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QoS-aware Management Reconfiguration of vNF
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Tingyu Li and Zuqing Zhu, Senior Member, IEEE

Abstract—The rapid development of in-network computing
motivates people to consider deploying virtual network functions
(vNFs) on heterogeneous platforms that include both software
systems like virtual machines and docker containers and hard-
ware systems like programmable data plane switches. Meanwhile,
with the emergence of multi-client network services, service
providers need to build vNF service trees (vNF-STs) in their sub-
strate networks (SNTs). In this work, we study how to optimize
the management reconfiguration of vNF-STs in an SNT equipped
with heterogeneous platforms. An integer linear programming
(ILP) model is first formulated to consider three common reasons
for vNF-ST reconfiguration and reduce both the total resource
usage after reconfiguration and the overall vNF migration cost
during reconfiguration. Then, we design a two-step algorithm to
reduce the time complexity of problem-solving. Specifically, the
algorithm first checks all the active vNF-STs to select the vNF-
STs that should be reconfigured, and then leverages an approach
based on layered auxiliary graphs (LAGs) to reconfigure the
selected vNF-STs. Extensive simulations verify the effectiveness
of our algorithms on optimizing the management reconfiguration,
and demonstrate that they can outperform existing benchmarks.

Index Terms—Network function virtualization (NFV), Hetero-
geneous NFV platforms, Service function trees.

I. INTRODUCTION

THESE days, to adapt to the explosive growth of data,
users, and applications [1, 2] in the Internet, networking

technologies have made tremendous advances, especially on
physical-layer [3–6] and virtualization technologies [7–9].
This has promoted the idea of network function virtualization
(NFV) [10], which was developed to address drawbacks of the
traditional way of deploying network services with special-
purpose middle-boxes (e.g., high cost, complicated mainte-
nance, and long time-to-market). Specifically, NFV abstracts
network services as virtual network functions (vNFs) and
realizes them on general-purpose software/hardware platforms,
such as virtual machines (VMs), docker containers (Dockers),
and programmable data plane switches (PDP-SWs) [11, 12].

To satisfy the service demands of clients, service providers
(SPs) can organize vNFs in various topologies (e.g., chains
[13], trees [14], and generic forwarding graphs [15]) and steer
application traffic through them. In a vNF service chain (vNF-
SC), the vNFs are arranged in a line to process application
traffic in sequence. In addition, the emergence of multi-client
network services, such as webcasts, online multiplayer games,
and the Metaverse, has motivated SPs to arrange vNFs in a
tree-type forwarding graph (i.e., vNF service tree (vNF-ST)),
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which can process traffic with multicast characteristics [14].
Specifically, a vNF-ST is set up to fulfill the demands for
point-to-multiple-point communications, one vNF in it can
process the application traffic to multiple clients, and each
branch of the vNF-ST is actually a vNF-SC, corresponding to
the network service of a client.

Previously, there have been a few studies on the provi-
sioning schemes of vNF-STs [14, 16–22] in various networks
with different optimization objectives. Although the algorithm
designs in them are interesting, none of these studies have
considered to deploy vNFs on heterogeneous NFV platforms
[23]. Note that, vNFs were traditionally instantiated on soft-
ware platforms such as VMs and Dockers, but with the advent
of in-network computing [24], SPs can handle computing tasks
in packet processing pipelines, which is equivalent to realize
vNFs on hardware platforms (e.g., PDP-SWs).

Software platforms are usually runtime programmable, have
advantages in cost, memory space and resiliency, and thus can
support computing-intensive vNFs effectively [25]. However,
the major inherent drawback of them is that their throughput
and processing latency might not be suitable for bandwidth-
intensive vNFs [23]. On the other hand, PDP-SWs have excel-
lent traffic processing performance and thus can guarantee high
throughput and low processing latency [11], but they are more
expensive and less flexible than the software platforms. There-
fore, if one combines the hardware (PDP-SWs) and software
(VMs and Dockers) platforms to form a network system that
consists of heterogeneous NFV platforms, the benefits of both
platforms can be unified to give SPs more flexibility to fulfill
various quality-of-service (QoS) requirements cost-efficiently.

Note that, heterogeneous NFV platforms can actually bring
more advantages to the provisioning of vNF-STs than that
of VNF-SCs. This is because a vNF in one vNF-ST can be
shared by multiple branches, and so can its benefits. More-
over, if we consider the practical network environment where
management reconfiguration can be triggered occasionally, the
advantages of heterogeneous NFV platforms can be further
explored [26]. Specifically, management reconfiguration can
be invoked for various reasons. First, when the capacities of
the NFV platforms in an SP’s network cannot catch up with the
increasing service demands from clients, the SP will need to
install new NFV platforms and reconfigure certain active vNFs
onto them for re-satisfying QoS requirements [27]. Second,
NFV platforms can have exceptions or even become unusable,
and these issues actually happen more frequently than we
expected in commercial networks [28]. Hence, an SP needs
to reconfigure/migrate vNFs to restore the affected network
services. Finally, management reconfiguration can be triggered
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to address the changes made by clients, e.g., changes on access
points, required vNFs, and QoS demands [29].

To this end, it is relevant to study QoS-aware manage-
ment reconfiguration of vNF-STs in a network equipped with
heterogeneous NFV platforms. Nevertheless, to the best of
our knowledge, this problem has not been considered in the
literature, except for our preliminary work in [30]. In [30], we
briefly described the problem and designed a greedy-based
heuristic to solve it. However, we did not formulate a solid
optimization model to tackle the problem, the heuristic was
not optimized to avoid being trapped in a local optimum, and
the tradeoff between the complexity and performance of QoS-
aware management reconfiguration was not analyzed.

The aforementioned issues motivated us to significantly
expand our study in this work for a much more comprehensive
investigation. We first jointly consider the cases of manage-
ment reconfiguration to formulate an integer linear program-
ming (ILP) model, which can provide the exact solution of the
problem. Then, to solve the problem more time-efficiently, we
propose a two-step algorithm that runs in polynomial time. The
algorithm first checks the active vNF-STs and the target of a
management reconfiguration to select the vNF-STs that should
be reconfigured, and then it leverages an approach based on
layered auxiliary graphs (LAGs) to get the reconfiguration
schemes of the selected vNF-STs. Extensive simulations verify
the effectiveness of our proposed algorithms, and analyze the
tradeoff between the complexity and performance of the QoS-
aware management reconfiguration in depth.

The rest of this article is organized as follows. We survey
the related work in Section II. In Section III, we define the
problem of QoS-aware management reconfiguration of vNF-
STs with heterogeneous NFV platforms. The algorithm design
is described in Section IV, including both the ILP and the
two-step algorithm. Section V discusses the simulation results.
Finally, we summarize the paper in Section VI.

II. RELATED WORK

Nowadays, NFV has attracted many interests from academia
and industry, and its framework, requirements, and typical use
cases have been elaborated in a few standardization documents
[10, 31]. In order to serve one vNF-ST in a substrate network
(SNT), the SP needs to first instantiate the required vNFs with
the NFV platforms on substrate nodes (SNs) and then route
application traffic among the deployed vNFs over substrate
links (SLs), such that each client of the vNF-ST can get the
required network service [14]. We hope to point out that the
provisioning of vNF-STs is fundamentally different from the
famous virtual network embedding (VNE) [32, 33]. This is
because an SP can deploy multiple vNFs of a vNF-ST on one
SN, which does not follow the principle of one-to-one node
mapping in VNE and complicates the algorithm design [14].

Previously, there have been a few studies on the provi-
sioning schemes of vNF-STs [14, 16–22], which considered
various networks and tackled the problem with different opti-
mization objectives. The study in [16] addressed the problem
in a packet network based on software-defined networking
(SDN) and proposed an approximation algorithm and several

heuristics. Zeng et al. [14] assumed that the SNT is a flexible-
grid elastic optical network (EON) [34], and thus the traffic
routing of vNF-STs needs to consider the well-known routing
and spectrum assignment (RSA) problem and minimize the
spectrum fragmentation on fiber links [35]. The authors of [17]
addressed the network environment where NFV platforms and
special-purpose middle-boxes coexist, and designed a multi-
stage algorithm to provision vNF-STs in it. The approach for
jointly optimizing the vNF placement and multicast routing in
a 5G core network was studied in [18]. Ren et al. [19] pro-
posed a two-stage approximation algorithm based on Steiner
trees to solve the provisioning of vNF-STs in a packet network.
The authors of [20] discussed how to save IT resources by
merging the vNF-STs whose sources are the same. The studies
in [21] and [22] addressed the provisioning schemes of vNF-
STs in mobile edge clouds and wireless networks, respectively.
However, all of these studies did not consider management
reconfiguration or heterogeneous NFV platforms.

Besides one-time service provisioning, the algorithms for
reconfiguring vNF-STs dynamically should also be studied.
Nevertheless, although the reconfiguration schemes of vNF-
SCs have been addressed in a number of studies [29, 36–38]
and system frameworks such as FAST [39] and ShareOn [40]
have been developed to implement the decisions made by vNF-
SC reconfiguration algorithms, how to reconfigure vNF-STs
for various reasons was seldom covered in the literature due
to its complexity. On the other hand, the existing studies that
considered heterogeneous NFV platforms (i.e., VMs, Dockers,
and PDP-SWs) were also few. Here, the heterogeneous NFV
platforms are different from the hybrid platforms that in-
clude NFV platforms and special-purpose middle-boxes [17].
Specifically, although both middle-boxes and PDP-SWs are
hardware-based, each middle-box usually can only support one
type of vNFs while a PDP-SW can carry many types.

Sun et al. [41] designed HYPER for the service provisioning
with heterogeneous NFV platforms, but the study was focused
on system implementation and did not address managemen-
t reconfiguration of vNF-STs. In [42], we discussed how
to provision vNF-SCs with heterogeneous NFV platforms,
formulated an ILP model, and proposed an approximation
algorithm based on randomized rounding. The authors of [43]
tackled a similar problem in data-center networks and designed
a greedy-based heuristic. In [26], we extended the work in
[42] to study the service upgrade of vNF-SCs for better QoS
satisfaction. However, none of the studies above considered
vNF-STs. Hence, to the best of our knowledge, the problem of
management reconfiguration of vNF-STs with heterogeneous
platforms has only been tackled preliminarily in [30].

III. PROBLEM DESCRIPTION

This section first describes the network model for the de-
ployment and reconfiguration of vNF-STs with heterogeneous
NFV platforms, and then explains the major reasons for
reconfiguring vNF-STs in management reconfiguration.

A. Network Model
We model the topology of the SNT as an undirected graph

G(V,E), where V and E are the sets of SNs and SLs,
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(a) Topologies of vNF-STs

(b) Provisioning scheme of vNF-ST 1

Fig. 1. Example on deploying vNF-STs on heterogeneous NFV platforms.

respectively. Each SN v ∈ V contains pv heterogeneous NFV
platforms. This work considers three types of heterogeneous
NFV platforms, which are VMs, Dockers and PDP-SWs, and
their numbers on an SN v are pVv , pDv , and pTv , respectively.
Apparently, we have pv = pVv + pDv + pTv . We assume that
ttotal types of vNFs can be deployed on the NFV platforms,
and each NFV platform can only carry one type of vNFs
in runtime. The deployment of vNFs on NFV platforms
mainly consumes two types of resources: memory space and
bandwidth. We define the memory sizes of the three platforms
on an SN v as CVv , CDv , and CTv , respectively. As for each
vNF of type t ∈ ttotal , its memory usages on the platforms
are γVt , γDt , and γTt , respectively. Similarly, if we deploy a
vNF of type t on the platforms, the bandwidth capacities of
the platforms respectively become BVt , BDt , and BTt , and the
processing latencies on them are ρVt , ρDt , and ρTt , respectively.

Each vNF-ST is defined as ST i(si, Di, Ri, bi), where i is
its unique index, si denotes the source, Di stands for the
destination set, Ri is the required vNF-ST, and bi represents its
bandwidth demand. Then, for the j-th destination di,j ∈ Di,
its branch is essentially a vNF-SC, which can be denoted as
ri,j(si, di,j , Fi,j , τi,j). Here, Fi,j = {fi,j,1, · · · , fi,j,Ni,j

} is
the branch’s vNF-SC, where fi,j,l denotes the l-th vNF in the

Fig. 2. Management reconfiguration of vNF-STs for various reasons.

vNF-SC and Ni,j is the length of the vNF-SC, and τi,j is the
end-to-end (E2E) latency tolerated by the vNF-SC.

Fig. 1 shows an example on the deployment of vNF-STs in
an SNT with heterogeneous NFV platforms. There are two
vNF-STs in Fig. 1(a), which respectively consist of 3 and
2 branches. Each branch represents a vNF-SC between one
source-destination pair, and we refer to it as a request in this
work. Different requests in a vNF-ST can share vNFs, e.g., the
segment of Node 1→vNF 1→vNF 2 is shared by the requests
to Nodes 6 and 3 in vNF-SC 1. If a segment of one vNF-ST
is shared by different requests, we only need to allocate one
copy of resources (i.e., memory space and bandwidth) on it
for the requests. When the application traffic exits the shared
segment, it will be replicated by the last vNF of the segment
and multicasted to different branches. Moreover, when the
related resource capacities allow, multiple vNF-STs can also
share a same vNF. For instance, the request to Node 5 in
vNF-ST 1 and that to Node 6 in vNF-ST 2 can share a vNF
3. Fig. 1(b) plots the provisioning scheme of vNF-ST 1 in the
six-node SNT, where we specify how to deploy the required
vNFs on the heterogeneous NFV platforms on SNs and how
to steer application traffic through the vNFs.

B. Management Reconfiguration of vNF-STs

In this work, we assume that the management reconfigu-
ration of vNF-SCs can be triggered for three reasons: 1) a
request changes its vNF-SC, 2) a request changes its QoS
requirement on E2E latency, and 3) an NFV platform fails.
Based on the provisioning scheme of vNF-ST 1 in Fig. 1(b),
Fig. 2 provides illustrative examples to explain the three
scenarios. To show the first scenario, the request to Node 6
in vNF-ST 1 changes its vNF-SC from Node 1→vNF 1→vNF
2→Node 6 to Node 1→vNF 1→vNF 3→Node 6. Hence, the
SP changes the routing path of its vNF-SC from 1→2→5→6
to 1→2→3→4→6, where the numbers are for the nodes in
the SNT. As for the second scenario, the request to Node 3
tightens its QoS requirement on E2E latency, and thus the
SP needs to deploy a new vNF 2 on one PDP-SW on Node 5
and reconfigure the request to use it. Finally, the third scenario
assumes that the vNF 1, which was deployed on a VM on Node
2, is down. Therefore, a new vNF 1 should be instantiated
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there (e.g., on a Docker) for service recovery. We can see
that the management reconfiguration, which jointly considers
these three reasons, can be complicated, and thus it will be
challenging to find the overall optimal reconfiguration scheme.

IV. ALGORITHM DESIGN

In this section, we design the algorithms for optimizing the
management reconfiguration of vNF-STs. Specifically, we first
describe the overall procedure, then formulate an ILP model
to solve the problem exactly, and finally design a two-step
heuristic to improve the time efficiency of problem-solving.

A. Overall Procedure

Algorithm 1 shows the overall procedure of the management
reconfiguration of vNF-STs in a dynamic SNT. Line 1 initial-
izes the set of requests that need to be reconfigured (R′) and
the system timer (T ). Then, when the SNT is operational, its
SP collects the requests that need to be reconfigured for the
three reasons mentioned in Section III-B (Lines 2-3). If the SP
finds such a request r, it first inserts the request into set R′

(Line 4). Then, the SP checks the reason of the reconfiguration
for r, and if the timer T reaches the preset time interval T0
or r needs to be reconfigure to address a platform failure, it
invokes a management reconfiguration to at least reconfigure
all the requests in R′ (Lines 5-6). Line 7 resets R′ and T .

Algorithm 1: Procedure of Management Reconfiguration

1 R′ = ∅, T = 0;
2 while the SNT is operational do
3 if a request r needs to be reconfigured then
4 insert r into R′;
5 if r is due to platform failure or T ≥ T0 then
6 invoke management reconfiguration with R′;
7 R′ = ∅, T = 0;
8 end
9 end

10 end

B. ILP Model

The optimization for each management reconfiguration can
be described with an ILP model. In order to make the ILP
model as compact as possible, we extend our approach based
on layered auxiliary graphs (LAGs), which was proposed in
[42]. Specifically, we generalize the LAG-based approach for
modeling vNF-SCs in [42] to make sure that it can model
vNF-STs. As a vNF-ST is modeled as ST i(si, Di, Ri, bi),
we denote the request of the j-th destination di,j ∈ Di

as ri,j(si, di,j , Fi,j , τi,j), where Fi,j = {fi,j,1, · · · , fi,j,Ni,j
}

explains how its vNF-SC is composed, i.e., fi,j,l denotes the
l-th vNF in it and Ni,j is the length of the vNF-SC. Then, we
use several LAGs that are derived from the SNT’s topology
G(V,E) to get an integrated view during modeling [42].

The method for obtaining the LAGs is as follows. First,
for each request ri,j(si, di,j , Fi,j , τi,j) in the vNF-ST, we

Fig. 3. Example on leveraging LAGs to provision a vNF-ST.

divide its vNF-SC Fi,j = {fi,j,1, · · · , fi,j,Ni,j} into (Ni,j+1)
segments, each of which is for the connection between two ad-
jacent vNFs. Therefore, the segments are between {si, fi,j,1},
· · · , {fi,j,l−1, fi,j,l}, · · · , {fi,j,Ni,j

, di}. Second, we duplicate
the SNT’s topology for N∗ times to obtain N∗ LAGs.

N∗ = max
i

(Ni,j + 1). (1)

The LAGs are denoted as {G0, · · · , Gn, · · · , GN∗−1}. Then,
the provisioning of each vNF-ST ST i(si, Di, Ri, bi) is accom-
plished with (Ni,j + 1) LAGs. Specifically, for each request
ri,j in the vNF-ST, we serve its first segment ({si, fi,j,1}) in
G0 and so on, so forth, i.e., the segment for {fi,j,l−1, fi,j,l}
is provisioned in Gl−1. Then, the edges between two adjacent
LAGs Gl−1 and Gl represent the l-th vNFs in all the requests
in the vNF-ST, which are {fi,j,l : ∀j ∈ [1, |Di|]}.

Fig. 3 shows an example on LAGs. As the longest vNF-
SC in the vNF-ST (i.e., r1,2) contains 3 vNFs, we duplicate
the six-node topology of the SNT to get 4 LAGs. Here, G0

is for the first segments in the requests, and since the source
of the vNF-ST is Node 1, we place a dummy platform θ+1 to
point to Node 1, and vNFs 1 and 3 are deployed on Nodes 2
and 3, respectively, to connect G0 with G1. This procedure is
repeated for each LAG until G3, where vNF 4 is deployed on
Node 4 to connect G2 with G3 and the provisioning of r1,2
ends at its destination (Node 3) with a dummy platform θ−3 .

The ILP model is formulated as follows, where its notations
and variables are listed in Tables I and II, respectively.

Objective:
We can see that the cost of the management reconfiguration

of vNF-STs mainly comes from two parts: 1) the cost of
total resource usage after reconfiguration, and 2) the overall
reconfiguration cost. We define the optimization objective as

Minimize α · (B + F) + (1− α) · M, (2)

where B and F respectively denote the total usages of band-
width and IT resources, M is the overall reconfiguration cost
due to migrating vNFs, and α ∈ (0, 1) is the weight coefficient
to balance the importance of the two aspects. Note that, when
reconfiguring a vNF-ST, we might need to replace a vNF
with a new one, and to ensure that such a reconfiguration
is hitless to the service of the vNF-ST, the state information
of the old vNF needs to be transferred to the new one. This
actually generates additional operational cost, which is the
reconfiguration cost considered in this work. Apparently, the



5

TABLE I
PARAMETERS OF ILP

Context Notation Description

Network Topology

G(V,E) the topology of the SNT.

ST i(si, Di, Ri, bi) the i-th vNF-ST in the SNT.

ri,j(si, di,j , Fi,j , τi,j) the j-th request in ST i.

Gn the n-th LAG obtained from the SNT.

vNF Management

Reconfiguration

ttotal the set of vNF types that are supported in the SNT.

ηti,j,l the boolean parameter that equals 1 if the l-th vNF in ri,j is one of type t, and 0 otherwise.

µv,k/ζv,k/ξv,k
the boolean parameter that equals 1 if the k-th platform of v ∈ V

is a VM/Docker/PDP-SW, respectively, and 0 otherwise.

CV
v /CD

v /CT
v the memory size of VMs/Dockers/PDPSWs of SN v, respectively.

ĉVt /ĉDt /ĉTt the memory space used by one vNF of type t on a VM/Docker/PDP-SW, respectively.

BV
t /BD

t /BT
t the bandwidth capacity of a VM/Docker/ PDP-SW when carrying vNFs of type t.

ρVt /ρDt /ρTt the processing latency of a VM/Docker/PDPSW when carrying vNFs of type t.

x̃v,ki,j,l

the boolean parameter that equals 1 if the l-th vNF of ri,j is deployed on the

k-th platform of SN v before the management reconfiguration, and 0 otherwise.

γVt /γDt /γTt the cost of deploying a vNF of type t on a VM/Docker/PDP-SW, respectively.

Links

mv,k2
u,k1

the cost of migrating a vNF from the k1-th platform of SN u to the k2-th platform

of SN v, and we assume that it is irrelevant to the type of the vNF.

θ+v /θ
−
v the dummy platform to/from SN v if it is the source/destination of a request.

β the unit cost of the bandwidth usage on an SL.

λ(u,v) the transmission delay of link (u, v) ∈ E.

TABLE II
VARIABLES OF ILP

Variable Description

xv,ki,j,l the boolean variable that equals 1 if the l-th vNF of ri,j is on the k-th platform of SN v, and 0 otherwise.

hv,k,t the boolean variable that equals 1 if a type-t vNF is deployed on the k-th platform of SN v, and 0 otherwise.

gu,k1,v,k2
i,j,n

the boolean variable that equals 1 if the traffic of request ri,j is routed over the link between

the k1-th platform of SN u and the k2-th platform of SN v in LAG Gn, and 0 otherwise.

δu,k1,v,k2
i,j,l

the boolean variable that equals 1 if the l-th vNF of request ri,j is migrated

from k1-th platform of SN u to the k2-th platform of SN v, and 0 otherwise.

reconfiguration cost increases with the number of requests that
were using the old vNF. Hence, we assume that if the old vNF
was deployed on the k1-th platform of SN u and was serving
n requests, the reconfiguration cost is n·mv,k2

u,k1
if the new vNF

is deployed on the k2-th platform of SN v. To this end, the
B, F , and M in Eq. (2) can be calculated as

B =
∑
i,j

∑
n

∑
(u,v)∈E,k1,k2

β · bi · gu,k1,v,k2
i,j,n ,

F =
∑
t

∑
v,k

hv,k,t ·
(
γV
t µv,k + γD

t · ζv,k + γT
t · ξv,k

)
,

M =
∑
i,j,l

∑
u,v,k1,k2

δu,k1,v,k2
i,j,l ·mv,k2

u,k1
.

(3)

Constraints:
1) Constraints on vNF Placements after Reconfiguration:∑

v,k

xv,ki,j,l = 1, ∀i, j, l. (4)

Eq. (4) ensures that each vNF in the vNF-STs is deployed on
one and only one platform after management reconfiguration.

∑
t

hv,k,t ≤ 1, ∀v, k. (5)

Eq. (5) ensures that at most one type of vNFs can be deployed
on one NFV platform of each SN.


∑
i,j,l

ηti,j,l · xv,ki,j,l > (hv,k,t − 1) ·

1 +
∑
i,j,l

ηti,j,l


∑
i,j,l

ηti,j,l · xv,ki,j,l ≤ hv,k,t ·
∑
i,j,l

ηti,j,l

, ∀v, k, t,

(6)
hv,k,t ≥ ηti,j,l · xv,ki,j,l, ∀v, k, t, i, j, l. (7)

Eqs. (6)-(7) ensure that the values of variables {xv,ki,j,l} and
{hv,k,t} are set correctly based on the relations among them.
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{
δu,k1,v,k2
i,j,l = 0, if u = v and k1 = k2,

δu,k1,v,k2
i,j,l ≥ xv,k2

i,j,l + x̃u,k1
i,j,l − 1, otherwise,

∀i, j, l, u, v, k1, k2.
(8)

Eq. (8) ensures that the values of variables {δu,k1,v,k2i,j,l } are
calculated correctly to describe the vNF reconfigurations.

2) Constraints on Resource Allocation:

∑
t,k

ĉVt · hv,k,t · µv,k ≤ CV
v∑

t,k

ĉDt · hv,k,t · ζv,k ≤ CD
v∑

t,k

ĉTt · hv,k,t · ξv,k ≤ CT
v

, ∀v. (9)

Eq. (9) ensures that the memory space used by the vNFs
deployed on NFV platforms of each SN does not exceed the
platforms’ memory size.



∑
i,j

bdi ·
∑
l

xv,ki,j,l · η
t
i,j,l · µv,k ≤ BU

t∑
i,j

bdi ·
∑
l

xv,ki,j,l · η
t
i,j,l · ζv,k ≤ BD

t∑
i,j

bdi ·
∑
l

xv,ki,j,l · η
t
i,j,l · ξv,k ≤ BT

t

, ∀v, k, t. (10)

Eq. (10) ensures that the bandwidth used by the vNFs deployed
on one NFV platform of each SN does not exceed the
platform’s bandwidth capacity.

3) Constraints on Traffic Routing:∑
t,l

ηti,j,l ·
∑
v,k

(
ρVt · µv,k + ρDt · ζv,k + ρTt · ξv,k

)
+
∑
n

∑
(u,v)∈E,k1,k2

gu,k1,v,k2
i,j,n · λ(u,v) ≤ τi,j , ∀i, j.

(11)

Eq. (11) ensures that the E2E latency of each request ri,j in
the vNF-STs does not exceed its QoS requirement τi,j .

∑
v,k2

gu,k1,v,k2
i,j,n −

∑
v,k2

gv,k2,u,k1
i,j,n = xu,k1

i,j,n − x
u,k1
i,j,n+1,

∀i, j, n ∈ [1, Ni,j − 1], u, k1.

(12)

Eq. (12) ensures the flow conservation condition of the routing
of each request ri,j in the vNF-STs, i.e., except for the first
and last LAGs of ri,j , the inflow and outflow of each NFV
platform that carries its vNF are equal.∑

v,k2

gu,k1,v,k2
i,j,0 −

∑
v,k2

gv,k2,u,k1
i,j,0

=

{
1, if k1 = θ+u and u = si,j ,

− xu,k1
i,j,1 , otherwise,

∀i, j.
(13)

Eq. (13) ensures the flow conservation condition of the routing
of each request ri,j in its first LAG.∑

v,k2

gu,k1,v,k2
i,j,Ni,j

−
∑
v,k2

gv,k2,u,k1
i,j,Ni,j

=

{
− 1, if k1 = θ−u and u = di,j ,

xu,k1
i,j,Ni,j

, otherwise,
∀i, j.

(14)

Eq. (14) ensures the flow conservation condition of the routing
of each request ri,j in its last LAG.

x
v,θ−v
i,j,l = x

v,θ+v
i,j,l = 0, ∀i, j, l, v. (15)

Eq. (15) ensures that the dummy platforms to/from each SN
v cannot be used for real vNF deployment.∑

(u,v)∈E,k1,k2

gu,k1,v,k2
i,j,n ≥ 1, ∀i, j, n ∈ [0, Ni,j ]. (16)

Eq. (16) ensures that the routing path of request ri,j uses at
least one link in each of its LAGs.

gu,k1,v,k2
i,j,n1

+ gu,k1,v,k2
i,j,n2

≤ 1, ∀i, j, (u, v) ∈ E, k1, k2,
n1, n2 ∈ [0, Ni,j ].

(17)

Eq. (17) ensures that each vNF-ST is provisioned in the SNT
without routing loops.


∑
v,k2

gu,k1,v,k2
i,j,n ≥ xu,k1

i,j,n,∑
v,k2

gv,k2,u,k1
i,j,n−1 ≥ xu,k1

i,j,n,
∀i, j, u, k1, n ∈ [1, Ni,j ]. (18)

Eq. (18) ensures the correct relation between the routing path
and vNF deployment of each request ri,j in the vNF-STs.

C. Heuristic Algorithm Design

Although ILP can provide the exact solution to the prob-
lem of QoS-aware management reconfiguration of vNF-STs,
it becomes intractable for large-scale problems. Meanwhile,
the management reconfiguration of vNF-STs includes the
reprovisioning of a set of vNF-SCs (i.e., requests), which is
known to be NP-hard [29]. Hence, the problem of QoS-
aware management reconfiguration of vNF-STs is NP-hard
too. In this section, we will design a two-step heuristic to solve
this problem in polynomial time. Specifically, the heuristic
first selects the requests to be reconfigured, including those
that need to be reconfigured and some other ones that would
make the optimization result better, and then reconfigures the
selected requests to minimize the objective in Eq. (2).

1) Selecting Requests for Management Reconfiguration:
The first step of the heuristic is to select requests for manage-
ment reconfiguration based on those in R′ and put them in set
R′′. Here, we denote the set of all the requests in active vNF-
STs as R. Note that, before each management reconfiguration,
the deployment of active requests is correlated, i.e., different
requests can share vNFs deployed on NFV platforms of SNs.
Therefore, if the management reconfiguration only considers
the requests in R′, the solution might not be good enough. This
can be seen the examples in Fig. 4. The left subplot shows the
deployment scheme of a vNF-ST before the reconfiguration,
and we need to reconfigure Request 1 because its QoS demand
on E2E latency has been tightened. The middle subplot shows
the reconfiguration scheme that only considers Request 1, and
it needs to instantiate two new vNFs on PDP-SWs, using more-
than-necessary NFV platforms. The right subplot describes
a better reconfiguration scheme, which considers Request 2
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Fig. 4. Examples on selecting correlated requests to reconfigure.

Algorithm 2: Selecting Requests for Reconfiguration

1 R′′ = R′, R1 = R \R′, R2 = ∅, Φ = ∅, bmax
f∗ = 0;

2 for each request r ∈ R′ do
3 if r is due to latency requirement change then
4 insert all the requests in R1 that share vNF(s)

with r into R2;
5 end
6 end
7 insert the vNF types used by requests in R2 into Φ;
8 sort vNF types in Φ to obtain combinations;
9 for each combination f ∈ Φ do

10 calculate potential cost reduction bf with Eq. (19);
11 if bf > bmax

f∗ then
12 bmax

f∗ = bf ;
13 f∗ = f ;
14 end
15 end
16 for each request r ∈ R2 do
17 if at least one vNF type used by r is in f∗ then
18 insert r into R′′;
19 end
20 end

together with Request 1. The scheme not only saves two NFV
platforms but also reduce the E2E latency of Request 2.

Algorithm 2 shows our heuristic for selecting the requests
to reconfigure. Line 1 is for the initialization, where R1 stores
all the active requests that do not need to be reconfigured at
this moment. In Lines 2-6, we check each request r ∈ R′ (i.e.,
those need to be reconfigured for the three reasons in Section
III-B) and find the requests in R1 that share vNF(s) with r.
These requests are those that can be potentially reconfigured
to save vNFs in the SNT, and we put them in set R2 (Line 4).
Line 7 collects the vNF types used by the requests in R2 and
put them in set Φ. Then, we sort the vNF types in Φ to get
combinations of vNF types (Line 8). Specifically, we first sort
the vNF types in descending order of their usages by the re-
quests in R2, then obtain the combinations based on the sorted
results. For instance, if we assume that the sorted results in R2

are {t1, t2, t3, t4} (t1, t2, t3, t4 ∈ ttotal), the combinations in Φ
will be {< t1 >,< t1, t2 >,< t1, t2, t3 >,< t1, t2, t3, t4 >}.

The rationale behind this operation is to find the combinations
of vNFs that are shared the most by the requests in R2, for
minimizing the number of vNFs after the reconfiguration.

The for-loop that covers Lines 9-15 checks each combina-
tion f ∈ Φ to find the one (f∗) whose potential cost reduction
bf is the largest, which is calculated as follows

bf =
∑
t∈f

∑
ri,j∈R2

∑
l

ηti,j,l · (γt − m̄), (19)

where γt denotes the current deployment cost of a type-t
vNF in request ri,j ∈ R2, and m̄ is the average migration
cost obtained based on {mv,k2

u,k1
}. Finally, Lines 16-20 select

requests in R2 to add in R′′ (i.e., the set of requests to be
reconfigured) according to the vNF types in f∗.

Complexity analysis: The complexity of Lines 2-6 is
O(|R′| · |R1| · N̂2), where we have N̂ = max

i,j
(Ni,j) as the

maximum number of vNFs in a request. The complexity of
Lines 7-8 is O(|R1| · N̂ + |ttotal| · log(|ttotal|)), and that of
Lines 9-15 is O(|ttotal| · |R1| · N̂). Finally, the complexity of
Lines 16-20 is also O(|ttotal| · |R1| · N̂), and the maximum
number of elements in f does not exceed T . In summary, the
time complexity of Algorithm 2 is O(|R′| · |R1| · N̂2 + |R1| ·
N̂ + |ttotal| · log(|ttotal|) + 2 · |ttotal| · |R1| · N̂).

2) Reconfiguring Selected Requests: The second step of
our heuristic is to reconfigure the requests that were selected
by Algorithm 2 (i.e., those in set R′′), which can be accom-
plished by leveraging the LAGs described in Section IV-B.
The basic idea of the LAG-based algorithm is to 1) build N∗

LAGs for all the requests in R′′, where

N∗ = max
ri,j∈R′′

(Ni,j + 1), (20)

2) figure out the new vNF deployment schemes of the requests
in R′′ by grouping their required vNFs according to the LAGs,
and 3) connect the deployed vNFs to finish the reconfiguration.
The detailed procedure is shown in Algorithm 3.

We first remove the failed NFV platforms from the SNT
(Line 1). Then, the for-loop that covers Lines 2-27 determines
the reprovisioning scheme of each request in each LAG in se-
quence. Specifically, the procedure of the service provisioning
in each LAG Gn is as follows. Lines 3-9 check each request
r that uses Gn, and if the request needs to be reconfigured
due to the change of its QoS requirement on E2E latency, we
remove the NFV platforms that cannot satisfy its new latency
requirement from LAG Gn to get a restricted LAG G′n. Then,
we organize the requests’ vNFs that need to be deployed in
the current LAG according to their types, and denote them
as tuples, each of which includes a type of the vNFs (ti),
the requests that use the vNF type in the LAG (Ri), the
number of the requests (ci), and their total bandwidth demand
(Bi) (Lines 10-13). The for-loop covering Lines 14-19 checks
the requests in each tuple of {Rj , Bj , cj , tj}. If their total
bandwidth demand is larger than the minimum capacity of
an NFV platform, it divides the requests in Rj into groups
to make sure that the total bandwidth demand of each group
does not exceed the minimum capacity of an NFV platform,
and generates a tuple for each group (Lines 16-17). Then, for
each tuple of {Rj , Bj , cj , tj} in descending order of cj , Lines
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Algorithm 3: Reconfiguring Selected Requests

1 remove failed NFV platforms from SNT;
2 for each LAG Gn with n ∈ [0, N∗ − 1] do
3 for each r that uses Gn and has latency change do
4 for each type of NFV platform h do
5 if h cannot satisfy latency demand of r then
6 remove all the NFV platforms of type h

in Gn to get G′n;
7 end
8 end
9 end

10 get all the vNFs that need to be deployed in Gn and
store their types in tGn

, and set i = 1;
11 for each vNF type t ∈ tGn

do
12 store the requests that use it in set Ri, their

number in ci, their total bandwidth demand in
Bi, and t in ti, and set i = i+ 1;

13 end
14 for each j ∈ [1, i− 1] do
15 if Bj > min

(
BVt , B

D
t , B

T
t

)
then

16 divide requests in Rj into groups to ensure
the total bandwidth demand of each group
not exceed min

(
BVt , B

D
t , B

T
t

)
;

17 generate a tuple to include the vNF type,
requests, number of requests (ci), and total
bandwidth demand of each group;

18 end
19 end
20 sort tuples {Rj , Bj , cj , tj} in descending order of cj ;
21 for each tuple {Rj , Bj , cj , tj} in sorted order do
22 if requests in Rj have latency changes then
23 Gn = G′n;
24 end
25 find an NFV platform in Gn that can carry the

type tj vNF required by requests in Rj and the
resulting cost of resource usages is the smallest;

26 end
27 end
28 for each request r ∈ R′′ do
29 connect its vNFs with the shortest routing paths;
30 end

20-26 find a proper NFV platform to deploy/reuse a vNF of
type tj for all the requests in Rj . Specifically, in LAG Gn,
we find the NFV platform on which deploying/reusing a vNF
of type tj results in the smallest cost of resource usages (i.e.,
both IT and bandwidth resource usages). Finally, we set up
paths to connect the vNFs of each request in R′′ in sequence,
and finish the management reconfiguration (Lines 28-30).

Complexity analysis: For each iteration of Lines 2-27, the
complexity of Lines 3-9 is O(|R′′| · |V | ·K), where K is the
number of NFV platforms on each SN, that of Lines 10-20
is O(|R′′| + |ttotal| · log(|ttotal|)), and that of Lines 21-26 is
O(|R′′| · |V | ·K). The complexity of Lines 28-30 is O(|R′′| ·
N∗ · |V |3). Hence, the overall time complexity of Algorithm 3
is O(N∗·(|R′′|+|ttotal|·log(|ttotal|)+|R′′|·|V |·K+|R′′|·|V |3)).

(a) NSFNET topology

(b) US backbone topology

Fig. 5. SNT topologies marked with transmission delays of links.

V. PERFORMANCE EVALUATION

In this section we perform extensive numerical simulations
to evaluate the performance of our proposed algorithms.

A. Simulation Setup

Our simulations consider two SNT topologies, which are
the 14-node NSFNET topology in Fig. 5(a) and the 24-node
US backbone topology in Fig. 5(b), and the transmission
delay of each link is also marked in Fig. 5. We assume that
each SNT can support |ttotal| = 4 types of vNFs. To ensure
that the simulations are representative of real-world network
environments, we set simulation parameters according to the
parameters of practical NFV platforms (e.g., the PDP-SWs in
[11]) and our own experimental results in [23].

We set the available memory space of heterogeneous NFV
platforms in the SNT before the management reconfiguration
(CVv /CDv /CTv ) within [30%, 100%]. We assume that deploying
a vNF of any type on a PDP-SW will consume all of its
memory space, i.e., {ĉTt = 100%, ∀t ∈ ttotal}. As for
VMs and Dockers, the memory usages of a vNF on them
are set as ĉVt ∈ [3%, 4%] and ĉDt ∈ [0.002%, 0.01%],
respectively. For vNFs deployed on VMs/Dockers/PDP-SWs,
their bandwidth capabilities BVt /BDt /BTt are 1.5 Gbps, 1.3
Gbps, and 100 Gbps, respectively, while their processing
latencies are ρVt ∈ [170, 260] µs, ρDt ∈ [150, 160] µs, and
ρTt ∈ [10, 20] µs, respectively. The costs of deploying a
vNF on VMs/Dockers/PDP-SWs are γVt = 1, γDt = 1.6,
and γTt = 1.76, respectively. The vNF migration cost mv,k2

u,k1
is set within [0.02, 0.06], and we assume that the cost of
migrating a vNF to/from a PDP-SW is higher than those of
other migration cases. This is because we need to reconfigure
packet processing pipelines and update registers to migrate
state information when migrating a vNF to/from a PDP-SW.
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TABLE III
SIMULATION RESULTS WITH NSFNET TOPOLOGY

# of Requests Scenario Objective
Total Resource Cost

(B + F )
Total Reconfiguration Cost

(M)
ILP LAG LAA Sort ILP LAG LAA Sort ILP LAG LAA Sort

3 Mix 11.958 13.214 13.993 14.029 16.76 18.74 19.92 19.98 0.76 0.33 0.17 0.15
5 Mix 12.848 14.519 15.239 15.954 17.96 20.40 21.60 22.67 0.92 0.79 0.42 0.28
7 Mix 12.605 14.010 15.134 16.494 17.65 19.66 21.41 23.40 0.83 0.84 0.48 0.38
9 Mix 12.745 14.227 15.178 16.354 17.84 19.91 21.31 23.20 0.92 0.97 0.75 0.39
11 Mix 12.891 14.668 15.684 16.872 17.98 20.53 22.02 23.89 1.01 1.00 0.90 0.50
7 QoS 13.079 15.161 16.654 19.715 18.22 21.10 23.49 27.87 1.10 1.34 0.71 0.69
9 QoS 13.138 15.166 17.098 21.315 18.28 21.08 24.03 29.06 1.14 1.37 0.93 0.90
11 QoS 13.138 14.834 17.272 20.808 18.28 20.59 24.22 29.28 1.14 1.40 1.07 1.04
7 vNF 11.662 11.916 11.916 11.916 16.43 16.96 16.96 16.96 0.33 0.15 0.15 0.15
9 vNF 11.599 11.954 11.954 11.954 16.40 17.00 17.00 17.00 0.40 0.18 0.18 0.18
11 vNF 11.738 12.510 12.510 12.510 16.60 17.76 17.76 17.76 0.39 0.18 0.18 0.18

For the requests in vNF-STs, we assume that each request
contains [1, 4] vNFs. The management reconfiguration consid-
ers two types of requests, i.e., latency-sensitive and latency-
tolerable ones. We set the E2E latency requirement τi,j of a
latency-sensitive request ri,j within [0.06, 0.15] · Ni,j msec,
while that of a latency-tolerable request ri,j is assumed to
be within [0.25, 0.3] · Ni,j msec. The bandwidth demand of
each vNF-ST is set as bi = 0.1 Gbps. To calculate the cost of
bandwidth usage in Eq. (3), we set the normalized unit cost
as β = 2 per Gbps. As for the weight coefficient in Eq. (2),
we first have α = 0.7, and then change its value to observe its
impact on the optimization of management reconfiguration.

We will compare four algorithms for the QoS-aware man-
agement reconfiguration, which are the ILP model in Section
IV-B (ILP), the LAG-based heuristic that combines Algorithms
2 and 3 (LAG), the greedy-based heuristic that we developed
in [30] (LAA), and a simple sorting-based algorithm (Sort).
Specifically, Sort first sorts the requests to be reconfigured
according to their reasons, and then reconfigures the sorted
requests one by one. To the best of our knowledge, the problem
of how to optimize the management reconfiguration of vNF-
STs with heterogeneous NFV platforms still has not been
fully explored yet. Therefore, it is difficult for us to find
benchmarks, which are more sophisticated than LAA and Sort,
in the literature. Meanwhile, certain recent studies on vNF-SC
reconfiguration also used greedy-based procedures (like those
in LAA and Sort) in their algorithm design (e.g., in [38]).

For simplicity, we abbreviate the reasons for reconfiguration
as 1) vNF: requests change their vNF-SCs, 2) QoS: requests
change their QoS demands on E2E latency, and 3) Failure:
NFV platforms fail. We run the simulations on a computer
with 3.0 GHz Intel Core i5-9500 CPU and 16 GB memory, and
the software environment is Python 3.7 with Gurobi v9.1. To
maintain sufficient statistical accuracy, the simulations average
the results from 30 independent runs to get each data point.
To show the algorithms’ stability in the simulations, we also
mark the range of the 95% confidence interval in Figs. 6-8.

B. Small-Scale Simulations
We first consider the NSFNET topology to run small-scale

simulations in it, where each SN has 4 heterogeneous NFV

platforms as one VM, two Dockers and one PDP-SW. To
obtain the network state before management reconfiguration,
we use ILP to deploy 5 vNF-STs that includes 13 requests in
the SNT. Then, we simulate the scenarios in which the man-
agement reconfiguration needs to reconfigure {3, 5, 7, 9, 11}
requests. For each scenario, we consider cases with different
reasons for reconfiguration. Specifically, we address three
cases in each scenario: 1) Mix: the ratios of vNF and QoS are
set within [10%, 60%] and [20%, 40%], while the remaining is
for Failure, 2) vNF: all the requests need to be reconfigured
due to vNF, and 3) QoS: the ratio of QoS is 100%.

TABLE IV
AVERAGE RUNNING TIME OF SIMULATIONS WITH NSFNET (SECONDS)

# of Requests Scenario ILP LAG LAA Sort

3 Mix 9.27 0.027 0.017 0.028
5 Mix 11.83 0.038 0.020 0.038
7 Mix 11.37 0.045 0.023 0.039
9 Mix 15.12 0.045 0.027 0.040

11 Mix 17.08 0.046 0.029 0.042
7 QoS 11.53 0.053 0.038 0.22
9 QoS 10.56 0.061 0.044 0.33

11 QoS 10.74 0.062 0.046 0.40
7 vNF 13.04 0.023 0.023 0.028
9 vNF 14.43 0.027 0.027 0.030

11 vNF 15.34 0.029 0.029 0.031

Table III shows the simulation results of different scenarios.
We can see that objectives provided by LAG is always the
closest to those from ILP, which justifies the advantage of
LAG over LAA and Sort. Specifically, LAG can adaptively
select requests to reconfigure and save the total resource cost
after management reconfiguration. This can be confirmed by
comparing the total reconfiguration costs from the algorithms,
because the results from ILP and LAG are larger than those
from LAA and Sort. LAA outperforms Sort in most of the
scenarios, but it can perform worse when the number of
requests to be reconfigured is relatively small. We also notice
that the advantage of LAG becomes more significant in Mix
and QoS scenarios. The average running time of the algorithms
are listed in Table IV. We can see that the three heuristics run
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Fig. 6. Results of simulations with NSFNET topology and Mix.

several orders of magnitude faster than ILP, and the running
time of LAG is similar to that of LAA and they both run faster
than Sort. This is because LAG and LAA reprovision requests
in groups but do not process them one by one as in Sort.

Next, we fix the reconfiguration scenario as Mix and change
the value of α in the optimization objective in Eq. (2), to inves-
tigate its effect on the algorithms’ performance. Fig. 6 shows
the results on objective for the cases of α ∈ {0.5, 0.7, 0.9}.
We observe that the objectives from all the algorithms increase
with α, and for all the cases, the objectives from LAG are
always the closest to those from ILP. This suggests that the
advantage of LAG will not be affected by the setting of α.

C. Large-Scale Simulations

We then evaluate the algorithms with the large-scale US
backbone topology. This time, we assume that there are 20
heterogeneous NFV platforms on each SN, which are 7 VMs,
10 Dockers, and 3 PDP-SWs. To obtain the network state be-
fore management reconfiguration, we deploy 31 vNF-STs that
contains a total of 100 requests with LAA. Then, the manage-
ment reconfiguration needs to reconfigure {15, 30, 45, 60, 75}
requests in the simulations. Due to its high time complexity,
we do not consider ILP. The reconfiguration scenario is fixed
as Mix, we have α = 0.5 and other simulation parameters are
the same as those used in the previous subsection. Meanwhile,
to further study the heuristics’ performance in an SNT where
the QoS demands of vNF-STs are stringent, we add a new
scenario in which the E2E latency requirement τi,j of a
latency-sensitive or latency-tolerable request ri,j is within
[0.01, 0.09] ·Ni,j or [0.06, 0.15] ·Ni,j msec, respectively.

Fig. 7 shows the simulation results on objective, which
indicate that LAG still performs the best among the three
algorithms. Moreover, by comparing Figs. 7(a) and 7(b), we
can see that the performance gaps between LAG and LAA/Sort
actually become larger in Mix with tightened latency require-
ments, especially for the cases in which there are a relatively
large number of requests to be reconfigured. These results
further verify the advantage of LAG in saving NFV platforms,
which can be seen more clearly in Fig. 8. Specifically, Fig.
8 shows the usages of NFV platforms after reconfiguration
for the case where there are 60 requests to be reconfigured
(|R′| = 60). In Fig. 8(a), we observe that LAG deploys
more vNFs on Dockers than LAA and Sort, while Sort uses
the most NFV platforms due to its poor performance on
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Fig. 7. Results of simulations with US backbone topology.

vNF aggregation. On the other hand, Fig. 8(b) indicates that
when the QoS requirements of requests are tightened, LAG
uses more PDP-SWs to satisfy the stringent demands on E2E
latency and its usage of Dockers gets reduced significantly.
This confirm that LAG can realize QoS-aware management
reconfiguration. The average running time of the algorithms
is listed in Table V. We can see that LAG still runs as fast as
LAA, and Sort still takes much longer time than them to find
the reconfiguration scheme of each request.

VI. CONCLUSION

In this paper, we studied how to optimize the management
reconfiguration of vNF-STs in an SNT with heterogeneous
NFV platforms, for three common reasons. We first formulated
an ILP model to reduce both the total resource usage after
reconfiguration and the overall vNF migration cost during
reconfiguration. Then, we proposed a two-step algorithm based
on LAGs to solve the problem more time-efficiently. Extensive
simulations confirmed the effectiveness of our algorithms on
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optimizing the management reconfiguration, and demonstrated
that they could outperform existing benchmarks.
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Fig. 8. Results on usages of NFV platforms after reconfiguration.

TABLE V
AVERAGE RUNNING TIME PER REQUEST WITH US BACKBONE (SECONDS)

# of Requests LAG LAA Sort

15 0.074 0.081 1.44
30 0.074 0.079 0.92
45 0.075 0.077 0.92
60 0.074 0.062 0.84
75 0.075 0.064 0.95
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