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How to Use In-band Network Telemetry Wisely:
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Abstract—As a promising network monitoring technique, in-
band network telemetry (INT) helps to visualize networks in
a fine-grained and real-time manner. Meanwhile, to address the
overheads of INT, people have proposed a few selective INT (Sel-
INT) approaches that only select a portion of packets in each flow
to insert INT fields and distribute different types of INT fields
over the selected packets. In this paper, we study how to use
Sel-INT wisely in a network such that the tradeoff between mon-
itoring accuracy/coverage and INT overheads can be balanced
well. Specifically, we try to orchestrate the Sel-INT schemes of
flows in both network- and flow-levels. For the network-level
optimization, we model it as an INT planning problem in which
the Sel-INT schemes of flows should be determined to maximize
the information gain of INT as well as minimize the bandwidth
overheads of INT. We formulate an integer linear programming
(ILP) model to tackle the problem, prove its NP-hardness,
and leverage Lagrangian relaxation to design a polynomial-
time approximation algorithm for it. The flow-level optimization
considers a dynamic network environment, and we propose to
combine deep learning (DL) based traffic prediction with Sel-
INT, such that the Sel-INT scheme of each individual flow can
be updated timely and adaptively. We implement the proposal in
a small but real network testbed and experimentally demonstrate
self-adaptive orchestration of Sel-INT with it.

Index Terms—In-band network telemetry (INT), Selective INT
(Sel-INT), Software-defined networking (SDN), Programmable
data plane (PDP), Lagrangian relaxation (LR).

I. INTRODUCTION

OVER past decades, the Internet has evolved as an indis-
pensable part of people’s daily lives, with innumerable

connected devices, complicated network infrastructures, fast-
emerging new technologies, and, of course, many challenges
[1]. Particularly, the long-term challenge since the inception
of the Internet, i.e., how to monitor networks accurately and
efficiently, has become even harder to address. The difficulty
comes from at least the following three aspects. Firstly, the
advances on physical-layer technologies for wired and wireless
networks [2–8] and heterogeneous network environments have
made the correlations between network status and quality-
of-service (QoS) metrics (e.g., bandwidth, latency and jitter)
more sophisticated. Secondly, the wide usage of virtualization
techniques (e.g., virtual network slicing [9–12] and network
function virtualization (NFV) [13–16]) has decoupled network
services from physical devices, and thus increased flexibility
is achieved at the cost of complexity. Finally, the ever-growing
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network devices and applications can easily flood network
monitors with unprocessable status data [17, 18]. Hence,
traditional network monitoring approaches, which are usually
based on out-of-band polling (such as SNMP [19] and sFlow
[20]), can hardly catch up with the evolving requirements.

The introduction of software-defined networking (SDN)
[21, 22] and programmable data plane (PDP) [23, 24] has
fueled the development of network monitoring techniques.
Specifically, the centralized network control and management
(NC&M) achieved by SDN makes network monitoring much
easier, while PDP enables network operators to customize their
network monitoring schemes without being restricted by ex-
isting network protocols. Therefore, by leveraging the benefits
of SDN and PDP, people proposed in-band network telemetry
(INT) [25] to achieve fine-grained and real-time network mon-
itoring. More specifically, by examining the INT instructions
precoded in the header of each packet, PDP switches collect
required network statistics (in switch/interface/buffer-level),
encode them as INT fields, and insert the INT fields into the
packet, for recording the exact network status experienced by
the packet and how it gets processed hop-by-hop.

Note that, the initiative of the open networking foundation
(ONF) on protocol independent forwarding (PIF) [26] suggests
that PDP can be based on either the programming protocol-
independent packet processors (P4) [23] or the protocol-
oblivious forwarding (POF) [24]. P4 defines the way to write
and compile packet processing programs with the P4 language,
such that a PDP switch can be programmed in two phases,
i.e., configuration and runtime [23]. On the other hand, POF
assembles packet processing pipelines in runtime by installing
flow tables in PDP switches [24], which is similar to the
approach used by OpenFlow except that the flow tables are
protocol-oblivious [27]. Hence, INT can be realized with both
P4 [28, 29] and POF [30] to visualize network operations.

However, despite its benefits, INT is associated with notice-
able overheads from two perspectives. First of all, as inserting
INT fields into packets is actually a heavy-weight operation for
PDP switches, INT can affect packet processing performance,
especially when it is realized on software-based PDP switches
[30]. Secondly and more importantly, the insertion of INT
fields increases packet lengths and causes extra bandwidth
usage, which, if not controlled well, might severely degrade
the overall performance of the network under monitoring.
Previously, to address the overheads of INT, people have
proposed various techniques, including inserting INT fields
in packets selectively [30–32], distributing the INT fields for
different types of telemetry data to different packets [33,
34], and compressing telemetry data to shorten the lengths
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of INT fields [32]. These techniques have been proven to be
effective, but, to the best of our knowledge, the problem of how
to use them wisely (i.e., optimizing their operation schemes
and parameters to balance the tradeoff between monitoring
accuracy/coverage and INT overheads) has not been studied
yet. Note that, we can hardly achieve efficient and effective
network monitoring without considering this problem. For
instance, if two flows go through a same switch, we might
collect the same type of telemetry data on the switch with
both flows, which induces redundant INT operations.

In this paper, we study how to wisely use the selective INT
(Sel-INT) technique developed in our previous work [30] in a
network. Specifically, we try to optimize the orchestration of
Sel-INT in both network- and flow-levels. For the network-
level optimization, we consider an INT planning problem,
where the network carries a few elephant flows that can be
used for Sel-INT, and the Sel-INT scheme of each flow should
be determined to minimize the bandwidth overheads of INT
as well as maximize the information gain of INT. Here, we
assume that for a switch, each type of telemetry data has
its own information, which can be considered as the gain of
monitoring it. The INT planning problem essentially consists
of two subproblems: 1) how to select the types of telemetry
data to collect at each PDP switch such that the information
gain of INT can be maximized (INT data selection), and 2)
how to assign the selected telemetry data to flows so that the
overheads of INT can be minimized (INT data assignment).

We first formulate an integer linear programming (ILP)
model to optimize the INT planning problem, and prove its
NP-hardness. Then, we develop a technique to preprocess
the constraints of the problem to get a flow-covered graph, for
reducing the solution space. Based on the flow-covered graph,
we propose a polynomial-time approximation algorithm by
leveraging the Lagrangian relaxation. Numerical simulations
confirm that our approximation algorithm can obtain near-
optimal solutions quickly with only a few iterations.

For the flow-level optimization, we consider a dynamic net-
work environment, and expand our POF-based Sel-INT system
designed in [30] to achieve self-adaptive orchestration of Sel-
INT. Specifically, we combine deep learning (DL) based traffic
prediction with Sel-INT, and show that self-adaptive network
monitoring can be realized by adjusting the parameters of Sel-
INT according to traffic prediction. The proposed system is
implemented and experimentally demonstrated in a small but
real network testbed that consists of six stand-alone POF-based
switches. The major contributions of this work are as follows:
• To the best of our knowledge, this is the first study that

leverages network- and flow-level orchestration of Sel-
INT to optimize the tradeoff between monitoring accura-
cy/coverage and INT overheads for a whole network.

• For the network-level optimization, we formulate a plan-
ning problem to optimize the overheads and information
gain of INT jointly, prove its NP-hardness, and design
a polynomial-time approximation algorithm to solve it.

• For the flow-level optimization, we propose to combine
DL-based traffic prediction with Sel-INT, and design and
experimentally demonstrate a POF-based system that can
achieve self-adaptive orchestration of Sel-INT.

The rest of paper is organized as follows. Section II briefly
surveys the related work. We first describe the problem of Sel-
INT orchestration and related challenges in Section III. Then,
we formulate the ILP model for network-level optimization
and design the approximation algorithm in Sections IV and
V, respectively. Section VI discusses the simulations about
network-level Sel-INT orchestration. The system design and
demonstrations of flow-level Sel-INT orchestration are shown
in Section VII. Finally, Section VIII summarizes the paper.

II. RELATED WORK

The first technical specification about INT was released in
2016 [25], which defines the architecture of an INT-based
network monitoring system, the operation principle of INT,
and the related header fields and packet formats. Here, the INT
works in a per-packet manner, which means that when a flow is
selected for INT, each switch on its routing path will insert all
the required INT fields in each of its packets. Since then, there
have been a few hardware- or software-based implementations
of per-packet INT, and people have explored the application
scenarios for network monitoring and troubleshooting.

As for hardware implementations, DeepInsight [35] was
shown to visualize networks with a temporal resolution in the
order of nanoseconds, and Netcope [29] was demonstrated to
realize per-packet INT at a line-rate of 100 Gbps. Most of the
software implementations of per-packet INT [28] were based
on P4 and leveraged BMv2 [36], which is a P4-based software
switch. Their packet processing capability is far below that
of their hardware counterparts, but the flexibility of software
enables them to realize proof-of-concept demonstrations of
new features conveniently. The application scenarios of per-
packet INT have also been discussed in existing studies,
where it could help a NFV platform to achieve latency-aware
feedback [37], realize high precision congestion control [38],
and assist the operation of a wireless sensor network [39].

However, sampling network status on the per-packet basis
might not be necessary in most of the network monitoring
cases, especially when the line-rate is relatively high [30, 32].
Therefore, to avoid the excessive over-sampling of per-packet
INT, people designed several selective INT techniques that
insert INT fields in packets selectively and distribute the INT
fields for different types of telemetry data to different packets
[30–32]. Although these techniques can effectively reduce
the overheads of INT and our Sel-INT in [30] even realizes
runtime programmability, how to use them in the way such
that their operation schemes and parameters are optimized
for each flow to balance the tradeoff between monitoring
accuracy/coverage and INT overheads has not been discussed.

In order to use INT wisely, we need to orchestrate its
operation schemes for different flows in a network-wise man-
ner. Following this direction, previous studies have proposed
approaches generally in two categories. In the first category,
people introduced probe flows and tried to optimize the
operation schemes of INT for probe flows [40]. Nevertheless,
using probe flows for INT-based network monitoring has two
drawbacks. Firstly, probe flows may not experience exactly
the same network state as application flows, which affects the
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accuracy of monitoring and makes the monitoring not real-
time. Secondly, probe flows cause extra bandwidth usages and
increase the packet processing load of switches, and thus they
can impact the forwarding of application flows. In terms of
problem formulation, the routing paths of probe flows are
variables when optimizing their INT operation schemes, but
if we apply INT on application flows, their routing paths
usually should not be changed just for INT. This makes the
optimization of probe flow-based INT orchestration different
from the one considered in this work. In the second category,
researchers studied how to optimize the operation schemes of
INT for application flows [41].

However, no matter which category the existing studies on
network-wise orchestration of INT belong to, none of them
has explored the flexibility of selective INT. This motivates us
to investigate how to optimize the orchestration of Sel-INT in
both network- and flow-levels in this paper.

III. SEL-INT ORCHESTRATION

In this section, we first describe the challenges of using INT
wisely in a network, and then explain the network model and
problem definition of Sel-INT orchestration.
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Fig. 1. Operation principle of Sel-INT.

A. Operation Principle of Sel-INT and its Challenges

Fig. 1 explains the operation principle of Sel-INT and
the challenges that it faces. Here, the network carries a few
application flows, which will last for a while (e.g., elephant
flows) and need the INT service. Different from the traditional
per-packet INT, our Sel-INT [30] only selects a portion of
packets in each flow to insert INT fields, and distributes
different types of INT fields over the selected packets. Hence,
Sel-INT can effectively reduce the overheads of INT on packet
processing and bandwidth usage. However, this is not good
enough, because the Sel-INT schemes of the flows should be
optimized jointly to address the following challenges.
• Problematic data collection: As there are multiple flows

in the network and they can share PDP switches (PDP-
SWs) and links, the telemetry data collected by the Sel-
INT on them will have spatial and temporal dependencies.
Therefore, if their Sel-INT schemes are not orchestrated
well, we may either over-sample or under-sample certain
telemetry data on the PDP-SWs. For instance, the two
flows in Fig. 1 share PDP-SW 1, and thus if their Sel-
INT schemes are not optimized jointly, we not only lose
the optimal monitoring coverage of PDP-SW 1, but also

make the data parsing and assembling in the data analyzer
(DA) more complex (i.e., Challenges a and d in Fig. 1).

• Potential performance bottleneck: Sel-INT introduces
overheads on both the packet processing in PDP-SWs
and the bandwidth usage on links, and thus the Sel-INT
schemes of flows should be optimized under the corre-
sponding resource constraints. For example, the Sel-INT
scheme of the top flow in Fig. 1 should not overload any
of the PDP-SWs on its routing path or cause congestions
on the links i.e., Challenges b and c in Fig. 1).

Fig. 2 provides an illustrative example to explain the neces-
sity of Sel-INT orchestration. We can see that using Flow 3
to collect the telemetry data on PDP-SW 2 marked with the
green square and getting it processed in DA 6 are not proper,
because the corresponding INT field does not get transferred
over the shortest feasible path and thus causes unnecessary
bandwidth overheads. Apparently, using Flow 1 to collect the
telemetry data on PDP-SW 2 and getting it processed in DA
7 will be a better solution. Meanwhile, as Flows 2 and 3 both
collect the telemetry data on PDP-SW 3 marked with the pink
triangle and circle, the telemetry data is over-sampled and thus
brings redundant packet processing load and bandwidth usage.
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Fig. 2. Example on Sel-INT orchestration, a) network topology and flow
routing, b) Sel-INT schemes of flows, and c) issues with the Sel-INT schemes.

To address the challenges mentioned above, we need to
formulate and solve the problem of Sel-INT orchestration.
Note that, this problem should be tackled in both the network-
and flow-levels. Specifically, the network-level optimization
considers a static INT planning problem to determine the Sel-
INT schemes of all the flows jointly such that the tradeoff
between monitoring accuracy/coverage and INT overheads can
be balanced well, while the flow-level optimization is more
like a dynamic INT provisioning problem, whose solution fine-
tunes the Sel-INT scheme of each flow to make sure that it
can adapt to the dynamic network environment.

B. Network Model and Problem Definition

We model the network as an undirected graph G(V,E),
where V and E are set of network nodes and links, respec-
tively. Here, we have two types of network nodes, which are
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the PDP-SWs that can apply Sel-INT to flows and are included
in set Vs, and the DAs that are used to collect INT fields from
packets and are in set Vd. Each PDP-SW vs ∈ Vs has a packet
sampling capacity for Sel-INT as Zvs , and each link e ∈ E
has a bandwidth capacity for Sel-INT as Be. Note that, in
the network-level optimization, we assume that the values of
{Zvs} and {Be} are pre-known, because for the static network
planning, they can be understood as estimated peak-/average-
values. On the other hand, the values of {Zvs} and {Be} in
the flow-level optimization are time-varying, and we will study
how to leverage DL-based traffic prediction to obtain them and
adjust the Sel-INT scheme of each flow dynamically to achieve
self-adaptive network monitoring.

Meanwhile, the set of telemetry data types that a PDP-SW
vs can collect is defined as Mvs . For a telemetry data type m ∈
Mvs , the length of its INT field is sm bytes (i.e., the bandwidth
overhead), and its collection brings the information gain of
ηvs,m on network monitoring. The set of flows considered for
Sel-INT is defined as F , and the k-th flow uses the routing path
pk ∈ P and has an average rate of frk packets/sec. If the k-th
flow passes through PDP-SW vs, the adjacent collections of
telemetry data m ∈Mvs with it should be spaced by tmvs in the
time domain, to avoid over- and under-sampling. Hence, the
Sel-INT operation for the k-th flow on PDP-SW vs consumes
a packet sampling capacity of d 1

tmvs
e.

With the network model above, the network-level optimiza-
tion tries to maximize the total information gain of INT for
network monitoring and minimize the overall bandwidth over-
heads of INT. Specifically, it needs to solve two subproblems:
1) how to select the telemetry data to collect with Sel-INT (INT
data selection), and 2) how to assign the selected telemetry
data to flows and collect it at PDP-SWs (INT data assignment).

IV. ILP MODEL FOR NETWORK-LEVEL OPTIMIZATION

In this section, we formulate an ILP model to solve the
network-level optimization of Sel-INT orchestration.

Notations:
• G(V,E): the network’s topology, where V and E are

the sets of network nodes and links, respectively, and
V = Vs∪Vd includes both PDP-SWs (Vs) and DAs (Vd).

• Be: the available bandwidth capacity on link e ∈ E,
which can be used for Sel-INT.

• Zvs : the packet sampling capacity on PDP-SW vs ∈ Vs,
which can be used for Sel-INT.

• Mvs : the set of telemetry data types that a PDP-SW vs ∈
Vs can collect.

• F : the set of the flows that are considered for Sel-INT.
• P : the set of flow paths, where pk ∈ P is the routing

path of the k-th flow in F .
• Lk(vs,v): the set of all the links before link (vs, v) ∈ E on

the path of the k-th flow.
• hkvs : the number of remaining hops on the path of the
k-th flow after PDP-SW vs ∈ Vs.

• frk : the average packet rate of the k-th flow.
• ωke : the boolean indicator that equals 1 if the k-th flow

passes through link e ∈ E, and 0 otherwise.
• σkvs : the boolean indicator that equals 1 if the k-th flow

passes through PDP-SW vs ∈ Vs, and 0 otherwise.

• sm: the length of the INT field for m ∈Mvs in bytes.
• tmvs : the monitoring period for collecting telemetry data
m ∈Mvs at PDP-SW vs.

• ηvs,m: the information gain brought by collecting teleme-
try data m at PDP-SW vs, for network monitoring.

Variables:
• πkvs,m: the boolean variable that equals 1 if telemetry data
m is collected by the k-th flow at vs, and 0 otherwise.

Objective:
The total information gain brought by the Sel-INT schemes

on flows can be calculated and normalized as

Φg =
1∑

vs∈Vs

|Mvs |
·

 ∑
vs∈Vs

∑
m∈Mvs

|F |∑
k=1

σkvs · π
k
vs,m · ηvs,m

 .

(1)
According to the operation principle of INT, the bandwidth
overhead brought in at one PDP-SW will be inherited by the
following hops of a flow’s path, and thus the overall bandwidth
overheads of INT can be calculated and normalized as

Φc =
1∑

e∈E
Be
·

 ∑
vs∈Vs

|F |∑
k=1

∑
e=(us,v′)∈Lk

(vs,v)

∑
m∈Mus

ωke ·

πkus,m · sm · d
1

tmus

e
)
.

(2)

Note that, for a type of telemetry data m ∈Mvs on a specific
PDP-SW vs, its bandwidth usage per hop is

Bmvs = πkvs,m · sm · d
1

tmvs
e, (3)

and its total bandwidth usage since PDP-SW vs is

B̃mvs = πkvs,m · sm · d
1

tmvs
e · hkvs . (4)

Therefore, Eq. (2) can be further simplified as

Φc =
1∑

e∈E
Be
·

 ∑
vs∈Vs

|F |∑
k=1

∑
m∈Mvs

σkvs · π
k
vs,m · sm · d

1

tmvs
e · hkvs

 .

(5)
Then, the optimization objective of Sel-INT orchestration is

Maximize Φ = α · Φg − β · Φc, (6)

where α and β are the non-negative weights to balance the
importance of Φg and Φc. We set α � β to ensure that
maximizing Φg is the primary objective.

Constraints:∑
k

∑
e=(us,v′)∈Lk

(vs,v)

∑
m∈Mus

ωke · πkus,m · sm · d
1

tmus

e

≤ B(vs,v), ∀vs ∈ Vs, (vs, v) ∈ E.

(7)

Eq. (7) ensures that the bandwidth used for Sel-INT will not
exceed available bandwidth capacity for it on each link.∑

k

πkvs,m ≤ 1, ∀vs ∈ Vs, m ∈Mvs . (8)

Eq. (8) ensures that each type of telemetry data m at PDP-SW
vs is collected by one flow at most, to avoid over-sampling.

πkvs,m · d
1

tmvs
e ≤ σkvs · f

r
k , ∀k ∈ [1, |F |], vs ∈ Vs, m ∈Mvs .

(9)
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Eq. (9) ensures that a type of telemetry data m ∈Mvs can only
be assigned to the k-th flow, if the flow passes through PDP-
SW vs and its packet rate can satisfy the required monitoring
period for collecting m (i.e., tmvs ).∑

k

∑
m∈Mvs

πkvs,m · d
1

tmvs
e ≤ Zvs , ∀vs ∈ Vs. (10)

Eq. (10) ensures that for each PDP-SW, the Sel-INT schemes
of flows at it will not exceed its available packet sampling
capacity for Sel-INT, i.e., not overloading the PDP-SW.

Theorem 1: The network-level optimization of Sel-INT or-
chestration is an NP-hard problem.

Proof: We prove the NP-hardness of the network-level
optimization of Sel-INT orchestration by reducing it into a
general case of a well-known NP-hard problem. We first have
B(vs,v) = frk = +∞ to relax Eqs. (7) and (9), and then let
|Vs| = 1 and |F | = 1. Hence, the optimization is described
by Eqs. (6), (8) and (10), which satisfy the description of a
general 0-1 knapsack problem [42]. Specifically, we can treat
each type of telemetry data m ∈ Mvs at PDP-SW vs as an
item whose weight and value are d 1

tmvs
e and ηvs,m, respectively,

while the PDP-SW vs becomes the knapsack with a capacity
of Zvs . Then, the original problem becomes to find a way to
select items to put into the knapsack such that their total value
is maximized. This is the general case of the 0-1 knapsack
problem, which is known to be NP-hard [42]. Hence, we
prove the NP-hardness of the original problem.

V. APPROXIMATION ALGORITHM FOR NETWORK-LEVEL
OPTIMIZATION

As the network-level optimization of Sel-INT orchestration
is NP-hard, we, in this section, leverage the Lagrangian
relaxation (LR) to design a polynomial-time approximation
algorithm to solve it. Specifically, the approximation algorithm
works as follows. It first incorporates a two-step preprocessing
to 1) process the constraints of the network-level optimization
to get a flow-covered graph, for reducing the solution space,
and 2) transform the hard constraint. Then, it constructs the LR
problem, which relaxes the remaining hard constraint into the
objective. The solution of the LR problem provides an upper-
bound on the optimal solution of the original problem. Next,
the algorithm builds the Lagrangian dual problem based on the
LR one, until a best feasible solution of the original problem
can be obtained under the current condition. As the original
problem is for maximization, the feasible solution gives a
lower-bound on its optimal solution. Finally, the algorithm
optimizes the upper-/lower-bounds iteratively to reduce the gap
between them, until a near-optimal solution can be obtained.

A. Preprocessing

Before leveraging the procedure of LR, we preprocess the
constraints in Eqs. (7) and (9) with the following two steps.

1) Extracting the Flow-covered Graph: Since our Sel-
INT orchestration does not utilize any probe flows and all
the Sel-INT schemes are enabled by the flows in F , we
can preprocess the network topology G(V,E) based on the
flows’ routing paths in P to simplify our algorithm design.

Specifically, a feasible solution of the ILP in Section IV
will not include the nodes and links that do not carry any
flow in F , according to the principle of Sel-INT. Hence, we
remove such nodes and links from G(V,E) to extract a flow-
covered graph G′(V,E), to avoid checking the solutions that
are apparently infeasible and improve the time-efficiency of
our approximation algorithm. For instance, in Fig. 3(a), the
flows only pass through the nodes marked as blue and the
links circled by the dash-dotted lines. Therefore, we can obtain
a flow-covered graph G′(V,E) that includes two sub-graphs
and a virtual link whose bandwidth capacity is 0, as shown in
Fig. 3(b). As INT fields will only be transmitted on the links
in the sub-graphs, the virtual link is irrelevant to our problem
solving and thus we set its bandwidth capacity as 0.

Algorithm 1 explains the detailed procedure to extract the
flow-covered graph. Lines 1-11 generate the flow-covered
graph based on G(V,E) and the flows’ paths in P . Then, for
those types of telemetry data at a PDP-SW, which requires
too short sampling period that cannot be satisfied by any of
the flows passing through the PDP-SW, we also remove them
to further reduce the solution space (Lines 12-18). The time
complexity of Algorithm 1 is O(|Vs| ·max(|Mvs |)). Note that,
after the preprocessing with Algorithm 1, the sets Vs, E and
{Mvs} are updated. Hence, for simplicity, in the following
discussions throughout Section V, Vs, E and {Mvs} denote the
sets preprocessed by Algorithm 1 if without specific statement.

Algorithm 1: Extracting the Flow-covered Graph

Input: G(V,E), P , {Mvs}, F , {d 1
tmvs
e}.

Output: {Mvs}, G′(V,E).
1 for each vs ∈ Vs do
2 if vs is not used in P then
3 Vs = Vs \ vs;
4 end
5 end
6 for each e ∈ E do
7 if e is not used in P then
8 E = E \ e;
9 end

10 end
11 connect the remaining sub-graphs in G′(V,E) with

zero-resource virtual links;
12 for each vs ∈ Vs do
13 for each m ∈Mvs do
14 if none of the flows on vs can satisfy tmvs then
15 Mvs = Mvs \m;
16 end
17 end
18 end
19 update the constraints with {Mvs} and G′(V,E);

2) Transforming the Hard Constraint: By checking the
network-level optimization defined by Eqs. (6)-(10), we can
see that Eq. (7) is a hard constraint. This is because Eq. (7)
is a link-based formula that induces complex dependencies
among variables {πkvs,m}, i.e., the Sel-INT scheme on a PDP-
SW depends on those on the PDP-SWs before it and it in turn
affects those on the PDP-SWs after it. Therefore, to simplify
the optimization, we sum up both sides of all the constraints
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Fig. 3. Example on flow-covered graph extraction.

defined by Eq. (7) to get a sightly-relaxed one as∑
(vs,v)∈E

∑
k

∑
e=(us,v′)∈Lk

(vs,v)

∑
m∈Mus

ωke · πkus,m · sm · d
1

tmus

e

≤
∑

(vs,v)∈E

B(vs,v).

(11)

Note that, Algorithm 1 has already removed the elements that
are in Vs, E and {Mvs} and are irrelevant to our problem-
solving. This ensures that Eq. (11) is tighter than the one
obtained by simply aggregating the constraints defined by
Eq. (7) without Algorithm 1. Meanwhile, by transforming
the link-based formula in Eq. (2) to the node-based one in
Eq. (5), we have already verified that for the network-level
optimization, link- and node-based constraints/objective are
equivalent while the node-based ones are simpler. Hence, with
the same procedure to transform Eq. (2) into Eq. (5), we
simplify Eq. (11) to its node-based formula as∑

vs∈Vs

∑
k

∑
m∈Mvs

σkvs · π
k
vs,m · sm · d

1

tmvs
e · hkvs

≤
∑

(vs,v)∈E

B(vs,v).
(12)

Algorithm 2: Assigning Telemetry Data to Flows

Input: {η̄kvs,m}, F̃ = ∅.
Output: F̃ = {fvs,m}.

1 for each vs ∈ Vs do
2 for each m ∈Mvs do
3 find the flow k to maximize η̄kvs,m in Eq. (16);
4 fvs,m = k, insert fvs,m in F̃ ;
5 end
6 end

B. Lagrangian Relaxation Problem
After the two-step preprocessing mentioned above, we relax

the constraint in Eq. (9) and will consider it in Section V-C

when constructing a feasible solution in Algorithm 4. Then, the
network-level optimization are defined with the constraints in
Eqs. (8), (10) and (12) and the objective Eq. (6). However,
Eq. (12) is still a hard constraint, and thus we leverage LR to
relax it. Specifically, Eq. (12) can be expressed with A ·x ≤ b
in the scalar format, which is its Lagrangian relaxed term, as

b−A · x =
1∑

(vs,v)∈E
B(vs,v)

·

 ∑
(vs,v)∈E

B(vs,v)

−
∑
vs∈Vs

∑
k

∑
m∈Mvs

σkvs · π
k
vs,m · sm · d

1

tmvs
e · hkvs

 .

(13)

Then, the hard constraint in Eq. (12) can be removed to be put
in the following relaxed objective for getting the LR problem.

ZLR(Λ) = Maximize
{πk

vs,m}
Φ + λ · (b−A · x) =

∑
vs∈Vs

∑
m∈Mvs

∑
k

·

 α∑
vs∈Vs

|Mvs |
· σkvs · π

k
vs,m · ηvs,m

− β∑
(vs,v)∈E

B(vs,v)

· σkvs · π
k
vs,m · sm · d

1

tmvs
e · hkvs


+

λ∑
(vs,v)∈E

B(vs,v)

·

 ∑
(vs,v)∈E

B(vs,v)

−
∑
vs∈Vs

∑
k

∑
m∈Mvs

σkvs · π
k
vs,m · sm · d

1

tmvs
e · hkvs

 ,

(14)

where Λ = {λ} is the vector of Lagrangian multipliers. As we
have λ ≥ 0, ZLR(Λ) provides an upper-bound on the original
objective Φ for a specific λ. Then, Eq. (14) can be reduced to

ZLR(Λ) = Maximize
{πk

vs,m}

∑
vs∈Vs

∑
k

∑
m∈Mvs

η̄kvs,m · π
k
vs,m + λ, (15)

where η̄kvs,m is the Lagrangian-modified information gain as

η̄kvs,m =

 α∑
vs∈Vs

|Mvs |
· ηvs,m−

β + λ∑
(vs,v)∈E

B(vs,v)

· sm · d
1

tmvs
e · hkvs

 · σkvs .
(16)

Since the second term on the right side of Eq. (15) is
independent of {πkvs,m}, we transform the LR problem as

ZLR(Λ) = Maximize
{πk

vs,m}

∑
vs∈Vs

∑
k

∑
m∈Mvs

η̄kvs,m · π
k
vs,m,

s.t. Eqs. (8) and (10).
(17)

We use the following two steps to solve the LR problem
in Eq. (17). Firstly, for each type of telemetry data m ∈Mvs

at a PDP-SW vs, we try to assign it to a flow k that passes
through vs, such that the corresponding Lagrangian-modified
information gain (i.e., η̄kvs,m) can be maximized. Secondly,
we finalize the types of telemetry data to collect at each PDP-
SW, to achieve the objective in Eq. (17). The first step can
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be easily accomplished with Algorithm 2. Note that, in Line
3, there could be multiple flows that all can maximize the
Lagrangian-modified information gain η̄kvs,m. In this case, we
just randomly select one of them to put in fvs,m because the
flows are equivalent. The time complexity of Algorithm 2 is
O(|Vs| ·max(|Mvs |)). The problem in the second step can be
solved with the dynamic programming in Algorithm 3, whose
time complexity is O(|Vs| ·max(|Mvs |) ·max(|Zvs |)).

1 2

3

4

Reassign Telemetry Data

(a) Reassignment of telemetry data

1 2 3

Remove 

Telemetry Data

Flow PDP-SW INT Data

Congested Link Good Link

(b) Removal of telemetry data

Fig. 4. Construct feasible solution based on the output of Algorithm 3.

C. Construction of Feasible Solution

In each iteration, Algorithm 3 gets an optimal solution of
ZLR(Λ) for a specific λ. However, the solution can still violate
the bandwidth capacity constraint in Eq. (12), due to the LR.
Hence, we design Algorithm 4 to construct a feasible solution
of the original problem, with the approaches shown in Fig. 4.
Specifically, if the Sel-INT schemes from Algorithm 3 violate
the bandwidth capacity constraint, we either reassign some of
the telemetry data to other feasible flows (as in Fig. 4(a)) or
remove certain telemetry data from the flows (as in Fig. 4(b)).

We can easily verify the correctness of Algorithm 4. In the
worst case, it can simply remove all the telemetry data from
the flows to ensure that the bandwidth capacity constraint is
satisfied. Meanwhile, Algorithm 4 is necessary for our LR-
based algorithm, because Algorithm 3 only solves a relaxed
version of the original problem. Note that, there might be other
ways of building a feasible solution based on the infeasible one
from Algorithm 3. As long as an approach can accomplish
this, we can replace current Algorithm 4 with it, which will
not affect the performance of our LR-based algorithm.

In Algorithm 4, Line 1 is for the initialization, where Z∗

records the objective of the feasible solution, and ξe is the
indicator to show whether the bandwidth capacity constraint
on link e ∈ E is satisfied or not. Hence, Algorithm 4 should
only process the links with ξe = 0 to convert the infeasible
solution from Algorithm 3 to a feasible one. Then, the for-
loop that covers Lines 2-34 checks each link in E to ensure
the bandwidth capacity constraint. Here, Lines 2-7 determine
whether the bandwidth capacity constraint of a specific link
(vs, v) is satisfied or not. If not, the for-loop covering Lines
8-34 checks each flow that uses the link, and tries to leverage
the two approaches in Fig. 4 to correct the violation. After all
the links having been checked, Lines 35-46 update {πkvs,m} to
ensure the constraint in Eq. (9). Then, Z∗ denotes the objective
of the obtained feasible solution. As the original problem is for
maximization, the feasible solution constructed by Algorithm
4 makes sure that Z∗ provides a lower-bound. The time
complexity of Algorithm 4 is O(|E| · |F |2 ·max(|Mvs |)).

Algorithm 3: Dynamic Programming to Get ZLR(Λ)

Input: {d 1
tmvs
e}, {η̄kvs,m}, {Zvs}, F̃ .

Output: {πkvs,m}, ZLR(Λ).
1 ZLR(Λ) = 0;
2 for each vs ∈ Vs do
3 Dvs = {dm,nvs = 0,m ∈ [1, |Mvs |], n ∈ [1, |Zvs |]};
4 for each m ∈ [1, |Mvs |] do
5 for each n ∈ [1, |Zvs |] do
6 if d 1

tmvs
e > n then

7 dm,nvs = dm−1,n
vs ;

8 else
9 dm,nvs =

max

(
dm−1,n
vs , d

m−1,n−d 1
tmvs
e

vs + η̄kvs,m

)
;

10 end
11 end
12 end
13 ZLR(Λ) = ZLR(Λ) + d

|Mvs |,|Zvs |
vs ;

14 {πkvs,m = 0, ∀m ∈Mvs , k ∈ F};
15 m = |Mvs |+ 1, n = |Zvs |;
16 while m > 1 AND n > 0 do
17 if dm,nvs > dm−1,n

vs then
18 k = fvs,m−1, πkvs,m−1 = 1;
19 n = n− d 1

tm−1
vs

e;
20 end
21 m = m− 1;
22 end
23 end

D. Solving Lagrangian Dual Problem

After getting the feasible solution with Algorithm 4 for
a specific λ, we still need to optimize the choice of λ
to minimize the penalty due to the relaxed constraint (i.e.,
λ·(b−A·x) in Eq. (14)). This can be done by further processing
ZLR(Λ) with the sub-gradient method [43]. Specifically, we
initialize λ as 0, and update its value in the i-th iteration as

λi+1 = λi − µi · f(λi), (18)

where f(λi) is the sub-gradient function that is defined as

f(λ) =
∂ZLR(Λ)

∂λ
= b−A · x, (19)

and µi is the step length. As µi also affects the convergence
of the sub-gradient method, we calculate it as follows [44]

µi =
νi · (ZLR(λi)− Z∗)

||f(λi)||2
, (20)

where νi ∈ (0, 2] is a scaler variable and Z∗ is the best-known
feasible solution of the original problem. Here, we set νi = 2
initially and then divide it by 2 if ZLR(λi) does not get updated
for a fixed number of iterations. Note that, only when we have
λ ≥ 0, the solution from Algorithm 4 is a feasible one to the
original problem. Therefore, we modify Eq. (18) as

λi+1 = max{0, λi − µi · f(λi)}, (21)

E. Overall Procedure

Finally, Algorithm 5 shows the overall procedure of our
approximation algorithm. Lines 1-2 are for the initialization,
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Algorithm 4: Construction of Feasible Solution

1 Z∗ = 0, {ξe = 0, ∀e ∈ E};
2 for each e = (vs, v) ∈ E do
3 get current bandwidth usage B̃(vs,v) on link (vs, v)

with the left-side of Eq. (7);
4 if B̃(vs,v) ≤ B(vs,v) then
5 ξ(vs,v) = 1;
6 end
7 end
8 for each (vs, v) ∈ E do
9 if ξ(vs,v) = 1 then

10 continue;
11 end
12 for each flow k ∈ [1, |F |) that uses link (vs, v) do
13 for each m ∈Mvs do
14 get Bmvs with Eq. (3);
15 m∗ = argmax

m∈Mvs

(Bmvs), flag = 0;

16 for each k′ ∈ (k, |F |] do
17 if flows k and k′ only share vs AND

ξ(vs,vk′s ) = 0 then
18 πk

′
vs,m∗ = 1, fvs,m∗ = k′;

19 πkvs,m∗ = 0, flag = 1, break;
20 end
21 end
22 if flag = 0 then
23 πkvs,m∗ = 0, flag = 1;
24 end
25 update B̃(vs,v) and other related ones;
26 if B̃(vs,v) ≤ B(vs,v) then
27 ξ(vs,v) = 1, break;
28 end
29 end
30 if ξ(vs,v) = 1 then
31 break;
32 end
33 end
34 end
35 for each vs ∈ Vs do
36 for each m ∈Mvs do
37 k = fvs,m;
38 if πkvs,m = 1 then
39 if d 1

tmvs
e ≤ σkvs · f

r
k then

40 Z∗ = Z∗ + η̄kvs,m;
41 else
42 πkvs,m = 0;
43 end
44 end
45 end
46 end

and then the while-loop uses N iterations at most to reduce
the relative dual gap (RDG) between the upper- and lower-
bounds (ub and lb, respectively) below a preset ratio γ (Lines
3-24). Here, the RDG is defined as

RDG =
ub− lb
ub

. (22)

The values of N and γ are selected empirically, and we will
analyze their impacts in the numerical simulations in Section
VI. Lines 4-5 obtain the LR problem and solve it to get
ZLR(λi) and {πkvs,m}. Then, we check whether the obtained
ZLR(λi) is smaller than the best-known upper-bound stored in

ub. If yes, we update ub with ZLR(λi) and reset the counter
n (Lines 6-7). Otherwise, we increase n by 1 (Line 9). Then,
we check whether n is larger than the preset threshold Th. If
yes, it means that ub has not been updated for a while, and
thus we should divide the step length µi by 2 (Lines 11-13).

Next, we obtain a feasible solution to the original problem
(Z∗) based on the output of Algorithm 3, by using Algorithm
4 (Line 14), and update the lower-bound lb accordingly (Lines
15-17). Lines 18-20 check whether the current RDG is below
the preset threshold γ. If yes, we have got a near-optimal
solution to the original problem, and thus can stop the itera-
tions. Otherwise, Lines 21-23 calculate µi and λi+1 to prepare
for the next iteration. The time complexity of Algorithm 5 is
O(N · |Vs| ·max(|Mvs |) ·max(|Zvs |)).

Algorithm 5: Overall Procedure

1 i = 1, λi = 0, νi = 2, ub = +∞, lb = 0, n = 0;
2 preprocess the original problem with Algorithm 1;
3 while i ≤ N do
4 apply Algorithms 2 and 3 to get ZLR(λi) and {πkvs,m};
5 calculate {η̄kvs,m} with Eq. (16);
6 if ZLR(λi) < ub then
7 ub = ZLR(λi), n = 0;
8 else
9 n = n+ 1;

10 end
11 if n > Th then
12 νi = νi/2, n = 0;
13 end
14 get a feasible solution and Z∗ with Algorithm 4;
15 if Z∗ > lb then
16 lb = Z∗;
17 end
18 if ub−lb

ub
≤ γ then

19 break;
20 end
21 calculate µi with Eq. (20);
22 calculate λi+1 with Eqs. (19) and (21);
23 i = i+ 1;
24 end
25 use the most recent {πkvs,m} to calculate the objective with

Eq. (6);

If we denote the exact solution of the original problem
defined by the ILP in Section IV as ZILP, we have ZILP ≤
ZLR(λi) = ub. Meanwhile, Algorithm 5 gets a feasible
solution as Z∗ = lb. Therefore, the approximation ratio of
Algorithm 5 can be obtained as

ζ =
Z∗

ZILP
=

lb

ZILP
≥ lb

ZLR(λi)
=

lb

ub
≥ 1− γ, (23)

which verifies that it is an approximation algorithm.

F. Extensions to Address More Sophisticated Network Models

The aforementioned algorithm design only considers one n-
ode attribute (i.e., Zvs is one-dimensional). However, with mi-
nor modifications, our algorithms can also tackle the network-
level optimization of Sel-INT orchestration where each node
has multi-dimensional attributes, as long as the node attributes
are independent among different nodes. Specifically, for such
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a more sophisticated network model, we can redefine the
network as an attributed graph G

(
V,E,AV

)
, where V and

E are still the sets of network nodes and links, respectively,
while AV : V → Zζ is an attribute function that maps a node
vs to a ζ-dimensional integer vector Zζ , for representing the
attributes of the node. Then, the attributes of all the nodes in
the network can be denoted as a matrix AV I ∈ Zvs,ζ .

Then, the general principle of our algorithm design is still
valid. We can come up with ζ constraints to describe the
ζ-dimensional attributes, each of which can be formulated
similarly as Eq. (10). Then, we can obtain AV I as a diagonal
matrix, because the node attributes are independent among
different nodes. Note that, the preprocessing is still suitable
for the attributed graph, and the Λ in the LR problem will
accordingly become a vector of Lagrangian multipliers whose
length equals the rank of AV I (i.e., ζ). Next, we can still
leverage LR to relax the ζ hard constraints and put them into
the objective. Finally, with a similar procedure of Algorithm
5, an LR-based approximation algorithm can be designed.

VI. NUMERICAL SIMULATIONS FOR NETWORK-LEVEL
OPTIMIZATION

In this section, we discuss the numerical simulations that
evaluate the performance of the algorithms for the network-
level optimization of Sel-INT orchestration.

A. Simulation Setup

The simulations consider three network topologies with
different sizes, i.e., the NSFNET topology [45] that consists of
14 PDP-SWs and 6 DAs, the US-Backbone topology (USB)
[45] that includes 24 PDP-SWs and 10 DAs, and a random
topology (RT-50) that is generated with the GT-ITM tool
[46] and have 50 PDP-SWs and 20 DAs. The average node
degrees of NSFNET, USB and RT-50 are 2.80, 3.11, and
4.14, respectively. We assume that on each PDP vs, there are
|Mvs | = 10 types of telemetry data for Sel-INT. For each
type of telemetry data m ∈ Mvs , the length of its INT field
(sm) is randomly selected from [4, 20] bytes [25, 41], and the
information gain (ηvs,m) brought by collecting it distributes
within [10, 40] units. At each PDP-SW vs, the packet sampling
capacity (Zvs ), which can be used for Sel-INT, is uniformly
distributed within [50, 100] kilo packets per second (Kpps). On
each link e, the available bandwidth capacity that can be used
for Sel-INT is randomly selected within [300, 500] Mbps.

For each flow k ∈ F that can be used for Sel-INT, its
average packet rate (frk ) is randomly selected from [5, 12]
Kpps1. The source and destination of each flow are randomly
selected, and its routing path is pre-calculated with the Dijkstra
algorithm. For the ILP model, we set α = 1 and β = 0.1
to make sure that maximizing Φg is the primary objective.
The simulations are conducted on a computer with 3.20 GHz
Intel i5-6500 CPU and 16 GB memory, and the simulation
environment is MATLAB 2018a with GLPK v4.64. In the

1Note that, the packets in each flow should have different sizes, which
follow the distributions of Internet traffic [47]. Hence, as our Sel-INT selects
packets to insert INT fields, it can always avoid long packets and prevent
making packet sizes longer than the maximum transmission unit (MTU).

simulations, we average the results from 5 independent runs to
get each data point, for ensuring sufficient statistical accuracy.

In addition to the ILP and the LR-based approximation
algorithm, we also consider a heuristic. For the subproblem of
INT data selection, the heuristic transforms it into |Vs| inde-
pendent 0-1 knapsack problems, and solves them with dynamic
programming. For the subproblem of INT data assignment, it
assigns each selected telemetry data to the first feasible flow
that will introduce the smallest bandwidth overhead, until all
the selected telemetry data has been assigned or the available
bandwidth capacity for Sel-INT has been used up.
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Fig. 5. Convergence performance of Algorithm 5 on NSFNET topology.
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Fig. 6. Convergence performance of Algorithm 5 on USB topology.
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Fig. 7. Convergence performance of Algorithm 5 on RT-50 topology.

B. Convergence Performance of Approximation Algorithm

We first investigate the convergence performance of the LR-
based approximation algorithm (Algorithm 5) with simulations
on the three topologies (i.e., NSFNET, USB and RT-50). Here,
we empirically set Th = 7, and assume that there are |F | = 4
flows in the network, and their routing paths have [5, 7] hops.
Figs. 5-7 show the simulation results. In Figs. 5(a), 6(a) and
7(a), we observe that for all the three topologies, the lower- and
upper-bounds on the optimization objective in Eq. (6) converge
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TABLE I
AVERAGE RUNNING TIME (SECONDS)

ILP Heuristic Algorithm 5
NSFNET USB RT-50 NSFNET USB RT-50 NSFNET USB RT-50

|F | = 4 0.3203 0.3971 0.9118 0.0032 0.0036 0.0076 0.0315 0.0693 0.0967
|F | = 6 1.7048 2.5349 6.0418 0.0058 0.0065 0.0119 0.0456 0.1083 0.1219
|F | = 8 964.4011 – – 0.0076 0.0082 0.0160 0.1258 0.1305 0.1349
|F | = 10 41379.9028 – – 0.0092 0.0116 0.0191 0.1480 0.1772 0.1986
|F | = 50 – – – 0.0455 0.0648 0.1211 2.6533 3.2538 4.4431
|F | = 100 – – – 0.0889 0.1285 0.2968 5.5605 8.4921 9.0670

fast within 20 iterations. The convergence performance of
Algorithm 5 can be seen even more clearly by checking the
results on RDG in Figs. 5(b), 6(b) and 7(b), which show that
the RDG can be reduced to below γ = 0.06 quickly. Hence,
the simulation results verify that Algorithm 5 can converge
fast to guarantee good time-efficiency.

C. Performance Benchmarking

Then, we run simulations to compare the performance of the
ILP, approximation algorithm and heuristic on the network-
level optimization for Sel-INT orchestration. The simulations
consider both the small-scale problem with |F | = 4 and the
large-scale one with |F | = 50. Meanwhile, to see the effect
of available bandwidth capacity for Sel-INT (i.e., {Be}), we
further divide the range of {Be} to four smaller ones, and
perform simulations with each of them.
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Fig. 8. Optimization objective with NSFNET topology.

1) Optimization Objective: Figs. 8-10 illustrate the algo-
rithms’ results on the objective. Here, for LR-based approxi-
mation algorithm (LR), we consider γ = {0.1, 0.3, 0.5}. In the
figures, if we compare the objectives from a same algorithm
for |F | = 4 and |F | = 50, we can see that the objective for
|F | = 50 is always much larger. This is because when there are
more flows to be considered for Sel-INT, the network can be

better covered with the flows’ paths and thus more telemetry
data can be collected to have a larger information gain. Due to
the time complexity of the ILP, it can only solve the problems
with |F | = 4. In Figs. 8(a), 9(a) and 10(a), we can see that
LR always provides near-optimal solutions whose gaps to the
exact ones from the ILP satisfy γ (i.e., the gaps decrease with
γ). Among the three algorithms, the heuristic performs the
worse in the scenarios with |F | = 4. The advantage of LR
over the heuristic persists in the large-scale scenarios with
|F | = 50, as shown in Figs. 8(b), 9(b) and 10(b).
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Fig. 9. Optimization objective with USB topology.

2) Coverage of Telemetry Data: Next, we compare the
coverage of telemetry data from the algorithms. This time, we
still consider the three topologies but only show the results of
the LR and heuristic for |F | = 50. Here, we set γ = 0.1
for the LR. The simulations calculate the average ratio of
collected types of telemetry data to all the possible types
of telemetry data to collect, and plot the results in Fig. 11.
It can be seen that the LR collects much more telemetry
data than the heuristic, which further justifies its effectiveness
on the network-level optimization of Sel-INT orchestration.
Meanwhile, for both algorithms, the coverage of telemetry data
increases with the available bandwidth capacity for Sel-INT.
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Fig. 10. Optimization objective with RT-50 topology.

3) Time Complexity: Finally, the simulations analyze the
time complexity of the algorithms. We list their average
running time in Table I. We observe that the running time
of the ILP increases fast with the scale of the problem, which
makes it become intractable when |F | is larger than 8 for
NSFNET and is larger than 6 for USB and RT-50. On the other
hand, the LR (Algorithm 5) is much more time-efficient than
the ILP and only takes ∼9 seconds to tackle the problem in
RT-50 with |F | = 100. The heuristic runs the fastest among the
three algorithms, and its running time can be one magnitude
shorter than that of the LR. This is because the LR takes
several iterations to obtain the near-optimal solutions.

VII. FLOW-LEVEL OPTIMIZATION AND EXPERIMENTAL
DEMONSTRATIONS

The network-level optimization orchestrates the Sel-INT
schemes of flows in a network based on a few key parameters,
which are assumed to be static (e.g., {Zvs}, {frk}, and {Be}).
Nevertheless, these parameters are actually time-varying in a
practical network. Therefore, the network-level optimization
actually orchestrates the Sel-INT schemes of flows in a coarse
but global manner, based on estimated values of the key
parameters. It balances the tradeoff between monitoring accu-
racy/coverage and INT overheads for the whole network, and
should be invoked from time to time when the key parameters
vary a lot. However, considering the fact that the network-
level optimization will update the Sel-INT schemes of all the
flows and thus can bring in excessive operational complexity,
we should not invoke it frequently.

This motivates us to study the flow-level optimization that
can change the Sel-INT scheme of each flow adaptively
according to the status of a dynamic network environment.
Hence, in between two adjacent network-level optimizations,
we can leverage the flow-level optimization to orchestrate the
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Fig. 11. Average ratio of collected telemetry data.

Sel-INT schemes of flows in a self-adaptive but local manner.
To this end, we can achieve network-wise orchestration of Sel-
INT all the time to use INT wisely.

A. System Design

Note that, the flow-level optimization needs to quickly
adjust the Sel-INT scheme of each flow to adapt to network
state changes, which cannot be done without the assistance
from the control plane. Therefore, we expand our Sel-INT
system developed in [30], and add in the support of Sel-INT
orchestration in the control plane. Fig. 12 shows the system
design to achieve the flow-level optimization. Here, the data
plane consists of hosts, POF-based PDP-SWs that support Sel-
INT, and home-made DAs that can extract telemetry data from
the INT fields in packets and analyze the data for network
monitoring and troubleshooting. The centralized controller in
the control plane receives reports from the DAs, and further
analyzes them with a DL-assisted module to ensure that the
QoS demands of the applications (APPs) running in the data
plane are handled well. For instance, for an application whose
QoS is sensitive to the bandwidth available to its flow, the
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Fig. 12. Design of the network system to achieve flow-level optimization of
Sel-INT orchestration.

controller predicts future bandwidth usage and invokes a path
change if a congestion can be foreseen on its current path.

The traffic engineering database (TED) stores the provi-
sioning schemes of active applications (e.g., the routing paths
of their flows, bandwidth usages, and other key parameters).
In addition to the network control and TED, the network
monitor is introduced in this work to achieve the flow-level
optimization of Sel-INT orchestration. Specifically, the report
handler processes the reports on network status from the DAs,
the flow-level monitor not only observes but also forecasts the
statistics of application flows, and based on the outputs from
the flow-level monitor, the Sel-INT orchestrator calculates and
updates the Sel-INT scheme of each flow to realize self-
adaptive Sel-INT in a dynamic network environment.

In the network system, we implement the POF-based PDP-
SWs based on the OpenvSwitch platform (OVS). Specifically,
in [30], we expanded OVS v2.6.90 to make it support POF
and Sel-INT, and realized a software-based PDP-SW, namely,
OVS-POF, which can achieve a data-rate of 10 Gbps for 256-
byte packets. The DA is home-made and can process packets
that include INT fields at a speed up to 2 million packets
per second (Mpps) [30, 34]. The hosts are commercial traffic
analyzers that can generate/receive packets with various sizes
at a data-rate up to 10 Gbps. The centralized controller is
developed based on the famous ONOS platform. Note that, to
show control plane operations clearly, we take the DL modules
out of the controller and implement them based on TensorFlow
on an independent server.

B. Experimental Demonstrations

To demonstrate the flow-level optimization of Sel-INT or-
chestration experimentally, we build a small but real network
testbed whose data plane uses the configuration in Fig. 12 to
have two hosts, six PDP-SWs, and two DAs. Each PDP-SW
or DA is realized on a stand-alone Linux server, and the hosts,
PDP-SWs and DAs are interconnected with 10GbE ports.

As a proof-of-concept demonstration, our experiment fo-
cuses on one of the most intimidating challenges of using
INT in a dynamic network environment, i.e., the bandwidth
overheads of INT can cause congestions during rush hour.
Therefore, the flow-level optimization should either forecast
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192.168.108.216: Address of Controller

192.168.108.223: Address of a PDP-SW
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: High Traffic Load: Self-adaptive Adjustment of Sampling Ratio2

: INT Data Collection and Traffic Prediction1

: INT Data Collection and Traffic Prediction3

: Normal Traffic Condition: Restore Sampling Ratio4

(a) Flow of control messages

(b) Traffic prediction report to controller

(c) FlowMod message to update Sel-INT scheme on a PDP-SW

Fig. 13. Wireshark captures of control messages for flow-level optimization.

or quickly detect the congestions, and then adjust the Sel-
INT schemes of flows accordingly to reduce the bandwidth
overheads of INT. In the experiment, we let the DL modules
predict future traffic for the controller based on the reports
from the DAs. When the controller foresees a peak period
of traffic, it will reduce the packet sampling ratio of Sel-INT
to decrease the resulting traffic load, and it will restore the
packet sampling ratio to ensure monitoring accuracy/coverage,
when the peak period has been over. Therefore, self-adaptive
network monitoring can be realized based on the closed-loop
control driven by DL-based data analytics and Sel-INT (i.e.,
the intelligent orchestration of “INT for INT”).

In the experiment, we make the hosts generate flows whose
traffic fluctuations follow practical traces taken from real-
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world wide-area networks [48], and each traffic predictor is
built based on the long/short-term memory based deep neural
network (LSTM-DNN), which is known to be effective on
forecasting time series [49]. Specifically, after proper training,
the traffic predictor achieves an accuracy of 92.33% in the
experiment. Fig. 13 shows the Wireshark captures of control
messages used in the flow-level optimization of Sel-INT
orchestration. The flow of control messages in Fig. 13(a) ex-
plains how the controller adjusts the Sel-INT scheme of a flow
according to its traffic prediction, for self-adaptive network
monitoring. During operation, a DA constantly collects the
telemetry data about bandwidth usage of the flow by extracting
and analyzing the related INT fields, and with the telemetry
data, it assembles reports on the flow’s bandwidth usage and
sends them to the traffic predictor periodically.

After receiving a report from the DA, the traffic predictor
forecasts the traffic fluctuation in the next τ = 24 seconds,
and forwards the traffic prediction to the controller with the
message format shown in Fig. 13(b). Next, the controller
determines whether and how the current Sel-INT scheme of
the flow should be updated, and instructs the related PDP-
SWs to do so by installing FlowMod messages in them.
Specifically, the decision-making procedure in the controller
works as follows, if we denote the flow being monitored as fk
(i.e., assuming it is the k-th flow in F ). The controller first gets
the flow’s peak bandwidth usage b̂k,τ for the next period of τ .
Meanwhile, two parameters were pre-defined in the controller:
1) the threshold of high bandwidth usage on a link (Bth), and
2) the maximum bandwidth that can be used for the Sel-INT
on each flow (B̂INT). We also introduce a ratio η ∈ (0, 1] to
adjust the accuracy of the Sel-INT-based flow monitoring, i.e.,
more telemetry data can be collected with the Sel-INT on the
flow if η is larger, and vice versa.

Next, we consider the accuracy of the DL-based traffic
prediction, and define the average accuracy of forecasting the
traffic of flow fk over a future period of τ as pk,τ . Note that,
we can compensate the negative effect of non-ideal prediction
accuracy by reserving bandwidth margin according to pk,τ in
the design of Sel-INT, to minimize the cases of unexpected
congestions. Hence, we let the controller to determine the
sampling ratio rk,τ of flow fk over the next period of τ as

rk,τ = f

min
[
η ·max(Bth − b̂k,τ , 0), B̂INT

]
Be

 , pk,τ
 , (24)

where f(·) is a piecewise function obtained empirically based
on numerous experiments conducted in our testbed.

Fig. 13(c) illustrates the details of such a FlowMod message,
which tells the PDP-SW to update the packet sampling ratio of
Sel-INT to 0.1. Fig. 14(a) shows the bandwidth usage of the
non-adaptive Sel-INT scheme. We can see that as the packet
sampling ratio of Sel-INT does not get changed according to
the traffic fluctuation of the flow, the bandwidth overheads of
INT can cause high traffic load conditions frequently. On the
other hand, with the flow-level optimization, the bandwidth
usage in Fig. 14(b) avoids congestions successfully, and Fig.
14(c) shows that the packet sampling ratio of Sel-INT gets
adjusted adaptively according to the traffic fluctuation.
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Fig. 14. Self-adaptive adjustment of packet sampling ratio of Sel-INT.

VIII. CONCLUSION

This paper addressed the problem of using Sel-INT wisely
in a network by formulating and solving the network- and
flow-level optimizations of Sel-INT orchestration. Specifically,
we studied how to adjust the Sel-INT schemes of flows to
balance the tradeoff between monitoring accuracy/coverage
and INT overheads in network- and flow-levels. We modeled
the network-level optimization as an INT planning problem,
which chooses the Sel-INT schemes of flows such that the in-
formation gain of INT can be maximized while the bandwidth
overheads of INT can be minimized. We formulated an ILP
model for the problem, proved itsNP-hardness, and leveraged
LR to design a polynomial-time approximation algorithm for
it. Numerical simulations verified that our proposed algorithm
can provide near-optimal solutions time-efficiently.

Next, for the flow-level optimization, we considered a dy-
namic network environment, and investigated how to adjust the
Sel-INT scheme of each individual flow timely and adaptively
in it. Specifically, we combined DL-based traffic prediction
with Sel-INT, and designed and experimentally demonstrated a
POF-based system to realize self-adaptive orchestration of Sel-
INT. Experimental results confirmed that our system can adjust
the packet sampling ratio of Sel-INT timely and adaptively to
avoid the congestion caused by INT overheads.
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