
1

On Orchestration of Segment Routing and In-band
Network Telemetry

Bofan Chen, Feng Chen, Shaofei Tang, Qitao Zheng, and Zuqing Zhu, Fellow, IEEE

Abstract—With the rapid development of programmable data
plane (PDP), both segment routing (SR) and in-band network
telemetry (INT) have attracted intensive interests. Hence, we have
previously proposed the technique of SR-INT, which explores the
benefits of SR and INT simultaneously and gets rid of the hassle
of the accumulated overheads of them. In this work, we further
expand the advantage of SR-INT by studying how to plan the SR-
INT schemes of flows at the network level to balance the tradeoff
between bandwidth usage and coverage of network monitoring,
namely, the problem of “SR-INT orchestration”. A mixed integer
linear programming model (MILP) is first formulated for the
problem, and we prove its NP-hardness. Then, to reduce the
time complexity of problem-solving, we propose a novel greedy
algorithm based on path ranking and a column generation (CG)
based approximation algorithm. Extensive simulations verify the
performance of our proposed algorithms.

Index Terms—Segment routing (SR), In-band network teleme-
try (INT), Programmable data plane (PDP), Network monitoring,
Column generation, Approximation algorithm.

I. INTRODUCTION

W ITH the momentum gained from fast-emerging inno-
vations, the Internet has been continuously reshaped

over past decades. This makes it a better place for bandwidth-
/data-intensive applications with stringent quality-of-service
(QoS) demands. Recent developments on data-centers [1, 2]
and 5G networks [3] have stimulated advances on network
architecture [4–6], physical-layer technologies [7–10], virtu-
alization approaches [11–13], etc. The flexibility brought by
these advances has made the Internet more prone to faults and
thus complicated network control and management (NC&M)
[14]. To address the unprecedented challenges faced by today’s
NC&M systems, we need more powerful and adaptive network
monitoring techniques that can visualize network operations in
realtime and detect/locate exceptions timely and accurately.

According to [15], conventional network monitoring meth-
ods can be categorized as active measurements (e.g., Ping
and Traceroute [16]), passive measurements (e.g., sFlow [17]),
and hybrid measurements (e.g., reactive measurement [18]).
However, as the data collection of these methods are normally
not in realtime, they have difficulty in satisfying the require-
ments of today’s NC&M. This restriction can be overcome by
leveraging the programmable data plane (PDP) [5, 6], which
enables network operators to define new packet fields and
customize packet processing pipelines, for facilitating novel
network functions for network monitoring and troubleshoot-
ing. For instance, in-band network telemetry (INT) [19] can

B. Chen, F. Chen, S. Tang, Q. Zheng, and Z. Zhu are with the School of
Information Science and Technology, University of Science and Technology
of China, Hefei, Anhui 230027, China (email: zqzhu@ieee.org).

be realized with PDP for monitoring networks and locating
exceptions in a realtime, fine-grained, and flow-oriented way.

Specifically, INT lets packets in a service flow carry teleme-
try instructions and data. When a packet enters the network,
the ingress PDP switch inserts an INT header in it to represent
the telemetry instruction for network monitoring. Then, as the
packet is forwarded along its routing path, each intermediate
PDP switch checks the telemetry instruction, collects the
required network status of when the packet gets processed in
the PDP switch, and encodes the status data as specific INT
fields in the INT header of the packet. Finally, before exiting
the network, the egress PDP switch extract the INT header
from the packet and send it to a data analyzer. In this way,
the data analyzer can analyze the telemetry data in the INT
header to reply how the packet got processed in the network.

Despite its promising advantages, INT also has a few
drawbacks. For instance, repeated insertion of INT fields can
make a packet excessively long and bring in noticeable band-
width overhead. Moreover, as PDP switches need to invoke
“AddField” frequently, which is a relatively costly action for
packet processing, INT can prolong packet processing latency
and affect the QoS of network services [20]. These drawbacks
make it difficult to use INT together with other emerging
techniques that also count on manipulating packet header
fields, while the benefits of INT on network monitoring and
troubleshooting cannot be fully exploited by itself. Here, one
example is segment routing (SR) [21], which is famous for
being capable of realizing adaptive routing efficiently.

SR inserts a series of SR labels in the header of each packet
at its ingress PDP switch to indicate the routing path, and
thus each subsequent PDP switch can just forward the packet
according to the right SR label (SRL). As both INT and SR
are realized with PDP switches, they can benefit each other
mutually. Specifically, INT provides rich telemetry data for
the control plane to conduct traffic engineering and failure
recovery with SR, while the control plane also leverages SR to
adjust the data collection scheme of INT for adaptive network
monitoring. Nevertheless, as INT and SR both insert a stack of
header fields in each packet, they can be incompatible because
of the maximum transmission unit (MTU).

Therefore, it is relevant to study how to maintain the
accumulated overhead of INT and SR such that they can be
used simultaneously. Note that, with SR, the routing path of a
packet is encoded as a stack of SRLs, each of which denotes
a path segment, and the last switch of each segment needs
to update the current SRL to point to the next segment [22].
Hence, if we replace an SRL with a bundle of INT fields at the
last switch of each segment, we can time-multiplex the space

2

in each packet header for INT and SR, and maintain the length
of each packet as unchanged along its routing path. This novel
scheme, namely, SR-INT [23], enables operators to explore the
mutual benefits of INT and SR, without worrying about the
violation of MTU due to their accumulated overhead.

Compared to the conventional INT, SR-INT has the restric-
tion that telemetry data can only be collected at the last switch
of each path segment. However, we hope to point out that this
restriction is actually not an issue. This is because per-switch
monitoring with INT is normally not necessary in most of
networks [24, 25], especially for those in which exceptions do
not happen frequently and widely. Meanwhile, per-switching
monitoring with INT can bring in intolerable overheads when
collecting and processing telemetry data. Therefore, the im-
pact of SR-INT’s restriction can be minimized by properly
balancing the tradeoff between coverage and overheads of
SR-INT, i.e., orchestrating the SR-INT schemes on flows to
efficiently cover “critical” switches on account of resource
constraints. Specifically, we only need to reasonably plan the
paths of the flows for SR-INT in the network, divide the paths
into suitable segments such that all or most of the “critical”
switches become last switches of the segments. Meanwhile,
the events in the switches that are not critical ones will be
missed to reduce the overheads of SR-INT. Note that, SR-INT
denotes paths with unique SRLs and instructs the switches on
each path to forward packets accordingly, which is different
from finding paths with the interior gateway protocol (IGP).

This work studies the aforementioned SR-INT orchestration
problem, i.e., how to optimize the SR-INT schemes on flows
at the network level such that under resource constraints, the
coverage of INT-based network monitoring can be maximized.
We first formulate a mixed-integer linear programming model
(MILP) to solve the problem exactly, and prove that it is NP-
hard. Next, in order to make the problem-solving much more
time-efficient, we first design a novel greedy-based heuristic
based on path ranking, and then propose an approximation
algorithm based on column generation (CG). Finally, we
conduct extensive simulations to verify the effectiveness of
our proposals. The main contributions of our work are:

• To the best of our knowledge, this is the first work on
orchestrating SR and INT for maximizing the coverage
of INT-based monitoring under resource constraints.

• We formulate an MILP model to solve the problem
exactly and prove its NP-hardness.

• We design a CG-based approximation algorithm that can
get a near-optimal solution within a reasonable number
of iterations, and theoretically analyze the algorithm’s
convergence, relative error, and time complexity.

The rest of the paper is organized as follows. Section II
surveys the related work briefly. We describe the operation
principle of SR-INT and explain the network model for SR-
INT orchestration in Section III. In Section IV, the MILP
model and the greedy-based heuristic are designed, and we
also prove the problem’s NP-hardness there. Section V ex-
plains our proposal of the CG-based approximation algorithm
and show the theoretical analysis on it. We evaluate the
performance of our proposals with extensive simulations in

Section VI. Finally, Section VII summarizes the paper.

II. RELATE WORK

SR was evolved from multi-protocol label switching (M-
PLS) [26] and has been standardized in SRv6 [22]. Specifical-
ly, SRv6 adds a segment routing header (SRH) in the extension
header of IPv6 to store a series of SRLs for specifying an
explicit routing path. Since its inception, many studies have
considered how to optimize the SR schemes of flows for
traffic engineering (TE) [27–32]. Bhatia et al. [27] respectively
proposed algorithms to solve the offline and online versions of
SR-based TE. The studies in [28, 29] formulated integer linear
programming (ILP) and MILP models, respectively, to address
SR-based TE, and they also proposed time-efficient heuristics.
The evaluation of SR-based TE with real-world topologies and
traffic demands was conducted in [30]. The authors of [31]
proposed to plan SR-based TE with a CG-based algorithm for
improved time-efficiency. For the same purpose, Pereira et al.
[32] proposed an evolutionary computation based approach.

The first specification of INT was released in [19], which
suggested to collect telemetry data on a per-switch and per-
packet basis. Based on this scheme, people have considered
how to plan the flows with INT to effectively monitor a
network, i.e., the so-called INT orchestration (INTO) problem
[33]. Specifically, the investigations on INTO can be catego-
rized into two approaches: 1) planning INT-based probe flows
for effective network monitoring [34–38] and 2) optimizing
INT-based data collection with active service flows [33, 39].

Note that, even though using probe flows for INT-based
network monitoring provides us more flexibility to solve the
INTO problem, it also introduces two drawbacks. First, as
probe flows do not experience exactly the same network state
as service flows, the network monitoring based on them might
not be accurate. Second, probe flows generate extra overheads
on bandwidth usage and packet processing, and thus they
might affect the performance of service flows. Therefore, we
will not pursue the first approach in this work. The second
approach only relies on active service flows for INT-based data
collection, but it does not address the excessive overheads of
per-switch and per-packet INT. Recently, based on the idea of
sampling switches and packets for INT-based data collection,
people have proposed a few selective INT scenarios [24, 25,
40, 41] to better balance the tradeoff between accuracy and
overheads of INT-based network monitoring. However, none
of these studies have addressed how to optimize the selective
INT schemes on service flows at the network level.

In addition to lack of work on selective INT orchestration,
existing studies did not explore the mutual benefits of INT
and SR either. Although certain studies did consider to use
INT together with SR (e.g., the NetView in [36]), they still
assumed separate packet header spaces for the stacks of SRLs
and INT fields and did not address the accumulated overheads
of INT and SR. To the best of our knowledge, our proposed
SR-INT in [23] is the only existing scheme that can explore the
mutual benefits of INT and SR and reduce their accumulated
overheads simultaneously. Specifically, in [23], we designed
the operation principle of SR-INT and realized a system

3

prototype based on PDP to demonstrate its effectiveness.
Nevertheless, the orchestration of SR-INT schemes on service
flows at the network level has not been considered in [23].

III. SR-INT ORCHESTRATION

In this section, we first explain the operation principle of
SR-INT [23], and then introduce the problem of SR-INT
orchestration at the network level.

A. Operation Principle

Fig. 1 illustrates the operation principle of SR-INT. We
make each SRL use the same length as that of an INT field
(e.g., 4 bytes [19]), and the last switch of each path segment
replaces the first SRL in the stack with an INT field that
stores the telemetry data regarding itself1. Hence, the size of
each SR-INT packet stays as unchanged when being forwarded
along its routing path, and thus the accumulated overheads of
SR and INT can be effectively reduced.

Note that, as SR-INT lets PDP switches collect and insert
telemetry data into packets instantly [23], it does not sacrifice
any accuracy of telemetry data collection. Our system proto-
type of SR-INT in [23] could collect the telemetry data about
Device ID, Output Port, Hop Latency, and Bandwidth. Here,
Device ID tells the ID of a switch, Output Port stores the
output port that a flow used on the switch, Hop Latency records
the processing time of a packet in the switch, and Bandwidth
tells the bandwidth usage on the output port used by a packet.
Therefore, SR-INT can be used to detect and locate network
exceptions such as congestion, switch misconfiguration, etc.

To assign one SR-INT scheme to a service flow, the SDN
controller first calculates the flow’s routing path according
to its source, destination and QoS requirement, then divides
the routing path into several segments according to the re-
quirements of network monitoring (i.e., each “critical” switch
on the path should terminate a segment such that telemetry
data regarding it can be collected with SR-INT), and installs
the corresponding entries of flow tables (i.e., flow entries) in
related switches. Hence, when a packet of the flow enters the
network, the ingress switch encodes an ordered list of SRLs in
it, each of which denotes a segment on its routing path. Next,
the packet is forwarded along each segment according to the
first SRL, and when it reaches the last switch of a segment, the
first SRL is popped out, which makes the next SRL the first
one, and an INT field is inserted. This procedure is repeated
until the packet arrives at its egress switch.

The egress switch duplicates the packet, forwards a copy to
one data analyzer (DA), which will extract, parse and index
the telemetry data in INT fields, and removes the INT fields
from the other copy before sending it to the destination host.
Moreover, SR-INT can also make flows share SRLs [42], and
thus the memory usage in switches for flow entries is saved. In
this work, we assume that the PDP switches are the hardware-
based ones, which can handle the operations of INT and SR

1Note that, using only one INT field to store the telemetry data regarding
a switch will not restrict the effectiveness of SR-INT. This is because if
the switch needs to collect multiple types of telemetry data that cannot be
accommodated in an INT field, we can encode the telemetry data in multiple
packets and rely on data analyzers at network edge for data aggregation [40].

at line-rates (i.e., without sacrificing any packet processing
throughput) [43, 44]. Then, the impact of SR-INT on the PDP
switches is only the memory usage of related flow entries.

B. Problem Description
When there are multiple service flows in the network, how

to plan the SR-INT schemes on them for effective network
monitoring becomes a sophisticated optimization problem.
Fig. 1 uses three flows to explain the problem of SR-INT
orchestration. The flows are Flow 1: Switch 1→Switch 4, Flow
2: Switch 1→Switch 7, and Flow 3: Switch 5→Switch 7. As
shown in Fig. 1, we assume that the critical switches are
Switches 3 and 6. Hence, the flows are routed through them
for INT-based network monitoring.

As for Flow 1, the SDN controller divides its routing path
into two segments, and thus after its ingress switch (Switch 1),
each of its packets contains a stack of two SRLs (i.e., the SR
1 and SR 3 in Fig. 1), which correspond to Segments 1→2→3
and 3→4, respectively. At Switch 2, the packet is forwarded
to the output port that goes to Switch 3, and as Switch 2 is not
the last switch of a segment, the first SRL on the packet gets
preserved. Next, at Switch 3, the SRL for Segment 1→2→3
gets replaced with an INT field that contains telemetry data
about Switch 3. Finally, Switch 4 replaces the only SRL on the
packet with an INT field about itself and duplicates the packet.
One copy is forwarded to the DA for collecting the telemetry
data on it, and another copy is sent to the destination of Flow
1 after Switch 4 removing all the INT fields.

As Flows 1 and 2 share Segment 1→2→3, Switch 1 encodes
the same first SRL (i.e., SR 1) on their packets. Hence, the two
flows share one flow entry on Switch 2, saving some memory
usage there, while their flow entries on Switches 1 and 3 are
different. The path of Flow 2 consists of Segments 1→2→3,
3→6 and 6→7, for collecting telemetry data at Switches 3, 6
and 7. Flow 3 collects telemetry data of Switches 6 and 7, and
Flows 2 and 3 share Segment 6→7 (i.e., SR 4).

Hence, to leverage SR-INT for efficient network monitoring,
one needs to optimize the SR-INT schemes on flows at the
network level. This means that under resource constraints (i.e.,
the bandwidth capacity of links and the memory space on
switches for flow entries), we need to optimize 1) the routing
paths of flows2, 2) how to partition the paths into segments,
and 3) the INT-based data collection schemes, such that the
coverage of INT-based network monitoring is maximized. We
refer to this problem as “SR-INT orchestration”. Note that, in
this work, we only solve the problem of SR-INT orchestration
for planning the SR-INT on flows once. However, in a dynamic
network environment where the traffic condition can change,
we might also need to re-plan the SR-INT schemes on flows
from time to time, which will be studied in our future work.

IV. OPTIMIZATION MODEL

In this section, we formulate the MILP for SR-INT orches-
tration, analyze the problem’s complexity, and design a greedy-
based heuristic for time-efficient problem-solving.

2We assume that the network operator can plan the routing paths of all
the flows involved in SR-INT orchestration freely. If a flow has restriction on
path calculation, the operator will exclude it from SR-INT orchestration.

4

SR1

SR

INT

SDN Controller

Data Analyzer

PDP Switch

Packet

SRL

INT Field

4

3
6

7

Flow1 Flow2 Flow3

SR4

2

SR2

1

5

Fig. 1. Operation principle of SR-INT.

A. MILP Model

Parameters:
• G(V,E): the topology of the PDP network, where V and
E are the sets of switch nodes and links, respectively.

• Bu,v: the bandwidth capacity of link (u, v) ∈ E.
• F : the set of flows that are considered for SR-INT.
• sk/dk: the source/destination node of the k-th flow in F .
• bk: the bandwidth demand3 of the k-th flow in F .
• nsv: the number of flows that have node v as sources.
• ndv: the number of flows that have node v as destinations.
• γv: the memory capacity of the PDP switch on node v

in terms of flow entries.
• W : the total bandwidth usage if all the flows in F are

assumed to use their shortest paths.
• dv: the degree of node v.
• m: the maximum degree of nodes in G(V,E).
• av: the total bandwidth capacity of links on node v.
Variables:
• xv: the boolean variable that equals 1 if the routing paths

of multiple flows separate at node v, and 0 otherwise.
• gv: the boolean variable that equals 1 if the routing paths

of multiple flows converge at node v, and 0 otherwise.
• fu,v: the boolean variable that equals 1 if link (u, v)

carries at least one flow in F , and 0 otherwise.
• cku,v: the boolean variable that equals 1 if link (u, v)

carries the k-th flow in F , and 0 otherwise.
• ωv: the real variable that denotes the importance of node
v for being monitored.

• ev: the integer variable that indicates the number of flow
entries installed on the switch on node v.

• yv: the real variable that denotes the contribution of node
v in network monitoring, i.e., yv equals ωv if node v is
selected for INT-based data collection, and 0 otherwise.

Objective:

3The bandwidth demand here already includes the overhead of SR-INT.

The optimization objective is to minimize the total band-
width usage of flows in F and maximize the total contribution
of the nodes that are monitored with SR-INT4

Minimize
α

W
·

|F |∑
k=1

∑
(u,v)∈E

cku,v · bk − β ·
∑
v∈V

yv, (1)

where α and β are the weights of the two terms in the
objective. By adjusting the proportional relation between α
and β, we can change their importance in the optimization.
Specifically, in practice, α and β should be carefully set by the
operator according to 1) what kinds of and how many of the
events of interest should be detected and correctly diagnosed,
and 2) how many SR-INT overheads can be tolerated. The
impact of the values of α and β on the performance of SR-
INT orchestration will be discussed in Section VI.

Constraints:∑
v:(u,v)∈E

cku,v−
∑

v:(v,u)∈E

ckv,u =

 1, u = sk,
−1, u = dk,
0, otherwise,

∀k ∈ [1, |F |].

(2)

Eq. (2) ensures that the routing path of each flow satisfies the
flow conservation condition.

|F |∑
k=1

cku,v · bk ≤ Bu,v, ∀(u, v) ∈ E. (3)

Eq. (3) ensures that the bandwidth consumed by the flows on
each link does not exceed the link’s capacity.

1

|F | ·
|F |∑
k=1

cku,v ≤ fu,v ≤
|F |∑
k=1

cku,v, ∀(u, v) ∈ E. (4)

Eq. (4) ensures that the value of each variable fu,v is set
correctly, that is, when there are flow(s) passing through link
(u, v), fu,v equals 1, and 0 otherwise.

4Note that, by not invoking INT data collection on all the nodes in a network
but focusing on those whose importance is relatively high, our MILP model
actually implicitly reduces the overhead/load of INT data processing on DAs.

5

xv ≤

|F | − 1 + nd
v − n

s
v +

∑
u:(v,u)∈E

fv,u −
∑

u:(u,v)∈E

fu,v

|F |
,

xv ≥
nd
v − n

s
v +

∑
u:(v,u)∈E

fv,u −
∑

u:(u,v)∈E

fu,v

|F |
,

∀v ∈ V,

(5)

gv ≤

|F | − 1 + ns
v − n

d
v +

∑
u:(u,v)∈E

fu,v −
∑

u:(v,u)∈E

fv,u

|F |
,

gv ≥
ns
v − n

d
v +

∑
u:(u,v)∈E

fu,v −
∑

u:(v,u)∈E

fv,u

|F |
,

∀v ∈ V.

(6)

Eqs. (5) and (6) ensure that the values of xv and gv are set
correctly, to make sure that the segments on the routing path
of each flow are defined correctly and the last switch on each
segment is selected by SR-INT for telemetry data collection.

ev ≤ γv,

ev ≤ nd
v + (1− gv − xv) · |F |+

∑
u:(v,u)∈E

|F |∑
k=1

ckv,u,

ev ≥ nd
v − (1− gv − xv) · |F |+

∑
u:(v,u)∈E

|F |∑
k=1

ckv,u,

ev ≤ nd
v + (gv + xv) · |F |+

∑
u:(v,u)∈E

fv,u,

ev ≥ nd
v − (gv + xv) · |F |+

∑
u:(v,u)∈E

fv,u,

∀v ∈ V.

(7)
Eq. (7) ensures that the number of flow entries installed on
each switch does not exceed its memory capacity. According
to the design in [23], the number of flow entries consumed by
SR-INT can be estimated as follows. First of all, if a flow uses
a node as its source/destination in the PDP network, one flow
entry is installed there for it. Then, if a node is the first/last
one on a path segment, each in/out flow that uses the segment
consumes a flow entry there, respectively. Finally, if a node is
an intermediate one on a segment, all the flows that uses the
segment share a flow entry there.

ωv =

(
dv + nd

v

m

)
+

∑

v:(v,u)∈E

|F |∑
k=1

ckv,u · (av +m · bk)

m · av

 , ∀v ∈ V.
(8)

Eq. (8) ensures that the importance of each node for being
monitored by SR-INT is set correctly. In this work, we assume
that the importance of a node depends on the total bandwidth
usage of and the number of the flows passing through it.

yv ≥ 0,

yv ≤ 2 +
|F |
m
· (xv + gv),

yv ≤ ωv,

yv ≥ ωv −
[
2 +
|F |
m
· (1− xv − gv)

]
,

∀v ∈ V. (9)

Eq. (9) ensures that the contribution of each node to the
network monitoring with SR-INT is determined correctly.

By solving the MILP, we can get the optimal solution of
the SR-INT orchestration problem. Specifically, the values of
variables {cku,v} determines the routing paths of flows, the
values of variables {xv}, and {gv} tell us how to partition the
paths into segments, and the values of variables {yv} define the
INT-based data collection schemes. For example, if we assume
that the path of a flow is 1→2→3→4→5 and the MILP obtains
x1 = x2 = 1 for Nodes 1 and 2 and x3 = x4 = x5 = 0 for
Nodes 3, 4 and 5, respectively, and g4 = 1 and g1 = g2 =
g3 = g5 = 0. Then, the MILP’s solution partitions the flow’s
path into three segments as 1→2, 2→3→4 and 4→5.

B. Complexity Analysis

Theorem 1: SR-INT orchestration is an NP-hard problem.
Proof: We prove the NP-hardness of SR-INT orchestra-

tion by restricting it to the generation case of a well-known
NP-hard problem [45]. We apply the restriction of β = 0,
which means that the optimization objective of the SR-INT
orchestration becomes to minimize the total bandwidth usage
of flows in F only. This makes the optimization be equivalent
to planning the flows’s paths in a resource-constrained network
such that the total bandwidth usage is minimized, which is just
the general case of the multi-commodity flow problem (MCF)
[46]. As MCF is known to be NP-hard [46], we can prove
the NP-hardness of SR-INT orchestration.

C. Greedy-based Heuristic with Path Ranking (G-PR)

Since SR-INT orchestration is an NP-hard problem, we
first resort to designing a polynomial-time heuristic to solve it
quickly. Algorithm 1 shows the detailed procedure, which is
a greedy-based heuristic with path ranking (G-PR). Lines 1-5
are for the initialization. Here, for each flow in F , we calculate
K shortest paths for it in G(V,E) and will determine the SR-
INT scheme of the flow based on these paths (Lines 2-5).
Moreover, in Line 4, we assign a weight to each flow as

ηk =
1

K
·
∑
p∈Pk

[bk · hop(p)] , (10)

where hop(·) returns the hop-count of a path. The rationale
behind Eq. (10) is to assign a larger weight to a flow that has
a larger bandwidth demand and a longer average path length.
Then, Line 6 sorts the flows in F in descending order of their
weights to ensure that the flow with a larger weight will be
handled earlier for saving bandwidth resources.

Next, the for-loop of Lines 7-19 determines the SR-INT
scheme of each flow greedily. Lines 8-9 initialize the variables
for each iteration. In Line 10, we check all the pre-calculated
paths for flow fk to select those that can satisfy the bandwidth
constraints in Eq. (3) and the switch memory constraints in Eq.
(7) and put the paths in set P ′k. The for-loop covering Lines
11-16 finds the path for flow fk, which leads to the smallest
objective, and store it in p. Lines 17-18 route flow fk over p,
and update network status and optimization objective ψ. The
time complexity of Algorithm 1 is O(K · |F | · (|V |3 + |F |)).
Specifically, we first use the Yen’s algorithm to calculate K
shortest paths for each flow in F , which has the complexity
of O(K · |F | · |V |3), then the complexity of sorting flows is

6

O(K · |F |2), and finally, the complexity of finding all the
feasible paths for a flow is O(K · |F | · |V |).

Algorithm 1: Greedy-based Heuristic (G-PR)
Input : G(V,E), {Bu,v}, {γv}, and F .
Output: objective ψ, and path set of flows P .

1 ψ = 0, P = ∅;
2 for k ∈ [1, |F |] do
3 calculate K shortest paths for the k-th flow in F ;
4 store the paths in set Pk and get weight ηk of the

flow with Eq. (10);
5 end
6 sort flows in F in descending order of their weights;
7 for k ∈ [1, |F |] do
8 P ′k = ∅, denote the k-th flow as fk;
9 ψk = +∞, p = ∅;

10 find all the paths in Pk that satisfy resource
constraints for carrying fk and store them in P ′k;

11 for each path p′ ∈ P ′k do
12 route fk over path p′ hypothetically to obtain

the new objective ψ′k with Eq. (1);
13 if ψ′k < ψk then
14 ψk = ψ′k, p = p′;
15 end
16 end
17 ψ = ψk;
18 insert p in P for fk and update network status;
19 end
20 return(ψ, P);

V. CG-BASED APPROXIMATION ALGORITHM

Both the MILP and G-PR designed in the previous section
have drawbacks, because the MILP will become intractable
for large-scale problems while G-PR cannot guarantee any
performance gap to the optimal solution. Therefore, in this
section, we leverage CG [47] to develop a time-efficient
approximation algorithm based on the MILP in Section IV-A.

A. Overall Procedure of CG-based Algorithm

In SR-INT orchestration, the essential part is to plan the
routing path of each flow. Hence, if we denote the a feasible
path of a flow as one column c and get the column set Ck for
each flow fk ∈ F , we can leverage CG to optimize the path
selection with columns in iterations to obtain a near-optimal
solution for SR-INT orchestration. We first decompose the
MILP in Section IV-A into a master problem and a pricing
problem. Then, we relax the integer variables in the master
problem to real ones and obtain a restricted master problem
(RMP). Since the optimal solution of RMP might not be that of
the original MILP, we use the pricing problem to determine
whether the objective of RMP can be reduced by selecting
columns from the master problem to add into RMP. If yes,
we add the selected columns in RMP and update the pricing
problem accordingly. These steps are repeated until we cannot
further reduce the objective of RMP. Then, the optimal solution

of RMP becomes the near-optimal solution of the original
MILP, which can ensure a bounded approximation ratio [47].

Algorithm 2 shows the overall procedure of the CG-based
approximation algorithm. Line 1 defines all the parameters for
denoting a column c, which represents a feasible routing path
of one flow. We then decompose the original MILP of SR-INT
orchestration into a master problem and a pricing problem
and formulate an MILP (MILP-MP) and an ILP (ILP-PP)
to represent them, respectively (Lines 2-3). Line 4 leverages
Algorithm 1 to solve the SR-INT orchestration for an initial
solution (i.e., a feasible routing path for each flow in F). Then,
we initialize the column set Ck for each flow fk with Lines
5-9. Specifically, for fk, we generate a column c based on its
routing path in the initial solution P0 (Line 7), and insert c
into its column set Ck (Line 8). Next, Line 10 constructs RMP,
which is the linear programming (LP) relaxation of MILP-MP,
with the column sets of all the flows in F .

After constructing RMP, we solve the problem of SR-INT
orchestration with the while-loop that covers Lines 11-23.
Line 12 solves RMP to obtain the values of primal and dual
variables, which can be done in polynomial-time [48]. Then,
the for-loop of Lines 13-18 generates a new column for each
flow in F . Specifically, Line 14 updates the ILP-PP of flow fk
based on the solution of RMP, Line 15 solves the ILP-PP to get
its objective φk, Line 16 generates a new column c based the
ILP-PP’s solution, and Line 17 inserts c into the column set of
fk (i.e., Ck). Line 19 updates RMP with the newly-generated
columns. Next, if the minimum objective of all the ILP-PPs is
non-negative, the CG cannot get a better solution with more
iterations (Lines 20-22). Finally, the near-optimal solution of
the original MILP is obtained by building an MILP-MP with
the most updated column set and solve it (Lines 23-24).

B. CG Model

Our CG model uses the following parameters to denote a
column c, which represents a feasible routing path of one flow.
• ρu,vk,c : the boolean that equals 1, if the path in column c

suggests that flow fk uses link (u, v), and 0 otherwise.
1) Master Problem: In the following, we formulate the

MILP model of the master problem (MILP-MP) based on the
solution space defined by the existing column sets ({Ck, ∀k ∈
[1, |F |]}), to optimize the routing paths of all the flows in F .

Variables:
• λk,c: the boolean variable that equals 1 if fk uses the

routing path represented by c ∈ Ck, and 0 otherwise.
• ỹv: the non-negative real variable that denotes the contri-

bution of node v in network monitoring.
• xv, gv, fu,v, ev: the variables whose definitions are the

same as those in Section IV.
Objective:
The objective is similar as that of the original MILP, but

we only consider the existing columns ({Ck, ∀k ∈ [1, |F |]}).

Minimize
α

W
·
|F |∑
k=1

∑
c∈Ck

λk,c ·

 ∑
(u,v)∈E

ρu,vk,c · bk

−β ·∑
v∈V

ỹv. (11)

Constraints:

7

Algorithm 2: CG-based Approximation Algorithm

1 define the parameters to denote a column c;
2 formulate MILP-MP for the master problem;
3 formulate ILP-PP for the pricing problem;
4 get an initial solution P0 with Algorithm 1;
5 for k ∈ [1, |F |] do
6 Ck = ∅;
7 generate a column c for flow fk based on P0;
8 insert c into Ck;
9 end

10 build the LP relaxation of MILP-MP with
{Ck, ∀k ∈ [1, |F |]} to obtain RMP;

11 while TRUE do
12 solve RMP to get values of primal/dual variables;
13 for k ∈ [1, |F |] do
14 update the ILP-PP of flow fk according to the

solution of RMP;
15 solve the ILP-PP to get its objective φk;
16 generate a new column c based on the

solution of the ILP-PP;
17 insert c into Ck;
18 end
19 update RMP with {Ck, ∀k ∈ [1, |F |]};
20 if min

k
(φk) ≥ 0 then

21 break;
22 end
23 end
24 use {Ck, ∀k ∈ [1, |F |]} to build an MILP-MP;
25 solve the MILP-MP to obtain a near-optimal solution

to the original MILP;

For the constraints are related to variables {λk,c} and {ỹv},
we define their dual variables in “()”. These dual variables
provide the reduction on the objective in Eq. (11). For those
constraints where the relation of “≤” exists, we add a minus
sign before each of their dual variables. Hence, none of the
dual variables will be negative.∑

c∈Ck

λk,c = 1, ∀k ∈ [1, |F |], (εk). (12)

Eq. (12) ensures that each flow only uses the routing path
defined in one column.

|F |∑
k=1

∑
c∈Ck

λk,c · ρu,vk,c · bk ≤ Bu,v, ∀(u, v) ∈ E, (−ξu,v). (13)

Eq. (13) ensures that the bandwidth used by the flows on a
link does not exceed the link’s bandwidth capacity.

|F |∑
k=1

∑
c∈Ck

λk,c · ρu,vk,c ≥ fu,v, (µu,v),

1

|F | ·
|F |∑
k=1

∑
c∈Ck

λk,c · ρu,vk,c ≤ fu,v, (−νu,v),

∀(u, v) ∈ E.

(14)

Eq. (14) ensures that each variable fu,v has a correct value.
xv ≤

|F | − 1 + nd
v − n

s
v +

∑
u:(v,u)∈E

fv,u −
∑

u:(u,v)∈E

fu,v

|F |
,

xv ≥
nd
v − n

s
v +

∑
u:(v,u)∈E

fv,u −
∑

u:(u,v)∈E

fu,v

|F |
,

∀v ∈ V.

(15)
gv ≤

|F | − 1 + ns
v − n

d
v +

∑
u:(u,v)∈E

fu,v −
∑

u:(v,u)∈E

fv,u

|F |
,

gv ≥
ns
v − n

d
v +

∑
u:(u,v)∈E

fu,v −
∑

u:(v,u)∈E

fv,u

|F |
,

∀v ∈ V.

(16)
Similar as Eqs. (5) and (6), Eqs. (15) and (16) ensure that the
values of xv and gv are set correctly.

ev ≤ γv,

ev ≤
|F |∑
k=1

∑
c∈Ck

∑
u:(v,u)∈E

λk,c · ρv,u
k,c + n

d
v + (1− gv − xv) · |F |, (ξv),

ev ≥
|F |∑
k=1

∑
c∈Ck

∑
u:(v,u)∈E

λk,c · ρv,u
k,c + n

d
v − (1− gv − xv) · |F |, (−ϕv),

ev ≤
∑

u:(v,u)∈E

fv,u + n
d
v + (gv + xv) · |F |,

ev ≥
∑

u:(v,u)∈E

fv,u + n
d
v − (gv + xv) · |F |,

∀v ∈ V.
(17)

Eq. (17) ensures that the number of flow entries installed on
each switch does not exceed its memory capacity.

ỹv ≥ 0,

ỹv ≤ 2 +
|F |
m
· (xv + gv),

ỹv ≤

|F |∑
k=1

∑
c∈Ck

∑
v:(v,u)∈E

[(m · bk + av) · ρv,u
k,c] · λk,c

m · av

+
dv + nd

v

m
,

(ιv),

ỹv ≥

|F |∑
k=1

∑
c∈Ck

∑
v:(v,u)∈E

[(m · bk + av) · ρv,u
k,c] · λk,c

m · av

+
dv + nd

v

m
− (2 +

|F |
m

) · (1− xv − gv),

(−κv),

∀v ∈ V.

(18)

Eq. (18) ensures that the contribution of each node to the
network monitoring with SR-INT is determined correctly. As
when building the CG model, we need to calculate the dual
variable of each constraint on variable λk,c in the master
problem, we replace the variable ωv in the original MILP with
its expression based on other variables in Eq. (18).

2) Pricing Problem: In Algorithm 2, by solving the new
ILP-PPs built in each iteration, we check whether the value of
the objective in Eq. (11) can be further reduced. If yes, there
is at least one ILP-PP whose objective value is negative (i.e.,
min
k

(φk) < 0). Then, we can generate |F | new columns based
on the solutions of the ILP-PPs and include them in {Ck,∀k ∈
[1, |F |]}. Otherwise, if the solutions of the ILP-PPs suggest
that the value of the objective in Eq. (11) cannot be reduced
any more, the iterations in the CG should be terminated. Based
on the aforementioned considerations, we formulate the ILP-
PP of each flow in F as follows.

8

Variables:
• cku,v: the boolean variable whose definition is the same

as that in Section IV.
The relation between cku,v and ρu,vk,c (i.e., the parameter for

denoting a column c) is

cku,v = ρu,vk,c , ∀k ∈ [1, |F |], (u, v) ∈ E. (19)

Eq. (19) ensure that in each iteration of the CG, the ILP-PP
of a flow only considers one routing path for it.

Objective:
According to the relation between the CG’s primal and dual

problems, the reduction on the objective due to λk,c is

α

W
·

 ∑
(u,v)∈E

bk · ρu,vk,c

− εk +
∑
v∈V

∑
(u,v)∈E

(ϕv − ξv) · ρu,vk,c

+
∑

(u,v)∈E

(
νu,v
|F | − µu,v

)
· ρu,vk,c +

∑
(u,v)∈E

ξu,v · bk · ρu,vk,c

+
β · ρu,vk,c

m · av
·
∑
v∈V

∑
v:(v,u)∈E

(m · bk + av) · (κv − ιv).

(20)

We then substitute Eq. (19) into Eq. (20) and get the objective
of the pricing problem (ILP-PP) as

Minimize φk =
∑

(u,v)∈E

(
α · bk
W

+ ζu,v + πv + υv + χu,v

)
cku,v−εk,

(21)
where we introduce the following notations to simplify it,

ζu,v =
νu,v
|F | − µu,v,

πv = ϕv − ξv,

υv =
β · (m · bk + av) · (κv − ιv)

m · av
.

χu,v = ξu,v · bk.

(22)

Constraints:
The ILP-PP reuses the constraints defined in Eqs. (2), (4)

and (7) in Section IV.
Finally, by observing the formulation of the ILP-PP, we

can see that it is equivalent to finding the least-weighted path
for one flow in a network whose links have preset positive
weights. This problem can solved exactly with the well-known
Dijkstra algorithm (i.e., a linear time algorithm). Therefore, in
Line 15 of Algorithm 2, we can use the Dijkstra algorithm to
solve the optimization described by ILP-PP time-efficiently.

C. Theoretical Analysis of CG-based Algorithm

For the master problem (MP), we generate a restricted
master problem (RMP) based on it and evaluate the reduced
costs only by implicit enumeration. Hence, as long as the
set {Ck,∀k ∈ [1, |F |]} is finite, our CG-based algorithm is
accurate [47]. Since for each flow fk ∈ F , the number of its
feasible paths in the PDP network G(V,E) is finite, we can
prove that the set {Ck,∀k ∈ [1, |F |]} is finite too. To this end,
our CG-based algorithm will use a finite number of iterations
to solve the RMP, which verifies its convergence.

In our CG-based algorithm (Algorithm 2), Lines 4-9 are for
obtaining an initial feasible solution, which can be completed

in polynomial time. Line 10 builds the LP relaxation of MILP-
MP, and it can also be accomplished in polynomial time
[48]. As for Lines 11-23, the major contributor to the time
complexity is solving the ILP-PP, but as we use the Dijkstra
algorithm for it, the ILP-PP can be solved with a complexity of
O(V 2). Hence, Lines 11-23 run in polynomial time too. Lines
24-25 need to solve the MILP-MP, which is the only part in
Algorithm 2 that might not be completed in polynomial time.
But compared to the original MILP in Section IV-A, the MILP-
MP has fewer variables and constraints, and thus it takes less
time to solve. Specifically, the MILP-MP reduces the numbers
of variables and constraints by (|V |+ |F | · (|V |2− |Ck|)) and
((|V |−1)·|F |+2·|V |2+|V |), respectively. On the other hand,
the optimization in the MILP-MP can also be solved by the
G-PR algorithm, i.e., inputting the column set Ck of each flow
fk in the MILP-MP in Algorithm 1. This can make Algorithm
2 more time-efficient but also degrade its performance.

We define the solution of the LP relaxation in Algorithm 2
and the final integer solution as zLP and z, respectively.

Theorem 2: Algorithm 2 is an approximation algorithm for
the SR-INT orchestration problem defined in Section IV-A,
and the upper bound on its relative error is z−zLP

zLP
.

Proof: We assume that the exact solution of the MILP
in Section IV-A is z∗. Since the original problem is for
minimization, the solution obtained by the MILP-MP after LP
relaxation (i.e., zLP) is the lower bound of the original prob-
lem’s solution (i.e., z∗). Meanwhile, as Algorithm 2 obtains a
feasible solution to the original problem, z provides an upper-
bound on z∗. Therefore, the upper bound on the relative error
of Algorithm 2 can be computed as

η =
z − z∗

z∗
≤ z − zLP

zLP
, (23)

which proves the approximation of Algorithm 2.

VI. PERFORMANCE EVALUATIONS

In this section, we discuss the numerical simulations for
evaluating the performance of our proposals.

A. Simulation Setup

We use two topologies for the simulations, which are the
14-node NSFNET topology [49, 50] and a random topology
(RT-50) that is generated with the GT-ITM tool [51, 52] and
consists of 50 nodes and 100 links. In each topology, we
assume that the bandwidth capacity on each link (u, v) is
evenly distributed as Bu,v ∈ [2, 3] Gbps and the switch on
each node v can allocate γv ∈ [10, 15] flow entries to SR-
INT. Note that, the resource capacities mentioned above are
just for the service flows on which will be implemented SR-
INT, while the PDP network can have much more resources for
other network services. Also, we assign a relatively small value
to the memory capacity of each switch (γv) for highlighting
the benefit brought by the flow converging in SR-INT.

The source and destination of each flow fk ∈ F are random-
ly selected from V , while its bandwidth demand follows the
distribution of practical cases [53]. Specifically, we select the
bandwidth demands from three ranges: [0, 10], [10, 100], and

9

[100, 1000] Mbps, and make sure that the ratios of the flows
in F using the ranges are 50%, 30%, and 20%, respectively.
As for the coefficients α and β in the optimization objective
in Eq. (1), we assume that they satisfy α+β = 1, and will run
simulations with different settings of α and β to study their
effects on the performance of SR-INT orchestration.

The simulations consider the MILP formulated in Section
IV-A, G-PR, and our CG-based approximation algorithm
(CG). In addition to the algorithms that are designed in this
work, we also adopt two benchmarks from the literature: the
K-MILP in [29] and INTO-CH in [33]. In the simulations,
we solve the MILPs and the CG with Gurobi toolbox [54],
and implement the other algorithms with C++. The simulation
environment is a computer with 2.10 GHz Intel Xeon Silver
4110 CPU and 64 GB memory. To ensure enough statistical
accuracy, we make the simulations average the results from 5
and 10 independent runs [55, 56] to get each data point for the
scenarios with NSFNET and RT-50 topologies, respectively.

B. Simulations with NSFNET

We first consider the NSFNET topology and have α � β
to make minimizing the total bandwidth usage of flows in
F as the primary objective. Fig. 2 shows the performance
comparisons of the algorithms, where CG-LP stands for the
result obtained by solving the RMP (i.e., the lower-bound
of the exact solution). In Fig. 2(a), we can see that when
the number of flows is 4, MILP, CG and G-PR have similar
performance. But when the number of flows increases, CG can
still approximate the optimal result provided by the MILP,
while G-PR cannot follow the trend of MILP as CG does.
Meanwhile, we can also see that the gap between CG and CG-
LP is always larger than that between CG and MILP, which
verifies CG’s relative error derived in Eq. (23). Therefore, for
the large-scale SR-INT orchestration problems that MILP has
become intractable, we can use the result from CG-LP as a
reasonably good baseline to approximate the exact solution.

When comparing the results of MILP with those of CG and
G-PR in Figs. 2(b), 2(d) and 2(e), we find that MILP consumes
less bandwidth and similar flow entries but uses a shorter
average path length. Meanwhile, it can be seen that compared
with K-MILP, the three algorithms from this work (i.e., MILP,
CG and G-PR) use less network resources. Specifically, related
to K-MILP, our algorithms reduce the bandwidth usage, the
number of flow entries, and the average path length by 16%,
14%, and 18% on average, respectively. In Fig. 2(c), we can
see that as the number of flows increases, the monitoring
coverage of SR-INT also increases, and MILP can monitor
more nodes than CG and G-PR.

Fig. 2(f) compares the average number of monitored links
from G-PR and INTO-CH. The reason why we choose these
two algorithms is because INTO-CH needs to have the routing
paths of flows predetermined and we let INTO-CH use the
routing paths obtained by G-PR. Since we have α � β (i.e.,
the primary objective is to minimize the total bandwidth usage
of flows in F), G-PR performs slightly worse than INTO-
CH in Fig. 2(f). But as the number of flows increases, the
performance gap between G-PR and INTO-CH decreases.

Next, we have β � α to change the primary objective as
maximizing the total contribution of nodes being monitored.
Fig. 3 shows the simulation results, which in general illustrate
similar trends as those in Fig. 2, i.e., MILP performs the best
and CG can approximate the results from MILP well. When
comparing the results in Figs. 2(c) and 3(c), we can see that
when the value of β is relatively large, our three algorithms
tend to monitor more nodes and can cover almost all the
nodes with only a small number of flows in F . However, as
the primary objective is to maximize the total contribution
of nodes being monitored, our algorithms use more network
resources than K-MILP in Figs. 3(b), 3(d) and 3(e). In Fig.
3(f), G-PR still monitors less links than INTO-CH, but the gap
between them is much smaller than that in Fig. 2(f).

The results in Figs. 2 and 3 indicate that the settings of α
and β can affect the performance gaps between our proposals
and the benchmarks (i.e., K-MILP and INTO-CH). When α
dominates, our proposals treat minimizing the total bandwidth
usage of flows in F as the primary objective. Hence, they can
provide shorter average path lengths per flow and consume
smaller numbers of flow entries per switch than K-MILP in
Figs. 2(d) and 2(e), respectively. However, the shorter average
path lengths per flow achieved by our proposals also led to
smaller number of monitored links than INTO-CH in Fig. 2(f).
On the other hand, when we use a large β to make maximizing
the total contribution of nodes being monitored as the primary
objective, our proposals try to cover more “critical” nodes with
path planning. Therefore, they provide longer average path
lengths per flow and consume larger numbers of flow entries
per switch than K-MILP in Figs. 3(d) and 3(e), respectively.
Meanwhile, the gaps on number of monitored links between
G-PR and INTO-CH in Fig. 3(f) also becomes smaller.

To investigate more on the effect of the ratio between
α and β on the performance of SR-INT orchestration, we
fix the number of flows as |F | = 8 and select α

β from
{ 1
125 ,

1
25 ,

1
5 , 1, 5, 25, 125}. Fig. 4 shows the simulation results.

It can be seen that the objective values from our three algo-
rithms increase with α

β and the gaps between them decrease
with α

β . In Fig. 4(b), all the algorithms use less bandwidth
when α

β is larger and there is a rapid decrease when the ratio
increases from 1 to 5. Also, it is interesting to observe that
when α is relatively small, MILP uses the most bandwidth
resources, but when α increases, MILP eventually uses the
least bandwidth resources. This clearly shows the effect of α
and β on balancing the two objectives in Eq. (1). The similar
effect can also be seen in Figs. 4(c) and 4(d).

The running time of the algorithms is listed in Table I. MILP
and K-MILP take relatively long time to run, followed by CG,
the running time of G-PR and INTO-CH is the shortest.

C. Simulations with RT-50

For the simulations with the RT-50 topology, we do not
consider MILP and K-MILP for their high time complexity.
Meanwhile, to adapt the larger number of flows in RT-50, we
increase the number of flow entries per switch as γv ∈ [15, 20].

We still consider the cases of α � β first, and show
the simulation results in Fig. 5. In Fig. 5(a), CG always

10

4 8 12 16 20 24

Number of Flows

0.7

0.8

0.9

1

1.1

O
b
je

c
ti
v
e

MILP

CG-LP

CG

G-PR

(a) Optimization objective

4 8 12 16 20 24

Number of Flows

0

50

100

150

200

250

300

350

400

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
s
a
g
e
 p

e
r

L
in

k
 (

M
b
p
s
)

MILP

CG

G-PR

K-MILP

(b) Bandwidth usage

4 8 12 16 20 24

Number of Flows

0

2

4

6

8

10

12

14

16

18

N
u
m

b
e
r

o
f
M

o
n
it
o
re

d
 N

o
d
e
s

MILP

CG

G-PR

(c) INT monitoring coverage

4 8 12 16 20 24

Number of Flows

0

1

2

3

4

5

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 p
e
r

F
lo

w

MILP

CG

G-PR

K-MILP

(d) Flow path length

4 8 12 16 20 24

Number of Flows

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 F

lo
w

 E
n
tr

ie
s
 U

s
a
g
e
 p

e
r

S
w

it
c
h MILP

CG

G-PR

K-MILP

(e) Switch memory usage

4 8 12 16 20 24

Number of Flows

0

2

4

6

8

10

12

14

16

18

20

22

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
M

o
n
it
o
re

d
 L

in
k
s

G-PR

INTO-CH

(f) Monitored links

Fig. 2. Results of simulations with NSFNET topology (α� β).

4 8 12 16 20 24

Number of Flows

-60

-50

-40

-30

-20

-10

0

O
b
je

c
ti
v
e

MILP

CG-LP

CG

G-PR

(a) Optimization objective

4 8 12 16 20 24

Number of Flows

0

100

200

300

400

500

600

700

800

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
s
a
g
e
 p

e
r

L
in

k
 (

M
b
p
s
)

MILP

CG

G-PR

K-MILP

(b) Bandwidth usage

4 8 12 16 20 24

Number of Flows

0

2

4

6

8

10

12

14

16

18

N
u
m

b
e
r

o
f
M

o
n
it
o
re

d
 N

o
d
e
s

MILP

CG

G-PR

(c) INT monitoring coverage

4 8 12 16 20 24

Number of Flows

0

2

4

6

8

10

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 p
e
r

F
lo

w

MILP

CG

G-PR

K-MILP

(d) Flow path length

4 8 12 16 20 24

Number of Flows

0

2

4

6

8

10

12

A
v
e
ra

g
e
 F

lo
w

 E
n
tr

ie
s
 U

s
a
g
e
 p

e
r

S
w

it
c
h MILP

CG

G-PR

K-MILP

(e) Switch memory usage

4 8 12 16 20 24

Number of Flows

0

2

4

6

8

10

12

14

16

18

20

22

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
M

o
n
it
o
re

d
 L

in
k
s

G-PR

INTO-CH

(f) Monitored links

Fig. 3. Results of simulations with NSFNET topology (α� β).

11

1/125 1/25 1/5 1 5 25 125

Ratio of to

-30

-25

-20

-15

-10

-5

0

5

10

O
b
je

c
ti
v
e

MILP

CG-LP

CG

G-PR

(a) Optimization objective

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

50

100

150

200

250

300

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
s
a
g
e
 p

e
r

L
in

k
 (

M
b
p
s
)

MILP

CG

G-PR

(b) Bandwidth usage

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

2

4

6

8

10

12

14

16

18

N
u
m

b
e
r

o
f
M

o
n
it
o
re

d
 N

o
d
e
s

MILP

CG

G-PR

(c) INT monitoring coverage

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

2

4

6

8

10

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 p
e
r

F
lo

w

MILP

CG

G-PR

(d) Flow path length

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 F

lo
w

 E
n
tr

ie
s
 U

s
a
g
e
 p

e
r

S
w

it
c
h MILP

CG

G-PR

(e) Switch memory usage

Fig. 4. Results of simulations with NSFNET topology (various ratios between α and β).

20 40 60 80 100 120 140

Number of Flows

0

0.2

0.4

0.6

0.8

1

O
b
je

c
ti
v
e

CG-LP

CG

G-PR

(a) Optimization objective

20 40 60 80 100 120 140

Number of Flows

0

100

200

300

400

500

600

700

800

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
s
a
g
e
 p

e
r

L
in

k
 (

M
b
p
s
)

CG

G-PR

(b) Bandwidth usage

20 40 60 80 100 120 140

Number of Flows

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
M

o
n
it
o
re

d
 N

o
d
e
s

CG

G-PR

(c) INT monitoring coverage

20 40 60 80 100 120 140

Number of Flows

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 p
e
r

F
lo

w

CG

G-PR

(d) Flow path length

20 40 60 80 100 120 140

Number of Flows

0

3

6

9

12

15

A
v
e
ra

g
e
 F

lo
w

 E
n
tr

ie
s
 U

s
a
g
e
 p

e
r

S
w

it
c
h CG

G-PR

(e) Switch memory usage

20 40 60 80 100 120 140

Number of Flows

0

20

40

60

80

100

120

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
M

o
n
it
o
re

d
 L

in
k
s

G-PR

INTO-CH

(f) Monitored links

Fig. 5. Results of simulations with RT-50 topology (α� β).

12

20 40 60 80 100 120 140

Number of Flows

-150

-120

-90

-60

-30

0

O
b
je

c
ti
v
e

CG-LP

CG

G-PR

(a) Optimization objective

20 40 60 80 100 120 140

Number of Flows

0

100

200

300

400

500

600

700

800

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
s
a
g
e
 p

e
r

L
in

k
 (

M
b
p
s
)

CG

G-PR

(b) Bandwidth usage

20 40 60 80 100 120 140

Number of Flows

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
M

o
n
it
o
re

d
 N

o
d
e
s

CG

G-PR

(c) INT monitoring coverage

20 40 60 80 100 120 140

Number of Flows

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 p
e
r

F
lo

w

CG

G-PR

(d) Flow path length

20 40 60 80 100 120 140

Number of Flows

0

3

6

9

12

15

A
v
e
ra

g
e
 F

lo
w

 E
n
tr

ie
s
 U

s
a
g
e
 p

e
r

S
w

it
c
h CG

G-PR

(e) Switch memory usage

20 40 60 80 100 120 140

Number of Flows

0

20

40

60

80

100

120

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
M

o
n
it
o
re

d
 L

in
k
s

G-PR

INTO-CH

(f) Monitored links

Fig. 6. Results of simulations with RT-50 topology (α� β).

1/125 1/25 1/5 1 5 25 125

Ratio of to

-100

-80

-60

-40

-20

0

20

40

O
b
je

c
ti
v
e

CG-LP

CG

G-PR

(a) Optimization objective

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

50

100

150

200

250

300

350

400

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
s
a
g
e
 p

e
r

L
in

k
 (

M
b
p
s
)

CG

G-PR

(b) Bandwidth usage

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f
M

o
n
it
o
re

d
 N

o
d
e
s

CG

G-PR

(c) INT monitoring coverage

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 p
e
r

F
lo

w

CG

G-PR

(d) Flow path length

1/125 1/25 1/5 1 5 25 125

Ratio of to

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 F

lo
w

 E
n
tr

ie
s
 U

s
a
g
e
 p

e
r

S
w

it
c
h CG

G-PR

(e) Switch memory usage

Fig. 7. Results of simulations with RT-50 topology (various ratios between α and β).

13

TABLE I
AVERAGE RUNNING TIME WITH NSFNET TOPOLOGY (SECONDS)

|F | 4 8 12 16 20 24

MILP 86.24 192.82 450.45 992.25 2213.67 4535.29

G-PR 0.06 0.08 0.09 0.10 0.11 0.12

CG 0.82 1.14 1.91 2.82 3.55 4.32

K-MILP 12.42 20.23 32.34 46.72 76.43 124.86

INTO-CH 0.02 0.03 0.03 0.04 0.05 0.06

outperforms G-PR but takes longer running time as indicated
in Table II. CG consumes less bandwidth in Fig. 5(b), covers
more nodes in Fig. 5(c), use a shorter average path length
in Fig. 5(d), and occupies less flow entries in Fig. 5(e).
Meanwhile, it is interesting to notice that in Fig. 5(d), the
average path length of G-PR reaches the longest when we have
|F | = 60, but as the number of flows continues to grow, the
average path length begins to decrease. This is because when
the number of flows is relatively small, G-PR makes flows with
smaller bandwidth go through longer paths to monitor more
nodes without significantly increasing the overall bandwidth
usage. However, when there are many flows in F , G-PR does
not need to make more flows go through long paths, because
most of the nodes in the PDP network have already been
monitored. This analysis can be verified by checking Fig. 5(c),
where both CG and G-PR can monitor all the nodes when we
have |F | = 120. In Fig. 5(f), the results of G-PR and INTO-
CH show similar trends as those in Fig. 2(f).

Next, we have β � α and the performance of CG, G-PR
and INTO-CH is shown in Fig. 6. By comparing Figs. 5(c) and
6(c), we can see that the numbers of nodes monitored by both
algorithms increase when the value of β increases. When the
number of flows reaches 60, CG can monitor all the nodes, but
G-PR cannot achieve this before there are 100 flows. In Fig.
6(d), both CG and G-PR use longer average paths than they do
in Fig. 5(d), respectively. Fig. 6(f) shows that G-PR provides
almost the same network monitoring capability as INTO-CH,
and when |F | increases, the number of links monitored by G-
PR and INTO-CH increases simultaneously. Fig. 7 show the
cases in which we fix |F | as 40 and change α

β . The results
show similar trends as those in Fig. 4.

TABLE II
AVERAGE RUNNING TIME WITH RT-50 TOPOLOGY (SECONDS)

|F | 20 40 60 80 100 120 140

G-PR 0.21 0.28 0.38 0.50 0.61 0.76 0.93

CG 7.23 15.91 25.77 39.14 52.75 71.14 86.26

INTO-CH 0.13 0.14 0.16 0.17 0.19 0.20 0.21

VII. CONCLUSION

In this work, we studied the problem of SR-INT orchestra-
tion, which tries to balance the tradeoff between bandwidth
usage and coverage of network monitoring by planning the
routing paths of flows and partition the paths for SR. We first
formulated an MILP to model the problem and solve it exactly.
Then, in order to reduce the time complexity of problem

solving, we designed both a greedy algorithm based on path
ranking and a CG-based approximation algorithm. Simulation
results showed that our algorithms outperformed existing SR-
based algorithm when the primary objective is to minimize
bandwidth usage, and provided similar network monitoring
coverage as the existing algorithm for INT orchestration.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China (2020YFB1806400), NSFC project
61871357, SPR Program of CAS (XDC02070300), and Fun-
damental Funds for Central Universities (WK3500000006).

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[3] P. Marsch et al., “5G radio access network architecture: Design guide-
lines and key considerations,” IEEE Commun. Mag., vol. 54, pp. 24–32,
Nov. 2016.

[4] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, pp. 87–98, Apr. 2014.

[5] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[6] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[7] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[8] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[9] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, 2013.

[10] X. Chen et al., “Deep-RMSA: A deep-reinforcement-learning routing,
modulation and spectrum assignment agent for elastic optical networks,”
in Proc. of OFC 2018, pp. 1–3, Mar. 2018.

[11] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[12] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[13] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[14] R. Proietti et al., “Experimental demonstration of machine-learning-
aided QoT estimation in multi-domain elastic optical networks with alien
wavelengths,” J. Opt. Commun. Netw., vol. 11, pp. A1–A10, Jan. 2019.

[15] A. Morton, “Active and passive metrics and methods (with hybrid
types in-between),” RFC 7799, May 2016. [Online]. Available:
https://tools.ietf.org/html/rfc7799.

[16] J. Quittek and K. White, “Definitions of managed objects for remote
Ping, Traceroute, and lookup operations,” RFC 4560, Jun. 2006.
[Online]. Available: https://tools.ietf.org/html/rfc4560.

[17] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Sept. 2001. [Online]. Available: https://tools.ietf.org/html/rfc3176.

[18] M. Allman and V. Paxson, “A reactive measurement framework,” in
Proc. of PAM 2008, pp. 1–10, Apr. 2008.

[19] C. Kim et al., “In-band network telemetry (INT),” Tech. Spec., Jun.
2016. [Online]. Available: https://p4.org/assets/INT-current-spec.pdf.

14

[20] N. Van Tu, J. Hyun, and J. Hong, “Towards ONOS-based SDN mon-
itoring using in-band network telemetry,” in Proc. of APNOMS 2017,
pp. 76–81, Sept. 2017.

[21] Segment Routing. [Online]. Available: https://www.segment-routing.
net/.

[22] SRv6. [Online]. Available: https://www.segment-routing.net/tutorials/
2017-12-05-srv6-introduction/.

[23] Q. Zheng, S. Tang, B. Chen, and Z. Zhu, “Highly-efficient and adaptive
network monitoring: When INT meets segment routing,” IEEE Trans.
Netw. Serv. Manag., vol. 18, pp. 2587–2597, Sept. 2021.

[24] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” in Proc. of CloudNet 2018, pp. 1–3, Oct. 2018.

[25] S. Tang et al., “Sel-INT: A runtime-programmable selective in-band
network telemetry system,” IEEE Trans. Netw. Serv. Manag., vol. 17,
pp. 708–721, Jun. 2020.

[26] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label
switching architecture,” RFC 3031, Jan. 2001. [Online]. Available:
https://tools.ietf.org/html/rfc3031.

[27] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized network
traffic engineering using segment routing,” in Proc. of INFOCOM 2015,
pp. 657–665, Apr. 2015.

[28] E. Moreno, A. Beghelli, and F. Cugini, “Traffic engineering in segment
routing networks,” Comput. Netw., vol. 114, pp. 23–31, Jan. 2017.

[29] X. Li and K. Yeung, “Traffic engineering in segment routing using
MILP,” in Proc. of ICC 2019, pp. 1–6, Jun. 2019.

[30] T. Schuller et al., “Traffic engineering using segment routing and
considering requirements of a carrier IP network,” IEEE/ACM Trans.
Netw., vol. 26, pp. 1851–1864, Jul. 2018.

[31] M. Jadin, F. Aubry, P. Schaus, and O. Bonaventure, “CG4SR: Near
optimal traffic engineering for segment routing with column generation,”
in Proc. of INFOCOM 2019, pp. 1333–1341, Apr. 2019.

[32] V. Pereira, M. Rocha, and P. Sousa, “Traffic engineering with three-
segments routing,” IEEE Trans. Netw. Serv. Manag., vol. 17, pp. 1896–
1909, May 2020.

[33] J. Marques, M. Luizelli, R. Filho, and L. Gaspary, “An optimization-
based approach for efficient network monitoring using in-band network
telemetry,” J. Internet Serv. Appl., vol. 10, pp. 1–20, Jun. 2019.

[34] Z. Liu et al., “NetVision: Towards network telemetry as a service,” in
Proc. of ICNP 2018, pp. 247–248, Sept. 2018.

[35] T. Pan et al., “INT-path: Towards optimal path planning for in-band
network-wide telemetry,” in Proc. of INFOCOM 2019, pp. 487–495,
May 2019.

[36] Y. Lin et al., “NetView: Towards on-demand network-wide telemetry in
the data center,” in Proc. of ICC 2020, pp. 1–6, Jun. 2020.

[37] G. Simsek, D. Ergenc, and E. Onur, “Efficient network monitoring via
in-band telemetry,” in Proc. of DRCN 2021, pp. 1–6, Apr. 2021.

[38] A. Castro et al., “Near-optimal probing planning for in-band network
telemetry,” IEEE Commun. Lett., vol. 25, pp. 1630–1634, Jan. 2021.

[39] Z. Zhang, W. Su, and L. Tan, “In-band network telemetry task orchestra-
tion based on multi-objective optimization,” in Proc. of APNOMS 2021,
pp. 354–357, Sept. 2021.

[40] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, 2019.

[41] R. Basat et al., “PINT: Probabilistic in-band network telemetry,” in Proc.
of ACM SIGCOMM 2020, pp. 662–680, Jul. 2020.

[42] D. Hu et al., “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivious forwarding
(POF),” IEEE Access, vol. 4, pp. 4707–4719, 2016.

[43] 100G in-band network telemetry with Netcope P4. [On-
line]. Available: https://www.netcope.com/Netcope/media/content/
100G-In-band-Network-Telemetry-With-Netcope-P4.pdf.

[44] Building a PoC of segment routing at 100G us-
ing FPGA Smart NIC and P4 language. [On-
line]. Available: https://www.netcope.com/Netcope/media/content/
100G-In-band-Network-Telemetry-With-Netcope-P4.pdf.

[45] M. Garey and D. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York, 1979.

[46] R. Karp, “On the computational complexity of combinatorial problems,”
Netw., vol. 5, pp. 45–68, Jan. 1975.

[47] G. Desaulniers, J. Desrosiers, and M. Solomon, Column Generation.
Springer, 2005.

[48] D. Goldfarb and M. Todd, “Modifications and implementation of the
ellipsoid algorithm for linear programming,” Math. Program., vol. 23,
pp. 1–19, 1982.

[49] W. Fang et al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[50] Q. Lv, F. Zhou, and Z. Zhu, “On the bilevel optimization to design
control plane for SDONs in consideration of planned physical-layer
attacks,” IEEE Trans. Netw. Serv. Manag., vol. 18, pp. 3221–3230, Sept.
2021.

[51] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. of INFOCOM 1996, pp. 594–602, Mar. 1996.

[52] W. Shi, Z. Zhu, M. Zhang, and N. Ansari, “On the effect of bandwidth
fragmentation on blocking probability in elastic optical networks,” IEEE
Trans. Commun., vol. 61, pp. 2970–2978, Jul. 2013.

[53] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in Proc. of IMC 2010, pp. 267–280, Nov. 2010.

[54] Gurobi. [Online]. Available: http://www.gurobi.com.
[55] M. Zhang et al., “Bandwidth defragmentation in dynamic elastic optical

networks with minimum traffic disruptions,” in Proc. of ICC 2013, pp.
3894–3898, Jun. 2013.

[56] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service
chain deployment based on affiliation-aware vNF placement,” in Proc.
of GLOBECOM 2016, pp. 1–6, Dec. 2016.

