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Abstract—As network monitoring is crucial for ensuring the
performance of network operations, one key challenge is how to
optimize the tradeoff between its overheads and accuracy. This
paper proposes a smart reporting mechanism, namely SmtRPTG,
which continuously optimizes the scheme of network status col-
lecting and reporting to properly balance the tradeoff. SmtRPTG
estimates the distributions of status data of various types based on
sampled results, and lets network elements make local decisions
on whether and what type of status data should be reported
based on the estimations. We formulate a probabilistic model
with hidden variables, based on which an algorithm is designed to
estimate data distributions for SmtRPTG. Extensive simulations
verify the effectiveness of our proposal on balancing the tradeoff
between overheads and accuracy of network monitoring.

Index Terms—Network monitoring, Network status reporting.

I. INTRODUCTION

Since the inception of Internet, network monitoring has

been essential to facilitate effective network control and man-

agement (NC&M). Nowadays, we have witnessed dramatic

changes in the Internet landscape, due to the rise of datacenter

networks [1], the emerging of new physical layer technologies

[2–4], and the fast development of software-defined network-

ing (SDN) [5, 6] and network function virtualization (NFV)

[7, 8]. These changes have made network environments more

complex and traffic patterns more unpredictable, bringing new

challenges to network monitoring techniques as if they still

want to visualize network status changes timely and accurately.

Here, one key challenge is how to properly balance the

tradeoff between the overheads and accuracy of network

monitoring [9]. This is because highly-dynamic network en-

vironments necessitate frequent network status collecting and

reporting, while collecting network status data and reporting

it consume not only the computing and memory resources

on network elements (NEs) (e.g., switches and routers) but

also the bandwidth resources on network connections [10], no

matter whether the network monitoring uses a traditional out-

of-band method (such as SNMP [11] and Netflow [12]) or the

recently-developed in-band network telemetry (INT) [13].

Traditional out-of-band network monitoring methods like

SNMP and Netflow place an agent on each NE to collect its

status data, which is then collected by the NC&M system with

a polling-based scheme. The advance on programmable data

plane (PDP) [14] has led to the proposal of INT, which can

monitor networks in a programmable, fine-grained and real-

time manner. Specifically, with INT enabled, each NE along a

flow’s routing path collects its status during forwarding each

packet of the flow, and encodes the status data as specific INT

field(s) in the packet. Therefore, for both the traditional out-

of-band methods and INT, the key of balancing the tradeoff

between the overheads and accuracy of network monitoring is

to optimize the mechanism for network status collecting and

reporting. In other words, the mechanism should be designed

such that it only collects and reports the status data that is

truly necessary for the execution of NC&M tasks.

Previously, people have developed event-driven mechanisms

for traditional out-of-band methods, i.e., the agent on an

NE only collects and reports status data when an NC&M-

interested event has happened [10]. However, as network

environments are becoming more and more complex, it will

be increasingly difficult to predefine NC&M-interested events,

especially for soft failures [15]. On the other hand, a few selec-

tive INT schemes [16–18] proposed to reduce the overheads of

INT by sampling packets to encode INT fields. Nevertheless,

all these studies have not answered the question of how to

adjust the sampling scheme adaptively to balance the tradeoff

between the overheads and accuracy of network monitoring

on-the-fly in a highly-dynamic network environment. In [19,

20], we proposed to let NEs make local decisions on whether

and what type of INT fields should be encoded in a packet,

based on the amount of information that can be conveyed

by the INT fields. However, when and how to update the

information content of status data on each NE to capture

network status changes timely were not addressed.

Note that, in a highly-dynamic network environment, an

NE needs to adaptively update the importance of status data

(i.e., the information content that the data can convey to

NC&M tasks) to capture real-time changes in network status,

thereby optimizing the tradeoff between the overheads and

accuracy of its network monitoring. Therefore, in this work,

we propose a smart reporting mechanism, namely SmtRPTG,

which continuously optimizes the scheme of network status

collecting and reporting to only report the status data that is

truly necessary for the execution of NC&M tasks. Specifically,

SmtRPTG estimates the real distributions of status data of

various types based on sampled results, and lets NEs make

local decisions on whether and what type of status data should

be reported based on the estimations (i.e., calculating status

data’s importance accordingly). We formulate a probabilistic

model with hidden variables, based on which the problem of

distribution estimation is solved with the maximum likelihood



estimation (MLE). We also propose an algorithm to determine

when the data distributions maintained by NEs should be

updated. Extensive simulations confirm the effectiveness of our

proposal on improving the efficiency of network monitoring.

The rest of the paper is organized as follows. Section II

describes the system architecture of SmtRPTG and formulates

the probabilistic model for the samples of network status

data. In Section III, we design the algorithms for SmtRPTG

to estimate the distributions of status data and to determine

whether data reporting strategy should be updated, respective-

ly. The simulations for performance evaluation are discussed

in Section IV. Finally, we summarize the paper in Section V.

II. OPERATION PRINCIPLE

This section presents the system architecture of SmtRPTG,

explains its key problem of estimating the distributions of

status data, and derives a probabilistic model for the problem.

A. System Architecture and Problem Definition

We assume that SmtRPTG takes the generic architecture of

a network monitoring system, which consists of monitoring

agents on NEs and an NC&M system. Each monitoring agent

is responsible for collecting and reporting network status data

about its NE, while the NC&M system monitors NEs’ status in

the global manner and updates the NEs’ operation states and

network monitoring strategies accordingly. Depending on the

way that the agents report network status data to the NC&M

system, the architecture can fit in both the traditional out-of-

band methods and INT. Specifically, if the agents report status

data in the out-of-band way and count on the NC&M system

to analyze the data, SmtRPTG is utilized with traditional out-

of-band network monitoring, and if it is used with INT, status

data is encoded as INT fields in packets by NEs and then

received and analyzed by data analyzers at network edges.

Fig. 1 shows the architecture of SmtRPTG. As the network

status on an NE normally changes when it processes packets,

we assume that for a type of network status, if the NE samples

it on a per-packet basis, the network status is monitored with

the highest accuracy, which means that the sampled results

can be treated as the “ground truth” of the status data for

this type. As shown in Fig. 1, on an NE at each packet

processing, there is a corresponding ground truth data for

each network status type, denoting as {d1, d2, · · · , dN}, where

N is the number of types. The collected data is a subset of

the ground truth data (e.g., {d1, d3, d7, · · · } in Fig. 1), which

is selected by looking up the data reporting table (DRT),

to reduce the overheads of network monitoring. The DRT

contains the probability distribution of each type of network

status data, and the importance of a data sample to NC&M

tasks generally becomes larger if its value is observed with

a smaller probability [19]. As the probability distribution of

a type of network status data normally cannot be known in

advance, it should be estimated by the NC&M system during

network operation based on the collected data from the NE.

We design SmtRPTG to offload the distribution estimation

to the NC&M system because an NE (i.e., a switch/router)

Fig. 1. System architecture of SmtRPTG.

usually has limited memory and should focus its computing

power on packet processing. The NC&M system stores re-

ceived collected data in the traffic engineering database (TED),

estimates the distributions of network status data accordingly,

and updates the DRTs on NEs when necessary. As shown

in Fig. 1, each column of the DRT corresponds to a data

type, while each entry in the column denotes the probability

of a range/value. Specifically, for the i-th type, if its data

is continuous, we divide the possible values into Mi ranges:

{vi,1, vi,2, · · · , vi,Mi
}, and if the data is discrete, vi,j is just

the j-th possible value. Meanwhile, the DRT records the

probability that a data sample falls in or equals vi,j as pi,j .

B. Probabilistic Model for Distribution Estimation

We denote the collected data that the NE reports to the

NC&M system at time t as Dt (e.g., Dt = {d1, d3, d7, · · · } in

Fig. 1). Hence, over a period of processing T packets, the set

of collected data is D = {Dt, t ∈ [1, T ]}. Then, for the i-th
type, the probability distribution of its data in period T is es-

timated as Pi = {pi,1, pi,2, · · · , pi,Mi
}. The DRT summarizes

all the estimated distributions as P = {Pi, i ∈ [1, N ]}.

Note that, at each sampling time t, the data of the i-th
type can be either collected or ignored. However, Pi can

only be accurately obtained when the values of all the data

samples are known/estimated. Therefore, we define a set of

hidden variables Ht = {h1,t, h2,t, · · · , hN,t} to denote the

ranges/values that each type of data falls in or equals at

sampling time t. Specifically, if the data of the i-th type is

collected at time t (di ∈ Dt) and its value belongs to vi,j , we

get the probability distribution of hi,t as

P (hi,t = n) =

{
1, n = j,

0, otherwise.
(1)

Otherwise, if the data is not collected at time t (di /∈ Dt), the

probability distribution of hi,t becomes

P (hi,t = n) = ξi,t(n), (2)

where ξi,t(n) is the probability that needs to be estimated and
Mi∑

n=1
ξi,t(n) = 1. We can solve the distribution estimation with



maximum likelihood estimation. For the set of collected data

Dt, the probability of its occurrence under distribution P is

P (Dt | P) =

M1∑
h1,t=1

· · ·
MN∑

hN,t=1

P (Dt, h1,t, · · · , hN,t | P)

=
∑
Ht

P (Dt,Ht | P).

(3)

If we assume that the data samples of a type are independent

of each other, the likelihood function of the set of collected

data D over the entire period T can be obtained as

P (D | P) =

T∏
t=1

P (Dt | P)

=

T∏
t=1

[∑
Ht

P (Dt,Ht | P)

]
.

(4)

Hence, by leveraging MLE, we transform the distribution

estimation to finding the P that maximize the likelihood

function P (D | P), i.e., calculating the P that satisfies:

P = argmax
P

[P (D | P)] . (5)

III. ALGORITHM DESIGN

In this section, we propose an algorithm to solve Eq. (5).

A. Expectation-Maximization Process

We solve Eq. (5) by leveraging the procedure of expectation-

maximization (EM) [21], which is an iterative approach to

estimate unknown variables when the observed data is in-

complete. For a probabilistic model with hidden variables,

EM estimates its parameters by iterating the expectation step

(E-step) and maximization step (M-step) continuously until

convergence. Hence, to solve Eq. (5), we leverage EM to

maximize P (D | P) in Eq. (4) by gradually increasing its

lower bound. Specifically, by applying log(·) to P (D | P) and

utilizing the Jensen’s inequality [21], we can get the iteration

equation for the k-th iteration as

Pk = argmax
P

{
T∑

t=1

∑
Ht

P (Ht | Dt,P
k−1) log [P (Dt,Ht | P)]

}
,

(6)

where Pk denotes the parameters obtained at the k-th iteration.

We design the EM procedure to solve Eq. (5) as follows:

1) Parameters Initialization: At the beginning of a period

T , we need to initialize the to-be-estimated variables in P. If

the period is the first one, we initialize P with preset values,

which are set empirically on previous experience, and use the

P obtained in the last period, otherwise.

2) E-Step: In this step, we calculate the distribution of

hidden variables P (Ht | Dt,P
k−1) based on the current

estimations (i.e., {ξki,t(n), n ∈ [1,Mi]} for each i). As the

strategy is known, we assume that for any Ht, we can tell

whether there is a contradiction between Ht and Dt with

P (Dt,Ht | P) =

{
0, P (Ht | Dt,P

k−1) = 0,

P (Ht | P), otherwise.
(7)

Then, we can get the expectation function Q(P,Pk−1) as

Q(P,Pk−1) =

T∑
t=1

∑
Ht

{
P (Ht | Dt,P

k−1) log [P (Dt,Ht | P)]
}

=

T∑
t=1

∑
Ht

{
P (Ht | Dt,P

k−1) log[P (Ht | P)]
}

=

T∑
t=1

⎧⎨
⎩

M1∑
n1=1

· · ·
MN∑

nN=1

[
N∏
i=1

ξki,t(ni) · log
(

N∏
i=1

pi,ni

)]⎫⎬
⎭ .

(8)

3) M-Step: In this step, the updated P is determined by
maximizing the expectation function Q(P,Pk−1), which is
equivalent to solving the following optimization:

Pk = argmax
P

[
Q(P,Pk−1)

]
(9a)

s.t.

⎧⎪⎨
⎪⎩

M1∑
n1=1

· · ·
MN∑

nN=1

(
N∏
i=1

pi,ni

)
= 1,

0 ≤ pi,ni ≤ 1, ∀i.
(9b)

4) Iteration Termination Condition: The E-Step and M-

Step are executed alternatively, until one of the two termination

conditions is satisfied: 1) the number of iterations reaches a

threshold, and 2) the difference between the results obtained

in two adjacent iterations is less than a threshold.

In E-Step, to obtain the distribution of hi,t, we introduce a

set of boolean matrices G = {G1, G2, · · · , GN} to denote the

possible values/ranges of status data of different types at each

time t, where the size of Gi is T×Mi. The operation principle

of SmtRPTG ensures that the importance of uncollected data

is smaller than that of collected data, thereby for the i-th type,

if its ground truth data falling in vi,j at t is not contradictory

to the collected data in Dt, we call vi,j a possible value/range.

Hence, the value of element Gi(t, j) is

Gi(t, j) =

{
1, vi,j is a possible value/range at t,

0, otherwise.
(10)

Therefore, at the k-th iteration, we can obtain the posterior

probability ξki,t(j) as

ξki,t(j) =
Gi(t, j) · pk−1

i,j

Mi∑
j′=1

[
Gi(t, j′) · pk−1

i,j′

] . (11)

Since the problem in Eq. (9) is a convex optimization (i.e.,
Q(P,Pk−1) is a concave function), M-Step can solve it by

leveraging the Lagrange multiplier method [22]. Hence, we

can get the joint probability as

N∏
i=1

pi,ni =

T∑
t=1

[
N∏
i=1

ξki,t(ni)

]
T∑

t=1

M1∑
n1=1

· · ·
MN∑

nN=1

[
N∏
i=1

ξki,t(ni)

]

=

T∑
t=1

[
N∏
i=1

ξki,t(ni)

]
T

.

(12)



Then, we can calculate the marginal probability as

pki,j =

T∑
t=1

ξki,t(j)

T
. (13)

Algorithm 1 shows our proposed procedure for estimating

distributions of status date, which will be executed in the

NC&M system in SmtRPTG. We first initialize T , {Gi} and

{P̃i} in Lines 1-2, where {P̃i} compose the initial DRT. Then,

the while-loop of Lines 3-17 describe how SmtRPTG operates

to estimate the distributions of status date upon receiving each

set of collected data Dt. Specifically, we calculate the T -th

row of each matrix Gi in Line 5, and then check whether

the procedure of distribution estimation should be invoked in

Line 6. Here, we introduce ΔT as the shortest interval of

estimating the distributions (i.e., the estimation is performed

every time when the NC&M system has received ΔT sets

of new collected data). Lines 7-14 show the procedure of

estimating Pi with the EM approach. We execute E-Step to

get the posterior probability of hidden variables {ξki,t(j)} (Line
11) and M-Step to calculate {pki,j} (Line 12) in each iteration

until the termination condition is satisfied. Line 15 leverages

Algorithm 2 to determine whether updating the DRT on an NE

is necessary, and we will explain it in the next subsection.

Algorithm 1: Estimation of Probability Distributions

1 T = 0, G1 = G2 = · · ·GN = 0;

2 initialize P̃1, P̃2, · · · P̃N randomly;

3 while received a set of collected data Dt do
4 T = T + 1;

5 calculate the T -th row of each Gi with Eq. (10);

6 if T % ΔT = 0 then
7 for each i ∈ [1, N ] do
8 k = 0, Pk

i = P̃i;

9 while termination condition is not met do
10 k = k + 1;

11 execute E-Step with Eq. (11);

12 execute M-Step with Eqs. (12) and (13);

13 end
14 end
15 apply Algorithm 2 to tell whether updating DRT

is necessary;

16 end
17 end

B. Algorithm for Determining DRT Update Time

Note that, although Algorithm 1 re-estimates the distribu-

tions in the DRT every ΔT , the NC&M system might not need

to communicate with the NEs to update the DRTs there every

ΔT . Therefore, to save the bandwidth overheads caused by

the communications for updating DRTs, we design Algorithm
2 to adjust the interval of DRT updating adaptively according

to the latest network status.

Definition 1: We define the gap between two distributions

A = {α1, α2, · · ·αM} and B = {β1, β2, · · ·βM} as

S(A,B) = 1

M

M∑
j=1

∣∣∣∣αj − βj

αj

∣∣∣∣ , (14)

where αj and βj denote the probabilities of a same value/range

in the two distributions, respectively, i.e.,
M∑

j=1

αj =
M∑

j=1

βj = 1.

Algorithm 2: Decision Making for DRT Updating

Input: Minimum and maximum DRT update intervals

Tmin and Tmax, respectively, probability sets

{Pk
i } and {P̃i} for each i, and gap threshold η.

1 if T ≤ Tmin then
2 continue;

3 else
4 if T ≥ Tmax then
5 for each i ∈ [1, N ] do
6 update DRT on NE with current {Pk

i };

7 P̃i = Pk
i ;

8 end
9 T = 0;

10 else
11 for each i ∈ [1, N ] do
12 calculate S(Pk

i , P̃i) with Eq. (14);

13 if S(Pk
i , P̃i) ≥ η then

14 update DRT on NE with current {Pk
i };

15 P̃i = Pk
i , T = 0;

16 break;

17 end
18 end
19 end
20 end

As for the inputs of Algorithm 2, Tmin and Tmax denote the

minimum and maximum DRT update intervals, respectively,

{Pk
i } are the current estimation results of {Pi}, and {P̃i}

denote the estimations in the current DRT on the NE, and η
is the preset threshold for the gap S(Pk

i , P̃i). If the interval

since the last DRT update is less than Tmin, we will just skip

the DRT update directly (Lines 1-2). Otherwise, if the interval

has exceeded Tmax, we will update the DRT regardless of

the gap S(Pk
i , P̃i) (Lines 4-9). Finally, if the interval falls

in (Tmin, Tmax), we only update the DRT when any gap

S(Pk
i , P̃i) exceeds the threshold η (Lines 11-18), to ensure

that the difference between the distributions estimated by the

NC&M system and those in the DRT will not be significantly

large. With Algorithm 2, we can adjust the DRT update interval

adaptively, enabling more efficient network monitoring.

IV. PERFORMANCE EVALUATION

In this section, we discuss the simulations to evaluate the

performance of SmtRPTG for efficient network monitoring.

A. Convergence Performance

We first perform simulations to verify the convergence of

the EM approach used in SmtRPTG. Specifically, we leverage



Fig. 2. Convergence performance of EM approach.

Fig. 3. Example on distribution estimation with EM approach.

the gap defined in Definition 1 to compare the distributions

obtained in two adjacent iterations of the EM approach.

Definition 2: We define the average relative error (ARE)
between the results in the k-th and (k − 1)-th iterations as

δkARE =
1

N

N∑
i=1

S(Pk−1
i ,Pk

i ). (15)

We first verify that the EM approach in Algorithm 1 can

converge, by setting the status data types as N ∈ [3, 6], and for

each case, we generate the boolean matrices G randomly and

fix T = 200. The results on δkARE are shown in Fig. 2, which

indicates that the ARE of each case monotonically decreases

towards 0 as the iterations progress, verifying the convergence

of the EM approach. Meanwhile, as the results suggest that

δkARE is normally reduced to ∼10−3 after 10 iterations, we

set the iteration termination condition in Algorithm 1 as: 1)

the number of iterations reaches 10, or 2) when we have

δkARE < 10−3, in the following simulations. To further illustrate

the effectiveness of our proposed EM approach on distribution

estimation, Fig. 3 shows an example on its iterations to esti-

mate the probabilities of the ranges of a Gaussian-distributed

status data type, where we divide the possible values of the

data into 4 ranges and the estimated probabilities and ground

truths are plotted with solid and dished lines, respectively. We

can see that the estimated probabilities converges to the values

that are close to the ground truths after only ∼5 iterations.

B. Accuracy of Distribution Estimation

Next, we evaluate the accuracy of data distribution estima-

tion of SmtRPTG, by generating the ground truth data of each

type with different distributions and comparing the distribu-

tions estimated by SmtRPTG with their ground truths in terms

of the ARE in Eq. (15). The simulations set Tmin = 100,

Tmax = 200, ΔT = 10, N ∈ [3, 6] and the update threshold

(a) η = 0.2

(b) η = 0.4

Fig. 4. Estimation error of SmtRPTG.

as η ∈ {0.2, 0.4}, and consider four scenarios, each of which

generates N types of status data with a different distribution

pattern, i.e., the uniform distribution, Gaussian distribution,

Poisson distribution, and the mixture of the three distributions.

Each simulation collects 1000 sets of collected data samples.

Fig. 4 shows the average results on the estimation error (i.e.,
the ARE between the estimated distributions and their ground

truths). We can see that the estimation error of SmtRPTG does

not change significantly with the distributions of status data

types, proving that the performance of our proposal is almost

independent of status data distributions. The estimation error

increases with N , which is well expected because it is more

difficult to estimate the distributions of more types of status

data. However, in the worst case with N = 6 and η = 0.2,

the average relative error between the estimated distributions

and their ground truths is still less than 0.2, confirming the

accuracy of SmtRPTG in distribution estimation. Meanwhile,

it is interesting to observe that the estimation error becomes

smaller when we increase the update threshold η from 0.2 to

0.4. We suppose that it is because when η is larger, SmtRPTG

each time waits for a longer interval to update DRT, leading

to use more collected data for each distribution estimation.

C. Tradeoff Analysis

Finally, we check the performance of SmtRPTG on balanc-

ing the tradeoff between the overheads and accuracy of net-

work monitoring by applying it with INT1 and comparing the

scheme with two representative benchmarks, i.e. the Sel-INT

[17] and EntropyINT [19]. Here, Sel-INT samples each type

of status data with a preset sampling rate, while EntropyINT

1Note that, in addition to INT, SmatRPTG can also be used together with
a traditional out-of-band network monitoring method (e.g., SNMP).



Fig. 5. Bandwidth overheads of three network monitoring schemes.

Fig. 6. Monitoring errors of network monitoring schemes.

generally follows the same operation principle of SmtRPTG

except for that it uses a pre-estimated DRT without updating

it during operation. We assume that the three schemes use the

same packet format, where the length of an INT field that

contains a sample of one status data type is 12 Bytes and its

length increases by 4 Bytes for each additional data type.

This time, we use the traces collected in real-world networks

[23], each of which contains 5000 traffic samples, as one status

data type (i.e., Bandwidth), and assume that the other status

data types are static or slow-varying ones (e.g., Port Number
and Processing Latency [19]). We fix the number of data types

as N = 6 and each INT packet contains [1, 4] types of status

data. For fair comparisons, we set the parameters of the three

monitoring schemes to ensure that their bandwidth overheads

in the data plane are the same (as shown in Fig. 5). Then,

based on the sampled results from each scheme, we use linear

interpolation to reconstruct the trace of each data type, and

compare its distribution with that of the original trace to obtain

the relative error between them. The average relative error of

each scheme is treated as its monitoring error. As shown in Fig.

6, we can see that SmtRPTG achieves the smallest monitoring

error, verifying that it can balance the tradeoff between the

overheads and accuracy of network monitoring the best.

V. CONCLUSION

In this paper, we proposed SmtRPTG as a smart reporting

mechanism that can continuously optimize the scheme of

network status collecting and reporting to balance the tradeoff

between the overheads and accuracy of network monitoring.

Specifically, SmtRPTG estimates the distributions of status

data of various types based on sampled results, and lets NEs

make local decisions on whether and what type of status data

should be reported based on the estimations. We designed an

algorithm based on the EM approach to solve the problem of

distribution estimation for SmtRPTG. Extensive simulations

confirmed the effectiveness of our proposal and indicated that

it can balance the tradeoff between the overheads and accuracy

of network monitoring better than two existing schemes.
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