning.

0 10 20 30 40 50 60 70 80 90 100

Iteration Number

60%

70%

80%

90%

100%

R
a
ti
o

Fig. 7. Performance in different iterations.

Fig. 8. Performance in different maximum hop-counts and traffic loads.

Then, we study the impacts of the maximum hop-count (H)
and traffic load on the performance of JTRO in 64-Hyper-
FleX-LION. Fig. 8 shows the worst satisfaction ratios of the

demands in Dls and Dlt with different combinations of H and
traffic load. In Fig. 8, we can see that the satisfaction ratios
of demands in Dls and Dlt both decrease when the traffic
load increases or H decreases. When we have H = 1, the
satisfaction ratios can drop precipitously with the increase of
traffic load. This is because multi-hop routing is not allowed
in this case, which highlights the issue of coarse granularity
of the wavelength switching in Hyper-FleX-LION.

Although a larger H can make the routing of the demands in
Dls more flexible to improve their satisfaction ratio, the gain
converges after H reaches 3. This is because routing a demand
with more hops will occupy more bandwidth resources, which
will eventually offset the benefit bought by flexible routing.
On the other hand, when the traffic load is greater than 0.6,
the satisfaction ratios cannot reach 100% even when we have
H = 5. This suggests that when the traffic load is relatively
high, the available bandwidth provided by Hyper-FleX-LION
can become insufficient to satisfy the QoS requirements of all
the demands even with flexible multi-hop routing.

VI. EXPERIMENTAL DEMONSTRATIONS

In this section, we build a small-scale all-optical DCN
testbed in Hyper-FleX-LION, and leverage DML to demon-
strate the effectiveness of our proposal experimentally.

A. Experimental Setup

We build an all-optical DCN testbed to interconnect 4 racks
(i.e., 4-Hyper-FleX-LION), whose key components and setup
are shown in Fig. 9. Here, we slice a commercial OpenFlow-
enabled packet switch (Pica8) into 4 virtual switches, each of
which is assigned a dedicated group of ports, and leverage
the virtual switches to realize 4 independent ToR switches.
Each ToR switch uses one port to connect to the server in
its rack, and connects its four other ports to the optical inter-
rack network in 4-Hyper-FleX-LION (as shown in Fig. 1(a)).
The port to the server operates in the wavelength range of
∼850 nm, while the four ports involved in the inter-rack
network operates in the C-band at ∼1535 nm. We build the
4-Hyper-FleX-LION with one 8×8 AWGR, eight 1×9 WSS’,
eight couplers, and other passive components, which are all
commercial products, according to the architecture in Fig. 1(a).

Each rack consists of a high-performance server that con-
tains four 6-core CPUs and 32 GB of memory, and we
instantiate two virtual machines (VMs) on it to emulate a rack
of two servers. All the TRXs used for the ports in the 4-Hyper-
FleX-LION have a capacity of 10 Gbps. However, we limit the
throughput of each of them as 1 Gbps to make sure that the
data traffic of DML can easily saturate a port in the 4-Hyper-
FleX-LION, for stressing the optical inter-rack network and
fully exploring its flexibility for service provisioning.

As for the DML, we leverage the famous CIFAR-10 data set,
which contains 60, 000 32×32 color pictures in 10 different
categories, and train a convolutional neural network (CNN)
with it for image classification. The CNN is architected with
the well-known ResNet model, and contains 18 layers (i.e.,
ResNet-18). Our experiments consider two commonly-used
DML architectures, i.e., Ring-AllReduce (Ring) and Parameter

12

Fig. 9. Equipments included in the 4-Hyper-FleX-LION testbed.

Server (PS) [37]. The computing nodes of a DML job in
Ring generate ring-like traffic demands, i.e., each node send-
s/receives data to/from its next/previous node. There are two
types of computing nodes involved in a DML job in PS, i.e.,
the master and worker nodes. Specifically, there is always one
master node and multiple worker nodes, and they form a tree,
where the master node is the root. Hence, we can denote a
DML job in PS that contains n worker nodes as PS(n).

In each experiment, we run the computing nodes of a DML
job in the VMs, make the control plane of the all-optical DCN
collect the bandwidth usage on each TRX with periodic polling
to get the traffic matrix D, and apply OSAR or JTRO as
the algorithm to configure the 4-Hyper-FleX-LION and route
traffic demands in it. The initial topology of the 4-Hyper-FleX-
LION is always the fully-connected one in the left part of Fig.
1(b). Two metrics are used to evaluate the performance of the
algorithms, i.e., the job completion time (JCT) and port usage.

B. Results and Discussions

We first run a DML job in Ring that consists of 4 computing
nodes, each of which is placed in a rack in the testbed. In
the experiment, we notice that the DML job generates three
types of traffic demands, forming a clockwise ring, a counter-
clockwise ring, and a sparse mesh, respectively. The demands
in the clockwise ring are for the data exchange among the
computing nodes, and their average throughput is ∼900 Mbps,
which contributes to over 94% of the bandwidth usage of the
DML job. As the processing of these demands directly affects
the JCT of the DML job, we treat them as latency-sensitive
traffic to put into Dls and set their maximum hop-count as
H = 2. On the other hand, the demands in the counter-
clockwise ring and sparse mesh are for the control signaling
among the computing nodes to maintain the operation of the
DML job, and their average throughputs are ∼30 Mbps and
∼15 Mbps, respectively. These demands can be treated as
latency-tolerant traffic, and thus we put them into Dlt.

Fig. 10 shows the 2D heat-maps for port usage, when the
4-Hyper-FleX-LION is managed by OSAR and JTRO. Here,
we denote a TRX as “x.y”, where x refers to the index of
the TRX’s ToR switch and y is the index of the TRX on
its ToR switch. For instance, “1.1” refers to the first TRX on

ToR Switch 1. In each 2D heat-map, the horizontal and vertical
axes respectively represent the TX and RX parts of TRXs. The
color of each square, which is determined by a pair of TRXs,
denotes the bandwidth usage of the traffic between them in the
corresponding direction. To clearly illustrate any bandwidth
usage within [0, 1] Gbps, the heat-maps use a nonlinear color
scale, where the mediate point is 50 Mbps and colored as red.

Fig. 10(a) indicates that OSAR uses 12 pairs of TRXs to
accommodate the traffic demands generated by the DML job in
Ring, while the heat-map in Fig. 10(b) suggests that JTRO can
consolidate the port usage much better and only uses 4 pairs
of TRXs. Meanwhile, by comparing Figs. 10(a) and 10(b), we
can see that the four brightest squares in them are the same,
but the heat-map in Fig. 10(a) contains more squares in dark
red. Specifically, in Fig. 10(a), the bright squares correspond
to the demands in the clockwise ring (Dls), while the squares
in dark red are for those generated by the control signaling
among the computing nodes (Dlt). Therefore, the results in
Fig. 10 confirm the effectiveness of JTRO. In other words, as
OSAR does not optimize the configuration of 4-Hyper-FleX-
LION and the routing of traffic demands in it jointly, more
pairs of TRXs have to be used to provision the small but
irregular traffic for the control signaling of DML.

Table III lists the results on JCT, which show that even
though JTRO uses much fewer pairs of TRXs, it achieves a
JCT that is almost the same as that from OSAR. Therefore, by
combining the results in Fig. 10 and Table III, we demonstrate
that without sacrificing the QoS of DML jobs, JTRO optimizes
the configuration of 4-Hyper-FleX-LION and the routing of
traffic demands in it jointly, and uses TRXs more efficiently.

Next, we change the DML job to use the architecture of
PS(3), i.e., one master node and three worker nodes form a
tree-type topology. Each of the nodes is placed in a rack.
Similar to the case of Ring, the demands among the nodes
are for the data exchange among the computing nodes and
the control signaling to maintain the operation of the DML
job. Our measurements show that the former type of demands
(Dls) have an average throughput is ∼300 Mbps, while the
average throughput of the latter type of demands (Dlt) is ∼15
Mbps. We still set the maximum hop-count of demands in Dls

as H = 2. Figs. 11(a) and 11(b) show the 2D heat-maps for
port usages from OSAR and JTRO, which illustrate the similar

13

(a) OSAR (b) JTRO

Fig. 10. 2D heat-maps for 4-Hyper-FleX-LION (DML in Ring).

trend as that in Fig. 10. This time, OSAR uses 6 more pairs of
TRXs than JTRO to accommodate the demands from the DML
job, still verifying the effectiveness of JTRO on consolidating
port usage. The results on JCT in Table III also confirm that
JTRO achieves almost the same JCT as OSAR.

Then, to observe the effect of H on the performance of
JTRO, we relax it for the demands in Dls (i.e., H = +∞).
Fig. 11(c) shows the 2D heat-maps of JTRO in this case. We
can see that when there is no restriction on H , JTRO only
needs to uses 4 pairs of TRXs to support the demands of
the DML job in PS(3). Specifically, JTRO configures the 4-
Hyper-FleX-LION as a ring, and the demands in Dls can be
routed through 3 hops in the worst case. The JCT in Table III
indicates that relaxing the constraint on H does degrade the
QoS of the DML job slightly, i.e., its JCT gets increased by
2.8%. This verifies the motivation of restricting the maximum
hop-count of latency-sensitive traffic demands.

(a) OSAR (b) JTRO (H = 2)

(c) JTRO (H = +∞)

Fig. 11. 2D heat-maps for 4-Hyper-FleX-LION (DML in PS(3)).

Finally, we try to run DML jobs in different architectures
in the 4-Hyper-FleX-LION simultaneously to generate a more
complicated traffic matrix and further evaluate the performance
of the algorithms. Specifically, we run one DML job in Ring
and two others in PS(2) at the same time, and still set
H = 2. The 2D heat-maps in Fig. 12 still show that JTRO

can consolidate the port usage in the 4-Hyper-FleX-LION
better than OSAR, saving 6 pairs of TRXs. Meanwhile, the
results in Table III also confirm that JTRO and OSAR achieve
almost the same JCT, where the JCT from JTRO is only
0.3% longer than that from OSAR. In all, the aforementioned
experimental results prove that JTRO can fully explore the
flexibility of Hyper-FleX-LION to efficiently support arbitrary
traffic matrices, not only effectively reducing unnecessary port
usage but also maintaining the QoS of network services well.

(a) OSAR (b) JTRO

Fig. 12. 2D heat-maps for 4-Hyper-FleX-LION (DML in Ring and PS(2)).

TABLE III
RESULTS ON AVERAGE JCT (SECONDS)

OSAR JTRO JTRO (H = +∞)
Ring 151.78 151.89 -
PS(3) 779.38 779.92 801.23

Ring & 2×PS(2) 1886.38 1892.22 -

VII. CONCLUSION

This work studies how to realize traffic-aware configuration
of all-optical DCNs in Hyper-FleX-LION. To reduce the
OPEX of such an all-optical DCN, we tried to jointly optimize
the configuration of Hyper-FleX-LION and the provisioning
schemes of demands in it, for minimizing its port usage, and
formulated an ILP model for the problem. By performing
a complexity analysis on the problem, we proved that it is
APX -hard. Therefore, we proposed a polynomial-time heuris-
tic based on iterative optimization to solve it effectively and
time-efficiently. Extensive numerical simulations confirmed
the performance of our proposed algorithm and showed that
it could outperform existing benchmarks. Finally, we built a
small-scale but real all-optical DCN testbed in Hyper-FleX-
LION, and leveraged DML as the network services in it to
demonstrate the effectiveness of our proposal experimentally.
The results indicated that our proposal could fully explore the
flexibility of Hyper-FleX-LION to efficiently support arbitrary
traffic matrices, not only effectively reducing unnecessary port
usage but also maintaining the QoS of network services well.

ACKNOWLEDGMENTS

This work was supported by NSFC project 62371432.

14

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] “Cisco Annual Internet Report (2018-2023),” Online White Report.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
html.

[3] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[4] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. of OSDI 2016, pp. 265–283, Nov. 2016.

[5] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[6] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[7] N. Bitar, S. Gringeri, and T. Xia, “Technologies and protocols for data
center and cloud networking,” IEEE Commun. Mag., vol. 51, pp. 24–31,
Sept. 2013.

[8] Z. Zhu et al., “Energy-efficient translucent optical transport networks
with mixed regenerator placement,” J. Lightw. Technol., vol. 30, pp.
3147–3156, Oct. 2012.

[9] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[10] N. Farrington et al., “Helios: a hybrid electrical/optical switch archi-
tecture for modular data centers,” ACM SIGCOMM Comput. Commun.
Rev., vol. 40, pp. 339–350, Oct. 2010.

[11] G. Wang et al., “c-Through: Part-time optics in data centers,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, pp. 327–338, Oct. 2011.

[12] J. Benjamin et al., “PULSE: Optical circuit switched data center
architecture operating at nanosecond timescales,” J. Lightw. Technol.,
vol. 38, pp. 4906–4921, May 2020.

[13] H. Ballani et al., “Sirius: A flat datacenter network with nanosecond
optical switching,” in Proc. of ACM SIGCOMM 2020, pp. 782–797, Jul.
2020.

[14] G. Liu et al., “Architecture and performance studies of 3D-Hyper-FleX-
LION for reconfigurable All-to-All HPC networks,” in Proc. of SC 2020,
pp. 1–16, Nov. 2020.

[15] S. Wang et al., “A scalable, high-performance, and fault-tolerant network
architecture for distributed machine learning,” IEEE/ACM Trans. Netw.,
vol. 28, pp. 1752–1764, Aug. 2020.

[16] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[17] S. Li, D. Hu, W. Fang, and Z. Zhu, “Source routing with protocol-
oblivious forwarding (POF) to enable efficient e-health data transfers,”
in Proc. of ICC 2016, pp. 1–6, Jun. 2016.

[18] Z. Zhu et al., “Impairment- and splitting-aware cloud-ready multicast
provisioning in elastic optical networks,” IEEE/ACM Trans. Netw.,
vol. 25, pp. 1220–1234, Apr. 2017.

[19] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[20] X. Xiao et al., “Silicon photonic Flex-LIONS for bandwidth-
reconfigurable optical interconnects,” IEEE J. Sel. Top. Quantum Elec-
tron., vol. 26, pp. 1–10, Mar./Apr. 2020.

[21] X. Xiao, R. Proietti et al., “Multi-FSR silicon photonic Flex-LIONS
module for bandwidth-reconfigurable all-to-all optical interconnects,” J.
Lightw. Technol., vol. 38, pp. 3200–3208, Jun. 2020.

[22] H. Yang, Z. Zhu, R. Proietti, and B. Yoo, “Which can accelerate
distributed machine learning faster: Hybrid optical/electrical or optical
reconfigurable DCN?” in Proc. of OFC 2022, pp. 1–3, Mar. 2022.

[23] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, pp. 92–99, Jan. 2010.

[24] Q. Li et al., “Scalable knowledge-defined orchestration for hybrid
optical/electrical datacenter networks,” J. Opt. Commun. Netw., vol. 12,
pp. A113–A122, Feb. 2020.

[25] Z. Zhao, B. Guo, Y. Shang, and S. Huang, “Hierarchical and reconfig-
urable optical/electrical interconnection network for high-performance
computing,” J. Opt. Commun. Netw., vol. 12, pp. 50–61, Mar. 2020.

[26] M. Teh, Z. Wu, and K. Bergman, “Flexspander: augmenting expander
networks in high-performance systems with optical bandwidth steering,”
J. Opt. Commun. Netw., vol. 12, pp. B44–B54, Apr. 2020.

[27] K. Chen et al., “OSA: An optical switching architecture for data cen-
ter networks with unprecedented flexibility,” IEEE/ACM Trans. Netw.,
vol. 22, pp. 498–511, Apr. 2013.

[28] Y. Tang et al., “Effectively reconfigure the optical circuit switching layer
topology in data center network by OCBridge,” J. Lightw. Technol.,
vol. 37, pp. 897–908, Feb. 2019.

[29] M. William et al., “Expanding across time to deliver bandwidth effi-
ciency and low latency,” in Proc. of NSDI 2020, pp. 1–18, Feb. 2020.

[30] S. Zhao and Z. Zhu, “On virtual network reconfiguration in hybrid
optical/electrical datacenter networks,” J. Lightw. Technol., vol. 38, pp.
6424–6436, Dec. 2020.

[31] H. Fang et al., “Predictive analytics based knowledge-defined orchestra-
tion in a hybrid optical/electrical datacenter network testbed,” J. Lightw.
Technol., vol. 37, pp. 4921–4934, Oct. 2019.

[32] C. Wang, N. Yoshikane, F. Balasis, and T. Tsuritani, “Acceleration and
efficiency warranty for distributed machine learning jobs over data center
network with optical circuit switching,” in Proc. of OFC 2021, pp. 1–3,
Jun. 2021.

[33] D. Borthakur, The Hadoop Distributed File System: Architecture and
Design. Apache Software Foundation, 2007.

[34] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,”
in Proc. of NetGames 2012, pp. 1–6, Dec. 2012.

[35] M. Besta et al., “FatPaths: Routing in supercomputers and data centers
when shortest paths fall short,” in Proc. of SC 2020, pp. 1–18, Nov.
2020.

[36] S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-programmable
data planes: Architecture, research efforts, and future directions,” Com-
put. Commun., vol. 170, pp. 109–129, Mar. 2021.

[37] J. Verbraeken et al., “A survey on distributed machine learning,”
arXiv preprint arXiv:1912.09789, Dec. 2019. [Online]. Available:
https://arxiv.org/abs/1912.09789.

[38] M. Garey and D. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York, 1979.

[39] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,” SIAM J. Comput., vol. 5, pp. 691–703,
Dec. 1976.

[40] Edge coloring. [Online]. Available: http://en.wikipedia.org/wiki/Edge
coloring.

[41] J. Misra and G. David, “A constructive proof of Vizing’s theorem,” Inf.
Process. Lett., vol. 41, pp. 131–133, Mar. 1992.

[42] Breadth-first search. [Online]. Available: https://en.wikipedia.org/wiki/
Breadth-first search.

[43] Optical Transceiver Market with COVID-19 Impact Analysis, by
Form Factor (SFF and SFP; SFP+ and SFP28; XFP; CXP),
Data Rate, Wavelength, Fiber Type, Connector, Distance, Protocol,
Application (Data Center, Enterprise), and Region - Global Forecast
to 2026. [Online]. Available: https://www.marketsandmarkets.com/
Market-Reports/optical-transceiver-market-161339599.html.

[44] Nvidia GEFORCE NOW. [Online]. Available: https://www.nvidia.com/
en-us/geforce-now/system-reqs/.

[45] How much speed do I need to stream video?
[Online]. Available: https://www.highspeedinternet.com/resources/
how-much-speed-do-i-need-to-watch-netflix-and-hulu.

[46] Amazon EC2 G4 instances. [Online]. Available: https://aws.amazon.
com/ec2/instance-types/g4/?nc1=h ls.

[47] G. Frederic, M. Joanna, and K. Truong, “Optimizing rule placement
in software-defined networks for energy-aware routing,” in Proc. of
GLOBECOM 2014, pp. 2523–2529, Dec. 2014.

[48] M. Zhang et al., “Gemini: practical reconfigurable datacenter networks
with topology and traffci engineering,” arXiv preprint arXiv:2110.08374,
Oct. 2021. [Online]. Available: http://arxiv.org/abs/2110.08374.

[49] S. Chandrasekaran, Understanding Traffic Characteristics in a Server to
Server Data Center Network. Rochester Institute of Technology, 2017.

