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Abstract—This paper demonstrates the first field trial of au-
tonomous lightpath provisioning over a space-division multiplex-
ing (SDM) optical network built with 16.5-km 7-core fibers. In
particular, we devised an amplifier gain configuration algorithm
aided by a composable quality-of-transmission (QoT) estimator.
The composable QoT estimator allows per-span impairment
assessment, and therefore, enables sequential gain optimization
without the need for data plane trial and error. For each am-
plifier, the algorithm picks a solution that maximizes the overall
QoT margin obtained for both in-service and newly established
lightpaths. We trained the QoT estimator with data collected
from the field testbed and conducted lightpath provisioning
experiments under multiple scenarios (using different routing,
modulation formats and baud rates). We also demonstrated
automated failover operations in the cases of equipment failure
and receiver filter shifting. Results show that the proposed design
can accomplish lightpath configuration/failover autonomously in
around 10 seconds while securing desired QoT levels.

Index Terms—Field trial, space-division multiplexing, 7-core
fibers, amplifier gain configuration, composable machine learn-
ing.

I. INTRODUCTION

The prevailing of novel networking paradigms and applica-
tions, such as big data analytics, has led to continuous inflation
of global traffic, posing greater challenges to the underly-
ing transport networks. Recently, space-division multiplexing
(SDM) optical networks are emerging as appealing candidates
for meeting such challenges [1]. By fully exploiting the spatial
and frequency channels in multi-core and/or multi-mode fibers
(MCFs/MMFs), recent progresses have reported multi-Peta-
bit/s capacities over single fibers [2].

While SDM offers larger link capacities, the extended
resource dimensions (fiber/core/mode/frequency) [3] and the
complicated interplay between spatial channels [e.g., inter-
core crosstalk (IC-XT)] [4] make the optimization of service
provisioning in such networks nontrivial. In this context,
extensive research endeavors have been made to develop
flexible SDM node/switching architectures [5]–[7], software-
defined networking (SDN) based control and management [8],
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optical performance monitoring/assurance techniques [9], and
crosstalk-aware core and spectrum allocation policies [10]–
[13]. However, most of these works evaluate IC-XT with
analytical models and employ rule-based heuristic resource
allocation approaches, which may suffer from poor estimation
accuracy or resource utilization.

Lately, with several profound advances, especially in the
deep learning domain, machine learning (ML) has revived
as promising alternatives or complements to conventional
optimization methods for optical communications. Combining
ML with SDN technologies, optical network operators can po-
tentially realize autonomous networking with minimal human
intervention [14], [15]. Previous works have demonstrated suc-
cessful applications of ML in various tasks, including quality-
of-transmission (QoT) estimation [16]–[18], wavelength con-
figuration [19]–[21], resource allocation [22], [23], and fault
management [24]–[26] etc.

Despite the promising prospect of the existing ML-based
designs, they mostly rely on simulation or experimental
data/environment that can hardly fully reflect realistic op-
tical networks. In [20], the authors demonstrated autonomous
wavelength configuration on a real-world backbone network
using a Bayesian optimization method. Similar to the work in
[21], their approach is built on repeated data plane trial and
error, which will inevitably interfere in-service connections
and lead to prolonged configuration period. Nevertheless, the
work presented in [20] concentrates on optimizing a legacy
optical network, and to the best of our knowledge, few study
has reported autonomous service provisioning trials in field
SDM environments.

In this work, we demonstrate autonomous lightpath pro-
visioning over a field-deployed SDM network using 7-core
fibers. By virtue of composable ML’s capability of per-span
impairment assessment, we developed an algorithm that can
dynamically optimize the amplifier gains without intervening
data plane operations. This paper extends the previous work in
[27] by (i) providing more detailed descriptions about the field
testbed, the composable QoT estimator, and the amplifier gain
configuration algorithm, and (ii) presenting enhanced experi-
mental results with a larger data set and additional lightpath
provisioning and failover scenarios. The results verify the
effectiveness of the proposed design.

The rest of the paper is organized as follows. Section II
briefly reviews the state of the art on SDM networking and ML
applications for optical networks. In Section III, we elaborate
on the field-deployed SDM testbed, including the data and
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control plane layouts. Section IV details the principle of the
composable QoT estimator and the amplifier gain optimization
algorithm. We show the experimental results and the related
discussions in Section V. Finally, we conclude the paper with
Section VI.

II. RELATED WORK

A. SDM Networking

SDM networks can be architected to perform switching at
multiple granularity (e.g., fibers, cores and wavelengths) by
trading off between node complexity and provisioning flexibil-
ity [3]. In [5], [6], the authors demonstrated switching in space,
frequency and time with different bandwidth granularity lever-
aging 7-core fibers and a node design named Architecture on
Demand. An SDM reconfigurable optical add drop multiplexer
(RODAM) node capable of spatial super channel switching
with a granularity of 5 Tbps was recently demonstrated over
a field-deployed 15-mode MMF [7]. To effectively configure
spatial super channel switching, the authors of [8] presented an
SDN control plane design incorporating an SDM flow mapper
and a bandwidth slicing service.

Optimizing the service provisioning in SDM networks is
a challenging task owing to the increased switching dimen-
sionality [5]–[7] and the complex physical-layer effects [4].
Routing, core and spectrum assignment (RCSA) is one of
the fundamental problems in MCF SDM networks. In [10],
the authors modeled the RCSA problem as an integer linear
programming (ILP) formulation taking precalculated IC-XT
values as constraints. In [11], the authors proposed a crosstalk-
aware core and spectrum allocation policy for SDM networks.
The proposed policy mitigates crosstalk by avoiding alloca-
tion of overlapping spectra in adjacent cores. This method
was improved by [12] to allow certain degrees of lightpath
adjacency depending on the actual crosstalk tolerance. In [13],
Takeda et al. developed an RCSA algorithm for SDM elastic
optical networks (EONs) taking into account both IC-XT and
intra-core physical layer impairments (amplified spontaneous
emission noise, etc.). While ILP formulations suffer from
scalability issues, heuristic algorithms make use of artificially
defined rules that can hardly capture the complex rule of SDM
networks.

B. ML Applications for Optical Networks

ML has exhibited great potential in overcoming the afore-
mentioned limitations by assisting in cognitive and au-
tonomous networking. In [17], the authors achieved up to
99% bit error rate (BER) estimation accuracy with deep neural
networks that read the wavelength loading, signal power and
noise level on each link traversed by lightpaths. The work in
[9] evaluated different ML algorithms for QoT estimation in
SDM networks, but no feature particular to SDM was used. To
reduce IC-XT in SDM networks, Klinkowski et al. leveraged
ML regressors to predict the transmission distance limit of
each modulation format with respect to a lightpath [23].
The authors of [28] presented a transfer learning approach
for spectrum optimization in SDM EONs considering both
immediate and advanced reservation connection requests.

Beside resource dimensioning, optical parameter configura-
tion is essential for assuring desired signal QoT and thereby
successful service provisioning. In [19], the authors presented
a reinforcement learning algorithm that can self-learn ef-
fective launch power control policies for power excursion
compensation. However, this approach induces nonnegligible
training overhead and may suffer from generalization issues.
An online launch power optimization design was proposed in
[21], which employs a convex optimization algorithm assisted
by a periodically retrained QoT estimator. Meanwhile, it has
also been shown that dynamic amplifier gain control can
largely mitigate optical power instability [29]. Traditional ap-
proaches for gain optimization leverage case-based reasoning
[30], analytical models [31], brute-force search [32], multi-
objective optimization [33], etc. In [34], the authors proposed
to adjust pre-amplifier channel power utilizing ML models that
predict the impact of increasing pre-amplifier power on the
discrepancy of post-amplifier power.

The above proposals were mostly validated by simulations
or testbed experiments. While autonomous wavelength con-
figuration in real-world environment has been demonstrated in
[20], the work introduces nonnegligible costs through repeated
data plane trial and error. Moreover, autonomous provisioning
over field-deployed SDM networks remains under explored.

III. FIELD-DEPLOYED TESTBED

Fig. 1 shows the schematic of the SDM network deployed
in the city of Guangzhou, China. The ring is built with four
single-mode 7-core fibers of 16.5 kilometers. Six side cores are
arranged hexagonally around the central core (core #4). The
cladding diameter is 200 ± 5 micron and the pitch between
cores is 62 ± 2 micron. Table I summarizes the physical
properties of the 7-core fibers at 1550 nm. The fibers are
connected every three kilometers by fusion splicing. Subject
to the precision of the alignment and rotation operations and
the hexagonal structure, splicing of MCFs is more difficult
than that for single-mode fibers (SMFs). The splicing losses
for the central and side cores average 0.04 and 0.27 dB, with
the maximum values being 0.15 and 0.5 dB, respectively. The
measured transmission attenuation, chromatic dispersion and
IC-XT of the cores are ∼ 0.2 dB/km, ∼ 18.8 ps/nm/km, and
< −76 dB/km, respectively. We use fan-in and fan-out (FIFO)
devices to multiplex/demultiplex the cores. Specifically, we
implemented the FIFO by etching and bundling seven SMFs
according to the structure of the 7-core fibers. The insertion
losses of the FIFO range from 0.54 to 0.9 dB for different
cores. The fibers are amplified by gain-controlled erbium-
doped fiber amplifiers (EDFAs) in the middle, i.e., each
consists of two spans. Attributing to the diverse transmission
characteristics of the cores, operating the 7-core fibers is more
challenging than the management of seven parallel SMFs
with relatively smaller performance variation. By cascading
the fibers through the SYSU node, we implemented a four-
node topology. We expect to expand the testbed with longer
fibers connecting more universities/laboratories in the future.
The SYSU node is equipped with 192 C-/L-band lasers, two
64-GSample/s arbitrary wavelength generators (AWGs), two
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Fig. 1. Schematic of the field-deployed SDM network: (a) testbed overview; (b) control and data plane layout. OSC: oscilloscope; ICR: intradyne coherent
receiver; AWG: arbitrary waveform generator; Co-Tx/-Rx: coherent transceiver/receiver; MUX: multiplexer; LO: local oscillator; IQM: in-phase/quadrature
modulator; WSP: waveshaper.

TABLE I
TRANSMISSION PROPERTIES OF THE 7-CORE FIBERS.

Core Splicing Attenuation IC-XT FIFO Insertion
ID Loss (dB) (dB/km) (dB/km) Loss (dB)
1 0.25 0.203 -81.8 0.71
2 0.21 0.206 -81.7 0.77
3 0.23 0.209 -83.0 0.54
4 0.04 0.207 -83.6 0.64
5 0.24 0.214 -82.4 0.78
6 0.27 0.211 -83.4 0.90
7 0.22 0.210 -83.6 0.80

IQ modulators, two coherent receivers (Co-Rxs), and one
80-GSample/s high-speed oscilloscope, which allow up to
190-channel WDM communications at 50-GHz spacing. A
4x16 waveshaper is used to perform add/drop and switching
functionalities. Fig. 1(b) illustrates an exemplary experimental
setup, where coherent transceiver #1 (Co-Tx1) launches six
16-QAM signals at 32 Gbauds (signals under test) into the
central core. Meanwhile, Co-Tx2 injects another six dummy
channels in the side cores to co-propagate with the signals
under test. The signals are dropped and received by a Co-Rx
after transmissions over three links.

We implemented an SDN control plane for the SDM testbed
using the ONOS platform [35]. In particular, we employ a local
SDN agent to manage each configurable device (EDFA, wave-
shaper, etc.) based on the instructions by the ONOS controller.
The SDN agents also stream optical performance monitoring
(OPM) data to the controller, such as the BER of a lightpath
connection measured by a Co-Rx or the optical signal-to-noise
ratio (OSNR) read from an optical spectrum analyzer (OSA),
to enable persistent awareness of the data plane status. Inside
the ONOS controller, the service provisioning manager acts as
the pivot and handles various network control and management
tasks, including lightpath provisioning, fault management and
etc. To actuate data-driven autonomous control of the SDM

network, we have developed several ML-aided applications
externally. Upon triggering of an event, for instance, arrival of
a lightpath request or reception of a fault alarm, the service
provisioning manager calls the corresponding applications
through the northbound interfaces to calculate cognitive re-
source allocation or equipment reconfiguration decisions. The
northbound interfaces are implemented by socket connections
adopting a specified protocol (message formats) momentarily,
and will be upgraded to the REST API [36].

IV. AUTONOMOUS LIGHTPATH PROVISIONING DESIGN

Lightpath provisioning in SDM networks involves routing,
core and spectrum assignment and necessary device configu-
rations, particularly, tuning of amplifier gains to assure desired
QoT levels for both newly established and in-service lightpaths
[20], [29]. This work focuses on the optimization of amplifier
gains and considers a simple shortest path routing and first-fit
core/spectrum assignment policy owing to the ring-type topol-
ogy used. More comprehensive resource allocation schemes
that incorporate IC-XT mitigation strategies [12] can also be
applied. Nonetheless, because a large number of lightpaths
can interfere and compete for gains over multi-core fibers,
deriving performant amplifier configurations with minimum
trial and error is challenging. In this study, we extend the
composable ML-based QoT estimator design proposed in
[37] to the SDM context and leverage the trained modules
(which compose a QoT estimator) to realize successive gain
optimization for multiple amplifiers. Note that, despite the
IC-XT of the deployed fibers is relatively low, performing
gain optimization over the SDM network is more challenging
than that over SMF networks. This is because the diverse
transmission properties of the cores (as described in Section
III) make core selection over the routing paths (i.e., a lightpath
can traverse different cores end to end) critical in determining
the physical impairments of signals and thereby the amplifier
working points.
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Fig. 2. Principle of composable ML-based QoT estimation.

A. QoT Estimation

A composable QoT estimator is composed of three neural
network modules, namely, the Launch, Propagation and Read-
out modules. We signify the three modules by fθl(sl), fθp(sp),
and fθr (sr), respectively, where θl, θp and θr represent the
sets of neural network weights, sl, sp and sr denote the
corresponding input features. Fig. 2 shows the principle of
a composable ML-based QoT estimator. The Launch module
takes as input a lightpath’s launch power, central frequency,
baud rate and modulation format to model transmitter behav-
iors. Then, a chain of k Propagation modules (one for a span)
are used to characterize the signal propagation process. Each
Propagation module reads the output of the Launch module
or that of the antecedent Propagation module as well as local
information associated with the current span (denoted by xk

e ).
Specifically, to enable capturing of the effect of IC-XT, we
feature the state of a span by its core loading and amplifier gain
setting. Consequently, the Propagation module aims at learn-
ing a mapping to a latent space that can convey the cumulative
impairments of optical signals. Finally, we feed the output
of the last-stage Propagation module to the Readout module
to obtain the end-to-end QoT (BER, OSNR, etc.) estimation
for each lightpath Pk. The composable ML method allows us
to model and flexibly combine the transmission property of
each core and potentially generalize the QoT estimation for
lightpaths of arbitrary lengths (through adjustment of k). The
design is also applicable for multi-domain (e.g., technology,
vendor or administrative domains) networks provided that a
proprietary set of Launch, Propagation and Readout modules
are maintained for each domain.

The dashed/dotted lines in Fig. 2 show the training pipeline.
We apply an end-to-end training mechanism [37] that trains the
three modules jointly according to the chain rule. Specifically,
given a data batch D, the gradients of the loss function
LD(θl, θp, θr) (e.g., mean squared error) with respect to θl
can be obtained by,

∂LD

∂θl
=

1

|D|
∑
di∈D

∂Ldi

∂fθl (sl)

∂fθl (sl)

∂θl

∣∣∣
fθl (sl)=fθl (s

i
l),s

i
l∈di

, (1)

where |D| represents the size of D.

B. Amplifier Gain Configuration

Let A = {An}|n∈[1,N ] denote the set of amplifiers to be
configured during lightpath provisioning. The gain of each am-
plifier An can be adjusted by configuration of its input current

from a set of discrete values G = {G0 + m · ∆}|m∈[0,M−1]

with a granularity of ∆. This leads to an exponentially scaling
solution space, i.e., MN solutions totally. In pursuit of time-
efficient amplifier configuration, we exploit the composable
QoT estimator’s capability of per-span impairment assessment
and develop a greedy approach that performs sequential opti-
mization for each An.

Algorithm 1: Composable ML-aided amplifier gain
optimization algorithm.

Input: A, G, fθl , fθp , fθr , set of lightpaths P

Output: optimized gain g∗n for each An ∈ A, g∗n ∈ G

1 for each An ∈ A do
// traverse feasible configurations

2 for each Gm ∈ G do
3 construct local features xn

e based on Gm;
4 for each lightpath Pw in the span do
5 calculate f̂w = fθl(s

w
l ) or fθp(s

w,kw−1
p );

6 sw,kw
p = {f̂w, xn

e };
// estimate the BER of Pw

7 bw,kw = fθr (fθp(s
w,kw
p ));

8 end
// score Gm by BER margins

9 if ∃bw,kw > bth then
10 cm = −1;
11 else
12 cm =

∑
Pw

(|Pw| − kw) log(bth − bw,kw + 1);

13 end
14 end
15 if max

m
cm < 0 then

16 mark failure of lightpath provisioning;
17 return;
18 end
19 g∗n = argmax

Gm

cm;

20 end

Algorithm 1 summarizes the procedures of the algorithm.
Lines 1-20 cover the sequential optimization procedure for
amplifiers ordered in accordance to the direction of signal
propagation. For each amplifier, we traverse every feasible
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configuration Gm and estimate the overall QoT margins that
can be obtained with Gm (lines 2-14). In particular, we call the
trained Launch, Propagation and Readout modules to estimate
the BER of each lightpath in the span. Line 5 retrieves the
output of the Launch module for the first span (regarding the
current lightpath) or that of the antecedent Propagation mod-
ule otherwise. Line 6 constructs an input for the Propagation
module by concatenating the local features and the output of
the previous module. Next, in line 7, we assess the QoT of
a connection with the Readout module even if the lightpath
does not terminate immediately. Lines 9-13 score Gm based
on the BER margin. If Gm leads to BER dissatisfaction for
any of the lightpaths, a negative score is assigned with line 10.
Otherwise, Gm is scored by the total BER margin weighted
by the number of spans remaining for each lightpath, i.e.,
|Pw| − kw (line 12). Here, |Pw| returns the total number of
spans of lightpath Pw, while kw represents the position of the
current span in Pw. By the equation in line 12, we prioritize
configurations resulting in bigger BER budgets for signals
having more spans yet to propagate. Note that, instead of using
such an empirical policy, one can leverage the recent advances
in deep reinforcement learning [38] to parameterize and learn
more sophisticated scoring functions. Finally, if there exists at
least one viable configuration (i.e., the QoT target is met for
all the lightpaths), line 19 picks the solution with the highest
score. Otherwise, the provisioning of the new lightpaths is
declined (lines 16-17). We can see that the composable QoT
estimator trained essentially functions as a digital twin of
optical signal transmission, allowing the proposed algorithm to
compute the target amplifier configurations in one shot without
data plane trial and error. Thus, the interference in the in-
service connections can be significantly reduced.

V. EXPERIMENTAL RESULTS

We implemented the aforementioned algorithm and demon-
strated autonomous lightpath provisioning over the field-
deployed SDM testbed described in Section III.

A. Training of QoT Estimator

We first trained a composable QoT estimator with ex-
perimental data collected from the SDM network. To cover
diversified network conditions, we set up lightpaths operating
at different rates (32/20/16 Gbauds) adopting either the 16-
QAM or QPSK modulation. The loading of each core in a
fiber link was changed by injection of a different number
of dummy channels. We performed input current sweeping
(45−220 mA) for each EDFA to assess the impact of amplifier
gain on signal QoT, exploring both the linear and nonlinear
regimes. Fig. 3(a) shows the nonlinear effects observed in
the experiments. Overall, we collected 4, 965 data instances,
which were then divided into a training and a testing set
according to a ratio of 8 : 2.

We implemented the Launch, Propagation and Readout
modules all with neural network blocks of two fully-connected
layers. Each layer takes ReLU as the activation function except
for the output layer of the Readout module. Fig. 3(b) shows
the evolution of training and validation losses. Both losses
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Fig. 3. (a) Nonlinear effects observed in the experiments, and (b) evolution
of training and validation losses.

converged after training of 600 epochs, indicating good fitting
of the modules. Ultimately, the QoT estimator could achieve a
BER (in a logarithmic scale) prediction accuracy of ∼ 96.1%
on the testing set.

B. Amplifier Gain Configuration

Next, we conducted autonomous lightpath configuration ex-
periments. Fig. 4(a) presents the Wireshark capture of control
plane message exchanges during provisioning of a connection.
It took the lightpath provisioning application (running on a PC
equipped with an AMD Ryzen7 5800 8-core processor and 16-
GB memory) 6.74 seconds to return an EDFA configuration
scheme, which was then successfully applied after another
1.07 seconds. We expect the configuration process can be
effectively accelerated pending more computing power and
parallel computing being adopted. Figs. 4(b) and (c) show
the detail of a service request and a configuration command
captured. The request message conveys key information of
a connection to be set up, while the configuration command
informs that the current of the EDFA should be set to 65 mA.

We show case the EDFA currents and the corresponding
BER of five wavelengths in one of the cores before and
after configuration in Fig. 5. Other cores were filled with
dummy wavelengths. All the wavelengths used the 16-QAM
modulation. Fig. 5(a) shows that one connection at 193.15
THz was operating correctly initially, with the currents of the
two EDFAs traversed being set to 90 and 80 mA respectively
(top). After four new wavelengths were launched, the BER of
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all five wavelengths went above the forward error correction
(FEC) threshold under the same EDFA configuration (middle).
With the proposed algorithm, we adjusted the currents of
the two EDFAs to be 118 and 99 mA, assuring the QoT
requirement for every signal was satisfied (bottom). Similar
results were obtained with a decreased rate of 20 Gbauds
(see Fig. 5(b)). After the injection of three wavelengths, we
retuned the EDFA currents from 100 and 77 mA to 155 and
130 mA, respectively, so that all the BER values were below
the FEC threshold. We also tested the cases when the QPSK
modulation was applied to 32-/16-Gbaud signals and plotted
the results in Fig. 6. Three EDFAs were involved in both
cases. After reconfiguration of the EDFAs with the assist of
the proposed algorithm, the BER performance of all in-service
and newly established wavelengths unanimously improved to
below the FEC threshold. One can observe from Figs. 5 and
6 that the proposed algorithm suggested larger currents for
16-QAM signals compared with QPSK signals. We attribute
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Fig. 6. EDFA currents and the corresponding BER performance before
and after configuration for (a) 32-Gbaud and (b) 16-Gbaud signals (QPSK
modulation for both cases).

this to the higher ONSR requirements by 16-QAM signals
[39]. Also, the results indicate larger currents were used for
20-Gbaud signals with respect to 32-Gbaud signals when the
16-QAM modulation was adopted. Whereas, this was not the
situation for QPSK signals. We presume that this is because
16-QAM signals suffer from more severe nonlinear effects at
higher baud rates, discouraging the use of higher gains.

C. Failover

Lastly, we demonstrated automated failover with two fail-
ure scenarios. In the first scenario, we selected a 32-Gbaud
signal transmitted in the central core (core #4) as the testing
signal. The coherent receiver constantly monitored the BER
of the signal as shown by Fig. 7. We artificially removed a
flange along the routing path at a certain point to emulate
equipment malfunctioning, which caused a quick deterioration
of the signal QoT. The system detected the violation of the
FEC threshold and reconfigured the waveshaper to switch the
wavelength to a side core (core #1). The failover process
took 10.5 seconds, where after, the signal BER restored to
an acceptable level.

In the second scenario, we introduced receiver filter shifting
by changing the filter central frequency from 193.053 THz to
193.083 THz. Fig. 8 shows the signal spectrogram captured
during the experiment. The rightmost spectrum became noisy
due to the filter shifting (middle). We made use of an op-
tical spectrometer to continuously monitor the OSNR of the
connection. When the system identified that the OSNR value
dropped to below a threshold (see Fig. 9), it configured the
waveshaper to bypass the faulty filter. Afterward, the OSNR
returned to above the threshold. The restoration was completed
in 11.8 seconds. Note that, in the aforementioned proof-of-
concept experiments, we had applied a simple threshold-based
fault detection policy and omitted the fault identification and
localization procedures. Our future work will devote to close
the loop by exploring more failure scenarios (e.g., amplifier
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malfunctioning, physical-layer attacks, misconfigurations, fil-
ter narrowing) and deploying more powerful fault management
applications [24]–[26]. For instance, we could exploit the
hybrid learning approach presented in [26] which makes use
of a clustering algorithm to learn fault patterns beyond normal
network fluctuations to avoid excessive path switching.

VI. CONCLUSION

In this paper, we demonstrated autonomous lightpath pro-
visioning over a field-deployed SDM network using 7-core
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Fig. 9. OSNR monitoring in the second failover scenario.

fibers. We proposed a sequential amplifier gain optimization
algorithm taking advantage of a composable QoT estimator.
Autonomous lightpath provisioning and failover experiments
under various scenarios verify the effectiveness of the pro-
posed design. Our future work includes: (i) expanding the
SDM testbed with more nodes in mess topologies and large-
scale wavelength/core switching capabilities; (ii) investigating
more comprehensive routing, core and spectrum assignment
policies; and (iii) studying ML designs for cognitive fault
detection, identification and localization in SDM networks.
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