
Multi-Agent DRL for Distributed Routing and Data
Scheduling in Interplanetary Networks

Xixuan Zhou, Xiaojian Tian and Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: {zqzhu}@ieee.org

Abstract—With the fast development of deep space exploration
missions, the data transfer in interplanetary networks (IPNs) is
gaining increasing attention. In this work, we propose a deep
reinforcement learning (DRL) based routing and data scheduling
approach, which leverages a multi-agent setup for distributed
operations and aims to balance the trade-off between average
end-to-end (E2E) latency and delivery ratio of interplanetary
data transfers (IP-DTs) well. Specifically, DRL agents based on
asynchronous advantage actor-critic (A3C) are deployed on each
IPN node to handle the routing and data scheduling of IP-DTs
there separately. Simulation results confirm that our proposal
can handle the routing and data scheduling of IP-DTs more
adaptively and balance the tradeoff between the delivery ratio
and average E2E latency better than the benchmarks.

Index Terms—Interplanetary network (IPN), Deep reinforce-
ment learning (DRL), Distributed routing and scheduling.

I. INTRODUCTION

Nowadays, the Internet has been developed quickly on and
around Earth with numerous new technologies [1–7], and we
are also moving toward ground-breaking deep space (DS)
explorations [8]. Therefore, the scope of the Internet should be
further expanded to include the interplanetary networks (IPNs)
[9], for enabling the communications among DS objects (e.g.,
ground stations, satellites, landers and rovers [10]). As the ex-
ample in Fig. 1 shows, IPN has several unique characteristics.
First, its topology is dynamic since the movement and shields
of DS objects and celestial bodies can make the connections
there (i.e., links in the topology) intermittent. Hence, end-to-
end routing is normally infeasible for communication sessions.
Second, as the orbits of DS objects and celestial bodies are
usually predictable, we should plan the routing and scheduling
of interplanetary data transfers (IP-DTs) accordingly, such that
each contact of an intermittent link can be effectively utilized.
Lastly, the links in an IPN can be several orders of magnitude
longer than those in the current Internet, and thus the resulting
communication latencies rule out the possibility of centralized
network control and management (NC&M).

To this end, IP-DTs can only be accomplished with the
store-carry-forward (SCF) scheme for delay tolerant networks
(DTNs) [11]. Specifically, each source encodes outgoing data
as bundles, each of which is an atomic unit for IP-DTs and
contains sufficient information for being routed and driving the
corresponding application running on its destination to make
progress [12]. However, existing bundle-based techniques for
IP-DTs are still in the early stage, and might have diffi-

Fig. 1. An example on IPN.

culty serving future IPNs, which will have larger topology
scales, heavier traffic loads, and more stringent quality-of-
service (QoS) demands. The national aeronautics and space
administration (NASA) has proposed the contact graph routing
(CGR) algorithm [13], which routes IP-DTs according to the
contact plan of each link by assuming that a bundle can be sent
immediately upon contact. Nevertheless, as CGR ignores the
queuing delay of bundles, it becomes ineffective in a heavy-
loaded IPN. Hence, CGR was enhanced to CGR-ETO [13],
which considers the estimated queuing delay of bundles when
choosing routing paths for them. However, it assumes that
bundles are processed in the first-in-first-out (FIFO) manner,
and overlooks bundle-level scheduling in queues, limiting the
performance of IP-DTs with various QoS demands.

Bundle-level scheduling was first tackled in [14], where the
authors designed the multi-attribute routing and scheduling
(MARS) algorithm that can outperform CGR and CGR-ETO
in terms of bundle delivery ratio and end-to-end (E2E) IP-
DT latency. Nevertheless, MARS only schedules the bundles
in each queue in a greedy way but does not jointly optimize
the scheduling of bundles in multiple queues on an IPN node.
Note that, more than one queue can be allocated on each node
for different next hops, network services, and QoS demands in
future IPNs. In [15], we leveraged Lyapunov optimization to
propose a distributed online algorithm for optimizing bundle
scheduling in queues on each node jointly, and demonstrated
that it can achieve better IP-DT performance than MARS.

Considering the complexity of routing and data scheduling
in IPNs with a time-varying topology, we noticed that the
approach developed in [15] still cannot solve it exactly. On the
other hand, people have tried to improve CGR with machine
learning (ML) in [16], and shown that ML-based Q-routing
can effectively reduce the average E2E latency of IP-DTs.979-8-3503-1090-0/23/$31.00 © 2023 IEEE

Although the ML-based scheme was promising, it was still
under the framework of CGR and thus did not address bundle-
level scheduling. Therefore, in this work, we propose a multi-
agent deep reinforcement learning (DRL) based algorithm to
further improve the performance of distributed routing and
data scheduling in IPNs. Specifically, each DRL agent is based
on the asynchronous advantage actor-critic (A3C) framework
[17, 18], and there are two types of DRL agents running on
an IPN node to make intelligent decisions on how to route
and schedule bundles there, respectively. Extensive simulations
verify that our proposal can accomplish a better tradeoff
between the average E2E latency and delivery ratio of bundles,
and outperforms the existing approaches.

The rest of the paper is structured as follows. Section II
elaborates on the network model and defines the distributed
routing and data scheduling of IP-DTs considered in this work.
We propose our multi-agent DRL based algorithm in Section
III. The performance evaluations are discussed in Section IV.
Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

As the topology of each IPN is time-varying but predictable,
we model it as a temporal graph Gt (ℵ, ξt), where ℵ denotes
the set of existing nodes and ξt includes all the temporal links
at time t. Note that, the IPN is a discrete-time system that
operates on time-slots (TS’), each of which lasts for ∆t. Then,
the system time becomes t = 0,∆t, 2∆t, · · · , which can be
normalized as t ∈ T = {0, 1, 2, · · · } for simplification [15].
Each bundle B is the atomic unit for IP-DTs, and it should be
delivered to its destination before a deadline. Otherwise, its
delivery is failed. Therefore, the routing and data scheduling
of bundles should consider two performance metrics, i.e., the
delivery ratio and average E2E latency. The major notations
that we use in this paper are listed in Table I.

B. Multi-Agent DRL-based Routing and Data Scheduling

Algorithm 1 shows the overall procedure of our proposed
multi-agent DRL-based routing and data scheduling algorithm
for IP-DTs. As the IPN is a discrete-time system, the outer
for-loop of Lines 1-32 iterates through each TS t. Lines 2-3
are for the global initialization at the beginning of each TS
t, where we update the time-varying topology Gt (ℵ, ξt) and
insert all the newly generated/received bundles on each node
v in its local queue Qv . Note that, similar to our work in
[15], we allocate two types of queues on each node v, which
are 1) a single queue Qv that works as the first buffer of
outgoing bundles, including the bundles generated locally and
those using v as an intermediate node, and 2) a set of outgoing
queues {Qv,u}, each of which stores the bundles that will
be transmitted on link v→u during future contacts. Next, the
three for-loops that cover Lines 4-12, Lines 13-19, and Lines
20-30, respectively, handle the routing and data scheduling on
each node and the IP-DT on each link. It can be seen that
the operation on each node is actually independent, and thus
Algorithm 1 is a distributed algorithm.

TABLE I
MAJOR NOTATIONS

Notation Description

v ∈ ℵ A node in the IPN

ev,u ∈ ξt Temporal link v→u (v, u ∈ ℵ) at time t ∈ T

rv,u Capacity of ev,u for v→u

Bs, Bd Source and destination of bundle B

Bdead, Bsize Deadline and data size of bundle B

Bttl Current time-to-live of bundle B

Bproj Projected delivery time of bundle B

Bpath Current routing path of bundle B

Bmode Flag to tell whether use Algorithm 2 on bundle B

Qv Local queue on node v to buffer outgoing bundles

Qv,u Outgoing queue on node v for v→u

Lv,u Current length of Qv,u

Ta
v,u Time needed to transfer data buffered in Qv,u

Tv,B Queueing delay of bundle B on node v{
SM
B , AM

B , RM
B

}
Elements of DRL agent for routing bundle B{

SD
v,u, A

D
v,u, R

D
v,u

}
Elements of DRL agent for scheduling bundles in Qv,u

The for-loop of Lines 4-12 goes through each node and
checks each bundle B ∈ Qv with Bmode = 0. Here, we in-
troduce a flag Bmode to determine whether DRL-based routing
(i.e., Algorithm 2) should be applied on bundle B on node v,
and its default value is Bmode = 0, which means that Algorithm
2 is not needed. Hence, Lines 6-8 calculate a routing path
for B with CGR if its path has not been determined yet, and
Lines 9-10 move bundles from Qv to {Qv,u} according to their
next hops. Then, the for-loop of Lines 13-19 processes each
bundle B ∈ Qv with Bmode = 1 on each node v, where the
routing path of B is updated with Algorithm 2. Next, the data
transmission on each link is handled by the for-loop of Lines
20-30. Specifically, if a link ev,u is in contact and can be used
for IP-DTs, we order the bundles in Qv,u with DRL-based data
scheduling (i.e., Algorithm 3) and then transmit them in the
scheduled order (Lines 21-23). Otherwise, we check each Qv,u
on node v. If it is not empty, the bundles in it are those that
were scheduled but missed their transmission opportunities.
Therefore, we set Bmode = 1 to invoke rerouting for them at
TS t+ 1 (Lines 25-28). Finally, Line 31 removes the expired
bundles (i.e., those whose deadlines are before or at t) in all
the queues in the IPN before proceeding to the next TS.

III. DRL-BASED ROUTING AND DATA SCHEDULING
ALGORITHMS

A. Background of A3C-based DRL Model

With the procedure in Algorithm 1, we decorrelate the
routing and data scheduling of IP-DTs. Hence, each of them
can be modeled as a markov decision process (MDP), and
we can leverage the A3C-based DRL model [17] to design
two algorithms to tackle the two subproblems separately.
Specifically, each DRL model can learn the optimal strategy
for routing or data scheduling of bundles automatically, by
updating its parameters adaptively through interacting with the

Algorithm 1: DRL-based Routing and Data Scheduling
1 for each TS t do
2 update Gt (ℵ, ξt) according to current contact states;
3 insert newly generated/received bundles in {Qv};
4 for each node v ∈ ℵ do
5 for each bundle B ∈ Qv with Bmode = 0 do
6 if Bpath = ∅ then
7 apply CGR to calculate Bpath;
8 end
9 get next hop u from Bpath;

10 move B from Qv to outgoing queue Qv,u;
11 end
12 end
13 for each node v ∈ ℵ do
14 for each bundle B ∈ Qv with Bmode = 1 do
15 apply Algorithm 2 to get next hop u for B;
16 update Bpath;
17 move B from Qv to outgoing queue Qv,u;
18 end
19 end
20 for each link ev,u ∈ ξt do
21 if ev,u is in contact then
22 schedule bundles in Qv,u with Algorithm 3;
23 transmit bundles in the scheduled order;
24 else
25 for each bundle B ∈ Qu,v do
26 set Bmode = 1;
27 move B from Qv,u back to Qv;
28 end
29 end
30 end
31 remove expired bundles in {Qv, {Qv,u}};
32 end

network environment on an IPN node such that its expected
long-term cumulative reward can be maximized.

Fig. 2 shows the generic framework of A3C-based DRL,
which consists of a global neural network (NN) and several
worker NNs. The global NN contains an actor NN and a critic
NN, while each worker NN possesses the same structure as
the global NN. During operation, each worker NN interacts
with its own environment to gather experience data to store
locally. After accumulating enough experience data, a worker
NN will update its parameters accordingly and then send the
new parameters to the global NN [17]. More specifically, the
actor and critic NNs in it work as follows.
• Actor NN: The actor NN tries to keep improving the

worker’s decision-making strategy based on the current
state to maximize the expected long-term cumulative re-
ward. This is done by updating the actor NN’s parameters
in the direction of increasing the cumulative reward.

• Critic NN: The critic NN aims to evaluate the decision-
making strategy from the actor NN with the temporal
difference error, which reveals whether the decision-
making strategy has been updated in the right direction.

B. DRL-based Routing for IP-DTs

As we have explained above, CGR is a classic routing
algorithm for IP-DTs and it computes the routing path for
sending each IP-DT with the SCF scheme based on its
earliest projected delivery time, which is obtained with a rule

����� ��

������ ��

�	�
�	 ��

����� ��

������ ��

���
�� �� �

�����������

����� ��

������ ��

���
�� �� �

�����������

����� ��

������ ��

���
�� �� �

�����������

���

������������	�
������ ��������

�������� �������� ��������

���������� ���������� ����������

Fig. 2. Framework of A3C-based DRL.

focusing mainly on link disruptions, propagation delay and
transmission latency, but ignoring the queuing delay on nodes.
Nevertheless, relatively long queuing delay or even congestion
can be inevitable when the traffic load is high, and thus certain
bundles can miss their scheduled transmission windows. This
might in turn disturb the whole SCF processes of the bundles
(i.e., the snowball effect). Therefore, we propose the following
DRL-based routing algorithm to offer the bundles that have
missed their scheduled transmission windows opportunities to
update their routing paths to avoid the snowball effect.
• Agent: Each DRL agent runs on an IPN node to calculate

routing paths for the outgoing bundles there.
• State: For each bundle in the local queue Qv on node v,

we define its state corresponding to each neighbor node u
(i.e., there is a direct link v→u in the IPN) to include four
elements: SMB = {Bsize, Lv,u, τ

B
v,u, T

a
v,u}, where Bsize and

Lv,u are defined in Table I, τBv,u is the new projected
delivery time of bundle B if it is sent out through link
v→u and can be obtained using CGR, and T av,u is

T a
v,u =

1

rv,u

∑
B∈Qv,u

Bsize. (1)

• Action: Each action is to use a feasible neighbor node u
as the next hop of bundle B.

• Reward: The reward is defined to be proportional to the
gap between the projected delivery time without invoking
the DRL-based routing and the actual delivery time by
using the next hop selected by the DRL-based routing.

The operation of the DRL agents is explained in Algorithm
2. Line 1 is for the initialization where the parameters of the
actor and critic NNs of each agent are chosen randomly. Then,
the for-loop of Lines 2-15 shows how the DRL agents for
routing work in the IPN at each TS t. Specifically, the DRL
agent on each node v ∈ ℵ checks each bundle B ∈ Qv with
Bmode = 1 and gets a next hop for it (i.e., AMB) based on its
state SMB (Lines 4-6). Line 7 calculates the reward RMB based
on the actual delivery time of B. Note that, for a bundle that
needs to be transferred to another planet, it might take a while
for the agent to get its actual delivery time and thus Line 7
can be invoked at a future TS, but in order to explain the DRL
agent’s operation clearly, we still put it in the current iteration
of TS t. Moreover, due to the intermittent connections in an

IPN, the message for reporting the actual delivery time might
be lost. In this case, we will just ignore the training sample
that should contain the corresponding reward. Line 8 stores{
SMB , A

M
B , R

M
B

}
in the agent’s memory as a training sample,

and Lines 9-12 update the parameters of the agent based on a
batch of samples (i.e., the online training of the agent).

Algorithm 2: DRL-based Routing for IP-DTs
1 initialize parameters of actor and critic NNs of agents randomly;
2 for each TS t do
3 for each node v ∈ ℵ do
4 for each bundle B ∈ Qv with Bmode = 1 do
5 get state SM

B and input it to DRL agent on v;
6 agent selects a next hop and store it in AM

B ;
7 agent computes reward RM

B based on the actual
delivery time of bundle B;

8 push
{
SM
B , AM

B , R
M
B

}
into agent’s memory as a

training sample;
9 if enough samples have been collected then

10 agent updates its parameters based on the
operation principle of A3C [17];

11 agent empties its memory for training samples;
12 end
13 end
14 end
15 end

C. DRL-based Data Scheduling for IP-DTs

After determining routing paths for the bundles, we still
need to conduct bundle-level scheduling to ensure the perfor-
mance of IP-DTs. Therefore, we design a DRL-based data
scheduling algorithm, which assigns a DRL agent to manage
each outgoing queue Qv,u on an IPN node v. Specifically, the
DRL-based data scheduling is designed in consideration of the
following three observations. First, we should send the bundles
whose deadlines are farther (i.e., those with larger time-to-live
(TTL) values) earlier, because those with small TTL values
can become expired even after being sent out successfully at
their current nodes. Second, to reduce the average queuing
delay and avoid head-of-line blocking, we should send bundles
whose sizes are smaller earlier. Finally, an earlier projected
delivery time for a bundle reflects a better routing path with
fewer link disruptions, and thus we should send bundles with
an earlier projected delivery time earlier.

Meanwhile, we leverage the following three metrics to
evaluate the status of an outgoing queue.
• Cosine Similarity (CS): It measures the similarity be-

tween two multi-dimensional vectors A and B as

SC(A,B) :=
A ·B
||A||||B|| . (2)

• Coefficient of Variation (CV): It measures the dispersion
of a probability distribution as

CV (X) :=
mean(X)

var(X)
, (3)

where X is a random variable, mean(X) is its mean
value, and var(X) is its standard deviation.

Algorithm 3: DRL-based Data Scheduling for IP-DTs
1 initialize parameters of actor and critic NNs of agents randomly;
2 for each TS t do
3 for each link ev,u ∈ ξt do
4 for each bundle B ∈ Qv,u do
5 get state SD

v,u and input it to DRL agent of Qv,u;
6 agent outputs an action AD

v,u for B;
7 end
8 sort bundles in Qv,u according to their actions;
9 agent computes reward RD

v,u for the scheduling result
of each bundle B ∈ Qv,u based on SD

v,u and AD
v,u;

10 push
{
SD
v,u, A

D
v,u, R

D
v,u

}
into agent’s memory as a

training sample;
11 if enough samples have been collected then
12 agent updates its parameters based on the

operation principle of A3C [17];
13 agent empties its memory for training samples;
14 end
15 end
16 end

• Normalized Discounted Cumulative Gain (NDCG): It
measures the effectiveness of a ranking system, taking
into account the position of each item in the ranked list
[19]. Hence, it can be used to evaluate the scheduling
result for an outgoing queue, and we calculate the NDCG
value nDCG(Q,Y) of a queue Q in terms of attribute Y
of each bundle in it with the method in [19].

The agent, state, action and reward of a DRL agent for data
scheduling are designed as follows.
• Agent: Each DRL agent runs on an IPN node to manage

an outgoing queue Qv,u.
• State: For each bundle B in an outgoing queue Qv,u, we

define its state as SDv,u =
{
Lv,u, T av,u,B,C, SC(B,B∗)

}
,

where Lv,u is the current length of Qv,u in bundles, T av,u
denotes the average transmission time of bundles as

T a
v,u =

T a
v,u

Lv,u
, (4)

B = {Bsize, Bttl, Bproj} is the attribute vector of B,
C = {CV (Bsize), CV (Bttl), CV (Bproj)} is the CV vector
of bundle attributes in Qv,u, and SC(B,B∗) calculates
the SC between B and the ideal vector B∗. Here, we
have B∗ = [1, 1, 1] after normalization.

• Action: The action ADv,u is defined as the ranking of
bundle B in Qv,u, which is a real number within [0, 1]. A
larger value indicates that B will be transmitted earlier.

• Reward: We define the reward bought by each action as

RD
v,u =α · nDCG(Qv,u, Bsize) + β · nDCG(Qv,u, Bttl)

+ γ · nDCG(Qv,u, Bproj) + µ · e−k·Tv,B ,
(5)

where α, β, γ are weights whose values are set according
to the CVs of {Bsize}, {Bttl}, and {Bproj} of bundles in
Qv,u, µ is a positive coefficient, and k is a constant to
rescale the value of Tv,B according to the position of
B after scheduling. It can be seen that the first three
terms in Eq. (5) use the NDCGs of Qv,u in terms of
different attributes of bundles in it to evaluate the overall

performance of the scheduling of Qv,u, while the last
term assesses the scheduling result of bundle B.

Algorithm 3 explains our DRL-based data scheduling. This
time, a DRL agent is allocated for each outgoing queue Qv,u
in the IPN. Lines 4-9 show the procedure of DRL-based data
scheduling for bundles in Qv,u. Then, each agent is trained in
the online way based on the principle of A3C (Lines 10-14).

IV. PERFORMANCE EVALUATION

In this section, we run simulations to compare our DRL-
based approach with state-of-the-art algorithms for routing and
data scheduling of IP-DTs, including CGR [13], MARS [14],
and Lyapunov optimization based scheme (Lyapunov) [15].

A. Simulation Setup

Our simulations use the satellite tool kit (STK) [20] to
generate 24-hour contact plans of two Earth-Moon-Mars IPNs,
which are a small-scale one with 10 nodes and a large-scale
one with 18 nodes. Each bundle has an average lifetime of
7, 200 seconds and is generated on each node dynamically
according to the Poisson traffic model with a random destina-
tion. Its size is uniformly distributed within [1, 1024] KByte.
In each IPN, the data rate of a link is set within [32, 128] Kbps,
according to the settings of practical DS communications [9,
10]. The time granularity of routing and data scheduling of
IP-DTs is ∆t = 1 second (i.e., t increments by seconds).
The parameters of our DRL models are listed in Table II. To
ensure sufficient statistical accuracy, we average the results of
10 independent runs to get each data point in the simulations.

TABLE II
PARAMETERS OF DRL MODELS

Parameters Algorithm 2 Algorithm 3

Number of Workers 16

Optimizer Adam

Discount Factor 0.99

Learning Rate of Actor NNs 0.01 [0.0001, 0.1]

Learning Rate of Critic NNs 0.001 [0.0001, 0.01]

Batch Size of Training Samples 128 512

Layers of Actor NN/Critic NN 2/6 3/6

B. Small-Scale Simulations

The small-scale IPN consists of three subsystems on/around
Earth, Moon and Mars, respectively, each of which contains a
rover and a relay satellite, along with three base stations (BS’)
and a mission operation center (MOC) on Earth. Fig. 3 shows
the training performance of our multi-agent DRL models. As
there are many DRL agents, we just select those for two nodes
and two outgoing queues and plot their reward changes in
Figs. 3(a) and 3(b), respectively. Here, Nodes 1 and 2 are the
relay satellite around Earth and Mars, respectively, and Link
1 denotes the link between Node 1 and a BS, and Link 2 is
the link between Nodes 1 and 2. The rewards increase and
converge quickly in online training, especially for the DRL
agents for data scheduling. We also confirm that other DRL
agents have similar training performance in the simulations.

0 50 100 150 200
-6

-5

-4

-3

-2

-1

0

R
e

w
a

rd

Training Episodes

 Node 1
 Node 2

(a) Reward of DRL-based routing

0 100 200 300 400 500 600 700
3

4

5

6

7

8

9

R
e

w
a

rd

Training Episodes

 Link 1
 LInk 2

(b) Reward of DRL-based data scheduling

Fig. 3. Training performance with the small-scale IPN.

Fig. 4 shows the results on delivery ratio and average E2E
latency of bundles. In Fig. 4(a), we observe that our proposed
DRL-based approach achieves significantly higher delivery
ratio than all the benchmarks. The delivery ratios from CGR
and Lyapunov are similar, and they are both smaller than the
two MARS-based algorithms. The results in Fig. 4(b) indicate
that the average E2E latency from our proposal is much shorter
than those from CGR and MARS-based algorithms, and it is
only slightly longer than that from Lyapunov. Hence, Fig. 4
confirms that our proposed DRL-based approach can handle
the routing and data scheduling of IP-DTs more adaptively and
balance the tradeoff between the delivery ratio and average
E2E latency of bundles better than the benchmarks.

1.0 1.2 1.4 1.6 1.8 2.0

0.52

0.54

0.56

0.58

0.60

D
e
liv

e
ry

 R
a
ti
o

Traffic Load (bundles/minute/node)

Lyapunov

Proposed

CGR

MARS-1

MARS-2

(a) Delivery ratio

1.0 1.2 1.4 1.6 1.8 2.0

1700

1800

1900

2000

2100

2200

2300

A
v
e
ra

g
e
 E

2
E

 L
a
te

n
c
y
 (
s
e
c
o
n
d
s
)

Traffic Load (bundles/minute/node)

Lyapunov

Proposed

CGR

MARS-1

MARS-2

(b) Average E2E latency

Fig. 4. Simulation results with the small-scale IPN.

C. Large-Scale Simulations
The large-scale IPN still consists of three subsystems. The

subsystem on/around Earth contains three base stations, a

MOC, three low orbit satellites, and a medium orbit satellite,
while each of those on/around Moon and Mars includes two
rovers, two low orbit satellites, and a medium orbit satellite.
Fig. 5 shows the training performance of our multi-agent DRL
models. Here, Nodes 3 and 4 denote a low orbit satellite around
Earth and the medium orbit satellite around Mars, respectively.
Link 3 is the link between Nodes 3 and 4, and Link 4 is the
link between the medium orbit satellite around Earth and Node
4. We can see that the rewards of the DRL agents converge
similarly as those in Fig. 3, verifying that our multi-agent DRL
can adapt to the dynamic IPN quickly in online training.

0 50 100 150 200
-9
-8
-7
-6
-5
-4
-3
-2

R
e

w
a

rd

Training Episodes

 Node 3
 Node 4

(a) Reward of DRL-based routing

0 100 200 300 400 500 600 700
3

4

5

6

7

8

9

R
e

w
a

rd

Training Episodes

 Link 3
 LInk 4

(b) Reward of DRL-based data scheduling

Fig. 5. Training performance with the large-scale IPN.

The results of large-scale simulations are shown in Fig. 6,
and similar trends as those in Fig. 4 can be observed. This
verifies that our proposed DRL-based approach can balance
the tradeoff between the delivery ratio and average E2E latency
of bundles better than the benchmarks, regardless of the
topology of an IPN. Moreover, it is interesting to notice that
the gaps between our proposal and all the benchmarks actually
increase with the traffic load. This is because the large-scale
IPN has better connectivity and thus provides more options
for our DRL-based approach to handle IP-DTs adaptively.

V. CONCLUSION

In this work, we proposed a multi-agent DRL-based ap-
proach for the routing and data scheduling of IP-DTs, which
optimizes the routing and data scheduling of bundles on each
node separately. Simulations confirmed that our proposal can
handle the routing and data scheduling of IP-DTs more adap-
tively and balance the tradeoff between the delivery ratio and
average E2E latency of bundles better than the benchmarks.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[3] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[4] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

1.0 1.2 1.4 1.6 1.8 2.0

0.52

0.54

0.56

0.58

0.60

0.62

D
e
liv

e
ry

 R
a
ti
o

Traffic Load (bundles/minute/node)

Lyapunov

Proposed

CGR

MARS-1

MARS-2

(a) Delivery ratio

1.0 1.2 1.4 1.6 1.8 2.0

1900

2000

2100

2200

2300

2400

2500

A
v
e
ra

g
e
 E

2
E

 L
a
te

n
c
y
 (
s
e
c
o
n
d
s
)

Traffic Load (bundles/minute/node)

Lyapunov

Proposed

CGR

MARS-1

MARS-2

(b) Average E2E latency

Fig. 6. Simulation results with the large-scale IPN.

[5] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[6] S. Li, D. Hu, W. Fang, and Z. Zhu, “Source routing with protocol-
oblivious forwarding (POF) to enable efficient e-health data transfers,”
in Proc. of ICC 2016, pp. 1–6, Jun. 2016.

[7] C. Chen et al., “Demonstrations of efficient online spectrum defragmen-
tation in software-defined elastic optical networks,” J. Lightw. Technol.,
vol. 32, pp. 4701–4711, Dec. 2014.

[8] C. Li et al., “China’s Mars exploration mission and science investiga-
tion,” Space Sci. Rev., vol. 217, pp. 1–24, May 2021.

[9] A. Alhilal, T. Braud, and P. Hui, “The sky is NOT the limit anymore: Fu-
ture architecture of the interplanetary Internet,” IEEE Aerosp. Electron.
Syst. Mag., vol. 34, pp. 22–32, Aug. 2019.

[10] M. Marchese, “Interplanetary and pervasive communications,” IEEE
Aerosp. Electron. Syst. Mag., vol. 26, pp. 12–18, Feb. 2011.

[11] V. Cerf et al., “Delay-tolerant networking architecture,” RFC 4838,
Apr. 2007. [Online]. Available: https://tools.ietf.org/html/rfc4838.

[12] K. Scott and S. Burleigh, “Bundle protocol specification,” RFC 5050,
Nov. 2007. [Online]. Available: http://tools.ietf.org/html/rfc5050.

[13] G. Araniti et al., “Contact graph routing in DTN space network-
s: overview, enhancements and performance,” IEEE Commun. Mag.,
vol. 53, pp. 38–46, Mar. 2015.

[14] S. El Alaoui and B. Ramamurthy, “MARS: A multi-attribute routing
and scheduling algorithm for DTN interplanetary networks,” IEEE/ACM
Trans. Netw., vol. 28, pp. 2065–2076, Oct. 2020.

[15] X. Tian and Z. Zhu, “On the distributed routing and data scheduling in
interplanetary networks,” in Proc. of ICC 2022, pp. 1109–1114, May
2022.

[16] R. Dudukovich, A. Hylton, and C. Papachristou, “A machine learning
concept for DTN routing,” in Proc. of WiSEE 2017, pp. 110–115, Oct.
2017.

[17] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. of ICML 2016, pp. 1928–1937, Jun. 2016.

[18] X. Tian, B. Li, R. Gu, and Z. Zhu, “Reconfiguring multicast sessions in
elastic optical networks adaptively with graph-aware deep reinforcement
learning,” J. Opt. Commun. Netw, vol. 13, pp. 253–265, Jul. 2021.

[19] H. Valizadegan, R. Jin, R. Zhang, and J. Mao, “Learning to rank by
optimizing NDCG measure,” in Proc. of NeurIPS 2009, vol. 22, pp.
1883–1891, Dec. 2009.

[20] Satellite tool kit. [Online]. Available: http://www.agi.com/products/stk/.

