
1

Entropy-driven Adaptive INT and Its Applications
in Network Automation of IP-over-EONs

Zichen Xu, Shaofei Tang and Zuqing Zhu, Senior Member, IEEE

(Invited Paper)

Abstract—Recently, IP over elastic optical network (IP-over-
EON) has become a promising architecture for metro and core
networks. This work studies how to visualize both layers of
an IP-over-EON in real time, at different granularities (e.g.,
at flow-level, lightpath-level, and link-level), and with self-
adaptivity. Specifically, we consider the multilayer application
of in-band telemetry (INT) and propose entropy-driven adaptive
INT (namely, EntropyINT). We introduce stateful processing to
programmable data plane (PDP) switches for EntropyINT, such
that they can make local decisions to determine whether and
what type of telemetry data about the IP and EON layers should
be encoded in each packet. The local decisions are designed to
be based on the amount of information that can be conveyed by
telemetry data to the network automation system. Meanwhile,
we make EntropyINT cooperate with out-of-band monitoring, to
detect and locate exceptions in the EON layer. Our proposal is
implemented in a real-world testbed of IP-over-EON, to evaluate
its assistance to network automation. Experimental results verify
the effectiveness of our proposal, and indicate that the telemetry
data collected by EntropyINT and out-of-band monitoring can
better assist the machine learning in network automation, for
status prediction and anomaly detection.

Index Terms—In-band telemetry (INT), In-network computing,
Stateful processing, Optical performance monitoring, Machine
learning, IP over elastic optical networks (IP-over-EONs).

I. INTRODUCTION

OVER the past two decades, the booming of new network
services has stimulated fast deployment of datacenters

(DCs) globally [1]. This applied high pressure on the infras-
tructures of metro and core networks, and thus motivated many
technical advances in this area [2, 3]. First of all, flexible-grid
elastic optical networks (EONs) [4–7] have been architected
to reshape the optical layer of metro and core networks, such
that dynamic and fine-grained spectrum management can be
enabled to adapt to the bandwidth demands of upper-layer
applications seamlessly [8]. Then, the multilayer architecture
of IP-over-EON [9, 10] has been widely considered to support
the ever-growing IP-based network services well, i.e., not only
facilitating efficient resource utilization when carrying highly
dynamic IP traffic, but also saving costs for operators [11].

Besides its advantages, IP-over-EON also brings in chal-
lenges, especially for network control and management
(NC&M). This is because to support highly dynamic traffic
with various quality-of-service (QoS) requirements, the IP and
EON layers need to be managed jointly [10]. Moreover, the
spreading of virtualization technologies (i.e., virtual network
slicing [12–14] and network function virtualization (NFV) [15,

Z. Xu, S. Tang, and Z. Zhu are with the School of Information Science
and Technology, University of Science and Technology of China, Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

16]) in metro and core networks has made them more adaptive
and programmable at the cost of increased complexity. These
challenges make it more difficult for the NC&M of IP-over-
EONs to troubleshoot and restore from exceptions timely [17,
18]. The need of managing IP and EON layers jointly suggests
that the NC&M should be centralized (i.e., based on software-
defined networking (SDN) [19]). Specifically, with SDN, one
can use centralized controller(s) to manage the packet switches
and optical elements in an IP-over-EON coordinately [20].

Nevertheless, a centralized NC&M scheme based on SDN
is just the first step toward operating IP-over-EONs effectively
and efficiently. More importantly, we need a network monitor-
ing technique that can visualize the complex structure of an
IP-over-EON in a fine-grained and real-time manner, such that
exceptions can be detected, localized, and recovered quickly.
Previously, people have developed many techniques to monitor
packet/optical networks. For instance, SNMP [21], sFlow [22],
Netflow [23], and RMON [24] can collect the statistics of
network elements (NEs) in the IP layer, while techniques based
on time or/and spectrum domain analysis have been developed
to monitor the performance of the optical layer [25]. However,
as these techniques let NEs report status data periodically or
on-demand in the out-of-band way, they cannot precisely catch
the real-time status of a dynamic network or reveal the end-
to-end operation of an arbitrary flow.

Recently, with momentum gained from the fast development
of programmable data plane (PDP) [26, 27], in-band network
telemetry (INT) [28] was proposed to facilitate operators to
visualize their networks in a programmable, real-time and per-
flow manner. Specifically, according to the instructions from
the control plane, each PDP switch on a flow’s routing path
records its own real-time status to encode and insert as specific
INT fields in the packets of the flow. Hence, how the flow gets
processed from source to destination can be reconstructed with
the INT fields, to monitor its performance in a per-packet and
per-hop way. Although INT was initially designed for packet
networks, its unique benefits make it promising for IP-over-
EONs too. Therefore, in our previous studies [29, 30], we
have extended INT to design and experimentally demonstrate
multilayer INT (ML-INT) systems that could visualize both
layers of an IP-over-EON in real time.

However, there is still a technical gap to close, if the NC&M
system of an IP-over-EON wants to leverage ML-INT to col-
lect the telemetry data for network automation. This is because
encoding the telemetry data of all the electrical/optical NEs on
a flow’s path as INT fields and inserting them in packets would
lead to excessive bandwidth overheads in the IP-over-EON
and stressful processing burden on the data analyzers at the

2

network edge. Although the current implementations of ML-
INT have already tried to address this issue by sampling the
packets in a flow to insert INT fields (i.e., selective INT field
insertion [31]), there are still two unsolved problems. Firstly,
in a dynamic network environment, it would be difficult for
the operator to determine the INT sampling rate such that the
tradeoff between INT overheads and monitoring accuracy can
be balanced well. Secondly, the INT sampling rate needs to be
adjusted on-the-fly to adapt to dynamic traffic condition, while
relying on the SDN controller to do this task will not only
induce noticeable latency but also increase the communication
overheads between the control and data planes.

In this work, we propose entropy-driven adaptive INT
(EntropyINT) to close the aforementioned technical gap. The
idea is to introduce stateful processing to the PDP switches for
ML-INT, such that they can make local decisions (i.e., without
involving the controller) to tell whether and what types of
INT fields should be inserted in each packet. Specifically, we
design the PDP switches to make local decisions based on the
“information content” of the telemetry data (i.e., the amount
of information conveyed by the data to NC&M), and an INT
field of telemetry data will only be inserted in a packet when
the information content of the data is sufficiently large.

We first lay out the system design to realize the stateful pro-
cessing for EntropyINT on PDP switches. Then, we implement
our proposal, equip the EntropyINT-enabled PDP switches in
a real-world network testbed of IP-over-EON, and conduct ex-
periments to evaluate its assistance to network automation. Our
experimental results indicate that with EntropyINT, the critical
data points regarding the statistics of electrical/optical NEs can
be caught more accurately and adaptively with reduced INT
overheads. The results also suggest that the telemetry data
collected by EntropyINT can better assist the machine learning
in network automation, for status prediction and anomaly
detection. Finally, we make EntropyINT cooperate with out-
of-band monitoring, and verify that it can help the controller
to only trigger out-of-band monitoring when necessary, i.e.,
troubleshooting becomes more accurate with less overhead.

The rest of the paper is organized as follows. Section II
briefly surveys the related work. We present the design of
EntropyINT in Section III, while its implementation for the
network automation of an IP-over-EON is discussed in Section
IV. The experimental demonstrations are described in Section
V. Finally, Section VI summarizes this paper.

II. RELATED WORK

Due to its advantages, INT has spurred intense research ac-
tivities since its inception [32], quickly followed by standard-
ization [28]. As a PDP-enabled network monitoring technique,
INT can be implemented based on programming protocol-
independent packet processor (P4) [26] and protocol-oblivious
forwarding (POF) [27]. However, the implementations of INT
in early days (e.g., in [33]) only targeted packet networks and
inserted INT fields on per-packet basis. Then, based on this
per-packet INT scheme, the studies in [34, 35] formulated
optimizations to plan the paths of INT-enabled flows such
that the coverage of monitoring can be maximized from the

network perspective. Although they did route the INT-enabled
flows to avoid collecting redundant telemetry data, they did
not try to optimize INT itself to minimize the overheads.

In [36, 37], people proposed several schemes to filter out
redundant telemetry data, for reducing the processing burden
of data analyzers, but they did not try to reduce the bandwidth
overheads of INT. To relieve the bandwidth overheads of INT,
researchers have considered to sample packets or/and types
of telemetry data for INT field insertions [31, 38, 39]. For
instance, the PINT in [39] leveraged probability sampling to
select the type of telemetry data to include in the INT header
of each packet, and reduced the bandwidth overheads of INT
effectively. Note that, for these selective INT schemes with
sampling, how to determine the INT sampling rate and adjust it
dynamically according to network status is the key to balance
the tradeoff between network monitoring accuracy and INT
overheads. Nevertheless, to the best of our knowledge, this
problem has not been solved properly by existing studies.

Multilayer INT schemes for packet-over-optical networks
have been designed and demonstrated in [29, 40, 41]. Howev-
er, they still did not properly address the bandwidth overheads
of INT. In [30, 42], we leveraged machine learning to analyze
the telemetry data collected by ML-INT and utilized the
results for network automation. More specifically, in [42], we
showed that the INT sampling rate can be adjusted according
to the predicted bandwidth usage of a lightpath, such that
the bandwidth overhead of INT does not result in lightpath
congestion. However, the INT sampling rate was adjusted by
the SDN controller, and the information entropy of telemetry
data was not considered.

III. SYSTEM DESIGN

In this section, we will describe the design of EntropyINT,
including the packet format and operations on PDP switches.

A. Network Model and Design Considerations

In this work, we assume that the IP-over-EON is a metro or
core network. Therefore, each flow in it is actually obtained
by aggregating a number of IP flows between a pair of PDP
switches in the IP layer, and with the multi-protocol label
switching (MPLS), each PDP switch can identify the flow by
checking its MPLS labels. In the EON layer, a flow is carried
by a sequence of lightpaths for being forwarded from source
to destination. As each lightpath can carry multiple flows, we
assume that the operator can limit the maximum bandwidth
usage of a flow, and if there is no restriction applied, a flow’s
maximum bandwidth usage is the smallest bandwidth capacity
of the lightpaths that carry it (i.e., the bottleneck lightpath).

As each flow is an aggregated one, its data-rate can be
relatively high (e.g., 1 Gbps and beyond), which means that the
time interval between two adjacent packets will be very short.
This implies that monitoring the flow’s performance with INT
in the per-packet and per-hop manner might not be necessary
[31]. Therefore, sampling packets or/and types of telemetry
data for INT field insertions is a promising way to reduce
not only the bandwidth overheads of INT but also the data
processing burden on data analyzers. However, the challenging

3

problem here is how to determine the INT sampling rate
and adjust it adaptively according to network status. This
motivates us to design EntropyINT, which selects and inserts
telemetry data in packets according to the data’s importance
of being collected. Specifically, to quantify the importance
of telemetry data, we define it as the information content of
the data based on the probability of the data’s occurrence. In
other words, we assume that telemetry data that occurs with
lower probability should be reported with higher probability.
With these considerations, EntropyINT can focus on important
telemetry data automatically and balance the tradeoff between
network monitoring accuracy and INT overheads adaptively.

B. Design of Packet Header

Similar to the ML-INT developed in [29], EntropyINT also
selects the packets in a flow to insert INT fields that contain the
telemetry data about real-time status of the electrical/optical
NEs on the flow’s routing path. Therefore, with EntropyINT,
there will be two types of packets in an IP-over-EON, i.e., the
normal packets that are not selected for INT field insertion,
and the INT packets that carry INT fields.

The packet format of an INT packet is shown in Fig.
1, which is adapted from the standard INT packet format
defined in [28] with only minor modifications for ensuring the
compatibility between EntropyINT and other INT versions.
For each INT packet, EntropyINT only encodes and inserts
one INT header in between its IP header and payload. The
INT header consists of four fields, which are Type, MapInfo,
DeviceID, and Metadata. If a packet is selected by a PDP
switch in the IP layer for EntropyINT, the INT header will be
inserted by the switch and it will not be removed before the
packet exits the IP-over-EON. Note that, the packet format
in Fig. 1 actually suggests that the INT header of an INT
packet has a fixed length of 12 bytes, i.e., the INT header
only contains one type of telemetry data about a single hop.

The definitions of the fields in the INT header are explained
as follows. Type has a length of 2 bytes and is filled with
0x0908 to distinguish INT packets from normal ones. MapInfo
is a 2-byte bitmap to identify the type of telemetry data that
is encoded in the subsequent Metadata field. In this work,
we support five types of telemetry data (as shown in Fig. 1),
each of which is represented by a bit in MapInfo. Here, Out
Port and In Port denote the input and output ports of the
switch that the packet uses, respectively, Hop Latency is the
processing latency of the packet on the switch, Bandwidth is
the bandwidth usage on the output port of the packet, and
BER is the bit-error-rate (BER) of the lightpath that carries
the packet to the switch. Hence, we can see that among the
five types of telemetry data, Out Port, In Port, Hop Latency,
and Bandwidth are about the IP layer and they are directly
collected by PDP switches, while BER tells the status of the
EON layer, and it is first collected by a bandwidth-variable
transponder (BV-T) and then forwarded to the PDP switch
that is local to the BV-T. DeviceID contains the unique 4-byte
ID of the PDP switch that inserts the INT header. Note that,
we can assign any 4-byte value as the ID of a PDP switch, as
long as it is unique in the IP-over-EON to identify the PDP

Eth IP Type MapInfo DeviceID Metadata Payload

Out Port In Port BER Hop Latency Bandwidth

INT Header

Fig. 1. Format of an INT packet in EntropyINT.

switch. Finally, the telemetry data with the type flagged in
MapInfo is encoded in Metadata, which is also a 4-byte field.

The rationale behind the empirical setting that EntropyINT
only allows an INT header to contain one type of telemetry
data regarding a single hop is two-fold. Firstly, the setting
minimizes the per-packet INT overheads, and thus it can
minimize the probability that an INT packet is excessively
long and exceeds the maximum transmission unit (MTU) of
the IP-over-EON. Secondly, since an IP-over-EON is normally
built for a metro or core network, the flows in it usually have
relatively high data rates (e.g., hundreds of Mbps or even
higher) [43]. This suggests that their packet rates can easily
reach one million packets per second (Mpps). However, the
real-time statistics of electrical/optical NEs usually would not
change dramatically at the scale of microseconds. Therefore,
although the amount of telemetry data carried by each INT
packet is minimized, EntropyINT can distribute different types
of telemetry data regarding all the concerned NEs over a series
of INT packets, while the time accuracy of network monitoring
will not be degraded noticeably. We will further verify this
argument in Section V with experimental results.

C. Operation of EntropyINT

Different from the existing selective INT schemes, Entropy-
INT does not select INT packets evenly according to a preset
INT sampling rate, since such a scheme is not adaptive enough.
Instead, it determines whether to insert an INT header in a
packet and which type of telemetry data to encode in the
Metadata of the INT header locally, based on the information
content of the collected telemetry data in different types.

Note that, as the packet sampling of EntropyINT might not
be uniform, we should first determine the upper-limit of the
INT sampling or the smallest interval between two consecutive
INT packets. Then, the bandwidth overheads introduced by
EntropyINT will not make the flow being monitored use more
bandwidth than the capacity that was allocated to it. We
denote the flow being monitored as fi, where i is its unique
index. Then, the maximum number of INT packets that can
be selected for fi per second within the future period of τ is

Ni,τ =

min
[
(Ci − b̂i,τ) · η, B̂INT

]
LINT

 , (1)

where Ci denotes the maximum bandwidth capacity that fi
can use, η ∈ (0, 1) is a preset parameter representing the ratio
of the available bandwidth that can be used by INT, B̂INT is
also a preset parameter, which tells the maximum bandwidth
usage of INT allowed in any case, b̂i,τ is the peak bandwidth
usage of fi within the future period of τ , and LINT is the length
of the INT header in Fig. 1, which is 12 · 8 = 96 bits. Then,

4

the smallest interval between two consecutive INT packets that
can be selected by a PDP switch for fi within τ is

∆ti,τ =
hop(fi)

Ni,τ
, (2)

where hop(fi) is the hop-count of the routing path of fi (i.e.,
the number of PDP switches that it passes through). Here, we
introduce hop(fi) in Eq. (2) because an INT header in Fig. 1
can only carry one type of telemetry data regarding a single
hop. In other words, the bandwidth allocated to INT should be
evenly distributed to the hops of fi. Note that, to get b̂i,τ , the
SDN controller of an IP-over-EON can leverage either rough
estimation or sophisticated traffic prediction (e.g., using a long
short term memory (LSTM) module [42]).

With the the smallest sampling interval obtained with Eqs.
(1) and (2), a PDP switch determines which type of telemetry
data should be encoded in one INT packet according to the
information content of the collected data. Specifically, the
value of a type of telemetry data regarding an electrical or
optical NE can be modeled as a random variable Xj,k, where
j denotes the type of the telemetry data and k is the unique
index of the NE. Then, if we denote the probability that the
telemetry data takes a value x as P (Xj,k = x), the information
content of the event “Xj,k = x” can be quantified as

I = − log2[P (Xj,k = x)]. (3)

With Eq. (3), we obtain a way to quantitatively compare
the importance of telemetry data in different types, which
enables each PDP switch to make local decisions on whether
to insert an INT header and which type of telemetry data to
encode in its Metadata. Hence, telemetry data can be collected
more adaptively with less bandwidth overheads, while the
accuracy and timeliness of network monitoring will not be
impacted significantly. Meanwhile, we hope to point out that in
order to maintain its throughput, a PDP switch usually should
not perform complex computing when processing packets.
Therefore, we introduce an information mapping table (IMT)
to convert the calculation in Eq. (3) into a simple table lookup.
Fig. 2 shows the layout of the IMT. Here, we assign the indices
of the telemetry data for Out Port, In Port, BER, Hop Latency,
and Bandwidth as j = 1 to 5, respectively.

First of all, the telemetry data for Out Port and In Port is
semi-static for each flow, i.e., the input and output ports used
by a flow on one switch seldom change during its lifetime.
Therefore, each type of the telemetry data (i.e., Out Port or
In Port) only has two entries in the IMT as{

I
(1)
j = − log2(1− ε), Xj is normal,

I
(2)
j = − log2(ε), otherwise,

∀j ∈ [1, 2].

Here, Xj is the collected data for Out Port or In Port, and
it is normal if the flow uses the expected output or input
port, respectively. Meanwhile, we empirically assign a small
probability of ε to denote the chance that the flow uses an
output or input port other than the expected one. Ideally,
the value of ε should be the average outage probability of
a flow using unexpected output/input port at a switch. When
the outage probability is not known, we can simply assign a

Out Port Normal: != " log(1 " #) Otherwise: != " log #

IN Port

BER [!
(")

, !
(!)

): !

Normal: != " log(1 " #) Otherwise: != " log #

Hop Latency

Bandwidth

[!
(!)

, !
(")

): !

["!
(#)
, "!
($)
): ! ["#

(!)
, "#

(#)
): !

["#
($)

, "#
(%)

): ! ["#
(!)

, "#
($)

): !

["#
($%#)

, "#
($)
]: !

["#
(!$%)

, "#
(!)
]: !

["#
(!$%)

, "#
(!)
]: !

Fig. 2. Layout of information mapping table (IMT).

small value (e.g., ε = 0.001) to make sure that the information
content of such an outage event is reasonably large.

Secondly, the telemetry data for BER has been converted to
its logarithmic form before being encoded in a Metadata field,
i.e., X3 = b− log(BER)c. Hence, the encoded telemetry data
for BER is a positive integer, and it increases when the actual
BER value decreases. Therefore, we allocate M entries in the
IMT for BER, where the value of M is set empirically.

I
(m)
3 = − log2(P

(m)
3), X3 ∈ [x

(m−1)
3 , x

(m)
3), ∀m ∈ [1,M],

where x(m−1)
3 and x(m)

3 are the lower-limit and upper-limit of
the data in the m-th entry, we have x(0)3 = 0, and P (m)

3 is the
probability that X3 will fall in the range of [x

(m−1)
3 , x

(m)
3).

Note that, the probability distribution of {P (m)
3 , ∀m ∈ [1,M]}

can be obtained by analyzing the historical BER data of
lightpaths in the IP-over-EON, and we assume that it is known.

Thirdly, the entries in the IMT for Hop Latency are obtained
with a method similar to that of BER. The only exception is
that the telemetry data for Hop Latency does not need to be
encoded in its logarithmic form. Once again, the probability
distribution of {P (m)

4 , ∀m ∈ [1,M]} can be obtained by
analyzing the historical packet processing latency of PDP
switches in the IP-over-EON, and it is pre-known.

Fourthly, for the telemetry data for Bandwidth, we can
allocate its entries in the IMT similar to those of BER and
Hop Latency. However, the dilemma is that the bandwidth
distribution of a flow (i.e., {P (m)

5 , ∀m ∈ [1,M]}) might not
always be known before we start monitoring the flow. Hence,
we can first make each entry cover an equal range (i.e., the
value of x(m)

5 − x(m−1)
5 is fixed) and initialize the probability

distribution as {P (m)
5 = 1

M , ∀m ∈ [1,M]}. Then, during the
flow’s lifetime, the controller updates the entries from time to
time, to make the values of {x(m)

5 } and {P (m)
5 } adapt to the

historical traffic data of the flow1. Fig. 3 shows the bandwidth
distribution of a flow that we collected in an experiment with
EntropyINT. Meanwhile, we hope to point out that in addition
to {x(m)

5 } and {P (m)
5 }, the controller can also adjust other

settings of the IMT during the operation of a flow if necessary.
Finally, the overall procedure of EntropyINT can be sum-

marized as follows. The controller first calculates the smallest
interval ∆ti,τ for INT sampling with Eqs. (1) and (2), and
provides it to the switches on the routing path of fi. Then,

1Note that, as we consider the IP-over-EON as a metro or core network,
each flow in it is actually an aggregated one by grooming many IP flows
between a pair of switches in the IP layer. Therefore, the dynamic traffic on
a flow can fluctuate with a predictable pattern [43] and last for a reasonably
long period of time (e.g., in hours or even days).

5

Fig. 3. Example on bandwidth distribution of a flow.

Data Type

Out Port

In Port

…

Value

 !

…

 "

Telemetry Data

DBT

IMT

EntropyINT Module

(Algorithm 1)

Data type

Out Port

…

Counter

 !

…

Get Data

 !

Update Entries

Inquire Information Contents

Update / Check Counters

NSPT

In Port

Fig. 4. Operation principle of EntropyINT.

according to ∆ti,τ , each related switch performs prioritized
INT, i.e., it checks the IMT to find the telemetry data whose
information content is the largest and encodes the data in the
INT header of a packet. Meanwhile, to avoid the situation in
which certain types of telemetry data will not be collected for a
long time due to their relatively small information content, we
also incorporate polling-based INT. Specifically, the polling-
based INT defines a polling interval on each switch, and when
a polling interval expires, the switch finds the type of telemetry
data, which has been collected the least frequently during the
polling interval, and encodes it in the INT header of a packet.

D. Procedure on PDP Switches

To realize the aforementioned principle of EntropyINT, we
introduce an EntropyINT module and three tables in each PDP
switch (as shown in Fig. 4). In addition to the IMT, the other
two tables are the data buffering table (DBT) and the no-
starving polling table (NSPT). As shown in Fig. 4, the DBT
stores the most recent value of each type of telemetry data, and
the value will be updated constantly by the PDP switch. Then,
when a new packet arrives, the prioritized INT can leverage
the DBT and IMT to find the telemetry data whose information
content is the largest and encode it in the INT header of the
packet. On the other hand, the NSPT is for the polling-based
INT and it stores the times that each type of telemetry data
has been encoded in a packet in the current polling cycle.

Our designed procedure on PDP switches to facilitate En-
tropyINT is illustrated in Algorithm 1. Lines 1-3 are for the

Algorithm 1: Procedure of EntropyINT on PDP Switches

1 get smallest INT sampling interval with Eqs. (1) and (2);
2 initialize IMT according to instructions from controller;
3 initialize DBT and NSPT;
4 while one packet of a flow being monitored comes in do
5 collect telemetry data, get information contents from

IMT, and update DBT if necessary;
6 if the packet is not an INT packet then
7 if it is time for prioritized INT then
8 check IMT to find the telemetry data in DBT,

which has the largest information content;
9 encode the telemetry data in an INT header

to insert in the packet;
10 reset all the entries in DBT;
11 update corresponding counter in NSPT;
12 else
13 if it is time for polling-based INT then
14 check NSPT to select the telemetry data

type with the least insertions;
15 encode the telemetry data of selected type

in an INT header to insert in the packet;
16 reset all the entries in DBT;
17 update corresponding counter in NSPT;
18 end
19 end
20 end
21 send the packet out;
22 update IMT if asked by controller;
23 end

system initialization. When each packet of a flow that is being
monitored enters a PDP switch, the switch will collect the
telemetry data for Out Port, In Port, BER, Hop Latency, and
Bandwidth instantly, use the values of the telemetry data to
check the IMT to get their information contents, compare the
information contents with those of the existing telemetry data
in the DBT, and update the corresponding entry in the DBT
if the information content of the new data is larger (Lines
4-5). The reason for performing the data preparation with
the DBT is that we would like to record and report critical
telemetry data points as many times as possible. Note that,
the introduction of the DBT can make an INT packet carry
the telemetry data, which was actually collected before the
packet entering a PDP switch, and thus induces certain time
error for network monitoring. However, as the packet rates of
the flows considered in this work are relatively high (i.e., ∼1
Mpps or even higher), the time error will only be in the scale
of microseconds and thus tolerable.

According to the design in Section III-B, we will only insert
one type of telemetry data regarding a single hop in an INT
packet. Therefore, Line 6 checks whether the packet already
contains an INT header, and will only insert a new INT header
in it if not. Then, in Lines 7-11, we explain how to perform
prioritized INT insertion based on the information content of
telemetry data. Specifically, with DBT and IMT, we can find
the telemetry data that has the largest information content and

6

an INT Packet?Packets Forwarder

EntropyINT

Module

INT

Arbiter

Switch Status

Collection

BER

Encoding
BV-Ts

Yes

No

Telemetry Data Type

Packet Metadata

Raw BER

Optical Metadata

Fig. 5. System configuration of a PDP switch for EntropyINT.

encode it in an INT header to insert in the packet (Lines 8-9).
Then, after the telemetry data of the selected type has already
been encoded in an INT packet, all the entries in the DBT are
reset (Line 10). Next, we update the counter of the data type
in the NSPT (Line 11). As shown in Fig. 4, we maintain a
counter for each type of telemetry data in the NSPT, to record
the times that the type of telemetry data has been encoded
in an INT packet. The rationale behind the NSPT is to avoid
the situation in which certain type(s) of telemetry data are not
encoded in INT packets for a relatively long time.

Lines 13-18 explain how to use the NSPT to conduct
polling-based INT insertion, for avoiding the starving of one or
more telemetry types in EntropyINT. Specifically, the polling-
based INT is triggered periodically by the PDP switch, and
instead of selecting the telemetry data whose information
content is the largest, it chooses the telemetry data whose type
has the least INT insertions until now (Line 14). Then, the re-
maining operations are the same as those in the prioritized INT
insertion. Finally, Lines 21-22 finish the packet forwarding.

Fig. 5 shows the system configuration of a PDP switch that
enables EntropyINT. The INT arbiter suggests the types of
telemetry data to get to the EntropyINT module. As for the
types of telemetry data, those about IP layer are provided by
the PDP switch itself through collecting local statistics, and
that about EON layer is obtained from the optical performance
monitors on the BV-Ts that locally connect to the PDP switch.

IV. SYSTEM IMPLEMENTATION

We implement our proposal of EntropyINT in an IP-over-
EON to realize closed-loop network automation. The architec-
ture of the system implementation is shown in Fig. 6, which
is similar to the architecture that we designed in [42].

A. Data Plane
The data plane consists of an IP layer and an EON layer.

There are three key NEs in the IP layer, i.e., the end hosts, PDP
switches, and data analyzers (DAs). The end hosts send/receive
application traffic, which is groomed as aggregated flows by
PDP switches with a label-based mechanism (e.g., by assign-
ing MPLS labels to them). Then, in the IP-over-EON, PDP
switches can identify the flows by checking their labels. The
PDP switches support the features of EntropyINT discussed
in the previous section, and in this work, we realize the PDP
switches by extending the POF-enabled OpenvSwitch (OVS-
POF) developed in our previous work [31]. Hence, each PDP
switch is actually a software-based switch running on a stand-
alone Linux server, and it can achieve a packet processing rate
of over 2 Mpps per port, regardless of the packet sizes.

The DA is designed to analyze the telemetry data collected
with EntropyINT and reports digested network status infor-
mation to the controller. Specifically, the flow-level monitor
parses, extracts and decodes the telemetry data encoded in the
INT headers of INT packets, and records the data in the data
storage, and in the meantime, the data is analyzed by the deep
learning (DL) based data analytics module, for future status
prediction and anomaly detection. Then, when an anomaly is
detected, it is sent to the exception handler, which will forward
it to the controller through the EntropyINT monitoring channel
for further processing. Note that, as INT packets are mirrored
to DAs by the egress switches of flows, DAs are placed at
the edge of the IP layer, together with end hosts. Therefore,
the DAs actually conduct distributed data analytics to accom-
plish real-time and flow-level monitoring and troubleshooting,
which offloads a significant part of NC&M tasks from the
controller. Each DA is home-made and runs on a Linux server,
and it can achieve a packet processing rate of over 2 Mpps.

The role of the EON layer is to set up and manage lightpaths
to bridge the communications among PDP switches, and the
key optical NEs there are the BV-T, optical line system
(OLS), and bandwidth-variable wavelength-selective switch
(BV-WSS). On each optical port of the BV-Ts and BV-WSS’,
we place an optical performance monitor (OPM) to collect
its real-time statistics. The OPMs operate based on either
spectrum or time-domain analysis. For instance, with spectrum
analysis, the power, optical signal-to-noise ratio (OSNR), and
optical spectrum on a port can be obtained for link-level
monitoring, while the time-domain analysis on a BV-T can get
the pre-forward-error-correction (pre-FEC) BER of a lightpath.

Since pre-FEC BER is the ultimate metric to judge the
health of a lightpath, we let BV-Ts report it to their local
PDP switches for being collected by EntropyINT. As for the
statistics obtained with spectrum analysis, we design an out-
of-band mechanism to report them to the controller, which will
be elaborated in Section IV-C. Hence, our implementation can
not only get the key metrics of lightpaths timely but also save
the INT overheads used for reporting the status of optical NEs.

B. Control Plane

The control plane essentially consists of the centralized
SDN controller, which is developed based on ONOS [44]
and can manage the electrical/optical NEs in the IP and EON
layers. In the controller, the traffic engineering database (TED)
records the multilayer service provisioning schemes of traffic
flows and works with the network control and network monitor
modules to facilitate network automation. We design three
modules in the network monitor to realize self-adaptive mon-
itoring and troubleshooting. Specifically, the report handler
receives and analyzes the reports from DAs to track the results
of flow-level monitoring, the link-level monitor coordinates the
OPMs in the EON layer and collects the statistics regarding
optical NEs in the out-of-band manner (i.e., through the out-
of-band monitoring channel), and the telemetry orchestrator
arranges the network monitoring schemes in the IP-over-EON.

Therefore, both the report handler and the telemetry orches-
trator in the network monitor can interact with the network

7

Fiber Link

IP Route

Lightpath

PDP-SW

Host

Normal Packet Field

INT Field

BV-WSS

OPM

BV-T

DA

Out-of-band Optical Monitoring Data

Channel

IP Layer

EON Layer

Data Plane

Control Plane

TED

Telemetry

Orchestrator

Link-level

Monitor

Network Monitor

Report Handler

Centralized Controller

App 1 App N

Network Control

DL-based Data Analytics

…

EntropyINT Monitoring ChannelOut-of-band Monitoring Channel

Control Monitor

DA

Exception

Handler

Flow-level

Monitor

DL-based Data Analytics Data

Storage

Fig. 6. Architecture of system implementation. TED: Traffic engineering database, DL: Deep learning, DA: Data analyzer, PDP-SW: PDP switch, BV-T:
Bandwidth-variable transponder, BV-WSS: Bandwidth-variable wavelength-selective switch, OPM: Optical performance monitor.

control module. The report handler will forward the excep-
tions that it detects and locates in the IP-over-EON to the
network control module, which will then adjust the multilayer
provisioning schemes of the affected flows to restore their
QoS parameters. On the other hand, the telemetry orchestrator
consistently analyzes the multilayer provisioning schemes of
flows, their QoS requirements, and the current settings and
reports of their monitoring schemes (i.e., including both En-
tropyINT and out-of-band monitoring), to determine whether
the monitoring schemes need to be updated and how to
update them accordingly. Then, if it is necessary, the telemetry
orchestrator will suggest the network control module to update
the monitoring schemes to adapt to the time-varying network
status and the QoS demands of flows.

PDP-SW BV-WSS

OPM

EDFA

BV-T Fiber Link DA

ControllerTraffic Route

1

A

B C

D

E

F

2 3

4

5

6

Host B

Host A

INT Packets

Data Plane

Control Plane

Fig. 7. Experimental setup.

C. Out-of-band Monitoring

Note that, with EntropyINT, the telemetry data regarding
a lightpath (i.e., pre-FEC BER) can only be collected at the
BV-Ts generating/receiving it. Hence, EntropyINT can only
monitor a lightpath in the end-to-end way, while the link-level

monitoring that checks the lightpath’s performance for each
traversed fiber span might not be feasible. In other words,
if a lightpath experiences multiple fiber spans, EntropyINT
will overlook the intermediate optical switches because the
local PDP switches of these optical switches are bypassed by
the packets on the lightpath. However, in order to locate the
exceptions in the EON layer, the controller needs to know the
lightpath’s performance on each traversed fiber span.

Therefore, we let the OPMs in the EON layer analyze the
spectra of the signals on optical ports and report the results
to the controller in the out-of-band manner. Then, the EON
layer can be monitored comprehensively. Specifically, each
OPM collects and analyzes the signal on an optical port at
regular intervals (i.e., one second), and stores the results (i.e.,
the power, OSNR and optical spectrum) locally. When the
BER results collected by EntropyINT suggest an exception in
the EON layer, the controller will request the latest monitoring
results regarding all the fiber spans that the concerned lightpath
traverses from the corresponding OPMs. Hence, the out-of-
band monitoring is triggered on an on-demand basis for
locating exceptions in the EON layer. This not only saves the
communication overheads between the data and control planes,
but also reduces the data processing burden on the controller.
In all, our system implementation in Fig. 6 combines in-band
and out-of-band monitoring and leverages various techniques
that can examine an IP-over-EON at different granularities
(e.g., at flow-level, lightpath-level, and link-level), to ensure
the efficiency and effectiveness of network monitoring.

V. EXPERIMENTAL DEMONSTRATIONS

In this section, we present the experiments that demonstrate
the capabilities of our network automation system based on
EntropyINT.

A. Experimental Setup

The proof-of-concept implementation of our network au-
tomation system is realized in the IP-over-EON testbed shown
in Fig. 7. The EON layer consists of six Finisar 1×9 BV-WSS’

8

that can switch optical spectrum at a granularity of 12.5 GHz,
fiber spans with inline erbium-doped fiber amplifiers (EDFAs),
and an OLS system based on Juniper BTI7800 platform. The
OLS system deploys three BV-Ts on Nodes A, D and F in
the testbed, respectively, each of which can generate/receive
a lightpath with line-rate in the range from 100 to 400 Gbps
and monitor the pre-FEC BER of the lightpath in real time.
Meanwhile, we equip a commercial optical channel monitor
(OCM), which can scan the whole C-band with a resolution of
312.5 MHz within hundreds of milliseconds, on each optical
port in the EON layer to enable the out-of-band monitoring.

As for the IP layer, we have two end hosts, six PDP switches
and a DA, all of which equip 10 GbE ports. Each end host
is emulated with a software-based traffic generator/analyzer
[45], which can generate/receive packets at a data-rate up to
10 Gbps. Each PDP switch is based on a software-based switch
based on OVS-POF, and it connects its 10 GbE ports to the
client side of OLS. The DA is a home-made software system.

In the experiments, we let Host A send dynamic traffic flows,
whose data-rates range between 2 and 10 Gbps, consistently
with the traces selected from [46], to Host B. As shown in
Fig. 7, the traffic from Host A to Host B is carried by two
lightpaths, which go through the BV-WSS’ in sequence as A-
B-C-F and F-E-D. Hence, the multilayer provisioning scheme
of the traffic flow uses the two lightpaths in the EON layer,
and gets the flow switched in the IP layer by PDP-SW 6.

B. Feature Validation

In Section III-C, we explained that the smallest sampling
interval of EntropyINT (∆ti,τ) can be calculated with Eqs. (1)
and (2), where the peak bandwidth usage of the monitored flow
fi within the future period of τ (i.e., b̂i,τ) should be known to
the SDN controller of the IP-over-EON. In the experiments, we
make the controller collect the data-rate of the dynamic flow
from Host A at its ingress switch (PDP-SW 1) and leverage an
LSTM module to predict its future traffic2. Fig. 8 shows the
prediction results of the LSTM module that has been trained
with the traces in [46]. It can be seen that the predicted traffic
trace can approximate the real one well. Then, we run the
experiments for 16, 000 traffic samples, and the experimental
results indicate that the prediction accuracy is 92.33% and the
average value of the relative errors is 4.5%. Therefore, the
results confirm that it is feasible to use an LSTM model to
get b̂i,τ and in turn estimate ∆ti,τ for EntropyINT accurately.

After obtaining the precise traffic prediction from the LST-
M, the controller can periodically adjust the ∆ti,τ of Entropy-
INT adaptively. Based on the characteristics of the traces in
[46], we make the controller update ∆ti,τ every 24 seconds
in the experiments. The telemetry data on Bandwidth of the
flow, which is collected by EntropyINT, is illustrated in Fig.
9(a). Here, we also perform an experiment with the adaptive
INT scheme (AdaptiveINT) developed in [42], and make it use
the packet format of EntropyINT in Fig. 1. However, as the
PDP switches with AdaptiveINT cannot make local decisions
to insert INT fields self-adaptively, they can only sample INT

2As the flow’s data-rate varies according to a trace in [46], which was taken
from a realistic metro/core network, it follows a predictable pattern [10, 43].

Fig. 8. Example on traffic prediction with LSTM module.

(a) Telemetry data on Bandwidth of flow

Bandwidth Hop Latency BER In Port Out Port

Data Type

0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

u
ti
o
n
 o

f
C

o
lle

c
te

d
 D

a
ta

 T
y
p
e
s EntropyINT

AdaptiveINT

(b) Distribution of collected telemetry data types

Fig. 9. Network monitoring with AdaptiveINT and EntropyINT.

packets according to ∆ti,τ . The results in Fig. 9(a) suggest that
for this particular test case, both AdaptiveINT and EntropyINT
can collect Bandwidth of the flow accurately, according to the
∆ti,τ provided by the controller.

Note that, although the results on Bandwidth from Adap-
tiveINT and EntropyINT are similar in Fig. 9(a), they actually
get the results differently, as indicated by the distribution
of collected telemetry data types in Fig. 9(b). Specifically,
AdaptiveINT just allocates INT packets to the five data types
evenly because it does not enable stateful processing on each
PDP switch for local decisions, while EntropyINT leverages
intelligent local decisions to allocate most of the INT packets
to collect Bandwidth, which is the telemetry data whose
value changes the fastest and largest. In other words, as the
experiments are conducted under normal network status, the
telemetry data for Out Port, In Port, BER, and Hop Latency

9

Bandwidth Hop Latency BER In Port Out Port

Data Type

0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

u
ti
o
n
 o

f
C

o
lle

c
te

d
 D

a
ta

 T
y
p
e
s EntropyINT

AdaptiveINT

(a) Out Port is abnormal

Bandwidth Hop Latency BER In Port Out Port

Data Type

0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

u
ti
o
n
 o

f
C

o
lle

c
te

d
 D

a
ta

 T
y
p
e
s EntropyINT

AdaptiveINT

(b) In Port is abnormal

Bandwidth Hop Latency BER In Port Out Port

Data Type

0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

u
ti
o
n
 o

f
C

o
lle

c
te

d
 D

a
ta

 T
y
p
e
s EntropyINT

AdaptiveINT

(c) BER is abnormal

Bandwidth Hop Latency BER In Port Out Port

Data Type

0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

u
ti
o
n
 o

f
C

o
lle

c
te

d
 D

a
ta

 T
y
p
e
s EntropyINT

AdaptiveINT

(d) Hop Latency is abnormal

Fig. 10. Distribution of collected data types in different test cases.

does not change as significantly as Bandwidth. Hence, accord-
ing to our design of EntropyINT in Section III-C, the data
samples of Bandwidth possess the most information contents,
and thus they should be encoded in most of the INT packets.

Next, we introduce exceptions regarding Out Port, In Port,
BER, and Hop Latency in the IP-over-EON, and redo the
experiments, respectively. The new distributions of collected
telemetry data types are shown in Fig. 10. We observe that

Fig. 11. Traffic trace reconstructed with telemetry data on Bandwidth when
Out Port is abnormal.

Fig. 12. BER collected by EntropyINT (at PDP-SW 6).

EntropyINT indeed allocates most of the INT packets to the
type of data whose values are abnormal. This is because
compared with normal ones, abnormal values of telemetry data
appear much less frequently in network monitoring and thus
their information contents are much larger according to Eq.
(3). Hence, by making local decisions based on information
contents, the PDP switches with EntropyINT can focus their
telemetry data collections on critical ones, to avoid redundant
data that does not give much useful information to NC&M.

Meanwhile, it is interesting to notice that when Hop Laten-
cy is abnormal (in Fig. 10(d)), EntropyINT collects it less
frequently than other abnormal data types (i.e., Out Port,
In Port, and BER). This is because Hop Latency normally
changes faster and larger than Out Port, In Port, and BER, and
thus when its value is abnormal, it carries smaller information
content than the abnormal data for Out Port, In Port, and BER.
The results in Figs. 10(a)-10(c) also suggest that in their test
cases, EntropyINT only allocates ∼13% of the INT packets
to collect Bandwidth. However, as the value of Bandwidth is
changing fast, we plot the traffic trace reconstructed with such
a small portion of INT packets in Fig. 11. It can be seen that
the reconstructed trace still approximates the real one well. We
also repeat the experiments for the test cases where In Port or
BER is abnormal, and confirm that the results are similar.

Finally, we conduct an experiment to verify that EntropyINT
can collaborate with out-of-band monitoring well for detecting
exceptions in the EON layer. Specifically, when the flow from
Host A to Host B is running, we deliberately misconfigure the

10

Fig. 13. Optical spectra collected with out-of-band monitoring.

passband of BV-WSS C to cut off a small portion of the optical
spectrum of the lightpath A-B-C-F. This makes the BER of
the lightpath increase, which will be captured by EntropyINT
immediately, as shown in Fig. 12. We can see that EntropyINT
not only detects the abnormal BER timely but also makes
the local decision to collect BER more frequently afterwards.
Then, the DA will report the exception to the controller, which
will in turn invoke the out-of-band monitoring to collect the
optical spectra at the input ports of BV-WSS’ B, C and F. This
is because EntropyINT can only find that the lightpath’s BER
becomes abnormal, but cannot locate the root-cause in the
EON layer. Hence, out-of-band monitoring should check the
spectra of the lightpath at the BV-WSS’ that it passes through
in sequence, to locate the exception. Next, by analyzing the
optical spectra (with a central wavelength of 1559.25 nm)
and comparing those collected at BV-WSS’ C and F (as
illustrated in Fig. 13), the controller can easily determine that
the exception actually happens at BV-WSS C.

C. Performance Benchmarking

In order to further compare the performance of AdaptiveINT
and EntropyINT, we conduct more experiments. First of all,
we would like to compare their INT bandwidth overheads.
Specifically, we let Host A generate traffic according to four
different traces in [46], turn on AdaptiveINT and EntropyINT,
respectively, and measure the ratio of INT bandwidth overhead
to total data transfers (i.e., the relative INT bandwidth
overhead). The results are shown in Fig. 14, which indicates
that the relative INT bandwidth overheads of AdaptiveINT and
EntropyINT are both smaller than 10−6 for all the traces, and
EntropyINT always causes smaller INT bandwidth overhead.

Secondly, we compare the monitoring accuracy of Adap-
tiveINT and EntropyINT on fast-changing telemetry data.
Here, we randomly introduce some traffic peaks, which last for
very short periods of time, in the traffic from Host A. The traf-
fic traces reconstructed with the telemetry data on Bandwidth
from AdaptiveINT and EntropyINT are plotted in Fig. 15. We
can see that EntropyINT precisely captures the short traffic
peaks, while AdaptiveINT overlooks them. We also redo the
experiments with a traffic trace that is much more dynamic, for
a more general demonstration. Fig. 16 illustrates the results,
which show the similar trend. Figs. 15 and 16 suggest that
with intelligent local decisions, EntropyINT provides higher

Trace 1 Trace 2 Trace 3 Trace 4

Traffic Trace

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e
 I

N
T

 B
a
n
d
w

id
th

 O
v
e
rh

e
a
d
s
 (

 1
0

-6
)

EntropyINT

AdaptiveINT

Fig. 14. Comparison of relative INT bandwidth overheads.

Fig. 15. Traffic traces reconstructed with telemetry data on Bandwidth.

monitoring accuracy than AdaptiveINT, especially for fast-
changing telemetry data. Meanwhile, by jointly considering
the results in Figs. 14-16, we can draw the conclusion that
compared with AdaptiveINT, EntropyINT actually achieves
higher monitoring accuracy with less INT overheads.

Finally, we evaluate the performance of the network au-
tomation enabled by AdaptiveINT and EntropyINT. Here, we
consider two use-cases of the network automation, for the IP
and EON layers, respectively. In the use-case for the IP layer,
the network automation system leverages collected telemetry
data to predict future bandwidth usage of the flow. Fig. 17
shows the prediction results from the LSTM module, based

Fig. 16. Traffic traces reconstructed with highly-dynamic telemetry data on
Bandwidth.

11

(a) Overall prediction results (b) Zoomed-in view of the period of [125, 150] seconds

Fig. 17. Traffic traces predicted based on the telemetry data on Bandwidth, which was collected with AdaptiveINT and EntropyINT.

on the data on Bandwidth from AdaptiveINT and EntropyINT.
We observe that the trace predicted based on the Bandwidth
from EntropyINT can approximate the real one better. This
further verifies the better monitoring accuracy of EntropyINT.
We also run the experiments for 16, 000 traffic samples, and
the results of the long-term predictions are listed in Table
I, which indicate that both the prediction accuracy and the
average value of relative errors from the experiments with
EntropyINT outperform those with AdaptiveINT.

TABLE I
PERFORMANCE OF TRAFFIC PREDICTION

Average Relative Error Prediction Accuracy

EntropyINT 0.0435 92.67%

AdaptiveINT 0.0514 88.41%

In the use-case for the EON layer, the network automation
system analyzes the telemetry data on BER, and combines it
with the data on OSNR, which is collected with out-of-band
monitoring, for lightpath status classification. Specifically, we
try to classify the two-dimensional (2D) data of BER and
OSNR with the density-based spatial clustering of application
with noise (DBSCAN) [47]. The results on lightpath status
classification are shown in Fig. 18. By comparing Figs. 18(a)
and 18(b), we notice that the number of data samples collected
by EntropyINT increases with the value of BER, which makes
it easier to get the clusters for abnormal status and reduce the
number of 2D data samples that cannot be classified. Specifi-
cally, for the data collected by EntropyINT and AdaptiveINT,
the ratios of 2D samples that can be classified by DBSCAN
are 92% and 74.8%, respectively. Note that, in real network
operation, exceptions normally happen sparsely, which will
make abnormal data samples only contribute to a very small
portion of the collected telemetry data, and complicate the sub-
sequent processing for data analytics [48, 49]. EntropyINT can
relieve this issue by automatically collecting more abnormal
data samples, and thus it can effectively improve the accuracy
of status classification in network automation.

VI. CONCLUSION

In this paper, we proposed a novel self-adaptive INT tech-
nique, namely, EntropyINT, to monitor IP-over-EONs. Specif-

(a) Results of DBSCAN based on BER from AdaptiveINT

(b) Results of DBSCAN based on BER from EntropyINT

Fig. 18. Results on lightpath status classification.

ically, we introduced stateful processing to PDP switches for
ML-INT, such that they made local decisions to determine
whether and what type of telemetry data about the IP and
EON layers should be encoded in each packet. The local
decisions were based on the information content of telemetry
data. Meanwhile, we let EntropyINT cooperate with out-
of-band monitoring, to detect and locate exceptions in the
EON layer. Our proposal was implemented in a real-world
network testbed of IP-over-EON, to evaluate its assistance to
network automation. Experimental results confirmed that with
EntropyINT, the critical data samples regarding the statistics
of electrical/optical NEs could be caught more accurately

12

and adaptively with reduced INT overheads. The results also
suggested that EntropyINT cooperated with out-of-band mon-
itoring well, and thus the telemetry data collected by them
could better assist the machine learning in network automation,
for status prediction and anomaly detection.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China (2020YFB1806400), NSFC project
61871357, SPR Program of CAS (XDC02070300), and Fun-
damental Funds for Central Universities (WK3500000006).

REFERENCES

[1] Cisco Visual Networking Index, 2017-2022. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html.

[2] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] V. Dukic et al., “Beyond the mega-data center: Networking multi-data
center regions,” in Proc. of ACM SIGCOMM 2020, pp. 765–781, Aug.
2020.

[4] O. Gerstel, M. Jinno, A. Lord, and B. Yoo, “Elastic optical networking:
A new dawn for the optical layer?” IEEE Commun. Mag., vol. 50, pp.
s12–s20, Feb. 2012.

[5] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[6] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[7] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[8] M. Filer et al., “Elastic optical networking in the Microsoft cloud,” J.
Opt. Commun. Netw., vol. 8, pp. A45–A54, Jul. 2016.

[9] S. Liu, W. Lu, and Z. Zhu, “On the cross-layer orchestration to address
IP router outages with cost-efficient multilayer restoration in IP-over-
EONs,” J. Opt. Commun. Netw., vol. 10, pp. A122–A132, Jan. 2018.

[10] S. Liu et al., “DL-assisted cross-layer orchestration in software-defined
IP-over-EONs: From algorithm design to system prototype,” J. Lightw.
Technol., vol. 37, pp. 4426–4438, Sept. 2019.

[11] O. Gerstel et al., “Multi-layer capacity planning for IP-optical networks,”
IEEE Commun. Mag., vol. 52, pp. 44–51, Jan. 2014.

[12] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[13] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[14] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[15] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,” J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[16] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[17] X. Chen, F. Ji, and Z. Zhu, “Service availability oriented p-cycle
protection design in elastic optical networks,” J. Opt. Commun. Netw.,
vol. 6, pp. 901–910, Oct. 2014.

[18] R. Govindan et al., “Evolve or die: High-availability design principles
drawn from Google’s network infrastructure,” in Proc. of ACM SIG-
COMM 2016, pp. 58–72, Aug. 2016.

[19] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[20] I. Maor et al., “First demonstration of SDN-controlled multi-layer
restoration and its advantage over optical restoration,” in Proc. of ECOC
2016, pp. 1–3, Sept. 2016.

[21] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),” RFC 1157, May 1990. [Online].
Available: https://tools.ietf.org/html/rfc1157.

[22] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Sept. 2001. [Online]. Available: https://tools.ietf.org/html/rfc3176.

[23] B. Claise, “Cisco systems NetFlow services export version 9,” RFC
3954, Oct. 2004. [Online]. Available: https://tools.ietf.org/html/rfc3954.

[24] R. Cole, D. Romascanu, C. Kalbfleisch, and S. Waldbusser, “Introduction
to the remote monitoring (RMON) family of MIB modules,” RFC
3577, Oct. 2015. [Online]. Available: https://tools.ietf.org/html/rfc3577.

[25] D. Kilper et al., “Optical performance monitoring,” J. Lightw. Technol.,
vol. 22, pp. 294–304, Jan. 2004.

[26] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[27] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[28] INT dataplane specification. [Online]. Available: https://github.com/
p4lang/p4-applications/blob/master/docs/INT v2 1.pdf.

[29] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, Jun. 2019.

[30] S. Tang, J. Kong, B. Niu, and Z. Zhu, “Programmable multilayer INT:
An enabler for AI-assisted network automation,” IEEE Commun. Mag.,
vol. 58, pp. 26–32, Jan. 2020.

[31] S. Tang et al., “Sel-INT: A runtime-programmable selective in-band
network telemetry system,” IEEE Trans. Netw. Serv. Manag., vol. 17,
pp. 708–721, Jun. 2020.

[32] C. Kim et al., “In-band network telemetry via programmable data-
planes,” in Proc. of ACM SIGCOMM 2015, pp. 1–2, Aug. 2015.

[33] 100G in-band network telemetry with Netcope P4. [On-
line]. Available: https://www.netcope.com/Netcope/media/content/
100G-In-band-Network-Telemetry-With-Netcope-P4.pdf

[34] G. Simsek, D. Ergenc, and E. Onur, “Efficient network monitoring via
in-band telemetry,” in Proc. of DRCN 2021, pp. 1–6, Apr. 2021.

[35] A. Castro et al., “Near-optimal probing planning for in-band network
telemetry,” IEEE Commun. Lett., vol. 25, pp. 1630–1634, May 2021.

[36] J. Vestin et al., “Programmable event detection for in-band network
telemetry,” in Proc. of CloudNet 2019, pp. 1–6, Nov. 2019.

[37] E. Song et al., “INT-filter: Mitigating data collection overhead for high-
resolution in-band network telemetry,” in Proc. of GLOBECOM 2020,
pp. 1–6, Dec. 2020.

[38] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” in Proc. of CloudNet 2018, pp. 1–3, Oct. 2018.

[39] B. Basat et al., “PINT: Probabilistic in-band network telemetry,” in Proc.
of ACM SIGCOMM 2020, pp. 662–680, Aug. 2020.

[40] M. Anand, R. Subrahmaniam, and R. Valiveti, “POINT: An intent-driven
framework for integrated packet-optical in-band network telemetry,” in
Proc. of ICC 2018, pp. 1–6, May 2018.

[41] A. Sgambelluri et al., “Exploiting telemetry in multi-layer networks,” in
Proc. of ICTON 2020, pp. 1–4, Jul. 2020.

[42] S. Tang et al., “Self-adaptive network monitoring in IP-over-EONs:
When multilayer telemetry is flexible and driven by data analytics,” in
Proc. of OFC 2021, pp. 1–3, Jun. 2021.

[43] S. Bhattacharyya, C. Diot, and J. Jetcheva, “Pop-level and access-link-
level traffic dynamics in a Tier-1 POP,” in Proc. of ACM SIGCOMM
IMW 2001, pp. 39–53, Nov. 2001.

[44] ONOS. [Online]. Available: https://onosproject.org/.
[45] pktgen-DPDK. [Online]. Available: https://git.dpdk.org/apps/

pktgen-dpdk/.
[46] S. Liu and Z. Zhu, “Generating data sets to emulate dynamic

traffic in a backbone IP over optical network,” Tech. Rep., 2019.
[Online]. Available: https://github.com/lsq93325/Traffic-creation/blob/
master/README.md?tdsourcetag=s pctim aiomsg

[47] DBSCAN. [Online]. Available: https://en.wikipedia.org/wiki/DBSCAN.
[48] X. Chen et al., “Self-taught anomaly detection with hybrid unsu-

pervised/supervised machine learning in optical networks,” J. Lightw.
Technol., vol. 37, pp. 1742–1749, Apr. 2019.

[49] S. Liu et al., “Highly-efficient and automatic spectrum inspection based
on AutoEncoder and semi-supervised learning for anomaly detection in
EONs,” J. Lightw. Technol., vol. 39, pp. 1243–1254, Mar. 2021.

