SRv6-INT: Runtime Monitoring for Green Service
Function Chaining in BSG-MEC

Xuefeng Yan, Zichen Xu, Bofan Chen and Zuging Zhu'
School of Information Science and Technology, University of Science and Technology of China, Hefei, China
TEmail: {zqzhu}@ieee.org

Abstract—Runtime re-optimization of service function chains
(SFCs) has been considered as a must-have feature to enable cost-
effective SFC provisioning for the multi-access edge computing
(MEC) in beyond 5G (B5G) networks. Therefore, in this work, we
propose SRv6-INT, which time-multiplexes the fields of segment
routing over IPv6 (SRv6) and in-band network telemetry (INT)
in packets to monitor and adjust SFCs timely and efficiently. We
also prototype a closed-loop network control and management
(NC&M) system based on SRv6-INT to re-optimize SFC provi-
sioning in runtime for precisely balancing the tradeoff between
quality-of-service (QoS) and energy usage of SFCs. Experimental
results show that with SRv6-INT, the provisioning of SFCs can
be adjusted in runtime to save switch ports and CPU frequency,
leading to effective energy-saving without QoS violation.

Index Terms—IPv6 Segment Routing (SRv6), In-band network
telemetry (INT), Programmable data plane (PDP), Multi-access
edge computing (MEC), Service function chaining (SFC).

I. INTRODUCTION

Nowadays, technical innovations are reshaping the Internet
consistently to adapt to the ever-increasing traffic and net-
work services [1, 2] and to satisfy more stringent quality-of-
service (QoS) demands with cost-effective and energy-efficient
network technologies [3-6]. For example, the “Beyond 5G
(B5G)” initiative [7] tries to integrate the latest advances on
physical-layer techniques [8, 9], software-defined networking
(SDN), network function virtualization (NFV) [10-12], and
artificial intelligence (AI) [13, 14] to realize seamless global
coverage and interconnection. This promotes the idea of multi-
access edge computing (MEC), which can bring computing
resources closer to end users for better QoS satisfaction. By
leveraging SDN and NFV, we can simplify the network control
and management (NC&M) of B5G-MEC. Specifically, we
can decompose a network service into a few virtual network
functions (vNFs), deploy the vNFs on commodity servers, and
steer traffic through them for service function chaining (SFC).

To realize cost-efficient SFC for BSG-MEC, one needs to
orchestrate network and IT resources well. As for the network
part, segment routing (SR) [15] has been considered as an
attractive technique. Specifically, SR lets the ingress switch of
a packet flow set its routing path and operations along the path,
denote the path as an ordered list of segments, and encode the
segments as a stack of labels in the header of each packet
in the flow. Then, the switches along the path process the
packets according to the labels. In terms of standardization, SR
over IPv6 (SRv6) has been specified in [16], which leverages
the Segment Routing Header in IPv6 extension header to turn

on SRv6 on a flow and encodes a stack of Segment Lists to
indicate the flow’s routing path and how packets in it should be
processed at the end of each segment. Hence, the operator can
customize the Segment Lists of an SRv6 flow to steer it through
an SFC easily. This advantage makes SRv6 be considered as
a bearer protocol of BSG-MEC, and thus many efforts have
been devoted to implementing SRv6 in various programmable
switches, including both software and hardware ones [15].
As for the IT part of SFC provisioning, vNFs are instantiated
in virtual machines (VMs) or containers, whose deployment,
configuration, and migration can be managed by platforms like
Kubernetes (K8s) [17] and Openstack [18]. To maintain the
QoS and cost-effectiveness of an SFC, we might need to re-
optimize its provisioning scheme in runtime [11]. Specifically,
dynamic runtime re-optimization will be essential to 1) keep
the SFC’s end-to-end (E2E) latency, especially for the cases
where users can move or/and congestions can happen on
switches/servers, and 2) improve its energy-efficiency, since
dynamic traffic can cause mismatches between energy usage
and workload frequently [19] (i.e., IT resources assigned to
the SFC need to be readjusted adaptively [20]). However, dy-
namic runtime re-optimization can hardly be realized without
monitoring the operation of an SFC precisely and timely.
Recently, with the advances on programmable data plane
(PDP), new network monitoring techniques such as in-band
network telemetry (INT) [21] were developed. Specifically,
INT lets packets carry telemetry instructions and be inserted
with the fields that contain monitoring results, accomplishing
realtime, fine-grained, and flow-oriented network monitoring.
Nevertheless, excessively long packets can be generated due
to repeated insertions of INT fields, which makes INT incom-
patible with other network innovations that also need to add
fields in packets (e.g., SR), because of the restriction applied
by maximum transmission unit (MTU). To address this issue,
we proposed and demonstrated SR-INT in [22], which time-
multiplexes fields in each packet for INT and SR to not only
reduce packet length but also combine SR and INT seamlessly
for highly-efficient and adaptive network monitoring.
However, the SR-INT designed in [22] was not based on
SRv6, which makes it incompatible with practical network
systems for SFC provisioning. More importantly, the actual ef-
fects of the efficient and adaptive network monitoring achieved
by SR-INT on SFC provisioning were not demonstrated in
[22]. Hence, in this work, we design SRv6-INT, which time-
multiplexes Segment Lists for SRv6 and INT fields to monitor

the operation of an SFC timely. We also implement a closed-
loop NC&M system based on SRv6-INT to realize the dynam-
ic runtime re-optimization of SFC provisioning for precisely
balancing the tradeoff between the QoS and energy consump-
tion of SFCs. Specifically, we prototype our closed-loop design
with commodity servers, commercial PDP switches (i.e., those
based on Tofino chips), and open-source software platforms
(i.e., ONOS and K8s), and conduct experiments to evaluate our
proposal. Experimental results show that with SRv6-INT, the
provisioning schemes of SFCs can be re-optimized in runtime
to save switch ports and CPU frequency, leading to effective
energy-saving without QoS violation.

The rest of the paper is organized as follows. Section II
surveys the related work briefly. In Section III, we present our
design of the closed-loop NC&M system based on SRv6-INT.
The experimental demonstrations are discussed in Section IV.
Finally, Section V summarizes this paper.

II. RELATED WORK

The basic behaviors of SRv6 were standardized in [16],
and how to support SRv6 in 5G networks has been discussed
by 3GPP in [23]. Mayer et al. [24] tried to provision SFCs
with SRv6 and extended the implementation of SRv6 in the
Linux kernel to realize an open-source SR proxy. However,
they did not address the performance monitoring or dynamic
runtime re-optimization of SFCs. Recently, INT [21] has
attracted intensive research interests because it can realize
realtime, fine-grained, and flow-oriented network monitoring.
In [25], the authors proposed to combine SR and INT for path-
controllable network monitoring, but they just applied SR and
INT simultaneously and did not try to reduce the accumulated
overheads. To the best of our knowledge, our previous study in
[22] was the only one that tried to make SR and INT benefit
each other mutually with minimized overheads for efficient
and adaptive network monitoring. Nevertheless, in [22], we
did not design the system based on the standardized SRv6 or
demonstrate the actual effects of SR-INT on SFC provisioning.

Energy-saving has always been important for 5G/B5SG/6G,
especially for the MEC scenarios whose power budgets are
limited. The authors of [19] designed energy-aware SFC pro-
visioning schemes for Internet-of-Things (IoT) applications in
edge-cloud environments. However, the work did not address
the dynamic runtime re-optimization of SFC provisioning
based on network monitoring. The study in [20] tried to adjust
the frequency of network processors based on the status of
their line-cards (e.g., the queue lengths and port utilization)
for energy-saving. Although the proposal was about dynamic
runtime re-optimization, it was not on SFC provisioning,
and only tackled the re-optimization of switches (i.e., the
orchestration of network and IT resources was not considered).

III. SYSTEM DESIGN

In this section, we first introduce our design of the SRv6-
INT protocol, and then describe the closed-loop NC&M sys-
tem based on SRv6-INT for SFC re-optimization.

Ethernet Header
Outer IPv6 Header (Next Header = 43)

Header Extension
Length

Next Header Routing Type Segment Left

Last Entry Flags Tag

Segment List [0] (IPv6 Address, 16 bytes) Device_ID : 1 byte

JF Segment List [1] (IPv6 Address, 16 bytes) In_Time : 4 bytes

Out_Time : 4 bytes

Segment Routing Header (SRH)

Q_ID : 5 bits

r INT Metadata [0] (Replaced Segment List [SL-1]) 17 Q_Length : 19 bits

Type
0x10

Lg:géh Value = Mapinfo Reserved (4 bytes) Port_Counter : 4 bytes

Inner IPv6 Header
fe 8 bytes |

Fig. 1. Our design of the packet format for SRv6-INT.
A. Protocol Design of SRv6-INT

Fig. 1 shows the packet format that we design for SRv6-INT
based on the standardized SRv6 [16]. Specifically, we modify
the Segment Routing Header (SRH) in IPv6 extension header,
and the new/modified fields are marked in yellow in Fig. 1.
The Flags field will be filled with new values to assist the
operation of SRv6-INT. Since our SRv6-INT tries to minimize
the length of each packet, we replace a Segment List with an
INT Metadata after the packet has finished a segment on its
routing path. As shown in Fig. 1, each Segment List is in 16
bytes and stores the IPv6 address of the last node of a segment
(i.e., an endpoint), SL denotes the total number of segments
on the packet’s routing path, and the INT fields that can be
included in each INT Metadata are detailed on the right subplot
of the figure. Specifically, each INT Metadata tells the status
of the last hop of an experienced segment, and can contain 5
INT fields at most. The type-length-value (TLV) tuple in the
modified SRH defines the Mapinfo for INT data collection,
i.e., each of the last 5 bits of the Value field denotes whether
a corresponding INT field should be filled with status data.
The last 4 bytes are reserved for future use and stuff the SRH
to make its length a multiple of 8 bytes [16].

In INT Metadata, Device_ID tells the unique ID of the last
switch of a segment, In_Time/Out_Time are for the time when
the packet arrives at/leaves the switch, respectively. Q_ID and
Q Length are considered as one INT field, which denotes
the ID and length of the queue that the packet was stored
in, respectively. Port_Counter stores the instant bandwidth
usage of the packet’s flow. In the Value field, the highest used
bit is for Device_ID, and the remaining used bits follow the
aforementioned order to denote the other INT fields. Hence,
to collect all the 5 INT fields, we should set Value= 0x001f.

To support SRv6-INT, we follow the principle of SRv6
[16] to define three actions, i.e., H.Encaps.INT, End.T.INT,
and End DTINT, for modifying packets at the ingress and
endpoint switches in an SRv6 domain. Algorithm 1 shows
the operations of SRv6-INT on an ingress, endpoint and
transit switch of a packet. Lines 3-7 are for the action of
H.Encaps.INT on an ingress switch, which encapsulates the
SRH and updates outer IPv6 header accordingly. The action
of End.TINT for an endpoint switch is described with Lines
8-28. Here, we define two mechanisms: 1) the “plain SRv6-
INT” if the endpoint switch does not directly connect to one

or more VNFs (Lines 11-15), and 2) the “SRv6-INT for SFC”
otherwise (Lines 16-28). Specifically, we design the SRv6-INT
for SFC to collect the total time of a packet being processed
by switch—vNF(s)—switch and switch only, and overwrite the
In_Time/Out_Time fields in the corresponding INT Metadata
to store the results, respectively (Lines 23-25). Lines 29-32 are
for the action of End.DT.INT on the last endpoint switch on
the packet’s routing path (i.e., the egress switch). Finally, the
operation on a transit switch is described in Lines 36-37.

Algorithm 1: Operations of SRv6-INT on a Switch

1 receive a packet;

2 if SRv6-INT is enabled then

3 if the packet’s IPv6 header does not contain an SRH then

4 // ingress switch: H.Encaps.INT

5 encode SRH in IPv6 header and update outer IPv6 header;
6 set SRH.Flags as 0x80 ;

7 set SRH.Tag as 020000 or 024000 ;

8 else if SRH.Segment Left > 0 then

9 i = SRH.Segment Left;

10 // endpoint switch: End.T.INT

11 if SRH.Tag = 020000 then

12 // plain SRv6-INT

13 replace Segment List[i] with INT Metadata[SL-1-i];
14 decrease SRH.Segment Left by 1;

15 update outer IPv6 header;

16 else if SRH.Tag = 024000 then

17 // SRv6—-INT for SFC: before vNF

18 set SRH.Tag as 0z8000;

19 replace Segment List[i] with INT Metadata[SL-1-i];
20 else if SRH.Tag = 028000 then

21 // SRv6-INT for SFC: after vNF

22 set SRH.Tag as 0z4000;

23 collect packet’s ingress and egress time as ¢;, and tout;
24 INT Metadata[SL-1-i].In_Time — = toy¢;

25 INT Metadata[SL-1-i].Out_Time — = t;;

26 decrease SRH.Segment Left by 1;

27 update outer IPv6 header;

28 end

29 else

30 // endpoint switch: End.DT.INT

31 copy outer IPv6 header with SRH to data analyzer;

2 remove outer IPv6 header;

3 end

34 submit the packet to IPv6 FIB lookup;

35 end

36 /x transit switch: plain IPv6 forwarding */

37 submit the packet to IPv6 FIB lookup;

B. System Architecture

Fig. 2 shows the network architecture of BSG-MEC, which
uses SRvO-INT to monitor and re-optimize SFCs in runtime.
Specifically, we assume that the SRv6 domain of the B5G-
MEC is based on PDP switches (e.g., those with Tofino chips
that can be programmed with the P4 language). Hence, SRv6-
INT can be supported by programming the PDP switches,
and for runtime re-optimization, the switches are managed
by the SDN controller based on ONOS through P4 Runtime.
According to the definition of 3GPP [23], links within the
SRv6 domain serve as the N9 interface, each ingress switch
connects to the radio access network (RAN) through the N3
interface, and each egress switch connects the core network to
a cloud DC through the N6 interface. To provision SFCs, we
place edge-computing platforms (e.g., Linux servers) in the
SRv6 domain and attach them to the PDP switches, and vNFs

can be instantiated in the cloud DC too. With SRv6-INT, the
status of each SFC can be monitored in a realtime and fine-
grained manner within the SRv6 domain, and packets carrying
INT results will be mirrored to the data analyzer (DA) attached
to an egress switch before leaving the SRv6 domain. Then,
the DA will process the INT results and provide suggestions
to the SDN controller for re-optimizing SFC provisioning

dynamically, realizing a closed-loop NC&M system.

K8s
Worker 1

Edge-Computing Platform

' SDN Controller l Cloud DC

[} DataAnalyzer & PDP Switch

@A’) RAN

—> SFC

K8s
Master

sjodoRd PaIOLIN

Fig. 2. Network architecture of BSG-MEC with SRv6-INT for SFC.

For better resource and energy efficiency, we assume that
vNFs are instantiated in docker containers and K8s is used
to deploy and configure vNFs. Specifically, we deploy a K8s
master node in the cloud DC, and use it to manage each edge-
computing platform in the SRv6 domain as a worker node for
deploying, configuring and removing vNFs.

K8s : Master Node | [ONOS-based SDN Controller
[SFC-MM VvNFs -DCM]
Pipeline & FlowRule
Management Deployment & Management

Configuration

; Adjust
Virtual NIC VNFs Resources

i P4 Runtime

Linux Kernel
Routing Table ‘ IScaMng Module‘

L

K8s : Worker Node NIC

'y

pasies1 |

INT_Metadata

PDP Switch

End.DT.INT
H.Encaps.INT
End.T.INT

SRv6 Pipelines

L8 5
52 2
L m @
&g g
Q [=]

[Parser

Fig. 3. Functional modules and operation principle of SRv6-INT for SFC.

C. Functional Modules and Operation Principle

Fig. 3 explains the functional modules and their operation
principle for applying SRv6-INT on SFCs for dynamic run-
time re-optimization. The control plane consists of an SDN
controller for centralized NC&M and a K8s master node for
IT resource management. The ONOS-based SDN controller
manages the PDP switches in the SRv6 domain to steer SRv6-
INT traffic through the vNFs on edge-computing platforms
and cloud DC to realize SFCs. The K8s master consists of
a VNF deployment/configuration module (vNF-DCM) and a
SFC management module (SFC-MM), where the latter is for

setting up internal connections among the vNFs deployed on
one server. Each K8s worker uses a physical line-card (NIC)
to connect to a PDP switch directly. After the NIC, packets are
forwarded to the vNFs in containers according to the internal
routing table in Linux kernel, which is set up by the internal
routing module according to the configurations from the SFC-
MM in the K8s master. Note that, in K8s, each pod contains
a group of containers and is the unit for vNF deployment.
Meanwhile, we design a scaling module in each K8s worker,
which will read Out_Time and Port Counter fields in the
INT Metadata about the underlying PDP switch to get the
throughput of each input flow and determine how to correctly
adjust the IT resources (e.g., CPU cycles and memory space)
allocated to the vNFs in each pod for runtime re-optimization.
Note that the energy consumption of a server is normally
proportional to the frequency of its CPU [26]. Hence, we can
use the scaling module to adjust the CPU frequency that is
allocated to each vNF according to the vNF’s current traffic
processing throughput, such that noticeable energy saving can
be achieved without sacrificing packet processing in the vNF.
On the other hand, from the network perspective, ONOS-based
SDN controller can get the information about vINF deployment
from K8s and obtain end-to-end SFC monitoring results from
a DA in runtime. Therefore, it can leverage SRv6-INT to make
the paths of SFCs share links, grooming traffic to fewer switch

ports and keeping the remaining ports idle for energy saving.
@ Edge-Computing Platform

' SDN Controller l Cloud DC

ﬁ Data Analyzer % PDP Switch

—> SFC1
—> SFC2

@ User

g;? RAN

P~
e
"j

— K

\ Rv6 Domain =
@ k

sjosoRd PRIOLIN

Fig. 4. Experimental setup.

IV. EXPERIMENTAL DEMONSTRATIONS

In this section, we conduct experiments to demonstrate the
effectiveness of SRv6-INT on realizing green SFCs.

A. Experimental Setup

We build an experimental testbed for SRv6-INT, according
to the setup in Fig. 4. Here, we emulate the end users behind
the N3 interface with a commercial traffic generator, the edge-
computing platforms are servers, the cloud DC is emulated
with a high-performance server, and the SDN controller and
DA also run on servers. The PDP switches are the commercial
32-port ones based on Tofino chips, which are interconnected
with 40-Gbps links in the SRv6 domain. The edge-computing
platforms and cloud DC connect 10-Gbps ports to PDP switch-
es. The IPv6 addresses of vNF1, vNF2 and the cloud DC are
3002:1::al, 3002:1::a2, and 3002:1::a3, respectively.

Routing Header for IPv6 (Segment Routing)

Next Header: IPv6 (41)

Length: 7

[Length: 64 bytes]

Type: Segment Routing (4)

Segments Left: 2

First segment: 2

*Flags: 0x80

Reserved: 4000

Address[0]: 3002:1::a3

Address[1]: 3002:1::a2 [next segment]

Address[2]: 3002:1::al
0000 40 a6 b7 36 ca b8 52 54
0010 00 00 03 ca 2b 3e 20 00
0020 00 00 00 00 00 01 30 02
0030 00 00 00 00 00 al 29 07
0040 00 01 00 00 00 00 00 00
0050 100 01 00 00 00 00 00 00
0060 .00 01 00 00 00 00 00 00

0070 (00 1f100 00 00 00:60 00 00 00 03 62 3b 3f 20 00

00 b7 ad e7 86 dd 60 00
00 00 00 00 00 00 00 00
00 01 of 0

0 02 Tag 0x4000
0 02 Segment Lists
00 00 00 00 00 a2 30 02

(a) Packet at output of SW1

-Routing Header for IPv6 (Segment Routing)
Next Header: IPv6 (41)
Length: 7
[Length: 64 bytes]
Type: Segment Routing (4)
Segments Left: 2
First segment: 2
-Flags: 0x80
Reserved: 8000
Address[0]: 3002:1::a3
Address[1]: 3002:1::a2 [next segment
Address[2]: 588c:ab99:618c:ab9b:1300::79%ac
0000 46 a6 b7 36 ca b8 40 ab
0010 00 00 03 ca 2b 3c 30 62
0020 00 00 00 00 00 a2 30 02
0030 00 00 00 00 00 al 29 07
0040 00 01 00 00 00 00 00 00
0050 00 01 00 00 00 00 00 60

b7 36 do 58 86 dd 60 00
00 01 60 60 60 00 00 00

99 Flags 0x80
o3 Ta0 0x8000

0060 iab 99 61 8c ab 9b 13 00 00 00 00 00 79 ac;04 06
0070 00 1f |00 00 00 00 60 60 00 00 03 62 3b 3f 20 00

(b) Packet sent to vNFI by SW2

-Routing Header for IPv6 (Segment Routing)
Next Header: IPv6 (41)
Length: 7
[Length: 64 bytes]
Type: Segment Routing (4)
Segments Left: 1
First segment: 2
-Flags: 0x80
Reserved: 4000
Address[0]: 3002:1::a3 [next segment]
Address[1]: 3002:1::a2
Address[2]: 5800:619:2200:615:b800:0:53: fd36
0000 460 a6 b7 36 ca b8 40 a6 b7 36 dO 58 86 dd 60 00
0010 06 00 63 ca 2b 39 20 00 00 60 60 00 00 00 00 00
0020 00 00 00 00 00 01 30 62 00 01 00 00 00 00 00 00 Flags 0x80
0030 00 00 00 00 00 a2 29 07 04 01 02{8040 00! 30 02 .57 0
0040 00 01 00 00 00 00 00 00 00 00 00 a3 30 02
8100; INT_Metadata[0]

0060 {06119/122]00 06 15 ¢
0070 100 1f 00 00 60 006

Switch and VNF

WNF Process Time (ns) Process Time (ns)

(c) Packet sent to SW3 by SW2

Wireshark captures of collected packets.

Port_Counter

Fig. 5.
B. Functional Verification

As shown in Fig. 4, SFCI in our experiments uses the
path: User—SWI—SW2—vNFI—SW2—SW3—vNF2—SW3
—SW4—Cloud DC, and thus we naturally divide the path
into three segments whose endpoints are vNFI, vNF2 and the
cloud DC. According to the principle of SRv6-INT, we encode
Segment List[0] = 3002:1::a3, Segment List[1] = 3002:1::a2,
and Segment List[2] = 3002:1::al. Fig. 5 shows the Wireshark
captures of packets collected at different locations on the
SFC’s path. In Fig. 5(a), we can see that as the ingress switch
of SFCI, SWI encodes SRH correctly and sets SRH.Tag as
024000 to indicate that the SRv6-INT is for SFC. After the
packet is processed by SW2 for the first time, Fig. 5(b) indi-
cates that SW2 has replaced Segment List[2] with INT Metada-
ta[0] and updated SRH.Tag as 0x8000. Here, INT Metadata|0]
includes the status of SW2 when processing the packet, and
SRH.Tag= 028000 means that the packet’s next hop is a vNF
(i.e., vNF1). Finally, after processing the packet for the second
time, SW2 has overwritten the In_Time and Out_Time fields
in INT Metadata[0] to include the total processing time of
SW2—vNFI1—SW2 and vNF1I, respectively. The Whireshark
captures in Fig. 5 verify that the functionalities of SRv6-INT
have been implemented correctly.

N
8
©

8
»
&

~

n
8

Throughput (Gbps)
@

Throughput (Gbps)

3

°
o

0

°

76 512 1024 76

28 256 28 256

Packet Length (bytes) Packet Length (bytes)

(a) Throughput of PDP switch (b) Throughput of vNF
Fig. 6. Packet processing throughput of SRv6-INT system.

512 1024

Next, we measure the packet processing throughput of our
SRv6-INT system and show the results in Fig. 6. In Fig. 6(a),
we can see that the PDP switch’s throughput can always reach
its line-rate (i.e., 40 Gbps) regardless of the packet sizes',
which confirms that our procedure of SRv6-INT will not
degrade the packet processing performance of PDP switches.
Fig. 6(b) indicates that the throughput of a vNF is much lower,
especially for small-sized packets. This is actually expected,
since the VNF processes packets in a software system, i.e.,
its performance can be limited by a number of factors, such
as Linux kernel data path and containers resource occupation.
The results in Fig. 7 confirm the analysis above, as when the
throughput of the flow (with a packet length of 1,024 bytes)
to the VNF exceeds 3 Gbps, the processing time of the vNF
increases sharply from below 0.3 ms to more than 4.5 ms.

Fd
o

Fd

VNF Processing Time (ms)
RO -

I
o

o

0.5 1 15 2 25 3 35 4
Throughput (Gbps)

Fig. 7. Results on vNF processing time (packet length is 1,024 bytes).

C. Network Re-optimization with SRv6-INT for Green SFCs

Next, we conduct experiments to validate the capability of
SRv6-INT on network re-optimization. This time, we consider
that there are two SFCs in the testbed, as shown in Fig. 4. The
SDN controller uses SRv6-INT to monitor the total processing
latency and bandwidth usage of each SFC, and if possible, it
will instruct the SFCs to share switch ports for saving energy.
Specifically, when SFCI is active, SFC2 needs to be provi-
sioned and its service requirement is: User—vNF3—Cloud
DC. Therefore, we can set SFC2 up with any of the three
paths in Fig. 4 (i.e., Pathl, Path2 and Path3). Fig. 8(a) shows
the total power usages of the active switch ports on the three
paths, and we can see that Pathl is the most energy-efficient
one, because SFCI and SFC2 share the most switch ports
in this case. Meanwhile, the total processing time of SFC2,
which is measured with SRv6-INT, is plotted in Fig. 8(b). We
observe that selecting Pathl to provision SFC2 will not cause
intolerably-long total processing time (i.e., the total processing
time of Pathl is similar to that of Path3 and less than that of

!For fair comparison, the packet length in Fig. 6 excludes the SRH’s length.

Path?2). Therefore, provisioning SFC2 with Pathl achieves the
best tradeoff between power consumption and total processing
latency, and the experimental results in Fig. 8 verify that the
runtime monitoring achieved by SRv6-INT can facilitate the
network re-optimization for energy-efficient SFCs effectively.

g

IS
8

8
Total Processing Time (us)

Total Power Usage of Switch Ports (mW)
3 8
3

o
o

Path1 Path2 Path3 Path1
Selected Path

Path3

Path2
Selected Path

(a) Power usage of paths
Fig. 8.

(b) Total processing time of paths
Network re-optimization with SRv6-INT.

D. vNF Re-optimization with SRv6-INT for Green SFCs

Finally, we would like to verify that with our SRv6-INT,
VvNF re-optimization can also be achieved for green SFCs. In
order to assist the scaling module we designed in Fig. 3, we
first measure the processing time of a VNF that is deployed in
one K8s worker node, when the vNF has been allocated with
different CPU frequencies and is processing traffic at different
data-rates (i.e., 1~2.4 Gbps with a packet length of 1,024
bytes). The results are illustrated in Fig. 9(a), which indicates
that except for the cases of 1 and 1.2 Gbps, each data-rate
has a cut-off CPU frequency below which the processing time
of the vNF will increase dramatically. For instance, when the
VvNF is processing traffic at 1.6 Gbps (i.e., the purple line in
Fig. 9(a)), VNF processing time increases dramatically when
the VNF’s CPU frequency is below 1.3 GHz. The results in
Fig. 9(a) provide the guideline for the scaling module to adjust
the CPU frequency allocated to each vNF. Specifically, when
the scaling module gets a flow’s data-rate by checking the INT
Metadata encoded in the flow’s packets, it should make sure
that the CPU frequency allocated to the flow’s vNF is higher
than the corresponding cut-off CPU frequency.

Then, to evaluate the performance of our proposal on vNF
re-optimization, we use the traffic generator to generate a flow
with the dynamic traffic profile in Fig. 9(b) and send it to a
vNF in our testbed. Then, we consider three scenarios in the
experiments: two with fixed CPU frequencies at 1.8 and 2.2
GHz, respectively (i.e., the scaling module is turned off), and
one with the scaling module on. Fig. 9(c) shows how the CPU
frequency allocated to the vNF changes in the three scenarios.
It can be seen that when the scaling module is turned on, our
SRv6-INT system does adjust the CPU frequency to adapt to
the traffic changes. Specifically, when the traffic’s data-rate
increases gradually from 1 to 2.6 Gbps, the scaling module
increases the CPU frequency from 1.1 to 2.2 GHz adaptively.

The results about how the vNF processing time changes in
the process are plotted in Fig. 9(d). We observe that when
the CPU frequency to the vNF is fixed at 2.2 GHz, the vNF
processing time will not encounter any sharp increase in the
whole experiment. However, the vNF processing time indeed
increases gradually with the traffic’s data-rate from ~250 to

~500 ps. On the other hand, when the CPU frequency is fixed
at 1.8 GHz, the vNF processing time increases dramatically
after when the traffic’s data-rate reaches 2.2 Gbps. The vNF
processing time from the scenario with the scaling module
on (i.e., the red curves in Figs. 9(c) and 9(d)) are the most
promising, because our SRv6-INT system successfully limits
the vNF processing time within [500, 600] s by adjusting the
CPU frequency timely and adaptively. The results in Fig. 9
confirm that our proposed SRv6-INT system realizes runtime
vNF re-optimization to improve the energy-efficiency of SFCs
effectively without degrading the QoS on processing latency.

104 1.0 Gbps|
N
2
Q
E
IS
[=2]
£
73
13
8
g10°
o
'S
z
>
1 1.2 1.4 1. 1.8 2 2.2
CPU Frequency (GHz)
(a) vNF processing time versus CPU frequency
726
o
024
%22
3
e 2
o
E18
£
16
k]
o 14
©
¥ 12
s
S8 1
012345678 091011121314151617
Time (minutes)
(b) Dynamic traffic going into vNF
2.2 @ 5 [[= Scaled Frequency o
N 2 oed 3 —<—2.2 GHz
z essed ° ——1.8 GHz
C1s E ok
3 ged IS
c16 =] el
g K G 1
14 gesscsced 2
E goocd 906 e
S f 205
o 1.2¢2 —o—Scaled Frequency|| Q.
3] —<-2.2GHz m
——1.8 GHz Z 0

’ 01234567 8 91011121314151617
Time (minutes)

1
012345678 91011121314151617
Time (minutes)

(c) CPU frequency
Fig. 9. vNF re-optimization with SRv6-INT.

(d) vNF processing time

V. CONCLUSION

In this paper, we designed and experimentally demonstrated
a SRv6-INT system, which combined SRv6 and INT effec-
tively for monitoring SFCs timely and implementing closed-
loop NC&M to realize dynamic runtime re-optimization of
SFC provisioning, such that the tradeoff between the QoS and
energy consumption of SFCs can be precisely balanced. We
prototyped our design and conducted experiments to verify that
with SRv6-INT, the provisioning schemes of SFCs can be re-
optimized in runtime to save switch ports and CPU frequency,
leading to effective energy-saving without QoS violation.

ACKNOWLEDGMENTS

This work was supported by NSFC project 61871357 and
Fundamental Fund for Central Universities (WK3500000006).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 3642, Sept./Oct. 2015.

Z. Pan et al., “Advanced optical-label routing system supporting mul-
ticast, optical TTL, and multimedia applications,” J. Lightw. Technol.,
vol. 23, pp. 3270-3281, Oct. 2005.

L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836-847, Aug. 2013.

Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100-A106, Oct. 2013.

W. Shi, Z. Zhu, M. Zhang, and N. Ansari, “On the effect of bandwidth
fragmentation on blocking probability in elastic optical networks,” IEEE
Trans. Commun., vol. 61, pp. 2970-2978, Jul. 2013.

S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” /IEEE Netw., vol. 31, pp.
12-20, Mar./Apr. 2017.

K. Samdanis and T. Taleb, “The road beyond 5G: A vision and insight
of the key technologies,” IEEE Netw., vol. 34, pp. 135-141, Mar./Apr.
2020.

Z.Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15-22, Jan. 2013.

R. Proietti et al., “Experimental demonstration of machine-learning-
aided QoT estimation in multi-domain elastic optical networks with alien
wavelengths,” J. Opt. Commun. Netw., vol. 11, pp. A1-A10, Jan. 2019.
L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450—460, Feb.
2014.

J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543-553,
Sept. 2017.

L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1-9, Apr. 2014.

W. Lu et al., “Al-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86-92, Jan. 2020.

X. Chen et al., “Deep-RMSA: A deep-reinforcement-learning routing,
modulation and spectrum assignment agent for elastic optical networks,”
in Proc. of OFC 2018, pp. 1-3, Mar. 2018.

P. Ventre et al., “Segment Routing: A comprehensive survey of research
activities, standardization efforts, and implementation results,” IEEE
Commun. Surveys Tuts., vol. 23, pp. 182-221, First Quarter 2021.

C. Filsfils et al, “Segment routing over IPv6 (SRv6) network
programming,” RFC 8986, Feb. 2021. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc8986/.

Kubernetes. [Online]. Available: https://kubernetes.io/.

Openstack. [Online]. Available: https://www.openstack.org/.

N. Thanh et al., “Energy-aware service function chain embedding in
edge-cloud environments for IoT applications,” IEEE Internet Things J.,
vol. 8, pp. 13465-13486, Sept. 2021.

Q. Yu, T. Znati, and W. Yang, “Energy-efficient, QoS-aware packet
scheduling in high-speed networks,” IEEE J. Sel. Areas Commun.,
vol. 33, pp. 2789-2800, Dec. 2015.

C. Kim et al., “In-band network telemetry (INT),” Tech. Spec., Jun.
2016. [Online]. Available: https://p4.org/assets/INT-current-spec.pdf.
Q. Zheng, S. Tang, B. Chen, and Z. Zhu, “Highly-efficient and adaptive
network monitoring: When INT meets segment routing,” IEEE Trans.
Netw. Serv. Manag., vol. 18, pp. 2587-2597, Sept. 2021.

D. Chandramouli and T. Sun, “System architecture for the 5G system,”
3GPP Specification #: 23.501 (v17.4.0), Mar. 2022.

A. Mayer et al., “An efficient Linux kernel implementation of service
function chaining for legacy VNFs based on IPv6 segment routing,” in
Proc. of NetSoft 2019, pp. 1-9, Jun. 2019.

T. Pan et al., “INT-path: Towards optimal path planning for in-band
network-wide telemetry,” in Proc. of IEEE INFOCOM 2019, pp. 487—
495, Apr. 2019.

C. Claude et al., “Dynamic frequency scaling for energy consumption
reduction in synchronous distributed applications,” in Proc. of IEEE
ISPA 2014, pp. 225-230, Aug. 2014.

