
1

Adaptive SmartNIC Offloading for Unleashing the
Performance of Protocol-Oblivious Forwarding

Qian Zhang, Nirwan Ansari, Fellow, IEEE and Zuqing Zhu, Fellow, IEEE

Abstract—The growth of Internet-of-Things (IoT) has led to
the convergence of heterogeneous networking systems powered by
various protocols, and consequently the emergence of protocol-
independent packet processing based on programmable data
plane (PDP) for IoT. In this work, we study how to leverage
the hardware acceleration enabled by offloading flow tables to
SmartNIC to improve the performance of software PDP switches
based on protocol-oblivious forwarding (POF). We design our S-
martNIC offloading system (namely, OVS-POF-TC) based on the
Linux kernel traffic classification (TC) system and Open vSwitch
(OVS), extend OVS to enable the installation of POF-based flow
tables (POF-FTs) in a SmartNIC, and design a selective offloading
mechanism for purposely offloading heavy-load POF-FTs. Our
experimental results indicate that OVS-POF-TC offloads and
updates POF-FTs timely, supports runtime programmability, and
has improved packet processing throughput by 1.52× and 3.82×,
when applying POF-FTs with SetField and AddField to packets,
respectively. Moreover, to ensure that OVS-POF-TC can offload
and replace POF-FTs adaptively, we formulate two mixed integer
linear programming (MILP) models to respectively solve the
problems of flow placement and flow replacement, and also design
time-efficient heuristics for them.

Index Terms—Programmable data plane (PDP), Open vSwitch
(OVS), Protocol-oblivious forwarding (POF), SmartNIC.

I. INTRODUCTION

NOWADAYS, Internet, the glue of modern technological
infrastructures, has undergone revolutionary changes [1,

2], and various new networking paradigms and technologies
have been developed to adapt to the ever-increasing network
services [3–8]. Among them, software-defined networking (S-
DN) [9], network virtualization [10–12], and network function
virtualization (NFV) [13–16] are the important innovations to
provide flexible, dynamic and automated network architecture
for the ecosystem of Internet-of-Things (IoT) [17–19]. As IoT
is a convergence of heterogeneous network systems, including
embedded systems, wireless sensor networks, control and
automation systems, etc., various protocols can run simulta-
neously in different network segments of an IoT system [20,
21]. Therefore, the protocol-independent packet processing
enabled by programmable data plane (PDP) is essential for
interconnecting heterogeneous IoT systems effectively and
realizing efficient network operations within the IoT systems.

Specifically, PDP enables network operators to define new
packet fields and customize packet processing pipelines. It

Q. Zhang and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

N. Ansari is with the Advanced Networking Laboratory, Department of
Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA (email: nirwan.ansari@njit.edu).

Manuscript received July 1, 2022.

can be realized with the programming protocol-independent
packet processors (P4) [22] or protocol-oblivious forwarding
(POF) [23]. P4 specifies the rules of writing and compiling
packet processing programs, and with it, we can customize the
protocols and processing of packets in a PDP switch in two
stages, i.e., pipeline configuration before running and flow rule
insertion in runtime [24]. Although P4-based hardware PDP
switches can realize high-performance protocol-independent
packet processing, they still bear two drawbacks, which would
limit their applications in IoT systems. First, their power
and cost can exceed the related budgets of lightweight IoT
devices. For instance, the power consumption of a PDP switch
based on the well-known Tofino chips is ∼600 W [25], while
the power budget for an IoT device in power-constrained
environments can be only a few watts or less [26, 27]. Second,
the need of creating and compiling a .p4 file in P4-based PDP
switches restricts their flexibility for IoT applications (i.e., new
protocols can hardly be added in runtime [23]).

On the other hand, POF does not rely on specific pro-
grammable chips but defines an underlying primitive instruc-
tion set [28], with which an SDN controller can program
PDP switches in runtime by installing protocol-oblivious flow
tables and building packet processing pipelines with them.
This makes it convenient to leverage POF to design and imple-
ment lightweight software PDP switches for IoT. Therefore,
we extended the famous Open vSwitch (OVS) [29, 30] to
support POF, realized a software PDP switch (namely, OVS-
POF) in [31], whose source codes can be found in [32].
Specifically, with the software acceleration facilitated by data
plane development kit (DPDK) [33], OVS-POF achieved a
packet processing capacity of ∼4.5 million packets per second
(Mpps). Nevertheless, for small-sized packets (e.g., 64 bytes),
the throughput of OVS-POF still cannot reach 10 Gbps. This
is because certain POF actions (i.e., SetField and AddField)
invoke time-consuming memory operations and take many
CPU cycles. Hence, even though OVS-POF can be considered
as a potential candidate of lightweight software PDP switches
for IoT, efforts are still needed to improve its throughput.

This has motivated us to study how to fully unleash the
performance of POF-based software PDP switches for IoT.
Here, one promising approach is to consider the hardware
acceleration with SmartNIC. This is because SmartNIC [34,
35] is a lightweight and cost-effective platform that consists
of programmable hardware cores, dedicated packet engines,
and a variety of domain-specific accelerators for accelerating
packet processing [36]. Hence, we can offload operations of a
software PDP switch to SmartNICs for hardware acceleration.
For instance, major SmartNIC manufacturers have already

2

developed the drivers and firmware for offloading OVS onto
their SmartNICs, to greatly improve the packet processing
performance of OVS [37]. However, since the underlying
primitive instruction set of POF is completely different from
that of OpenFlow [28], we cannot directly leverage these
existing techniques to offload OVS-POF onto SmartNICs.

This work studies how to realize adaptive SmartNIC offload-
ing to unleash the packet processing performance of OVS-
POF. Specifically, we select POF-based flow tables (POF-FTs)
from the software system of OVS-POF in runtime and offload
the selected POF-FTs into a SmartNIC for hardware acceler-
ation, such that packet processing throughput of the resulting
software/hardware system can be effectively improved. Note
that, our SmartNIC offloading scheme is an "adaptive" one,
that is, it can choose the best POF-FTs to offload based on
the current status of the software/hardware system such that
the throughput improvement achieved by the offloading is
maximized. Hence, our proposed SmartNIC offloading scheme
is different from the conventional ones that simply offload
flow tables in the first-come-first-serve way and stop when
the SmartNIC’s memory is used up [38]. Meanwhile, to ensure
that our proposal is adaptive, we need to cover both system
design and implementation and algorithm design. To the best
of our knowledge, this work is the first one that realizes
adaptive POF-based SmartNIC offloading.

As for the system part, we design our SmartNIC offloading
system based on the Linux kernel traffic classification (TC)
subsystem, extend the offloading scheme for OVS [38] to
enable the installation of POF-FTs in a SmartNIC, and upgrade
OVS-POF to implement an adaptive offloading mechanism
for choosing proper POF-FTs to offload. The proposed PDP
switch, namely, OVS-POF-TC, is evaluated in a real-world
network testbed. Experimental results indicate that OVS-POF-
TC can support the features of OVS-POF for runtime pro-
grammability, offload and update POF-FTs adaptively, and
provide significantly improved packet processing throughput.

As for the algorithm part, we formulate two mixed integer
linear programming (MILP) models to respectively tackle the
problems of flow placement and flow replacement, to ensure
that OVS-POF-TC can always offload and replace POF-FTs
adaptively. The MILPs consider realistic parameters from our
experimental measurements to maximize packet processing
throughput. We also propose time-efficient heuristics for the
problems to shorten the decision time of adaptive SmartNIC
offloading. Simulation results confirm that even for very large-
scale problems, the proposed heuristics run fast enough and
can approximate the optimal solutions of the MILPs well.

The rest of the paper is organized as follows. Section II
briefly surveys the related work. We present the system design
and implementation of OVS-POF-TC in Section III, and the
experiments for evaluating its performance are discussed in
Section IV. Section V describes the algorithm design for adap-
tive SmartNIC offloading, and simulation results are shown in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

The centralized network control and management provided
by SDN has been considered as a key technology to address

the heterogeneous network environments for IoT [39–41]. The
study in [39] discussed the SDN architecture for wireless sen-
sor and actuator networks, and an interface protocol was pro-
posed to bridge the communications between SDN controller
and IoT devices. Muppet [40] is a P4-based multi-protocol
switch for large-scale IoT deployment and service automation.
An SDN controller [41] was designed to support various wire-
less communication protocols for heterogeneous and complex
IoT networks. To further improve the programmability of data
plane for IoT applications, the evolution of PDP networks
and cloud-oriented network virtualization have promoted the
research and development (R&D) on SmartNICs. SmartNIC-
s can be architected based on various types of chips, in-
cluding application-specific integrated circuits (ASICs), field-
programmable gate arrays (FPGAs), and network processors
units (NPUs) [42]. The ASIC-based SmartNICs usually can
achieve excellent packet processing performance due to their
high core-count, but their programmability is not as good as
that of FPGA- and NPU-based SmartNICs and thus they only
have limited deployment.

SmartNIC has enabled a number of applications. For in-
stance, Li et al. [43] used SmartNICs to extend the primitives
of remote direct memory access (RDMA) and enable remote
key-value access to host memory, while the study in [44] tried
to accelerate the data processing in a server by extending
critical software components of the server onto SmartNICs.
However, these applications did not consider the hardware
acceleration of packet processing with SmartNIC offloading.
Gao et al. [45] developed OVS-CAB, which is a SmartNIC
offloading system for OVS, and designed a rule-caching algo-
rithm to improve the hit rate of flow rules in a SmartNIC for
enhancing the throughput of packet processing. Nevertheless,
as we have already explained, OVS is still protocol-dependent
and thus cannot work as a software PDP switch for IoT.

In addition to POF-FT offloading, SmartNICs can also be
directly programmed with the P4 language to realize hardware
PDP switches [46]. Although this leverages the advantages of
P4 to fully offload the data plane, it can hardly change packet
processing pipelines in runtime due to the working principle
of P4-enable chips (i.e., the reconfiguration of a P4-based PDP
switch has to go through the configuration and runtime stages
[24]). For example, the results in [46] suggested that it took
a few seconds for a SmartNIC to be reprogrammed for new
packet processing pipelines, while the latency could still be
too long in a highly dynamic IoT environment.

The aforementioned drawbacks of existing approaches mo-
tivated us to study how to combine POF, which has runtime
programmability, and SmartNIC offloading, to realize a run-
time configurable and accelerated hybrid software/hardware
PDP switch system. Such a hybrid software/hardware PDP
switch (i.e., OVS-POF-TC) leverages our previous work on
POF-based software PDP switches, whose development path
can be summarized as follows. We started the project based
on the POF protocol and software architecture proposed in
[47]. By leveraging DPDK, the first version of our POF-based
software switch (PVS) achieved a packet processing rate of 1
Gbps [23]. Then, we optimized the processing logic of PVS
and implemented a flow table management scheme in it, to

3

improve its throughput to 10 Gbps for packets with sizes
of 512 bytes or longer [48]. Next, we decided to switch to
implementing POF-based software PDP switches based on
OVS, because it has superior performance and a supportive
ecosystem for development. This led to OVS-POF [31, 32],
which could achieve a throughput of 10 Gbps when the packet
size was set as 256 bytes. In the following, we will leverage
adaptive SmartNIC offloading to further improve the through-
put of OVS-POF, and use it for performance benchmarking.

TABLE I
MAJOR ABBREVIATIONS

Abbrev. Full Name

SDN Software-defined networking
POF-FTs POF-based flow tables

IoT Internet-of-Things
P4 Programming protocol-independent packet processors

PDP Programmable data plane
MILP Mixed integer linear programming
POF Protocol-oblivious forwarding

DPDK Data plane development kit
TC Linux kernel traffic classification

OVS Open vSwitch

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the system design of OVS-POF-
TC and the implementation of SmartNIC offloading in it. Since
several abbreviations are frequently used in this paper, we list
them here in Table I for the convenience of readers.

A. System Design

Different from the SmartNIC offloading of OVS, OVS-
POF-TC needs to offload POF-FTs and their processing from
Linux kernel to SmartNIC. In order to make the data plane
completely protocol-independent, POF uses a tuple of <offset,
length, value> to generalize the description of a packet field
[23, 47], where offset denotes the start bit-location of the
field in a packet, length indicates the field’s length in bits,
and value describes the content of the field. Meanwhile, POF
defines an underlying primitive instruction set (i.e., POF-FIS
[28]) to enable PDP switches to operate on the POF-FTs.
Therefore, the SDN controller can compose packet processing
pipelines based on any type of packet fields without referring
to a specific protocol, encode the pipelines as POF-FTs, and
install them in PDP switches in runtime. This ensures the
runtime programmability that can hitlessly update the pipelines
in POF-based PDP switches in milliseconds. On the other
hand, considering the generality of POF-FTs, it would be
challenging to realize SmartNIC offloading for them.

We design our SmartNIC offloading system based on the
Linux kernel TC subsystem, extend the offloading scheme
for OVS [38] to facilitate the installation of POF-FTs in a
SmartNIC. The TC subsystem has a few classifiers, among
which the TC flower classifier can support the match-action
mechanism. Specifically, its TC match can check packet fields
and tunnel metadata in layers 2-4, while its TC action supports
normal actions on packets (e.g., modify, drop and output).
Note that in version 4.6 of Linux kernel, the support for the
hardware offloading of TC flow classifier has been added to

OVS-POF

DB server

User Space

VM

TC Data Path

SmartNIC Data Path

Deliver to Host

Match

Tables
Actions

Future

Features
Tunnels

OVS-POF

vswitchd

OVS-POF

Kernel

Data Path

Kernel

SmartNIC

Match

Tables
Actions

Future

Features
Tunnels

Fig. 1. Principle of SmartNIC offloading in OVS-POF-TC.

the driver of Netronome SmartNICs [37]. Hence, we architect
OVS-POF-TC based on the SmartNIC of Netronome Agilio
CX 2×40GbE. Fig. 1 explains the principle of the SmartNIC
offloading considered in this work, which orchestrates the
processing of packets over three data paths:
• Kernel data path: This is the fast data path for packet

processing in OVS-POF [31], which resides in Linux k-
ernel for improved throughput. However, its performance
is limited by the frequent interrupt calls of Linux kernel,
which can compete for CPU resources with it.

• TC data path: It resides in Linux kernel and consists of
TC match and TC action. It normally does not process
packets, but only serves as a tunnel to transfer POF-FTs
from Linux user space to SmartNIC.

• SmartNIC data path: It executes the hardware accelera-
tion for packet processing in SmartNIC, with the POF-
FTs received from the TC data path.

Network Operator

POF Controller (based on ONOS)

POF Protocol Stack

Kernel Data Path

Decision Module

Offload

Revalidation

Flow Tables in User Space
Match Action

<offset, length> act1
… …

Flow Tables in TC Data Path
Match Action

flower.key/mask flower.act1
… …

OVS-POF-TC

Match/Action Table Execute Action
SmartNIC

Packets In Packets Out

PCIe

Upcall

Install

POF Protocol

Offload

Fig. 2. System architecture of OVS-POF-TC.

Fig. 2 shows the overall system architecture of OVS-POF-
TC. The control plane is realized with a POF controller,
which is developed based on ONOS [49] (i.e., we extended
the southbound protocol stack to support POF-based control
messages such as FlowMod and TableMod). The data plane
consists of a software OVS-POF-TC switch running on a
general-purpose server and a SmartNIC. Our work to extend
OVS-POF for OVS-POF-TC is detailed below.
• We extend the TC data path to respectively map the

match/action of POF-FTs to TC match/action. Then, by
leveraging the hardware offloading of TC flower classifi-
er, we can offload POF-FTs to the SmartNIC.

4

• We design and implement a decision module to determine
whether a POF-FT should be installed in the kernel data
path or the TC data path. Specifically, the decision mod-
ule uses a flow placement algorithm to offload POF-FTs
to the SmartNIC adaptively, i.e., it checks the action(s)
in each POF-FT and optimizes the SmartNIC offloading
scheme to maximize the performance of OVS-POF-TC.

• In order to maintain the optimality of SmartNIC offload-
ing during dynamic operation, we design and implement
an offload revalidation module. It checks the POF-FTs
in the SmartNIC, and leverages a flow replacement al-
gorithm to determine how to offload, replace and delete
POF-FTs in the SmartNIC adaptively.

We will design the flow placement and flow replacement
algorithms in Section V. During operation, if a POF-FT is
installed in the kernel data path, the packets that correspond
to it will be processed in the software system of OVS-POF-
TC. Otherwise, if a POF-FT is offloaded to the SmartNIC data
path, its packets will be processed directly in the SmartNIC,
without taking any CPU resources of the server.

B. System Implementation

We implement OVS-POF-TC by extending the OVS-POF
that was developed based on OVS v2.13, and the key imple-
mentations are summarized as follows.

1) Offload Support for POF-FTs: To realize the hardware
acceleration of POF-based software PDP switches, our design
uses the TC data path as the tunnel to transfer POF-FTs from
Linux user space to SmartNIC. In the SmartNIC offloading
of OVS [38], TC data path uses flower.key/mask as the match
item, where the flow.key refers to a packet field that has been
defined in OpenFlow according to existing protocols, and the
mask is a bitmap that can be applied on the flow.key. Hence,
after extracting a match field with the flower.key, OVS applies
the mask on it to get the real match item. However, the match
items in POF-FTs are in the form of <offset, length>, not
based on specific protocols. Therefore, we program the TC
data path to first extract a field based on the tuple of <offset,
length> and then fill it in flower.key. As for the mask, we let
the TC data path derive it from the wildcards in each POF-FT.

We program OVS-POF-TC to support the offloading of two
representative heavy-load POF-FIS actions, i.e., AddField and
SetField [50]. We realize SetField by leveraging the pedit
action in TC action. As for AddField, we hope to point
out that due to the restriction of the SmartNIC’s driver, we
have to sacrifice certain flexibility of the AddField in POF-
FIS. Specifically, the SmartNIC’s driver does not support the
insertion of packet fields in arbitrary lengths, and the length
of a new field has to follow a fixed granularity (e.g., 4 bytes).
We implement AddField based on the push_mpls action in TC
action, by merging the subfields in the multi-protocol label
switching (MPLS) field to obtain an empty field in 4 bytes.
Then, the AddField can insert any fields whose length is a
multiple of 4 bytes into packets. Note that this compromise
actually will not significantly restrict the application of OVS-
POF-TC because most of the known network techniques
involving packet field insertion have the lengths of their new

fields in the granularity of 4 bytes, such as MPLS, in-band
network telemetry (INT) [51], and segment routing (SR) [52].

2) Decision Module: The decision module checks the ac-
tion(s) in each POF-FT and quickly decides whether to offload
it to the SmartNIC according to the flow placement algorithm.
If not, decision module will instruct OVS-POF-TC to install
the POF-FT in the kernel data path.

3) Offload Revalidation: During dynamic operation, OVS-
POF-TC should monitor the POF-FTs that have been offloaded
onto the SmartNIC in realtime and update them adaptively if
necessary. Specifically, when the POF-FTs have been changed
in the software OVS-POF-TC switch, the offload revalidation
module needs to capture these changes immediately, revalidate
and update the POF-FTs in the SmartNIC to ensure that they
are up-to-date and should still be placed there.

OVS-POF-TCTraffic Generator

POF Controller

Flow

Fig. 3. Experimental setup.

As OVS has a revalidator thread that periodically moni-
tors the flow tables in the kernel data path, we implement
the offload revalidation module based on it. Specifically, we
program the offload revalidation module to monitor the status
of the POF-FTs on the SmartNIC periodically (e.g., every one
second) and update them according to the decision made by the
flow replacement algorithm. Moreover, the offload revalidation
module is also in charge of the POF-FT synchronization
between software OVS-POF-TC switch and SmartNIC.

IV. EXPERIMENTAL EVALUATIONS

In this section, we perform experiments to validate the
design of OVS-POF-TC and evaluate its performance. Fig. 3
shows the experimental setup that consists of a OVS-POF-
TC system, an ONOS-based POF controller, and a traffic
generator. The OVS-POF-TC system includes a Linux server
equipped with a Netronome Agilio CX 2×40GbE SmartNIC.
The traffic generator is a commercial product that can perform
traffic analysis at the data-rate up to 40 Gbps.

A. Feature Validation

We first conduct experiments to validate that the functional-
ities designed for OVS-POF-TC have been realized correctly.

1) Offloading POF-FTs to SmartNIC: To verify that OVS-
POF-TC can offload POF-FTs to the SmartNIC correctly, we
perform an experiment to offload two POF-FTs. The first
POF-FT has its match item in the form of <offset, length,
value> as <208, 32, 0x02020203>, and its action is SetField
<240, 32, 0x0a020202>, i.e., it matches to the flow whose
source IP address is 2.2.2.3 and modifies the flow’s destination

5

Flow Information

POF-FT Status: Offloaded

Execution of SetField

Forward Packet Out

Recalculation of Checksum

(a) Status of the POF-FT that executes SetField

Flow Information

POF-FT Status: Offloaded

Execution of AddField

Forward Packet Out

(b) Status of the POF-FT that executes AddField

Fig. 4. Results of SmartNIC offloading obtained by TC monitor of TC flower classifier.

IP address to 10.2.2.2. The match item of the second POF-
FT is <208, 32, 0x02020202>, and its action is AddField
<112, 32, 0x0a0a0908>, i.e., the POF-FT matches to the flow
whose source IP address is 2.2.2.2 and inserts a 4-byte field of
0x0a0a0908 in each of its packets after the Ethernet header.

Figure 4 shows the experimental results obtained by the
TC monitor of the TC flower classifier, which can reveal the
status of SmartNIC offloading. Fig. 4(a) shows that the first
POF-FT has been offloaded to the SmartNIC successfully (i.e.,
suggested by the flag “in_hw") and the SmartNIC data path
processes a packet correctly: 1) executing the SetField action
to modify the destination IP address, 2) recalculating the IP
header checksum, and 3) forwarding the packet out through
the port of eth5. Similarly, Fig. 4(b) shows the offloading
result of the second POF-FT, where the AddField action is
first executed to insert a new field in the packet and then the
packet is forwarded out through eth5.

In order to further confirm that the SmartNIC has correctly
executed the offloaded POF-FTs on related packets, we use the
traffic generator to analyze the received packets and plot the
results in Fig. 5. Fig. 5(a) suggests that the first POF-FT has
been executed correctly, because all the packets whose source
IP addresses are 2.2.2.3 have their destination IP addresses
been modified to 10.2.2.2. The packet content in Fig. 5(b)
indicates that a new 4-byte field of 0x0a0a0908 has been
inserted in a packet by the second POF-FT in the SmartNIC.
In summary, the results in Figs. 4 and 5 confirm that the
SmartNIC offloading in OVS-POF-TC has been implemented
correctly for handling POF-FTs well.

2) Selective Offloading by Decision Module: Then, we con-
duct an experiment to verify the feature of selective offloading
enabled by the decision module. Specifically, we implement
a simple flow placement algorithm in the decision module to
offload all the POF-FTs that contain SetField or AddField.
Then, we let the traffic generator generate three flows with
different source-destination IP address pairs and send them
through the OVS-POF-TC to loop back. Meanwhile, the POF
controller installs three POF-FTs for the flows, respectively,
and among the POF-FTs, the first one contains SetField and

(a) List of received packets

New Field

(b) Content of a packet experienced the second POF-FT

Fig. 5. Packet captures obtained by traffic generator.

Output actions, the second one includes AddField and Output,
while the last one only contains Output.

Figure 6 shows the packet processing latencies on OVS-
POF-TC for the three flows. We can clearly see that the packet
processing latency of the last flow (55.04 µs) is much longer
than those of the first two (3.99 µs and 4.00 µs) because the
decision module selects the POF-FTs of the first two flows to
be offloaded and the flows are processed with the hardware
acceleration in the SmartNIC. On the other hand, the last flow
(i.e., the one whose POF-FT only does not contain SetField
or AddField) is not offloaded and gets processed in the kernel
data path of OVS-POF-TC. Therefore, the results in Fig. 6
verify the functionality of the decision module.

3) Offload Revalidation and Runtime-programmability:
Finally, we design an experiment to validate the functionality
of the offload revalidation module and confirm the runtime
programmability of OVS-POF-TC. The experiment lets the
traffic generator generate a flow at 20 Gbps with the packet
size of 64 bytes. For the flow, the POF controller first installs a
POF-FT that only contains Output in the OVS-POF-TC, which

6

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

10

20

30

40

50

60

70

P
a

c
k
e

t
P

ro
c
e

s
s
in

g
 L

a
te

n
c
y
 (

s
)

w/ Output only

w/ SetField

w/ AddField

Fig. 6. Results on packet processing latency for verifying selective offloading.

offloads the POF-FT to the SmartNIC immediately, and after
∼50 seconds, the controller updates the POF-FT to include
AddField and Output, which is synchronized to the SmartNIC.

Figure 7 illustrates how the throughput of the flow changes
over time. We can see that with SmartNIC offloading, the
flow’s throughput is 28.64 Mpps at the beginning, when
its POF-FT only contains Output, which corresponds to a
maximum data-rate of 19.25 Gbps. At ∼50 seconds, there is
a throughput change, which is caused by the POF controller
updating the flow’s POF-FT. We can clearly see that the POF-
FT update only decreases the throughput a little bit but does
not interrupt it, and the transition is in milliseconds only.
This indicates that the offload revalidation module captures
the POF-FT update accurately and performs a revalidation to
synchronize the new POF-FT to the SmartNIC on time, which
verifies the functionality of the offload revalidation module and
confirms the runtime programmability of OVS-POF-TC.

Meanwhile, we observe that after the POF-FT update, the
flow’s throughput changes to 26.65 Mpps (a data-rate of 18.76
Gbps). This is because compared to Output only, the actions
of AddField and Output are more heavy-load in terms of the
complexity of packet processing [50], especially for the POF-
based AddField. Hence, even with the hardware acceleration
in the SmartNIC, the flow’s throughput still decreases slightly.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

5

10

15

20

25

30

35

40

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Fig. 7. Throughput of flow when its POF-FT changes in runtime.

Moreover, we measure the average total latency in OVS-

POF-TC for offloading/removing a set of POF-FTs to/from
the SmartNIC, and plot the results in Fig. 8. Specifically,
we offload/remove different numbers of POF-FTs to/from the
SmartNIC in OVS-POF-TC and obtain the total latency, and
for each data point in Fig. 8, we repeat the experiment for
20 times and show the average result. It can be seen that
the average total latency is around 23 ms for all the test
cases, and it does not change significantly with the number of
POF-FTs. This is because the latency mainly comes from the
communication latency between the SmartNIC and server and
the running time of the decision module or offload revalidation
module, which are generally irrelevant to the number of POF-
FTs. This confirms not only the runtime programmability but
also the scalability of OVS-POF-TC. In all, the average total
latencies of offloading and removing a set of POF-FTs in OVS-
POF-TC are 22.5 ms and 25.3 ms, respectively.

2 3 4 5

Number of POF-FTs in an Operation

0

5

10

15

20

25

30

35

A
v
e

ra
g

e
 T

o
ta

l
L

a
te

n
c
y
 (

m
s
)

Insertion of POF-FTs

Removal of POF-FTs

Fig. 8. Latency of offloading/removing POF-FTs to/from in OVS-POF-TC.

B. Performance Benchmarking

In order to clearly present the advantages of the hardware
acceleration in OVS-POF-TC, we use the existing POF-based
software PDP switch in the literature (i.e., OVS-POF [31])
as the benchmark to compare their throughputs. Specifically,
we use the POF controller to install POF-FTs with different
numbers of SetField actions or AddField actions in OVS-POF-
TC and OVS-POF, where OVS-POF-TC offloads the POF-FTs
to the SmartNIC for hardware acceleration, while OVS-POF
just handles the POF-FTs in the software system. Then, we
use the traffic generator to measure the throughputs of OVS-
POF-TC and OVS-POF with the packet size of 64 bytes (i.e.,
the shortest packets for stressing the PDP switches mostly).

Fig. 9 shows the results on packet processing throughput.
After analyzing the results, we can get the following insights.
First, the hardware acceleration enabled by our SmartNIC of-
floading does significantly improve the packet processing per-
formance of POF-based PDP switch. Specifically, for the cases
with SetField actions, OVS-POF-TC increases the throughput
by 1.94 times at maximum and 1.52 times on average, related
to OVS-POF, and for the cases with AddField actions, the
acceleration ratios achieved by OVS-POF-TC over OVS-POF
have a maximum of 4.78 times and an average of 3.28 times.
There are two main reasons for the improvements achieved

7

by OVS-POF-TC: 1) the offloaded flow is processed directly
by the hardware of SmartNIC, saving the time for sending
its packets to the software system of OVS-POF-TC and thus
increasing the throughput, and 2) the CPU cycles used by the
memory operations of SetField and AddField are also saved.

Second, because the packet processing related to AddField
is more complex than that of SetField in OVS-POF, its
throughputs decrease significantly from Fig. 9(a) to Fig. 9(b).
However, as OVS-POF-TC processes packets in hardware
without taking any CPU resources, its throughputs in Figs.
9(a) and 9(b) are similar. Finally, for the reason that when
there are more SetField/AddField actions in the POF-FT, the
packet processing becomes more complex, the throughput of
OVS-POF decreases greatly with the number of actions in
Figs. 9(a) and 9(b). On the other hand, the throughput decrease
of OVS-POF-TC due to the increase of actions is much less
obvious in Fig. 9. Therefore, the results in Fig. 9 suggest that
with our SmartNIC offloading, OVS-POF-TC achieves much
larger throughput than OVS-POF and its packet processing
performance is much less sensitive to the content of POF-FTs.

1 2 3 4 5

Number of SetField actions in POF-FT

0

5

10

15

20

25

30

35

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

OVS-POF

OVS-POF-TC

(a) SmartNIC offloading of SetField actions

1 2 3 4 5

Number of AddField actions in POF-FT

0

5

10

15

20

25

30

35

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

OVS-POF

OVS-POF-TC

(b) SmartNIC offloading of AddField actions

Fig. 9. Performance benchmarking of OVS-POF-TC’s throughput.

Moreover, to further evaluate the performance of OVS-POF-
TC, we design a more sophisticated experimental scenario
that involves multiple flows. Specifically, we send 10 flows
with different total data-rates to OVS-POF-TC and turn the
SmartNIC offloading on and off to check the throughput and

Fig. 10. Performance of kernel data path in OVS-POF-TC (SmartNIC
offloading is turned off).

latency of packet processing. We first turn on the SmartNIC
offloading and confirm that the throughput of OVS-POF-
TC always equals the total data-rates of the flows, and the
average latency of packet processing is ∼4 µs. Then, we
turn off the SmartNIC offloading, and obtain the results in
Fig. 10. This time, the maximum throughput of the OVS-
POF-TC is only 0.534 Mpps. This is because in this case,
all the packets are processed by the kernel data path in the
software system; to support SmartNIC offloading in OVS-
POF-TC, the software acceleration enabled by DPDK [33]
cannot be used. Meanwhile, Fig. 10 also shows that the latency
increases abruptly from ∼50 µs to ∼7,000 µs when the total
data-rate of the flows increases from 0.447 Mpps to 0.596
Mpps. This is because when the input data-rate exceeds the
maximum throughput of the kernel data path, the CPU for
the software system is overloaded, i.e., the software part of
OVS-POF-TC can hardly process packets timely. The results
in Fig. 10 further justify the necessity of our proposed adaptive
SmartNIC offloading (i.e., the offloading schemes of flows
should be determined according to their packet processing
performance in the different data paths in OVS-POF-TC).

V. ALGORITHM DESIGN

Although the OVS-POF-TC designed in Section III can ef-
fectively improve the packet processing performance of OVS-
POF, the performance improvement can hardly be maximized
without an adaptive algorithm that can select the best POF-
FTs to offload in runtime, based on the current status of the
software/hardware system of OVS-POF-TC. In other words, as
the memory in a SmartNIC for POF-FTs is normally limited,
the conventional offloading scheme that simply offloads POF-
FTs in the first-come-first-serve manner cannot achieve the
maximum performance improvement, and thus should be
further optimized. Hence, in this section, we design algorithms
to facilitate adaptive SmartNIC offloading, which enable OVS-
POF-TC to select proper POF-FTs to offload by collecting and
analyzing flow status information and update offloaded POF-
FTs timely to address dynamic network changes. Specifically,
we propose flow placement and flow replacement algorithms

8

to be implemented in the decision module and offload revali-
dation module in OVS-POF-TC, respectively.

A. MILP Models

The performance of OVS-POF-TC can mainly be affected
by three factors: 1) the memory space in the SmartNIC for
POF-FTs, 2) the latency of offloading/removing a POF-FT
to/from the SmartNIC, and 3) the packet processing latency
of a flow when it is processed in the kernel and SmartNIC
data paths in OVS-POF-TC. Hence, we formulate the problems
of flow placement and replacement based on the parameters
measured in a real-world system, and design MILP models.

Note that with numerous experimental measurements, we
find that the packet processing latency of a flow in different
data paths of OVS-POF-TC can be empirically modeled as

Ti =

τ2, in kernel and Ci ≤ Ckr

i ,

τ3, in kernel and Ci > Ckr
i ,

τ1, in SmartNIC,

(1)

where Ti, Ci and Ckr
i are the packet processing latency,

sending rate, and the kernel data path’s throughput of Flow
i, respectively. As for the MILPs of flow placement and
replacement problems, below are the common parameters.

Common Notations:
• N : the set of POF-FTs that the POF controller installs in

OVS-POF-TC, each of which corresponds to a flow, and
thus the number of flows to be considered is |N |.

• Msn: the maximum number of POF-FTs that can be
offloaded to the SmartNIC according to its memory space.

• τadd: the average latency of offloading a set of POF-FTs
to the SmartNIC in OVS-POF-TC.

• Ckr
i : the throughput of Flow i when it is processed in

the kernel data path of OVS-POF-TC.
• Ci: the sending rate of Flow i.
• τ1, τ2 and τ3: the average packet processing latencies in

OVS-POF-TC, for the conditions defined in Eq. (1).
• M : a very large positive constant.
• ε: a small positive constant.
1) MILP for Flow Placement (MILP-FP):
Variables:
• xi: the boolean variable that equals 1 if the POF-FT of

Flow i is offloaded to the SmartNIC, and 0 otherwise.
• yi: the boolean variable that equals 1 if the POF-FT of

Flow i is in the kernel data path, and 0 otherwise.
• Ti: the packet processing latency of Flow i.
• γ: the boolean variable that equals 1 if there is at least

one POF-FT being offloaded to the SmartNIC.
• ai, fi,1, fi,2, fi,3, g1, g2 and g3: the auxiliary variables

introduced for linearization.
Objective:
As both the packet processing latencies of flows and the

latency of offloading POF-FTs to the SmartNIC can affect
the performance of OVS-POF-TC, we design the optimization
objective as to minimize the sum of them:

Minimize γ · τadd +
∑
∀i∈N

Ti. (2)

Constraints: ∑
∀i

xi ≤Msn. (3)

Eq. (3) ensures that the POF-FTs offloaded to the SmartNIC
can be accommodated by its memory space.

xi + yi = 1, ∀i ∈ N. (4)

Eq. (4) ensures that each POF-FT in N is deployed either in
the SmartNIC or the kernel data path.

Ti =

τ2, Ci ≤ Ckr

i and xi = 0,

τ3, Ci > Ckr
i and xi = 0,

τ1, xi = 1,

∀i. (5)

Eq. (5) gets the packet processing latency of Flow i according
to Eq. (1). It is nonlinear and will be linearized later.

γ =

 0,
∑
∀i

xi = 0,

1, otherwise.
(6)

Eq. (6) ensures that the value of γ is set correctly, which is
also a nonlinear constraint that needs to be linearized later.

ai =
Ci

Ckr
i

, (7)

fi,1 + fi,2 + fi,3 = 1, (8)

τ1 · fi,1 + τ2 · fi,2 + τ3 · fi,3 = Ti, (9)

ai · (1− xi) ≥ ε+ fi,3, (10)

ai · (1− xi) ≤ fi,2 +M · fi,3, (11)

g1 + g2 + g3 = 1, (12)

γ = g1 + g3, (13)∑
∀i

xi ≤ −ε · g1 +M · g3, (14)

∑
∀i

xi ≥ −M · g1 + ε · g3. (15)

Eqs. (7)-(11) leverage variables ai, fi,1, fi,2 and fi,3 to
linearize Eq. (5), and Eqs. (12)-(15) use variables g1, g2 and
g3 to linearize Eq. (6). Finally, we can linearize the objective
in Eq. (2) with the auxiliary variables as

Minimize (g1 + g3) · τadd +
∑
∀i

(τ1fi,1 + τ2fi,2 + τ3fi,3) . (16)

2) MILP for Flow Replacement (MILP-FR):
In addition to the common notations defined above, the

MILP for flow replacement uses the following parameters.
Notations:
• Nnw: the set of new POF-FTs that the controller installs

in OVS-POF-TC, each of which is for a new flow.
• τdel: the average latency of removing a set of POF-FTs

from the SmartNIC in OVS-POF-TC.
• zi: the boolean that equals 1 of the POF-FT of an existing

flow i ∈ N was in SmartNIC before the flow replacement,
and 0 if the POF-FT is in kernel data path.

Variables:
• xi, yi, Ti and γ: same variables as those in MILP-FP.
• ξ: the boolean variable that equals 1 if there is at least

one POF-FT being removed from the SmartNIC.

9

• ai, fi,1, fi,2, fi,3, h1, h2, k1 and k2: the auxiliary
variables introduced for linearization.

Objective:
The optimization objective is similar to that of the flow

placement problem, except that it should also consider the
latency of removing POF-FTs from the SmartNIC.

Minimize γ · τadd + ξ · τdel +
∑

∀i∈(N∪Nnw)

Ti. (17)

Constraints: ∑
∀i∈(N∪Nnw)

xi ≤Msn, (18)

xi + yi = 1, ∀i, (19)

Ti =

τ2, Ci ≤ Ckr

i and xi = 0,

τ3, Ci > Ckr
i and xi = 0,

τ1, xi = 1,

∀i, (20)

γ =

 0,
∑

∀i∈Nnw

xi = 0,

1, otherwise.
(21)

Eqs. (18)-(21) are similar to Eqs. (3)-(6).

ξ =

 0,
∑
i∈N

xi ≥
∑
i∈N

zi,

1, otherwise.
(22)

Eq. (22) ensures that the value of ξ is set correctly, which is
also a nonlinear constraint that needs to be linearized later.

h1 + h2 = 1, (23)

γ = h2, (24)∑
∀i∈Nnw

xi ≤ |Nnw| · h2, (25)

∑
∀i∈Nnw

xi ≥ ε · h2, (26)

k1 + k2 = 1, (27)

ξ = k2, (28)∑
∀i∈N

xi ≤ k1 ·M + k2 ·
∑
∀i∈N

zi, (29)

∑
∀i∈N

xi ≥ k1 ·
∑
∀i∈N

zi. (30)

Eqs. (23)-(26) linearize Eq. (21), and Eqs. (27)-(30) linearize
Eq. (22). Finally, we can linearize the objective in Eq. (17) as

Minimize h2τadd + k2τdel +
∑
∀i

(τ1fi,1 + τ2fi,2 + τ3fi,3). (31)

B. Heuristic Algorithms

Note that MILP models might not be scalable and solving
them can be time-consuming, especially for large-scale prob-
lems. Meanwhile, to maintain the runtime-programmability
of OVS-POF-TC, we have to solve the flow placement and
replacement problems quickly. Therefore, we propose two
heuristics to solve the problems time-efficiently. When solving
the MILPs, we find that the arranging POF-FTs according
to the sending rates of their flows helps to minimize the
objectives. Therefore, the heuristics are designed accordingly.

1) Heuristic for Flow Placement: Algorithm 1 shows the
procedure of our heuristic for flow placement, which decides
which POF-FTs should be offloaded to the SmartNIC when
it is empty after system initialization. Here, the motivation
of introducing the set B to store the kernel data path’s
throughputs for different packet sizes is that we would like
to determine whether to offload each flow’s POF-FT quickly.
Specifically, the kernel data path’s throughput increases with a
flow’s average packet size, and thus we select the throughputs
of a few representative packet sizes to divide the main search
in Algorithm 1 into branches, for saving running time.

Algorithm 1: Flow Placement Algorithm
Input: parameters of MILP-FP, the set B that stores

kernel data path’s throughputs for the packet
sizes of {1024, 512, 256, 128, 64} bytes, and
the coefficients n1 and n2.

Output: the set of offloaded POF-FTs N ′.
1 N ′ = ∅, flag = 0;
2 sort flows in N in descending order of sending rates;
3 for each throughput b ∈ B in descending order do
4 P0 = P1 = P2 = ∅;
5 insert each flow i ∈ N with Ci > b into set P0;
6 for each flow i ∈ P0 do
7 if Ci > Ckr

i then
8 insert Flow i into set P2;
9 else

10 insert Flow i into set P1;
11 end
12 end
13 p1 = |P1|, p2 = |P2|;
14 if (n2 < p2 ≤Msn) OR (n1 < p1 ≤Msn) then
15 N ′ = N , flag = 1;
16 break;
17 end
18 if p2 > Msn then
19 insert the first Msn flows in P2 into N ′;
20 flag = 1;
21 break;
22 end
23 if p1 + p2 > Msn then
24 insert the flows in P2 into N ′;
25 insert the first Msn − p2 flows in P1 into N ′;
26 flag = 1;
27 break;
28 end
29 end
30 if flag = 0 then
31 if (τ3 − τ1) · p2 + (τ2 − τ1) · p1 > τadd then
32 N ′ = N ;
33 end
34 end
35 return N ′;

Lines 1-2 are for the initialization, where flag is introduced
to indicate whether the algorithm has finalized the set of
offloaded POF-FTs in N ′. Then, the for-loop covering Lines

10

3-29 divide the flows in N into a few subsets by comparing
their sending rates with the throughputs of kernel data path in
B, for reducing the time complexity of the search. Specifically,
the throughput of kernel data path increases with the packet
size. Hence, in Line 4, we store the flows whose sending rates
is greater than the current throughput of kernel path b in set P0,
for processing the flows with larger sending rates earlier. Next,
Lines 6-13 put the flows in P0 in P1 or P2 depending whether
their sending rates are larger than the throughputs with which
kernel data path can process them, and the numbers of flows
in P1 and P2 are stored in p1 and p2, respectively (Line 13).

Then, Lines 14-28 select flows to put into N ′ according to
system parameters. Note that n1 and n2 are the coefficients
empirically set according to the values of τ1, τ2, τ3 and τadd,
and we have n1 = 500 and n2 = 3 in the simulations in the
next section. Finally, if N ′ still has not been determined, Lines
30−34 finalize it according to the latencies in the system. The
time complexity of Algorithm 1 is O(|B| · |N |).

2) Heuristic for Flow Replacement: Algorithm 2 shows the
procedure of our heuristic for flow replacement, which decides
how to replace the existing POF-FTs in the SmartNIC when
new POF-FTs are installed in the OVS-POF-TC. This time,
the SmartNIC might not be empty, and the POF-FTs that have
already been offloaded to it are stored in set N ′.

Similar to Algorithm 1, we still leverage the set of kernel
data path’s throughputs B to save running time. Therefore, the
procedure in Lines 4-14 is similar to that in the Lines 4-13 of
Algorithm 1. Then, Lines 15-25 check whether there exists the
condition of flow replacement, i.e., replacing certain POF-FTs
currently in the SmartNIC with new ones helps to reduce the
objective in Eq. (17). Here, the coefficient n3, which is used
in Line 15, is empirically set according to the values of τ1, τ2,
τ3, τadd and τdel, and we have n3 = 6 in the simulations in the
next section. Finally, Lines 24-30 take care of the situation in
which the SmartNIC was empty before the flow replacement.
The time complexity of Algorithm 2 is O(2·|B|·(|N |+|Nnw|).

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the algorithms designed for flow
placement and flow replacement with numerical simulations.
In the simulations, we assume that the maximum number of
POF-FTs that can be offloaded on the SmartNIC is Msn =
4, 800. The sizes of the packets in each flow are randomly
selected from {64, 128, 256, 512, 1024} bytes, and the sending
rate of each flow is randomly distributed within [100, 40000]
Mbps. The throughput of kernel data path for each flow (Ckr

i)
is determined according to experimental measurement.

Tables II and III show the simulation results regarding flow
placement and flow replacement, respectively. We can see that
our proposed heuristics run ∼10 times faster than their cor-
responding MILPs, while the MILPs can become intractable
when the scales of the problems are the largest. Meanwhile,
the heuristics can approximate the optimal solutions from the
MILPs well. Specifically, the maximum relative gaps between
the heuristics and MILPs are 0.203% and 3.23% for flow
placement and flow replacement, respectively. Therefore, the
results prove the performance of our heuristics. Note that the

Algorithm 2: Flow Replacement Algorithm
Input: parameters of MILP-FR, the set B that stores

kernel data path’s throughputs for the packet
sizes of {1024, 512, 256, 128, 64} bytes, and
the coefficient n3.

Output: the new set of offloaded POF-FTs N ′′.
1 N ′′ = N ′, flag = 0;
2 sort flows in N and Nnw in descending order of

sending rates;
3 for each throughput b ∈ B in descending order do
4 P0 = P1 = P2 = Q0 = Q1 = Q2 = ∅;
5 insert each flow i ∈ N with Ci > b into set P0;
6 for each flow i ∈ P0 do
7 if Ci > Ckr

i then
8 insert Flow i into set P2;
9 else

10 insert Flow i into set P1;
11 end
12 end
13 p1 = |P1|, p2 = |P2|;
14 repeat the procedure in Lines 5-13 for flows in

Nnw to get Q0, Q1, Q2, q1 and q2 accordingly;
15 if (p1 > n3) AND (q2 > n3) AND (|N | > Msn)

then
16 for i ∈ [0,min (p1, q2)] do
17 remove each flow i ∈ P1 from N ′′;
18 insert each flow i ∈ Q2 into N ′′;
19 end
20 flag = 1;
21 break;
22 end
23 end
24 if flag = 0 then
25 if N ′ = ∅ then
26 run Algorithm 1 with flow set N ∪Nnw;
27 else if |N | < Msn then
28 run Algorithm 1 with flow set Nnw and

SmartNIC memory space Msn =Msn − |N |;
29 end
30 end
31 return N ′′;

simulations can use very large numbers of POF-FTs in N and
Nnw to stress the algorithms, but in practical network systems,
the POF controller might not install hundreds of thousands or
millions of POF-FTs into an OVS-POF-TC in one batch.

VII. CONCLUSION

In this paper, we designed and implemented a SmartNIC
offloading system, namely, OVS-POF-TC, to improve the
performance of POF-based software PDP switches. Our study
covered both system design and implementation and algo-
rithm design. Experimental results indicate that our proposal
facilitated runtime programmability, offloaded and updated
POF-FTs adaptively, and significantly improved the packet
processing performance of POF-based software PDP switches.

11

TABLE II
PERFORMANCE EVALUATIONS FOR FLOW PLACEMENT

MILP-FP Flow Placement Heuristic

of POF-FTs
Overall Objective (µs) Running Time (s) Overall Objective (µs) Running Time (s)

(|N |)
100 23, 000 0.01 23, 000 0.001

1, 000 27, 500 0.03 27, 500 0.001

10, 000 36, 372, 000 0.16 36, 379, 400 0.0070

100, 000 684, 612, 000 1.51 684, 611, 550 0.1249

1, 000, 000 7, 171, 470, 000 26.78 7, 171, 470, 100 1.5211

3, 000, 000 − − 21, 595, 875, 650 6.0512

TABLE III
PERFORMANCE EVALUATIONS FOR FLOW REPLACEMENT

MILP-FR Flow Replacement Heuristic

of POF-FTs
Overall Objective (µs) Running Time (s) Overall Objective (µs) Running Time (s)

|N | |Nnw|
60 40 23, 000 0.01 23, 000 0.001

600 400 27, 500 0.01 27, 500 0.0040

6, 000 4, 000 36, 267, 500 0.16 37, 440, 250 0.0170

60, 000 40, 000 685, 200, 000 1.55 686, 260, 950 0.2289

600, 000 400, 000 7, 172, 680, 000 26.12 7, 173, 737, 850 3.2770

600, 000 2, 400, 000 − − 21, 595, 200, 650 12.4293

Moreover, to make sure that OVS-POF-TC can offload and
replace POF-FTs adaptively, we formulated two MILPs to
respectively solve the problems of flow placement and flow
replacement, and also proposed time-efficient heuristics for
the problems. Simulation results confirmed that the heuristics
run much faster than the MILPs and could approximate the
optimal solutions of the MILPs well. In our future work, we
will extend OVS-POF-TC to support the offloading of more
types of POF-FTs and consider the actual applications of OVS-
POF-TC for low-latency, flexible and scalable IoT networks.

ACKNOWLEDGMENTS

This work was supported by NSFC project 61871357 and
Fundamental Fund for Central Universities (WK3500000006).

REFERENCES

[1] Cisco Annual Internet Report (2018-2023). [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html.

[2] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] P. Marsch et al., “5G radio access network architecture: Design guide-
lines and key considerations,” IEEE Commun. Mag., vol. 54, pp. 24–32,
Nov. 2016.

[4] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[5] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[6] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[7] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, 2013.

[8] Q. Duan, S. Wang, and N. Ansari, “Convergence of networking and
cloud/edge computing – status, challenges, and opportunities,” IEEE
Netw., vol. 34, pp. 148–155, Nov./Dec. 2020.

[9] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, pp. 14–76, Jan. 2014.

[10] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[11] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[12] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[13] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, pp. 90–97, Feb. 2015.

[14] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,” J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[15] W. Fang et al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[16] Q. Duan, N. Ansari, and M. Toy, “Software-defined network virtual-
ization – an architectural framework for integrating SDN and NFV for
service provisioning in future networks,” IEEE Netw., vol. 30, pp. 10–16,
Sept./Oct. 2016.

[17] Z. Lv and W. Xiu, “Interaction of edge-cloud computing based on SDN
and NFV for next generation IoT,” IEEE Internet Things J., vol. 7, pp.
5706–5712, Jul. 2020.

[18] M. Ojo, D. Adami, and S. Giordano, “A SDN-IoT architecture with NFV
implementation,” in Proc. of GC Wkshps 2016, pp. 1–6, Dec. 2016.

[19] P. Ray and N. Kumar, “SDN/NFV architectures for edge-cloud oriented
IoT: A systematic review,” Comput. Commun., vol. 169, pp. 129–153,
Mar. 2021.

[20] IoT technologies and protocols. [Online]. Avail-
able: https://azure.microsoft.com/en-us/overview/internet-of-things-iot/
iot-technology-protocols/.

[21] E. Municio, S. Latre, and J. Marquez-Barja, “Extending network pro-
grammability to the things overlay using distributed industrial IoT
protocols,” IEEE Trans. Ind. Informat., vol. 17, pp. 251–259, Jan. 2021.

[22] P. Bosshart et al., “P4: Programming protocol-independent packet pro-

12

cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[23] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
58–66, Mar./Apr. 2017.

[24] Protocol Indepedent Forwarding. [Online]. Available: https://
opennetworking.org/news-and-events/protocol-independent-forwarding/

[25] Intel Tofino. [Online]. Available: https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-series.
html.

[26] K. Zhang et al., “Mobile edge computing and networking for green and
low-latency internet of things,” IEEE Commun. Mag., vol. 56, pp. 39–45,
May 2018.

[27] Z. Qin et al., “Low-power wide-area networks for sustainable IoT,” IEEE
Wirel. Commun., vol. 26, pp. 140–145, Jun. 2019.

[28] J. Yu et al., “Forwarding programming in protocol-oblivious instruction
set,” in Proc. of ICNP 2014, pp. 577–582, Oct. 2014.

[29] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proc. of NSDI 2015, pp. 117–130, May 2015.

[30] Open vSwitch. [Online]. Available: http://www.openvswitch.org/.
[31] S. Tang et al., “Sel-INT: A runtime-programmable selective in-band

network telemetry system,” IEEE Trans. Netw. Serv. Manag., vol. 17,
pp. 708–721, Jun. 2019.

[32] OVS-POF with Sel-INT module by USTC-INFINITELAB. [Online].
Available: https://github.com/USTC-INFINITELAB/OpenvSwitch-pof/
tree/fast-path.

[33] DPDK: Data Plane Development Kit. [Online]. Available: https:
//www.dpdk.org/.

[34] NVIDIA Mellanox Innova-2 Flex open programmable SmartNIC.
[Online]. Available: https://www.nvidia.com/en-us/networking/ethernet/
innova-2-flex/.

[35] SmartNIC overview - Netronome. [Online]. Available: https://www.
netronome.com/products/smartnic/overview/.

[36] O. Michel, R. Bifulco, G. Retvari, and S. Schmid, “The programmable
data plane: abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, pp. 1–36, May 2021.

[37] Netronome 25GbE SmartNICs with Open vSwitch hardware offload
drive unmatched cloud and data center infrastructure performance.
[Online]. Available: https://www.netronome.com/agilio-ovs-tc/.

[38] S. Horman, “OVS hardware offload with TC flower,” 2017. [Online].
Available: http://www.openvswitch.org/support/ovscon2017/horman.pdf.

[39] A. Al-Shaikhli, C. Ceken, and M. Al-Hubaishi, “An interface protocol
between SDN controller and end devices for SDN-oriented WSAN,”
Wirel. Pers. Commun., vol. 101, pp. 755–773, Apr. 2018.

[40] M. Uddin, S. Mukherjee, H. Chang, and T. Lakshman, “SDN-based
Multi-Protocol edge switching for IoT service automation,” IEEE J. Sel.
Areas Commun., vol. 36, pp. 2775–2786, Sept. 2018.

[41] M. Cicioglu and A. Calhan, “A multiprotocol controller deployment in
SDN-based IoMT architecture,” IEEE Internet Things J., vol. 9, pp.
20 833–20 840, May 2022.

[42] D. Firestone et al., “Azure accelerated networking: SmartNICs in the
public cloud,” in Proc. of NSDI 2018, pp. 51–66, Apr. 2018.

[43] B. Li et al., “KV-Direct: High-performance in-memory key-value store
with programmable NIC,” in Proc. of SOSP 2017, pp. 137–152, Oct.
2017.

[44] M. Liu, S. Peter, A. Krishnamurthy, and P. Phothilimthana, “E3: Energy-
efficient microservices on SmartNIC-Accelerated servers,” in Proc. of
USENIX ATC 2019, pp. 363–378, Jul. 2019.

[45] P. Gao, Y. Xu, and H. Chao, “OVS-CAB: Efficient rule-caching for Open
vSwitch hardware offloading,” Comput. Netw., vol. 188, p. 107844, Apr.
2021.

[46] Y. Yan, A. Beldachi, R. Nejabati, and D. Simeonidou, “P4-enabled
Smart NIC: Enabling sliceable and service-driven optical data centres,”
J. Lightw. Technol., vol. 38, pp. 2688–2694, Jan. 2020.

[47] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. of HotSDN 2013, pp.
127–132, Aug. 2013.

[48] Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstration of high-
throughput protocol oblivious packet forwarding to support software-
defined vehicular networks,” IEEE Access, vol. 5, pp. 24 004–24 011,
Oct. 2017.

[49] ONOS. [Online]. Available: https://onosproject.org/.
[50] Q. Zheng, S. Tang, B. Chen, and Z. Zhu, “Highly-efficient and adaptive

network monitoring: When INT meets segment routing,” IEEE Trans.
Netw. Serv. Manage., vol. 18, pp. 2587–2597, Sept. 2021.

[51] C. Kim et al., “In-band network telemetry (INT),” Tech. Spec., Jun.
2016. [Online]. Available: https://p4.org/assets/INT-current-spec.pdf.

[52] Segment Routing. [Online]. Available: https://www.segment-routing.
net/.

