
1

Adversarial Analysis of ML-based Anomaly
Detection in Multi-layer Network Automation

Xiaoqin Pan, Hao Yang, Zichen Xu, and Zuqing Zhu, Senior Member, IEEE

Abstract—The fast development of multi-layer packet-over-
optical networks has made network monitoring and troubleshoot-
ing increasingly complicated. This has stimulated people to com-
bine machine learning (ML) and software-defined networking (S-
DN) to realize multi-layer network automation. Despite its initial
successes, the vulnerabilities of multi-layer network automation
have not been fully explored. This work studies how to mislead
the ML-based classifiers for anomaly detection. Specifically, we
design two adversarial-sample-based attack schemes based on
the white-box attack (WBA) and black-box attack (BBA) strate-
gies, respectively, to eavesdrop and tamper legitimate telemetry
data samples and generate adversarial samples adaptively, for
disturbing ML-based classifiers and in turn misleading network
automation to make incorrect decisions. Compared with WBA,
BBA makes the attack scheme more practical by minimizing the
dependency on pre-knowledge of the target ML-based classifiers.
Considering different types of ML-based classifiers, we build a
real-world packet-over-optical testbed and leverage the telemetry
samples collected in it to demonstrate that our proposed BBA
scheme can interact with the network quietly to train itself,
generate well-crafted adversarial samples to tamper legitimate
telemetry samples in the hard-to-detect way, and mislead ML-
based classifiers in the network automation system to severely
affect their performance on anomaly detection.

Index Terms—Artificial intelligence (AI), Machine learning
(ML), Network automation, Vector homomorphic encryption
(VHE), Adversarial samples, White box attack, Black box attack.

I. INTRODUCTION

RECENTLY, with the rise of emerging services such as
5G, Big Data and cloud computing, network systems

have become increasingly complex and highly dynamic [1],
raising new challenges for network control and management
(NC&M). Meanwhile, the rapid deployment of virtualization
technologies (e.g., virtual network slicing [2, 3] and network
function virtualization (NFV) [4, 5]) has reshaped the Internet
more flexible at the cost of making it more difficult to detect
and locate network faults/anomalies. Moreover, to ensure
the quality-of-service (QoS) of various network services, the
multi-layer architecture of metro/core networks (i.e., packet-
over-optical) requires NC&M to make intelligent and timely
decisions [6]. These issues added up to stressing the research
and development (R&D) of NC&M over time, especially for
that of multi-layer packet-over-optical networks.

X. Pan, H. Yang, Z. Xu, and Z. Zhu are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, China (email: zqzhu@ieee.org).

X. Pan is also with the Engineering Technology Center, Southwest Univer-
sity of Science and Technology, Mianyang, Sichuan 621010, China.

H. Yang is also with the School of Information Engineering, Southwest
University of Science and Technology, Mianyang, Sichuan 621010, China.

Manuscript received on January 10, 2022.

The symbiosis of software-defined networking (SDN) [7]
and machine learning (ML) opened up new opportunities for
NC&M. Specifically, with the centralized control provided by
SDN and the “observe-analyze-act” decision loop facilitated
by ML, network automation can be realized for various types
of networks, including packet-over-optical networks [8]. Fig.
1 shows an example of network automation in a packet-over-
optical network. With the help of in-band network telemetry
(INT) [9], real-time status of network elements in the packet
and optical layers can be collected in a fine-grained manner
to visualize the dynamic network environment (Observe) [10].
Then, the telemetry data is analyzed by the ML-based data
analytics (DA) module to not only extract global information
about the network but also detect anomalies accurately (An-
alyze) [11]. Finally, the analysis results are forwarded to the
SDN controller for it to make timely NC&M decisions and up-
date network configuration to adapt to the new network state,
e.g., a newly-generated anomaly can be addressed with the
proper fault recovery mechanism (Act) [12]. Hence, network
automation can make NC&M more effective and minimize
unnecessary human interventions during network operation.

Although network automation is promising, we should al-
ways be cautious about security issues when reducing human
interventions in NC&M. The operation of ML modules can
be disturbed with data poisoning, which refers to a malicious
party misleading an ML module by sneaking well-craft adver-
sarial samples in its inputs [13]. The adversarial-sample-based
attacks can be launched in a number of ways. For instance,
the attacker can eavesdrop the data reporting channels between
control and data planes for legitimate telemetry data samples,
and then generate adversarial samples based on them to
inject back in the channels [14]. This is feasible because the
commonly-used protocols for setting up secure data reporting
channels (e.g., the transport layer security (TLS)) is vulnerable
to the man-in-the-middle attack [15]. On the other hand, due to
the shortage of the expertise, hardware/software resources and
labor for designing and training sophisticated ML modules,
an operator might leverage “machine-learning-as-a-service”
(MLaaS) [16] to outsource its ML module to a third-party
entity. However, MLaaS is vulnerable to data poisoning, as an
attacker can hack into the MLaaS system to contaminate ML
modules quietly with adversarial samples [17].

Therefore, it is relevant to conduct adversarial analysis of
the ML modules that can be used in network automation
systems to check how secure they are. Nevertheless, most
of the existing studies on network automation in optical or
packet-over-optical networks did not pursue the research in
this direction. Previously, in [18], we showed that the ML
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Fig. 1. Example of optical network automation in a packet-over-optical
network, PDP-SW: programmable data plane switch, OXC: optical cross-
connect, OPM: optical performance monitor.

module for traffic prediction (e.g., the long/short-term memory
based deep neural network (LSTM-DNN)) could be easily
misled to make incorrect forecasts by adversarial samples
whose average value was just 3.2% of the legitimate traffic
samples. Later in [14], we demonstrated that the attacker’s
pre-knowledge about the ML-based traffic predictor could
be minimized by leveraging a generative adversarial network
(GAN) model and it could craft and inject adversarial samples
in a more adaptive and hard-to-detect manner. However, time
series prediction is just one type of tasks that ML modules do
in network automation, and there are also a significant part of
classification tasks for anomaly detection/location.

This motivates us to investigate how to launch adversarial-
sample-based attacks to disturb the ML-based classifiers for
anomaly detection in packet-over-optical networks and to an-
alyze the consequences of the attacks in this work. Moreover,
as MLaaS may require operators to submit encrypted cipher-
text of telemetry data to third-party entities for ML design and
training (i.e., to protect the privacy of operators’ networks)
[19], our work considers the ML-based classifiers that were
trained with plain-text and cipher-text data.

In this work, we design two adversarial-sample-based attack
schemes to disturb the ML-based classifiers for anomaly detec-
tion in packet-over-optical networks. We start with assuming
that the attacker can obtain information regarding the internal
structure of an ML-based classifier and/or its training/testing
data, and leverage the white-box attack (WBA) strategy [20] to
design an attack scheme. Then, we turn to the black-box attack
(BBA) strategy [20] to make the attack scheme more practical
by minimizing the dependency on the pre-knowledge. For
different types of ML-based classifiers that were trained with
plain-text or cipher-text telemetry data, we demonstrate that
our proposed BBA scheme can interact with a dynamic packet-
over-optical network quietly to train itself on-the-fly, generate
well-crafted adversarial samples to tamper legitimate telemetry
data in the hard-to-detect way, and mislead ML-based classi-
fiers to severely affect their performance on anomaly detection.

The rest of the paper is organized as follows. In Section II,
we survey the related work. Section III describes the opera-

tion principle of the adversarial-sample-based attack schemes
designed by us, and their implementation details are presented
in Section IV. We explain the testbed setup for network
automation in a packet-over-optical network in Section V, and
discuss experimental results regarding our attack schemes in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Nowadays, the advances on flexible-grid elastic optical
networks (EONs) [21, 22] have made optical infrastructures
more adaptive, and the packet-over-optical networks that
leverage EON have demonstrated promising advantages in
today’s metro/core networks, especially for those that were
architected for data-center interconnects [23]. However, these
technical innovations also brought in challenges on NC&M, as
the network infrastructure has become more complicated and
emerging services normally require multi-layer provisioning
scenario [24]. This has promoted the R&D on ML-assisted
network automation [6, 19, 25, 26].

The ML modules in network automation for optical or
packet-over-optical networks can be roughly categorized as
those for prediction and classification. As for prediction,
people have leveraged various ML modules to forecast traffic
volume [27] and quality-of-transmission (QoT) [28]. Clas-
sification is the most-referred-to task for ML modules in
network automation systems, as it is essential to anomaly
detection and fault management [6, 19]. Moreover, ML-based
classification is also important for attack detection [26] and
security monitoring [29]. The results of ML-based prediction
and classification can be leveraged by deep reinforcement
learning (DRL) based schemes for decision-making, further
reducing human interventions in network automation [30–32].

However, ML modules are vulnerable to adversarial samples
[13]. Our previous studies showed that ML modules for traffic
prediction could be easily misled by well-crafted adversarial
samples to output incorrect forecasts, severely disturbing the
NC&M for virtual optical network slicing [17] and multi-
layer traffic grooming and provisioning [14]. Meanwhile, the
ML modules for classification are not immune to adversarial-
sample-based attacks either. For instance, an attacker can
easily mislead a deep neural network (DNN) for image clas-
sification with hard-to-detect adversarial samples [20].

Although how to launch adversarial-sample-based attacks
to image classifiers has already been studied intensively, the
approaches developed there cannot be adopted to attack the
ML-based classifiers for anomaly detection. This is because
the characteristics of telemetry data are fundamentally differ-
ent from those of image data. Specifically, each sample of
telemetry data normally contains many dimensions (i.e., much
larger than two), the correlation among dimensions is sparse
and weak, and the value range of each dimension varies a lot
[19, 26]. To the best of our knowledge, how to mislead the
ML modules for anomaly detection has not been studied yet.

III. OPERATION PRINCIPLE

In this section, we first briefly explain the architecture of the
network automation system that leverages ML-based classifier-
s for anomaly detection in a packet-over-optical network, and
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then describe the operation principle of adversarial-sample-
based attacks to disturb the anomaly detection.

A. Network Automation in Packet-over-Optical Network

We still refer to Fig. 1 to explain the network architecture of
the packet-over-optical network that utilizes network automa-
tion [6, 10]. The multi-layer data plane consists of a packet
layer building over the optical layer, and both of the layers are
managed by the centralized control plane. The packet layer
includes programmable data plane switches (PDP-SWs) [7,
33], client hosts, and data collection agents (DCAs). Here, the
DCAs are placed at the edge of the packet layer to collect the
telemetry data carried by INT fields in packets. Note that, with
multi-layer INT (ML-INT), telemetry data regarding both the
packet and optical layers can be encoded in INT fields at each
PDP-SW [10]. This is in-band network monitoring, and the
control plane can also poll network elements in the data plane
for their status data (i.e., out-of-band network monitoring).

The optical layer is essentially an EON that is built with
bandwidth-variable optical cross-connects (OXCs) and fiber
links. We deploy an optical performance monitor (OPM) on
each OXC to collect telemetry data (e.g., power-level, bit-
error-rate (BER), and optical signal-to-noise-ratio (OSNR))
regarding the passing-through lightpaths. Then, the telemetry
data is sent to the PDP-SW that is local to the OXC to enable
the ML-INT there. The DCAs extract and parse telemetry
data in packets’ INT fields to forward it to the ML-based
data analytics (ML-DA) module. The ML-DA can classify
the telemetry data for anomaly detection/location and report
the results to the SDN controller for proper NC&M actions.
Therefore, the “observe-analyze-act” decision loop can be
realized to facilitate network automation.

We assume that the packet-over-optical network is a metro
or core network. Hence, the ML-DA and DCAs have to reside
at different locations, which makes the data reporting between
them vulnerable to eavesdropping and data tampering. One
way to improve the security of the network automation is to
let DCAs encrypt telemetry data with vector homomorphic
encryption (VHE) [34] and only report the cipher-text to the
ML-DA. Meanwhile, having been trained with cipher-text, the
ML-DA can operate directly on encrypted telemetry data for
anomaly detection/location [19]. However, this only protects
the privacy of the data plane against eavesdropping, but
adversarial-sample-based attacks can still be easily launched
with eavesdropping and data tampering, as we will show later.

B. Principle of Adversarial-Sample-based Attacks

Apparently, the accuracy of the classifier in the ML-DA is
crucial to ensure the performance of the network automation,
and the simplest way to disturb the classifier’s operation is to
tamper its classification results directly. Moreover, it is known
that ML-based classifiers are vulnerable to adversarial-sample-
based attacks, e.g., an image classifier can be easily misled by
well-crafted adversarial samples to generate incorrect outputs
[20]. As the characteristics of telemetry data are fundamentally
different from those of image data, we would like to investigate

Data  Plane

Packet Layer

Optical Layer

SDN  

Controller

Classifier…
…

…
…

…

…
…

…
…

…

Tamper

ML-DA Attacker

Local  Classifier

Adversarial Sample 

Generator

Legitimate 

Telemetry Samples

Adversarial 

Telemetry Samples
Steal

Dataset

Database

DCAs

(a) White-box attack (WBA) strategy

Data  Plane

Packet Layer

Optical Layer

SDN  

Controller

Classifier…
…

…
…

…

…
…

…
…

…

Query

Eavesdrop & Tamper

ML-DA

Attacker

Substitute Classifier

Adversarial Sample 

Generator

Legitimate 

Telemetry Samples

Adversarial 

Telemetry Samples

Eavesdrop

Database

DCAs

(b) Black-box attack (BBA) strategy

Fig. 2. Operation principle of adversarial-sample-based attacks.

how badly an ML-based classifier for anomaly detection can
be misled and what the consequences are.

Note that, there are three reasons for us to study the
adversarial-sample-based attacks instead of assuming that the
attacker tampers the classification results from the ML-DA
to the SDN controller directly. Firstly, the adversarial-sample-
based attacks are real security threats to network automation
systems, and a comprehensive security analysis should try
to cover all the potential threats. Secondly, the adversarial-
sample-based attacks are more sophisticated than tampering
the classification results directly, and thus they are harder to be
detected. Finally, in a packet-over-optical network, there can
be many DCAs and thus the amount of telemetry data being
sent from the DCAs to the ML-DA can be huge [35]. Hence,
when the attacker tampers the classification results directly, it
might not map a classification to the corresponding telemetry
data correctly. This will make its attacks easier to be detected.

Hence, in the following, we will design two adversarial-
sample-based attack strategies, i.e., the white-box attack (W-
BA) and black-box attack (BBA) strategies, based on whether
the pre-knowledge about the target classifier (i.e., the le-
gitimate classifier in the ML-DA) can be obtained or not,
respectively. Table I summarizes the characteristics of the two
strategies. Specifically, for both of them, we assume that the
attacker can tap the data reporting channels between the ML-
DA and DCAs to obtain the telemetry data being transmitted in
them (plain-text or cipher-text). Then, based on the telemetry
data, it generates adversarial samples to tamper the legitimate
samples with the man-in-the-middle attack, and makes classi-
fiers malfunction during anomaly detection/location.

1) White-Box Attack (WBA) Strategy: Fig. 2(a) shows WBA
strategy, which assumes that the attacker can steal the train-



4

TABLE I
SUMMARY OF ADVERSARIAL-SAMPLE-BASED ATTACKS

Strategy Pre-knowledge Compromised Entities

WBA
Training/Testing Sets Data Reporting Channels
and Architecture of between DCAs and ML-DA,

Target Classifier and ML-DA (or MLaaS System)

BBA None Data Reporting Channels among
DCAs, ML-DA and Controller

ing/testing sets and the architecture of the legitimate classifier.
Note that, the pre-knowledge can be obtained in two ways: 1)
compromising the ML-DA directly, and 2) hacking into the
MLaaS system if the legitimate classifier was outsourced to
a third party [16]. Hence, WBA can be launched if either of
these two ways is feasible, which is possible because there are
a few techniques [36] for the attacker to hack into the database
of the ML-DA or the MLaaS system. Then, by analyzing the
information, the attacker can choose a proper ML model to
design a substitute classifier, and train it to imitate the oper-
ation of the legitimate classifier in ML-DA. Next, the trained
substitute classifier can craft and inject adversarial telemetry
samples adaptively to disturb the legitimate classifier.

2) Black-Box Attack (BBA) Strategy: The attacker can
access the training/testing sets and the architecture of the
legitimate classifier is actually a relatively strong assumption.
Therefore, we design the BBA strategy in Fig. 2(b) for the
cases in which such pre-knowledge is not available. By eaves-
dropping the data reporting channels between the ML-DA and
DCAs, the attacker can collect a set of legitimate telemetry
samples, and use them to generate training samples for a
substitute classifier. Specifically, it sends artificial telemetry
samples to the legitimate classifier through a data reporting
channel, observes the ML-DA’s output for data labeling by
tapping the connection between the SDN controller and ML-
DA, and gets training samples1. Then, it trains a substitute
classifier with the training samples. The attacker crafts ad-
versarial examples with the substitute classifier, and injects
them back to the data reporting channels for misleading the
legitimate classifier in the ML-DA.

IV. DESIGN OF BBA STRATEGY

As WBA becomes infeasible when pre-knowledge about the
legitimate classifier cannot be obtained, we focus on BBA to
design our adversarial-sample-based attack scheme.

A. Threat Model

We define the input to an ML-based classifier as a multi-
dimensional vector ~x, each dimension of which represents
a type of telemetry data regarding the packet-over-optical

1Note that, encrypting the communications between the SDN controller and
the ML-DA can make it more difficult for the attacker to launch adversarial-
sample-based attacks. However, the encryption will bring in additional oper-
ational complexity and cost, especially to increase the computation loads on
both parties and prolong their response time. As the real-time performance of
the SDN controller and the ML-DA is essential to the timeliness of network
automation, we, in this work, assume that the ML-DA sends the classification
results (i.e., labels of anomaly types) to the SDN controller in plain-text [19].
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network (e.g., packet processing latency or OSNR). The ML-
based classifier can be denoted as T , which is the target of
BBA. As we consider a BBA strategy, we assume that the
attacker does not have any access to the private information
of T , such as internal structure and training/testing sets, while
it should be able to query T by sending in an arbitrary input
~x and collecting the classified label T (~x). Then, the objective
of the attacker is to produce a minimally-altered version of
~x, i.e., the adversarial sample ~x∗, which can mislead T to
output T ( ~x∗) 6= T (~x). The attack is on the classifier’s output
integrity [36], and the adversarial sample is

~x∗ = ~x+ argmin
[
~ϑ : T (~x+ ~ϑ) 6= T (~x)

]
= ~x+ δ~x, (1)

where δ~x is the minimal perturbation to realize the attack. Note
that, solving the optimization to obtain δ~x can be challenging,
because the characteristics of the ML-based classifier can
make the optimization neither linear nor convex, especially
when the internal structure of the classifier is unknown.

B. Procedure of BBA

In order to launch attacks with the BBA strategy, the attacker
needs to train a substitute classifier locally, for imitating the
operation of the ML-based classifier in the ML-DA (as shown
in Fig. 2(b)). Therefore, by eavesdropping data reporting chan-
nels to obtain a legitimate telemetry sample ~x and inputting it
to the substitute classifier, the attacker can obtain the minimal
perturbation δ~x to craft the adversarial sample ~x∗. However,
the fundamental difficulty of such a strategy is how to obtain
a proper training set to train the substitute classifier efficiently,
as the telemetry samples reported from DCAs to the ML-
DA might only contain sparse information for the training of
the substitute classifier (i.e., the packet-over-optical network
operates in its normal state in most of the time [37]).

Hence, in the following, we will design the procedure of B-
BA, which enables the attacker to generate a synthetic training
set to effectively improve its training efficiency. Specifically,
we propose a scheme to enable the attacker to train the
substitute classifier with a synthetic training set, which is
generated by leveraging a small set of legitimate telemetry
samples. By observing the synthetic set, the attacker selects
a proper architecture S to build its substitute classifier for
imitating T . In other words, the procedure of our proposed
BBA scheme includes two steps: 1) training of the substitute
classifier S and 2) crafting of adversarial samples.

1) Training of Substitute Classifier: As shown in Fig. 3,
we realize the training of the substitute classifier as follows.
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• Step 1: The attacker hacks into the data reporting chan-
nels between the ML-DA and DCAs and eavesdrops a
small set of legitimate telemetry samples D0. It then
queries the ML-based classifier T (i.e., the target clas-
sifier) to label all the telemetry samples in D0 as T (D0),
and obtains the initial training set {D0, T (D0)}.

• Step 2: The attacker builds the substitute classifier as S0,
for imitating the target classifier T in the ML-DA.

• Step 3: The attacker updates the configuration of the
substitute classifier Si (i.e., i = 0 initially) according to
the number of anomaly types in the current training set
({Di, T (Di)}). Specifically, each known anomaly type
should correspond to an output in the output layer of Si.

• Step 4: The substitute classifier Si is trained with the
back-propagation and gradient-descent algorithm [38].

• Step 5: With the trained substitute classifier Si, the
attacker applies the augmentation technique on Di to
generate a synthetic telemetry sample set D′i, queries the
target classifier T to get a labeled data set {D′i, T (D′i)},
merges it with {Di, T (Di)} to get a larger training set
{Di+1, T (Di+1)}, and increases i to i+ 1.

Then, by repeating Steps 3-5, the attacker can get a substitute
classifier Simax

, which has been trained with a reasonably large
synthetic training set {Dimax

, T (Dimax
)}, and the accuracy of

Simax
for imitating the target classifier T can be controlled by

selecting a proper maximum iteration number imax.
Algorithm 1 explains how to train the substitute classifier.

Line 1 is for the initialization, where {τ, γ, κ} are preset
coefficients for controlling the procedure of the training,
and other training parameters (e.g., the maximum number of
training epochs) are also initialized here. Then, the initial
training set {D0, T (D0)} is obtained in Line 2. The for-
loop covering Lines 3-16 conducts the augmentation of current
training set and the training of substitute classifier Si in imax

iterations. We first build (i = 0) or update (i > 0) the substitute
classifier Si according to |T (Di)|, which refers to the number
of anomaly types in the current training set {Di, T (Di)} (Line
4). Specifically, the number of neurons in the output layer of
Si should equal |T (Di)|. Then, Line 5 trains the substitute
classifier Si with the current training set {Di, T (Di)}.

The augmentation technique to expand the current training
set is applied in Lines 6-15. We first introduce the procedure
in Lines 6-10 to reduce the complexity of the augmentation.
Specifically, if the number of iterations i reaches the preset
threshold γ, we random select κ samples from {Di, T (Di)}
to form the data set {Ds, T (Ds)} for augmentation (Lines 6-
7), i.e., the size of {Ds, T (Ds)} will be smaller than that of
{Di, T (Di)}. Otherwise, the whole {Di, T (Di)} will be used
for augmentation (Lines 8-9). The augmentation is based on
identifying the direction in which the output of the substitute
classifier Si is changing during its training, which is achieved
by checking the sign of its Jacobian matrix JSi (Line 12).

Specifically, we denote the sign for an input sample ~x as
sign (JSi [T (~x)]), and the new synthetic data set is

D′i = {~x+ λi · sign(JSi [T (~x)]) : ~x ∈ Ds}, (2)

where the step-size λi alternates between positive and negative
values to improve the approximation made by the substitute

classifier. Line 11 explains how to update the step-size, where
τ is set to be the number of iterations after which the
augmentation does not lead to any substantial improvement
on the approximation. After obtaining the new synthetic data
set D′i (Line 13), we label it by querying the target classifier T
and merge the results with the current training set to obtain an
enhanced training set {Di+1, T (Di+1)} (Lines 14-15). Finally,
the substitute model used to craft adversarial samples (i.e.,
Simax

) is obtained in Lines 17-18.

Algorithm 1: Training of Substitute Classifier
Input: Target classifier T , maximum iteration number

imax, initial telemetry data set D0, initial step-size
of Jacobian-based data set augmentation λ0.

Output: Parameters θSimax
of substitute classifier Simax

.
1 initialize coefficients {τ, γ, κ} and parameters of training;
2 query the target classifier T to label samples in D0 and

obtain the initial training set {D0, T (D0)};
3 for i ∈ [0, imax − 1] do
4 build/update substitute classifier Si based on |T (Di)|;
5 train Si with current training set {Di, T (Di)} to get

its parameters θSi ;
6 if i > γ then
7 select κ samples randomly from current training

set {Di, T (Di)} to form a set {Ds, T (Ds)};
8 else
9 {Ds, T (Ds)} = {Di, T (Di)};

10 end
11 compute the step-size λi = λ0 · (−1)b

i
τ c;

12 compute the sign of Jacobian matrix JSi [T (Ds)];
13 perform Jacobian-based data set augmentation with

Eq. (2) to obtain D′i;
14 query T to label samples in D′i as {T (~x), ~x ∈ D′i};
15 Di+1 = Di ∪D′i, Ti+1 = Ti ∪ T ′i , i = i+ 1;
16 end
17 update configuration of substitute classifier Simax

based
on |T (Dimax

)|;
18 train Simax

with current training set {Dimax
, T (Dimax

)}
to obtain its parameters θSimax

;
19 return(θSimax

);

2) Crafting of Adversarial Samples: With the trained sub-
stitute classifier, the attacker can leverage the approaches
developed in [39, 40] to craft adversarial samples, because
they can scale with large telemetry data sets time-efficiently.
Specifically, the DeepFool in [39] and the FGSM in [40] share
the similar principle of evaluating the substitute classifier’s
sensitivity to input modifications to find the perturbation for
achieving the goal of misclassification. Each of them has pros
and cons when being applied to our problem. FGSM can
generate many adversarial samples quickly with larger per-
turbations, while DeepFool can find the smallest perturbations
at the expense of a larger computational complexity.

Intuitively, an ML-based classifier can be misled more easily
and more quietly if the adversarial samples are closer to its
decision boundaries. To generate such adversarial samples,
DeepFool finds the minimal perturbations based on the dis-
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tance between a sample data point and the boundary of the
data’s hyperplane. Specifically, for a target classifier T , it
defines an adversarial perturbation as the minimal perturbation
δ~x that is sufficient to change the labeling output T (~x)

∆(~x; T ) := min(||δ~x||∞), T (~x+ δ~x) 6= T (~x), (3)

FGSM associates a cost function C(·) with T , for crafting an
adversarial sample ~x∗ based on a legitimate sample ~x

~x∗ = ~x+ ε · sign (O~xC(T (~x), ~x)) , (4)

where the cost function evaluates the perturbation δ~x,
sign (O~xC(T (~x), ~x)) denotes the sign of the gradient of the
cost function with respect to ~x, and the parameter ε controls
the amplitude of the perturbation. Both the probability of ~x
being misclassified by T and the likelihood of the adversarial
attack being detected increase with ε. Therefore, we can adjust
the value of ε to balance the tradeoff.

V. EXPERIMENTS FOR DATA COLLECTION

This section explains how we set up our experimental
testbed of a packet-over-optical network and conduct exper-
iments in it to collect telemetry data for anomaly detection.

A. Testbed Setup

We set up a small but real packet-over-optical network
testbed as the multi-layer data plane for anomaly detection
with ML-based classifiers. The optical layer is built with
bandwidth-variable wavelength-selective switches (BV-WSS’)
and an optical line system (OLS). The BV-WSS’ are com-
mercial products, each of which has a configuration of 1×9
and provides a spectrum allocation granularity of 12.5 GHz
to enable flexible-grid lightpath provisioning [41]. The OLS
is based on the Juniper BTI7800 platform, which deploys
bandwidth-variable transponders (BV-Ts) on nodes and in-
line erbium-doped fiber amplifiers (EDFAs) on fiber links,
for establishing lightpaths. Each BV-T can support line-rates
within [100, 400] Gbps. We also insert an OPM on each node
in the optical layer to collect telemetry data regarding active
lightpaths (e.g., power-level, OSNR, and optical spectrum).

The packet layer consists of client hosts, PDP-SWs and D-
CAs. We realize each PDP-SW based on the high-performance
software switch developed in [35], which runs on a Linux
server and is capable of ML-INT. Note that, in addition to
telemetry data regarding the optical layer, the ML-INT can also
collect that about the packet layer, e.g., bandwidth usage, pack-
et forwarding behavior, and packet processing latency. Each
host is emulated with a commercial traffic generator/analyzer
that can generate/receive application traffic at 10/40 Gbps.
The DCAs are homemade and run on high-performance Linux
servers to collect and process telemetry data in real-time (with
a throughput of 2 million packets per second (Mpps) per port).

The control plane system is realized by extending the open
network operating system (ONOS) platform [42], which also
runs on a high-performance Linux server. In this work, we
assume that telemetry data can be reported to the control plane
in either the in-band or out-of-band manner. In the in-band
manner, the telemetry data is inserted in packets as INT fields

Fiber Link

A B

C
D

BV-WSSHost 

OPM 

PDP-SW

EDFA

1 2

34

DCA INT Flow

Noise Insertion

BV-T

Coupler

VOA

Host 1

Host 2

NG

Fig. 4. Experimental setup for anomaly detection in a multi-layer packet-
over-optical network, VOA: Variable optical attenuator, BV-T: Bandwidth-
variable transponder, EDFA: Erbium-doped fiber amplifier, BV-WSS:
Bandwidth-variable wavelength-selective switch, NG: Noise generator.

by PDP-SWs and collected at network edge by the DCAs [10],
which is for real-time and fine-grained network monitoring.
The out-of-band manner lets OPMs report telemetry data
directly to the control plane to respond to polling requests,
which is for coarse-grained network monitoring.

B. Data Collection

With the testbed, we conduct experiments for telemetry data
collection and multi-layer anomaly detection. As shown in Fig.
4, we make the host connecting to PDP-SW 1 transmit a packet
flow to the one connecting to PDP-SW 4. The flow is routed in
the packet-over-optical network as indicated by the red solid
line in Fig. 4, i.e., Host 1 → PDP-SW 1 → BV-WSS A →
BV-WSS B → BV-WSS C → PDP-SW 3 → BV-WSS C →
BV-WSS D → PDP-SW 4 → Host 2. Hence, the multi-layer
routing of the flow involves three lightpaths in the optical layer
and three PDP-SWs in the packet layer.

With the testbed and flow configuration in Fig. 4, we apply
various network settings, including EDFA settings for noise
insertion, BV-WSS settings for filter offset, spectrum assign-
ments for the lightpaths, bandwidth usages in the packet layer,
and flow-table configurations in the PDP-SWs, to emulate both
normal and abnormal cases in the packet-over-optical network,
and collect ∼95, 000 telemetry data samples. Each sample
includes six elements, i.e., OSNR, input power, chromatic
dispersion (CD), packet forwarding latency, bandwidth usage
on input port (Input BW), and bandwidth usage on output port
(Output BW), and thus each sample is 6-dimensional. Then,
according to the actual root-cause of its anomaly (if there is
any), we label each sample with “Normal”, “High Power”,
“Low Power”, “Degraded OSNR”, “WSS Left Shift”, “WSS
Right Shift”, “High Delay”, “Packet Congestion”, “Packet
Loss”, and “Switch Misconfiguration”. We put 90% and 10%
of the samples in training and testings sets, respectively, and
train the legitimate ML-based classifier accordingly.

We also encrypt the samples with VHE [34] and train the
ML-based classifier with cipher-text to cover the case with
MLaaS. Therefore, for each type of ML-based classifier, we
actually train two classifiers with plain-text and cipher-text
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data sets, respectively. For instance, if we leverage the DNN
structure in [19], the training of the classifiers for plain-
text and cipher-text data sets can be finished in 4, 666.37
and 4, 658.73 seconds, respectively, and they can respectively
achieve classification accuracies of 99.99% and 99.64% on
their testing sets. In order to evaluate the performance of
adversarial-sample-based attacks, we introduce two metrics.
The success rate is the proportion of adversarial samples that
can make the substitute classifier categorize them into incor-
rect anomaly types. The transferability rate of adversarial
samples refers to the misclassification rate of the legitimate
classifier on adversarial samples crafted by the attacker.

VI. EXPERIMENTS OF ADVERSARIAL-SAMPLE-BASED
ATTACKS

In this section, we conduct experiments to validate the
threats of adversarial-sample-based attacks on ML-based clas-
sifiers for network automation. We first assume that the
classifier uses the DNN structure in [19] and performs WBA
and BBA on it, and then generalize the results by considering
more structures for the ML-based classifier.

A. Performance of WBA

As we have explained in Section III-B, the adversarial-
sample-based attack with WBA is relatively straightforward,
because the attacker can access both the internal structure and
training/testing data sets of the legitimate classifier. Therefore,
the attacker can use the same structure to design the local
classifier and train it accordingly. In this case, the success rate
and transferability rate become identical. We craft adversarial
samples with DeepFool and FGSM to implement the WBA.
Fig. 5 shows the success rate of the attacks, where the
“perturbation degree” on the x-axis refers to ∆ in Eq. (3) and
ε in Eq. (4) for DeepFool and FGSM, respectively. To ensure
sufficient statistical accuracy, all of our simulations average the
results from 10 independent runs to obtain each data point.

The results show that in all the scenarios, the ML-based
classifiers can be misled by the adversarial-sample-based
attacks, and the smallest success rate is above 30% even
when the perturbation degree is only 0.075. The success
rate first increases rapidly with the perturbation degree and
then converges. Between DeepFool and FGSM, FGSM can
achieve better adversarial-sample-based attacks as it provides
a higher success rate when other parameters are the same.
We also notice that when the same adversarial-sample-crafting
algorithm is used, the classifier trained with cipher-text is
always more vulnerable than that trained with plain-text. This
suggests that even though VHE can protect the privacy of
operators better in MLaaS, it also brings in new vulnerability
when adversarial-sample-based attacks can be launched.

B. Performance of BBA

Next, we consider the BBA strategy and assume that the
initial legitimate data set only contains 570 samples (i.e.,
|D0| = 570), in which there should be at least one sample for
each type of anomaly. The attacker architects the substitute

0.01 0.025 0.05 0.075 0.1 0.125 0.15

Perturbation Degree

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

FGSM-Plaintext
FGSM-Ciphertext
DeepFool-Plaintext
DeepFool-Ciphertext

Fig. 5. Success rate of adversarial-sample-based attacks with WBA.
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Fig. 6. Results of adversarial-sample-based attacks in BBA.

classifier with a linear DNN model for classification, which
consists of 7 layers. The coefficients of Algorithm 1 are set
as τ = 5, γ = 5, and κ = 400, and Algorithm 1 trains the
substitute classifier with imax = 10 and λ0 = 0.1. This leads
to classification accuracies of 95.75% and 89.44% on plain-
text and cipher-text data sets, respectively. With the trained
substitute classifiers, the attacker crafts adversarial samples
with DeepFool and FGSM, as it does in WBA.

Fig. 6 indicates that FGSM still crafts adversarial samples
better than DeepFool. Specifically, when other parameters are
the same, both the success rate and transferability rate achieved
by FGSM are higher than those from DeepFool. As for FGSM
with the perturbation degree of ε = 0.15, the transferability
rates of the substitute classifiers on plain-text and cipher-
text data sets are 88.86% and 86.83%, respectively. Hence,
the adversarial-sample-based attacks can indeed damage the
output integrity of the legitimate ML-based classifiers severely.



8

 

(a) Plain-text and ε = 0.05

 

   

(b) Plain-text and ε = 0.1

     

(c) Plain-text and ε = 0.15

 

        

         

(d) Cipher-text and ε = 0.05
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(f) Cipher-text and ε = 0.15

Fig. 7. Confusion matrices caused by the adversarial-sample-based attacks with DeepFool.

Meanwhile, with the same adversarial-sample-crafting algo-
rithm, the legitimate classifier trained with cipher-text is still
more vulnerable than that trained with plain-text.

Finally, we plot the confusion matrices of the adversarial-
sample-based attack with DeepFool in Fig. 7 to further analyze
the effects of the attacks. Here, we only show the results of
DeepFool because the confusion matrices of DeepFool and
FGSM are similar and DeepFool actually performs slightly
worse. In other words, we would like to show the lower-bound
of our proposals’ performance. Fig. 7 illustrates that the attacks
make the target classifier generate random classification errors,
which are difficult to detect and protect against. Meanwhile,
the results indicate that more telemetry data samples will be
misclassified as “High Delay”, “Packet Loss”, and “Switch
Misconfiguration” as ε increases. This is because they are the
most common anomaly types in network operation. Moreover,
we can see that there are more misclassifications in the cases
with cipher-text when the perturbation degree is the same. This
is because VHE encrypts one sample to different cipher-text
ones in different rounds [19], which is similar as adding a
small random perturbation to each cipher-text sample.

C. Performance of BBA with Incomplete Anomaly Types

To further verify the practicalness of our proposals, we
design simulations to consider the cases in which Algorithm 1
has to start with an initial legitimate telemetry data set D0 that

only contains an incomplete list of anomaly types. Note that,
when the D0 eavesdropped by the attacker does not contain
all the anomaly types, it can learn more anomaly types in
two ways: 1) conducting additional eavesdropping to collect
more legitimate telemetry data samples, and 2) applying the
augmentation technique in Algorithm 1 on its current data set
to generate more synthetic telemetry data samples. Although
both ways are feasible and they can be used simultaneously,
we design our simulations to only consider the latter one, for
the reason that eavesdropping activities should be minimized
to reduce the probability of being detected. Therefore, since
the restriction applied to the attacker is stricter than that in
practical scenarios, the results in this subsection will show the
lower-bound of the performance of Algorithm 1.

Specifically, the simulations consider four cases, wherein
the number of anomaly types in the initial legitimate telemetry
data set D0 is set as |T (D0)| = {4, 6, 8, 10} (i.e., D0 contains
390, 450, 510 and 570 samples, respectively). Except for
these, the overall structure of the substitute classifier and the
parameters used in Algorithm 1 remain unchanged. Then, we
respectively obtain the classification accuracy of the substitute
classifier as 67.21%, 77.27%, 79.81%, and 95.75% on plain-
text data sets, and as 72.25%, 78.55%, 81.62% and 89.44% on
cipher-text data sets. As expected, the classification accuracy
of the substitute classifier increases with |T (D0)|, i.e., Algo-
rithm 1 can train a better substitute classifier when the initial
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Fig. 8. Transferability rate of adversarial-sample-based attacks (plain-text).

legitimate telemetry data set provides more information about
the anomaly types. Note that, when we have |T (D0)| = 10,
D0 contains the complete list of anomaly types and thus the
classification accuracies are the same as those in Section VI-B.

Then, we let the attacker craft adversarial samples with
DeepFool and FGSM based on the trained substitute classi-
fiers. Figs. 8 and 9 show the results on transferability rate. We
observe that the transferability rates of the adversarial-sample-
based attacks, which start to craft the adversarial samples
with different initial legitimate data sets, are comparable in
all the cases. This confirms the effectiveness and practicalness
of Algorithm 1, i.e., it can build and train a reasonably good
substitute classifier even when D0 only contains an incomplete
list of anomaly types. Specifically, with the perturbation degree
of ε = 0.05, the transferability rates of FGSM and DeepFool
are higher than 40% and 30%, respectively, on both plain-text
and cipher-text data sets, even when we have |T (D0)| = 4.
This suggests that Algorithm 1 can generate synthetic data
samples that cover all the anomaly types, even when it is given
an initial legitimate data set that only contains 40% of the
anomaly types. Hence, the substitute classifier can be trained
to effectively imitate the operation of the target classifier.

We also observe that the transferability rate increases with
|T (D0)|, and it increases more significantly when plain-text
is considered. This further confirms that cipher-text is more
vulnerable to data tampering. FGSM still crafts adversarial
samples better than DeepFool when other things are the same.

D. Generalization of BBA

In order to verify that our BBA scheme can affect different
types of ML-based classifiers for anomaly detection in general,
we leverage logistic regression (LR), support vector machine
(SVM), decision tree (DT), and k nearest neighbors (kNN) to
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Fig. 9. Transferability rate of adversarial-sample-based attacks (cipher-text).

architect the legitimate classifier and apply adversarial-sample-
based attacks to them. Here, the substitute classifier used by
the attacker is still based on the same DNN architecture and
gets trained in the same way as in previous subsections. We
respectively denote the legitimate and substitute classifiers as
T and S and list their accuracies on the testing data sets in
Table II. It can be seen that the substitute classifiers trained
with Algorithm 1 still achieve reasonably good classification
accuracies, even though their structures are different from
those of the legitimate ones. As the classification accuracies
of the substitute classifiers are the lowest when the legitimate
classifiers are designed with DT and kNN, they show more
robustness against the adversarial-sample-based attacks.

TABLE II
PERFORMANCE OF ML-BASED ANOMALY DETECTION

Accuracy on Plain-text Data Set

Legitimate Classifier
DNN LR SVM DT kNN

T 99.99% 96.96% 96.51% 92.83% 99.64%

S (DNN) 95.75% 95.34% 95.46% 85.31% 82.13%

Accuracy on Cipher-text Data Set

Legitimate Classifier
DNN LR SVM DT kNN

T 99.64% 92.08% 91.42% 89.39% 97.14%

S (DNN) 89.44% 91.18% 90.80% 77.84% 76.08%

We then apply DeepFool and FGSM to craft adversarial
samples, and the results on transferability rate are shown in
Figs. 10 and 11, for the cases with plain-text and cipher-
text data sets, respectively. We observe that all the legitimate
classifiers are still vulnerable to the adversarial samples crafted
with FGSM and DeepFool, which indicates that the absence of
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Fig. 10. Transferability rate of adversarial-sample-based attacks (plain-text).

pre-knowledge on the structure of the legitimate classifier does
not make it more difficult to launch adversarial-sample-based
attacks. Meanwhile, it can be seen that the cases with cipher-
text data sets are still more vulnerable to data tampering even
when the legitimate classifier can use different structures. The
transferability rates of the cases when the legitimate classifiers
are designed with DT and kNN are generally lower than those
of other cases, which suggests that they are the two most
robust architectures to protect against the adversarial-sample-
based attacks. However, whether they are more suitable for the
legitimate classifiers in practical network automation systems
needs further investigations. This is because the classification
accuracy of DT is normally lower than other types of classifiers
and the operation of kNN can be time-consuming.

VII. CONCLUSION

This paper conducted an adversarial analysis of the ML-
based anomaly detection in packet-over-optical networks. To
check how secure the anomaly detection was, we designed two
adversarial-sample-based attack schemes respectively based on
WBA and BBA strategies, which eavesdropped and tampered
legitimate telemetry samples to generate adversarial samples
adaptively, for disturbing ML-based classifiers and in turn
misleading the network automation system of a packet-over-
optical network to make incorrect NC&M decisions. With
a real-world testbed, we demonstrated that our proposed
schemes could monitor and interact with a dynamic packet-
over-optical network to train itself, such that adversarial sam-
ples could be generated and injected in the network automation
system in the hard-to-detect way. The results showed that our
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Fig. 11. Transferability rate of adversarial-sample-based attacks (cipher-text).

schemes could mislead different types of ML-based classifiers
to severely affect their performance on anomaly detection.
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