
1

On the Bilevel Optimization for Remapping Virtual
Networks in an HOE-DCN

Hao Yang, Xiaoqin Pan, Sicheng Zhao, Binjie Ge, Hang Yu and Zuqing Zhu, Senior Member, IEEE

Abstract—Hybrid optical/electrical datacenter network (HOE-
DCN) uses the inter-rack networks that consist of both electrical
Ethernet switches and optical cross-connects (OXCs), for better
cost-efficiency and scalability. Meanwhile, to provision dynamic
network services well, the operator of an HOE-DCN needs to
deploy virtual networks (VNTs) and remap them adaptively.
Therefore, this work studies the problem of VNT remapping
in an HOE-DCN from a novel perspective, i.e., the remapping
schemes should be optimized for not only the network sta-
tus after the remapping but also the transition to realize it.
Specifically, we model this problem as a bilevel optimization,
where the upper-level optimization aims at selecting proper
virtual machines (VMs) to migrate such that the estimated
latency of VM migration can be minimized, and the lower-level
optimization determines the actual scheme of VNT remapping for
minimizing the number of resource hot-spots. We first formulate
a bilevel mixed integer linear programming (BMILP) model
for the bilevel optimization, and then propose a polynomial
time algorithm based on enumeration to solve it approximately.
Extensive simulations verify the effectiveness of our proposal.

Index Terms—Datacenter networks, Virtual network remap-
ping, Bilevel optimization, Approximation algorithm.

I. INTRODUCTION

RECENTLY, the rapid development of network services,
especially the data-/bandwidth-intensive ones, has stimu-

lated the global deployment of datacenters (DCs) [1], and DC-
related traffic already contributes the largest to Internet traffic
[2, 3]. Hence, the infrastructure of DC networks (DCNs) is
facing intimidating challenges [4], some of which are mainly
due to the fact that traditional DCNs only consider electrical
packet switching (EPS) [5, 6]. For instance, to reduce the
capital expenditure (CAPEX), the oversubscription ratio in
an EPS-based inter-rack network usually exceeds one, which
might lead to bottlenecks for inter-rack communications [5].
The aforementioned challenges can potentially be addressed
by introducing optical circuit switching (OCS) and integrating
it with EPS in the inter-rack networks of DCNs [5, 6]. Such
a DCN is normally referred to as a hybrid optical/electrical
datacenter network (HOE-DCN), which can be more scalable
than traditional DCNs [7, 8]. This is because an HOE-
DCN integrates the benefits of EPS and OCS. Specifically,

H. Yang, X. Pan, S. Zhao, and Z. Zhu are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, China (Email: zqzhu@ieee.org).

H. Yang is also with the Department of Information Engineering, Southwest
University of Science and Technology, Mianyang, Sichuan 621010, China.

X. Pan is also with the Engineering Technology Center, Southwest Univer-
sity of Science and Technology, Mianyang, Sichuan 621010, China.

B. Ge and H. Yu are with College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.

Manuscript received on April 29, 2021.

OCS provides larger bandwidth capacity and higher energy
efficiency than EPS [9–11], while EPS outperforms OCS in
terms of path setup latency and switching granularity [12].

It is known that a DCN usually supports network services
by deploying virtual machines (VMs) in servers and setting up
inter-rack connections to bridge the communications among
VMs [13]. Therefore, each network service can be modeled
as a virtual network (VNT), where its VMs are the virtual
nodes (VNs) and the connections among the VMs are the
virtual links (VLs). For example, a network service of Hadoop
MapReduce [14] usually organizes its VMs as a cluster-type
VNT, to accomplish computing tasks. Hence, if we consider
the DCN as a substrate network (SNT), how to provision
network services in it is equivalent to the problem of virtual
network embedding (VNE) [15, 16].

However, network services can be established, readjusted,
and terminated on-the-fly and active network services normally
use IT and bandwidth resources dynamically [17]. This can
progressively degrade the optimality of the initial VNE scheme
of each network service, and thus makes it necessary to re-
optimize the VNE scheme through VNT remapping [18–20].
Specifically, the operator can predict/estimate future network
status periodically, and VNT remapping will be invoked if
necessary [7, 8]. Note that, VNT remapping is generally more
sophisticated than VNE, because, to maintain the operational
complexity, proper VNs and VLs should be selected to recon-
figure and the remapping of these virtual elements is restricted
by their existing embedding schemes. Moreover, the VNT
remapping in an HOE-DCN is intrinsically different from and
more complex than that in traditional DCNs [18], which can
be justified by looking at the example in Fig. 1.

The HOE-DCN in Fig. 1(a) takes the type of topologies
that are considered in this work. The server racks provide the
pool of IT resources for deploying VMs, and each of them is
equipped with a top-of-rack (ToR) switch. The ToR switches
are interconnected with both the EPS-based and OCS-based
inter-rack networks. Specifically, the Ethernet switches (i.e.,
the aggregation and core switches in Fig. 1(a)) are organized in
a spine-and-leaf topology (e.g., the classic fat-tree [21]) with
oversubscription to build the EPS-based inter-rack network,
while the OCS-based inter-rack network is based on an optical
cross-connect (OXC)1. With OCS, the OXC can only support
one-to-one connectivity between inputs and outputs, as shown
in Fig. 1(a). Therefore, if VNT remapping needs to move VLs
to/from the optical connections through the OXC, the OXC

1Note that, a commercially-available large-scale OXC can provide enough
ports to interconnect hundreds of ToR switches, e.g., a configuration of
384×384 ports is feasible for the one in [22].

2

PoD 0 PoD 1

Core

Switch

Aggregation

Switch

ToR

Swtich

OXC

Racks

OXC
OXC

Reconfiguration Optical

Link

VMs

In Rack

Rack4 Rack7 Rack4 Rack7

VNT

Remapping

(a)

(b)SL (EPS-based) SL (OCS-based)
VLsVNs

(VMs)

VNT1 VNT2

0 1 2 3 4 5 6 7

Fig. 1. Background on HOE-DCN, (a) Network architecture, and (b) Example
of VNT remapping in it.

might be reconfigured and thus the overall topology of the
HOE-DCN will be changed (e.g., the VNT remapping in Fig.
1(b)). To this end, we can see that the VNT remapping in
an HOE-DCN can change the SNT’s topology as well, while
this will not happen in a traditional DCN or most of the VNT
remapping problems considered in the existing studies.

Previously, in [23, 24], we have studied the problem of VNT
remapping in an HOE-DCN to re-balance the IT resource
usage in racks. Nevertheless, the studies in [23, 24] should
still be improved for the following two reasons. Firstly, as
VNTs consume both IT and bandwidth resources, the VNT
remapping should re-balance their usages jointly, such that
resource “hot-spots” [7] in the HOE-DCN can be minimized
and the quality-of-service (QoS) of network services can
be ensured from multiple perspectives. Secondly and more
importantly, VNT remapping involves VM migration and VL
reconfiguration, between which the former is much more time-
consuming and thus determines the overall latency of VNT
remapping [25], while the studies in [23, 24] did not consider
the potential latency of the resulting VM migration.

To avoid service interruption, the operator usually leverages
live VM migration [26] to maintain the running of network ser-
vices during VNT remapping. However, since a live migration
normally needs to transfer several or even tens of gigabytes
(GB) of data between two servers [17], it can occupy a fair
amount of bandwidth consistently for a while [26], which
might not only hinder normal service traffic but also cause
network instability. Hence, the latency of VM migration should
be regarded as the major cost of VNT remapping, and as the
latency depends on the actual scheme of VNT remapping, it
is desired to obtain the VNT remapping scheme that leads to
the shortest latency of VM migration [25, 27].

This motivates us to revisit the problem of VNT remapping
in an HOE-DCN in this work, and we would like to formulate
a brand-new optimization to minimize the number of resource
hot-spots and the estimated latency of VM migration simul-
taneously. Nevertheless, minimizing the number of resource
hot-spots can make the VNT remapping migrate more VMs
and prolong the latency of VM migration, and vice versa.

Therefore, the two minimizations contradict to each other and
can hardly be modeled with a single-level optimization.

In this work, we decide to model the VNT remapping as
a bilevel optimization [28]. Specifically, the upper-level opti-
mization aims at selecting proper VMs to migrate such that the
estimated latency of VM migration can be minimized, while
the lower-level optimization determines the actual scheme of
VNT remapping for minimizing the number of resource hot-
spots. In this bilevel model, the solution of the upper-level
problem limits the set of feasible solutions for the lower-level
one, while the lower-level solution evaluates that of the upper-
level one. We first formulate a bilevel mixed integer linear
programming (BMILP) model for the bilevel optimization, and
design an exact algorithm that runs in exponential time. Then,
we propose a polynomial time algorithm based on enumeration
to solve the BMILP model approximately. Finally, extensive
simulations verify the effectiveness of our proposal.

The rest of the paper is organized as follows. We survey
the related work briefly in Section II. Section III provides
the problem description and formulates the BMILP model.
In Section IV, we first discuss the exact algorithm and then
propose the polynomial time algorithm based on enumeration.
The simulations for performance evaluations are discussed in
Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

As the fundamental problem to facilitate network virtual-
ization, VNE has been studied for different types of networks
in the literature [15, 16, 29–31]. Among them, a few studies
have considered a DCN as the SNT [30, 31]. However, since
network environment is usually dynamic, one-shot VNE can
hardly be sufficient, and the usages of IT and bandwidth
resources should be re-balanced frequently to keep the opti-
mality of VNE [32]. Hence, VNT remapping should be studied
to maintain the QoS of VNTs, and the existing investigations
in this area covered not only algorithm designs [18–20] but
also system implementations [33–35]. Nevertheless, none of
the studies mentioned above has considered an HOE-DCN as
the SNT, and thus their approaches cannot be leveraged to
tackle the problem considered in this work, due to the unique
feature of OXC (i.e., its one-to-one connectivity makes the
topology of the SNT changeable through VNT remapping).

Meanwhile, considering the dynamic nature of DCNs, nu-
merous previous studies have been devoted to optimizing the
procedure of VM migration such that the overall latency can
be minimized [36–38], because VM migration is costly in
DCNs and if not optimized, it can severely affect the QoS
of network services [25]. However, these studies only tried to
optimize the data transfers of VM migration according to a
given VNT remapping plan (i.e., where to migrate the VMs
is predetermined). Recently, the authors of [39, 40] have pro-
posed algorithms to tackle VNT remapping in consideration
of the cost due to the latency of VM migration, but their
investigation were based on the traditional EPS-based DCNs.

The idea of HOE-DCN was proposed more than a decade
ago [5]. Lately, with the momentum gained from artificial
intelligence, people have demonstrated effective network au-
tomation in an HOE-DCN by leveraging deep learning (DL),

3

such that the EPS-/OCS-based inter-rack networks can be
orchestrated better for application-aware service provisioning
[4, 7, 8]. Nevertheless, they only focused on the system designs
and experimental demonstrations of DL-assisted network au-
tomation, but did not develop algorithms to optimize the VNT
remapping in an HOE-DCN. With an over-simplified objective,
we have studied the VNT remapping in an HOE-DCN in [23,
24], but as we have already explained, the optimization model
should be further improved to consider more practical factors.
Therefore, to the best of our knowledge, this work is first one
that tries to optimize the VNT remapping in an HOE-DCN to
minimize the number of resource hot-spots and the estimated
latency of VM migration simultaneously.

TABLE I
MAJOR ABBREVIATIONS

Abbrev. Full Name Abbrev. Full Name
SNT Substrate network VNT Virtual network
SN Substrate node VNs Virtual node
SL Substrate link VL Virtual link

ToR Top-of-rack PoD Points-of-delivery
VM Virtual machine LR Lagrangian relaxation
LP Linear programming KKT Karush-Kuhn-Tucker

HOE-DCN Hybrid optical/electrical datacenter network
EPS Electrical packet switching
OCS Optical circuit switching
OXC Optical cross-connect
ILP Integer linear programming

MILP Mixed integer linear programming
BMILP Bilevel mixed integer linear programming

III. PROBLEM DESCRIPTION

In this section, we first explain the network model of the
VNT remapping in an HOE-DCN, and then formulate an
BMILP model to describe the bilevel optimization for it. Table
I lists the abbreviations that are frequently used in this paper.

A. Network Model

In our problem of VNT remapping, the SNT is an HOE-
DCN and we model its topology as a graph G(Vs, Es), where
Vs and Es are the sets of substrate nodes (SNs) and substrate
links (SLs), respectively. Here, each SN vs ∈ Vs is a server
rack, which consists of a ToR switch and a server pool.

The IT resources on each server pool are CPU cycles and
memory space, and we denote their capacities as CCPU and
CMEM, respectively. Meanwhile, the total I/O capacity of each
server pool is CBW. Each ToR switch connects to both the
EPS-based inter-rack network and an OXC, and we denote its
total bandwidth capacities to/from the EPS-based and OCS-
based inter-rack networks as BE and BO, respectively. Note
that, as we assume that the EPS-based inter-rack network uses
oversubscription, we have CBW > BE in this work and the
oversubscription ratio can be represented by CBW

BE
. Meanwhile,

the one-to-one connectivity of OXC restricts that at a given
time, each ToR switch can only be connected with one other
ToR switch through an OCS-based SL.

For each network service in the HOE-DCN, its VMs and
the network connections among them formulate a VNT. As
the VNT remapping considered in this work can reconfigure

multiple VNTs, we define two sets (i.e., Vr and Er) to
denote all the VMs and virtual links (VLs) of active VNTs,
respectively. Note that, the dynamic nature of each network
service makes the resource demands of the VMs and VLs in
its VNT time-varying. Therefore, to adapt to future network
status, we can estimate/forecast the resource demands (e.g.,
the average or peak values) for a future period [7, 8], and
remap the VNT accordingly (if necessary). Specifically, each
VM vr ∈ Vr runs computing tasks and will consume certain
CPU cycles and memory space in the future period, which
are denoted as cCPU

vr and cMEM
vr , respectively, while a VL

(vr, ur) ∈ Er connects two VMs (vr, ur ∈ Vr), and its future
bandwidth demand is defined as b(vr,ur). In a practical HOE-
DCN, the estimation/prediction of future resource demands
can be accomplished by the control plane [7, 8].

The uplink/downlink bandwidth demands of a ToR switch
are the sums of the bandwidth demands of all the VLs that are
from/to the VMs in its server pool. If the total IT or bandwidth
demand of the VMs on a server pool approaches to the cor-
responding capacity, the network system will become highly-
loaded such that the QoS of the related network services will
be affected (e.g., their job completion time can be prolonged
[7, 8]). Hence, we define two thresholds, which tell the upper-
limits of normal resource utilizations on server pools and EPS-
based ports, as ηIT and ηBW, respectively. In other words, if
the resource utilization on the server pool/EPS-based ports of a
ToR switch exceeds ηIT/ηBW, the server pool/EPS-based ports
will be a resource hot-spot in the HOE-DCN [7, 8]. Therefore,
the VNT remapping should minimize resource hot-spots.

The latency of VM migration contributes the most to the
cost of VNT remapping in DCNs [25]. Here, we hope to
point out that even though the latency of VM migration can
be reduced by leveraging a sophisticated algorithm to schedule
the related data transfers [37], it is still relevant to consider the
latency of VM migration when planning the VNT remapping.
This is because the actual scheme of VNT remapping (i.e.,
where to migrate the VMs) determines the lower-bound of the
latency of VM migration. Hence, although the exact value
of the latency can only be obtained by applying the VM
migration scheduling algorithm, which is out of the scope of
this work, we can estimate an approximation value for it by
simply looking at the current network status. For instance, the
latency of VM migration can be estimated by assuming that all
the VMs are migrated in parallel, i.e., their migrations start at
the same time and share the available bandwidth evenly. Then,
the estimated latency can be used as a performance indicator
to evaluate the quality of a VNT remapping scheme.

Fig. 2 gives an example to explain why the estimated latency
of VM migration should be considered when planning the
VNT remapping. The network status in Fig. 2(a) indicates that
the memory usages in Racks 1 and 3 will exceed the available
memory spaces due to two VMs whose image size is 12
units. Then, because Racks 2 and 4 both have enough memory
and bandwidth resources to accommodate the VMs, the VNT
remapping schemes in Figs. 2(b) and 2(c) are equivalent from
the perspective of minimizing the number of resource hot-
spots. However, the conclusion will be different if we take the
estimated latency of VM migration into account. Specifically,

4

Background

bandwidth

usage

Available

bandwidth

Migration

direction

(a)

Rack1 Rack2 Rack3

(b)

Rack4 Rack1 Rack2 Rack3

(c)

Rack4

1212
VM

4 34

1212 1212

4 34

12 12

4 34

1212

1212

4 34

12

12

Rack1 Rack2 Rack3 Rack4

34 34

1212 1212

34 34

12 12

3

3 3

Fig. 2. Example on how the scheme of VNT remapping affects the latency
of VM migration, (a) Network status before VNT remapping, (b) First VNT
remapping scheme, and (c) Second VNT remapping scheme.

the VM migration latency of the scheme in Fig. 2(b) is
max(12

4 ,
12
3) = 4 time-units, while that of the scheme in Fig.

2(c) is 24
4 = 6 time-units. The bandwidth bottleneck to Rack

2 will prolong the latency of VM migration, no matter how
we schedule the related data transfers. Therefore, the VNT
remapping scheme in Fig. 2(b) is more preferable. To this end,
we can see that for the VNT remapping, we should minimize
the number of resource hot-spots and the estimated latency of
VM migration simultaneously.

B. Bilevel Optimization Model

As the two aforementioned minimizations have mutual
restraint, we artificially divide the decision maker that plans
VNT remapping into two logical entities, i.e., the VM picker
and remapping planner, such that the VNT remapping problem
can be modeled as a bilevel optimization. Here, the VM picker
considers the upper-level optimization to select the VMs to
migrate for minimizing the resulting VM migration latency,
while the remapping planner is in charge of the lower-level
optimization to finalize the VNT remapping scheme (i.e.,
where to migrate the selected VMs and how to reconfigure
the OXC) for minimizing the number of resource hot-spots.
Hence, neither the VM picker nor the remapping planner can
solve its optimization independently. This also justifies why
the problem of VNT remapping in an HOE-DCN should not
be modeled as a single-level optimization. We formulate the
following BMILP to describe the bilevel model. Table II lists
the parameters of the upper- and lower-level optimizations.

1) Upper-level Optimization: It is for the VM picker to se-
lect the VMs to migrate, such that the resulting VM migration
latency can be minimized. Table III summarizes its variables.

Objective:
The upper-level optimization needs to minimize the latency

of VM migration, which is estimated in the lower-level one.

Minimize T. (1)

Constraints:
∑

vr∈Vr

Pvr,vs ·Kvr · c
CPU
vr ≤ CCPU,∑

vr∈Vr

Pvr,vs ·Kvr · c
MEM
vr ≤ CMEM,

∀vs ∈ Vs. (2)

Eq. (2) ensures that on each SN, the total IT resource usage
of the VMs, which are not selected for migration, does not

TABLE II
COMMON PARAMETERS

Substrate Network (SNT)

G(Vs, Es) The topology of the SNT (i.e., an HOE-DCN).
CCPU The capacity of CPU cycles on each rack’s server pool.
CMEM The total memory space on each rack’s server pool.
CBW The total I/O capacity of each rack’s server pool.
BE The total bandwidth capacity on each ToR switch to/from

the EPS-based inter-rack network.
BEO

vs /BEI
vs The available bandwidth on the ToR switch in SN vs ∈

Vs to/from the EPS-based inter-rack network.
Pvr,vs The binary that equals 1 if VM vr is embedded on SN

vs before VNT remapping, and 0 otherwise.
Lvs,us The binary that equals 1 if the ToR switches of SNs

vs and us are connected through the OXC before VNT
remapping, and 0 otherwise.

ηIT/ηBW The threshold for identifying resource hot-spots, i.e., the
upper-limit of normal resource utilization on the server
pool/EPS-based ports of a ToR switch.

Virtual Network (VNT)

Vr /Er The set of VMs/VLs in active VNTs.
cCPU
vr The CPU demand of VM vr ∈ Vr .
cMEM
vr The memory demand of VM vr ∈ Vr .
Svr The amount of data transfer to migrate VM vr .
b(vr,ur) The bandwidth demand of VL (vr, ur) ∈ Er .

Auxiliary Parameters

W A large positive constant.

TABLE III
UPPER-LEVEL VARIABLES

Kvr The binary variable that equals 1 if VM vr stays on its current
SN (is not migrated) after VNT remapping, and 0 otherwise.

T The estimated latency of VM migration.

exceed the IT resource capacity of its server pool.
∑

(vr,ur)∈Er

Pvr,vs ·Kvr · b(vr,ur) ≤ CBW,∑
(vr,ur)∈Er

Pur,vs ·Kur · b(vr,ur) ≤ CBW,
∀vs ∈ Vs. (3)

Eq. (3) ensures that on each SN, the total bandwidth from/to
the VMs, which are not selected for migration, does not exceed
the corresponding bandwidth capacity of its server pool.

The constraints in Eqs. (2) and (3) are introduced because
cCPU
vr , cMEM

vr , and b(vr,ur) are actually the estimated/forecasted
resource demands for a future period. In other words, we need
to ensure that the future resource demands of remaining VMs
on each rack will not exceed the corresponding capacities.

2) Lower-level Optimization: It is for the remapping plan-
ner to determine the VNT remapping scheme based on the
selected VMs, such that the number of resource hot-spots can
be minimized. As the VMs for migration are selected by the
upper-level optimization, {Kvr} become parameters here. We
list the variables to optimize in Table IV.

Objective:
The objective is to minimize the resource hot-spots.

Minimize
∑

vs∈Vs

(
gIT
vs + gEO

vs + gEI
vs

)
. (4)

5

TABLE IV
LOWER-LEVEL VARIABLES

P ∗vr,vs The binary variable that equals 1 if VM vr is mapped
on SN vs after VNT remapping, and 0 otherwise.

L∗vs,us
The binary variable that equals 1 if the ToR switches
of SNs vs and us are connected through the OXC after
VNT remapping, and 0 otherwise.

xvs,us
(vr,ur)

The binary variable that equals 1 if VL (vr, ur) is from
vs to us after VNT remapping, and 0 otherwise.

yvs,us
(vr,ur)

The binary variable that equals 1 if VL (vr, ur) is
from vs to us and goes through the OXC after VNT
remapping, and 0 otherwise.

zvs,us
(vr,ur)

The binary variable that equals 1 if VL (vr, ur) is from
vs to us and goes through the EPS-based inter-rack
network after VNT remapping, and 0 otherwise.

gEO
vs

/gEI
vs

The binary variable that equals 1 if the ToR switch of SN
vs encounters a resource hot-spot in the uplink/downlink
direction of its EPS-based inter-rack network after VNT
remapping, and 0 otherwise.

gIT
vs

The binary variable that equals 1 if SN vs encounters a
resource hot-spot in its server pool, and 0 otherwise.

Constraints:

Kvr =
∑

vs∈Vs

Pvr,vs · P
∗
vr,vs , ∀vr ∈ Vr. (5)

Eq. (5) ensures that only the VMs selected by the upper-level
optimization can be migrated.∑

vs∈Vs

P ∗vr,vs = 1, ∀vr ∈ Vr. (6)

Eq. (6) ensures that each VM is embedded on one SN.

∑
vr∈Vr

P ∗vr,vs · c
CPU
vr ≤ CCPU,∑

vr∈Vr

P ∗vr,vs · c
MEM
vr ≤ CMEM,∑

(vr,ur)∈Er

P ∗vr,vs · b(vr,ur) ≤ CBW,∑
(vr,ur)∈Er

P ∗ur,vs · b(vr,ur) ≤ CBW,

∀vs ∈ Vs. (7)

Eq. (7) ensures that the resource constraints are still satisfied.∑
us∈Vs\vs

L∗vs,us
= 1, ∀vs ∈ Vs. (8)

Eq. (8) ensures that each ToR switch can only be connected
with one other ToR switch through the OXC.

L∗vs,us
= L∗us,vs , {vs, us : vs 6= us, vs, us ∈ Vs}. (9)

Eq. (9) ensures that each OCS-based connection between a
pair of ToR switches is bidirectional.
xvs,us
(vr,ur)

≥ P ∗vr,vs + P ∗ur,us
− 1,

xvs,us
(vr,ur)

≤ 1

2
·
(
P ∗vr,vs + P ∗ur,us

)
,
∀(vr, ur) ∈ Er, ∀vs, us ∈ Vs.

(10)
Eq. (10) ensures that if VMs vr and ur are mapped on SNs
vs and us, respectively, VL (vr, ur) is embedded on an SL
between SNs vs and us accordingly.

yvs,us
(vr,ur)

≤ 1

3
·
(
P ∗vr,vs + P ∗ur,us

+ L∗vs,us

)
,

∀(vr, ur) ∈ Er, ∀vs, us ∈ Vs.
(11)

Eq. (11) ensures that if a VL is embedded on an SL between
a pair of ToR switches that are connected through the OXC,
it can be embedded on an OCS-based SL.

zvs,us
(vr,ur)

+yvs,us
(vr,ur)

= xvs,us
(vr,ur)

, ∀(vr, ur) ∈ Er, ∀vs, us ∈ Vs. (12)

Eq. (12) ensures that each VL is embedded on either an EPS-
based SL or an OCS-based SL between a pair of ToR switches.

W · gEO
vs ≥

 ∑
(vr,ur)∈Er

∑
us∈Vs\vs

zvs,us
(vr,ur)

· b(vr,ur)

− ηBW ·BE, ∀vs ∈ Vs,

(13)

W · gEI
vs ≥

 ∑
(vr,ur)∈Er

∑
us∈Vs\vs

zus,vs
(vr,ur)

· b(vr,ur)

− ηBW ·BE, ∀vs ∈ Vs,

(14)

W · gIT

vs ≥

(∑
vr∈Vr

P ∗vr,vs · c
CPU
vr

)
− ηIT · CCPU,

W · gIT
vs ≥

(∑
vr∈Vr

P ∗vr,vs · c
MEM
vr

)
− ηIT · CMEM,

∀vs ∈ Vs.

(15)
Eq. (13)-(15) ensure that after VNT remapping, all the re-
source hot-spots are identified correctly. Specifically, for a
rack, if the total bandwidth demand in the uplink/downlink
direction or the total CPU/memory demand exceeds the corre-
sponding threshold, the related decision variable for resource
hot-spot (i.e., gEO

vs , gEI
vs , or gIT

vs) is set to 1.
BEO

vs · T ≥
∑

vr∈Vr

∑
us∈Vs\vs

Pvr,vs · P
∗
vr,us

· (1− Lvs,us) · Svr ,

BEI
vs · T ≥

∑
vr∈Vr

∑
us∈Vs\vs

Pvr,us · P
∗
vr,vs · (1− Lvs,us) · Svr ,

∀vs ∈ Vs.
(16)

Eq. (16) ensures that the latency of VM migration is estimated
correctly, by assuming simultaneous migrations in parallel2.

IV. ALGORITHM DESIGN

According to the analysis in [41], the bilevel optimization
formulated above is NP-hard. Hence, in this section, we first
design an exact algorithm that runs in exponential time, and
then propose a polynomial time approximation algorithm.

A. Exact Algorithm based On Enumeration

Since the BMILP formulated in Section III-B contains
binary variables, the bilevel model does not have convexity
[42]. Hence, we cannot leverage the commonly-used methods
based on Karush-Kuhn-Tucker (KKT) conditions and strong
duality [43] to transform it into a single-level optimization.
Meanwhile, as the bilevel model has separable upper and
lower levels, i.e., the upper-level problem can be solved
without considering the lower-level one [42], we can design an

2As each OCS-based SL normally has a much larger bandwidth capacity
than an EPS-based SL, we only consider the available bandwidth in the
EPS-based inter-rack network to estimate the latency of VM migration, for
addressing the worst case scenario.

6

enumeration-based exact algorithm to solve it [44, 45]. Specif-
ically, the exact algorithm first gets all the feasible solutions
of the upper-level problem, then obtains the corresponding
solutions of the lower-level one, and finally checks the solution
combinations of the upper- and lower-level problems to find
the optimal solution of the bilevel model.

Algorithm 1 describes the detailed procedure of the exact
algorithm. It first obtains all the feasible solution of the upper-
level problem under the resource constraints (i.e., each solution
is a feasible set of VMs for migration {Kvr}). Then, for each
solution, it formulates and solves a lower-level problem to
obtain a solution of the bilevel model, i.e., {T̃ , P̃ ∗

vr,vs , L̃
∗
vs,us
}

(Line 3). Next, we compare T̃ with the best-known latency
of VM migration T ∗, and update the best-known solution if
we have T̃ < T ∗ (Lines 4-7). Finally, after all the feasible
solutions of the upper-level problem have been checked, the
optimal solution of the bilevel optimization can be obtained.

Algorithm 1: Exact Algorithm based on Enumeration

1 T ∗ = +∞, {P ∗
vr,vs = 0}, {L∗

vs,v′s
= 0};

2 for each feasible solution {Kvr} of upper-level do
3 formulate a lower-level MILP with {Kvr} and solve

it to get T̃ , {P̃ ∗
vr,vs} and {L̃∗

vs,us
};

4 if T̃ < T ∗ then
5 T ∗ = T̃ , {P ∗

vr,vs} = {P̃ ∗
vr,vs};

6 {L∗
vs,us
} = {L̃∗

vs,us
};

7 end
8 end
9 return {P ∗

vr,vs} and {L∗
vs,us
};

B. Considerations for Approximation Algorithm Design

In Algorithm 1, neither the enumeration of all the feasible
solutions of the upper-level problem nor the solving of the
lower-level mixed integer linear programming (MILP) can
be completed in polynomial time. Hence, it does not scale
well, which motivates us to leverage its procedure to design a
polynomial time approximation algorithm (i.e., Algorithm 2).

C. Approximation Algorithm for Upper-level Problem

In Algorithm 2, we first try to improve the time-efficiency
of the enumeration of the upper-level problem’s solutions.
Eq. (16) suggests that the latency of VM migration generally
increases with the maximal total size of the VMs to/from a
server pool. Hence, we develop an enumeration strategy to
only check N most promising solutions of the upper-level
problem, as shown in Lines 1-7 of Algorithm 2. The basic
idea is to only select the “necessary” VMs for migration
under a set of shrunk resource constraints, such that the total
size of the selected VMs on each SN is minimized. Line 1
defines ∆ηIT and ∆ηBW as the steps for shrinking the IT
and I/O capacities of each SN, respectively. Then, the for-
loop that covers Lines 2-7 enumerates N most promising
solutions, where Line 3 calculates the shrinking ratios (η̃IT and
η̃BW) for resource constraints in each iteration. Specifically,

the iterations shrink the resource constraints from 100% to
right below the corresponding thresholds (η̃IT and η̃BW) for
identifying resource hot-spots in the HOE-DCN.

With η̃IT and η̃BW, Line 5 formulates the following optimiza-
tion to tackle the upper-level problem for each SN vs ∈ Vs.

Maximize
∑

{vr :Pvr,vs=1}

Kvr · Svr ,

s.t.
∑

{vr :Pvr,vs=1}

Kvr · c
CPU
vr < η̃IT · CCPU,

∑
{vr :Pvr,vs=1}

Kvr · c
MEM
vr < η̃IT · CMEM,

∑
{vr :Pvr,vs=1}

Kvr · b
in
vr < η̃BW · CBW,

∑
{vr :Pvr,vs=1}

Kvr · b
out
vr < η̃BW · CBW.

(17)

where {vr : Pvr,vs = 1} denotes the set of VMs that are
embedded on SN vs before VNT remapping, and bin

vr /bout
vr is

the total I/O resource demand to/from VM vr (i.e., the total
bandwidth demand of the VLs that go in/out vr).

If we treat η̃IT ·CCPU, η̃IT ·CMEM and η̃BW ·CBW as the capac-
ities of a 4-dimensional (4D) knapsack, {cCPU

vr , cMEM
vr , bin

vr , b
out
vr }

as the 4D size of an item (i.e., a VM vr), and Svr as the value
of an item, the optimization in Eq. (17) actually constitutes
a typical 4D knapsack problem. As the 4D knapsack is still
NP-hard, we design a polynomial time approximate algorithm
based on Lagrangian relaxation (LR) to solve it in Line 6. We
first build a dual problem, whose solution gives an upper-
bound on the optimal solution of Eq. (17).

Minimize Ldual (λ1, λ2, λ3) = max
{Kvr }

 ∑
{vr :Pvr,vs=1}

Kvr · Svr

+ λ1 ·

η̃IT · CMEM −
∑

{vr :Pvr,vs=1}

Kvr · c
MEM
vr

+ λ2 ·

η̃BW · CBW −
∑

{vr :Pvr,vs=1}

Kvr · b
in
vr

+λ3 ·

η̃BW · CBW −
∑

{vr :Pvr,vs=1}

Kvr · b
out
vr

 ,
s.t.

∑
{vr :Pvr,vs=1}

Kvr · c
CPU
vr < η̃IT · CCPU.

(18)
where λ1, λ2 and λ3 are the non-negative Lagrangian multi-
pliers. Eq. (18) can be further simplified as

Minimize Ldual (λ1, λ2, λ3) = max
{Kvr }

 ∑
{vr :Pvr,vs=1}

Kvr ·(
Svr − λ1 · cMEM

vr − λ2 · bin
vr − λ3 · bout

vr

)]
+ λ1 · η̃IT · CMEM + (λ2 + λ3) · η̃BW · CBW},

s.t.
∑

{vr :Pvr,vs=1}

Kvr · c
CPU
vr < η̃IT · CCPU.

(19)

Therefore, for specific λ1, λ2 and λ3, the optimization in
Eq. (19) can be solved by dynamic programming with the
time complexity of O (|{vr : Pvr,vs = 1}| · CCPU) to get the

7

Algorithm 2: Approximation Algorithm for Bilevel Model

1 ∆ηIT = 1−ηIT
N−1 , ∆ηBW = 1−ηBW

N−1 ;
2 for i ∈ [0, N − 1] do
3 η̃IT = 1− i ·∆ηIT, η̃BW = 1− i ·∆ηBW;
4 shrink resource constraints with η̃IT and η̃BW;
5 formulate an optimization with the shrunk constraints

for the upper-level problem (as in Eq. (17));
6 solve the optimization in Eq. (17) with Algorithm 4 to

obtain a feasible solution of the upper-level problem;
7 end
8 T ∗ = +∞, {P ∗

vr,vs = 0}, {L∗
vs,v′s

= 0};
9 for each feasible solution {Kvr} of upper-level do

10 formulate a lower-level MILP with {Kvr} and solve
it with Algorithm 5 to get T̃ , {P̃ ∗

vr,vs} and {L̃∗
vs,us
};

11 if T̃ < T ∗ then
12 T ∗ = T̃ , {P ∗

vr,vs} = {P̃ ∗
vr,vs};

13 {L∗
vs,us
} = {L̃∗

vs,us
};

14 end
15 end
16 return {P ∗

vr,vs} and {L∗
vs,us
};

optimal solution {K̃vr}. However, {K̃vr} might not be a
feasible solution for the optimization in Eq. (17). Hence, we
design Algorithm 3 to build a feasible solution {Kvr} based
on {K̃vr}, whose time complexity is O (|{vr : Pvr,vs = 1}|).

Algorithm 3: Building Feasible Solution for Eq. (17)

Input: {K̃vr}
1 S = 0, cCPU = 0, cMEM = 0, bin = 0, bout = 0, flag = 0;
2 for each vr in {vr : Pvr,vs = 1} do
3 if flag = 1 then
4 Kvr = 0, continue;
5 end
6 if K̃vr = 0 then
7 S = S + Svr , cCPU = cCPU + cCPU

vr ,
cMEM = cMEM + cMEM

vr ;
8 bin = bin + bin

vr , bout = bout + bout
vr ;

9 if (cCPU ≥ η̃IT · CCPU) or (cMEM ≥ η̃IT · CMEM) or
(bin ≥ η̃BW · CBW) or (bout ≥ η̃BW · CBW) then

10 Kvr = 0, flag = 1, continue;
11 end
12 Kvr = 1;
13 end
14 end
15 return {Kvr} and S;

For specific λ1, λ2 and λ3, we use {K̃vr} to calculate
Ldual (λ1, λ2, λ3), which is an upper-bound of the solution of
Eq. (17), while the S obtained by Algorithm 3 is a lower-
bound of Eq. (17). Then, with the principle of LR, we can
update the values of λ1, λ2 and λ3 in iterations with the
sub-gradient method in [46], such that the gap between the
upper and lower-bounds is reduced continuously to make the
best-known feasible solution approximate the optimal one.

Algorithm 4 shows the overall procedure of the LR. Line 1
is for the initialization. The subsequent for-loop solves Eq.
(17) with LR for all the server racks (Lines 2-21).

Specifically, for each server rack (i.e., an SN vs ∈ Vs), the
while-loop that covers Lines 4-20 tries to improve the quality
of the solution until the relative dual gap is smaller than a p-
reset threshold γ1. Line 5 solves Eq. (19) for Ldual (λ1, λ2, λ3)
and {K̃vr}, and then Lines 6-14 update the upper-bound ub
with Ldual (λ1, λ2, λ3) and modify the step-size coefficient w.
Here, we use t to record the number of iterations for which ub
has not been updated, and if it exceeds a preset threshold tTH,
we divide w by 2 (Line 10). Line 15 inputs {K̃vr} to Algorithm
3 and gets a feasible solution of Eq. (17) (S and {Kvr}). As
Eq. (17) is for maximization, its feasible solution sets a lower-
bound on the objective. Hence, in Line 16, we update the
lower-bound lb with S, and calculate the sub-gradient vectors
of Ldual (λ1, λ2, λ3) regarding λ1, λ2 and λ3 as

f(λ1) =
∂Ldual

∂λ1
= η̃IT · CMEM −

∑
{vr :Pvr,vs=1}

Kvr · c
MEM
vr ,

f(λ2) =
∂Ldual

∂λ2
= η̃BW · CBW −

∑
{vr :Pvr,vs=1}

Kvr · b
in
vr ,

f(λ3) =
∂Ldual

∂λ3
= η̃BW · CBW −

∑
{vr :Pvr,vs=1}

Kvr · b
out
vr .

(20)
Line 17 obtains the step-size in the current iteration as [47]

µn =
w · [Ldual(λ

n
1 , λ

n
2 , λ

n
3)− S]

[f(λn
1) + f(λn

2) + f(λn
3)]

2
, (21)

where λn1 , λn2 and λn3 represent the values of λ1, λ2 and λ3
in the current iteration (i.e., the n-th), respectively. We get the
λ1, λ2 and λ3 for the next iteration in Line 18, as

λn+1
1 = max [0, λn

1 − µn · f(λn
1)] ,

λn+1
2 = max [0, λn

2 − µn · f(λn
2)] ,

λn+1
3 = max [0, λn

3 − µn · f(λn
3)] .

(22)

Finally, Algorithm 4 solves the upper-level problem that uses
a specific set of shrunk resource constraints in Line 22. As Eq.
(17) transforms the minimization of the upper-level problem
into a maximization, the approximation ratio of Algorithm 4
can be analyzed as follows. If we denote the optimal solution
of Eq. (17) as SILP, we have SILP ≤ Ldual(λ1, λ2, λ3) = ub
and lb = S, where S is the solution obtained by Algorithm 4.
Therefore, the approximate ratio ε1 is

ε1 =
S

SILP
≥ S

Ldual(λ1, λ2, λ3)
=

lb

ub
> 1− γ1, (23)

which confirms that the approximation ratio is at least 1− γ1.
According to the principle of LR, Algorithm 4 runs in

polynomial time. Hence, Line 6 in Algorithm 2 can be tackled
in polynomial time as well. Then, as the enumeration strategy
in Lines 1-7 of Algorithm 2 only considers N most promising
solutions of the upper-level problem, it runs in polynomial
time too. Next, the time complexity of Lines 8-15 of Algorithm
2 is dominated by that of Line 10 there. In the next subsection,
we will design an approximation algorithm to solve the lower-
level MILP in polynomial time (i.e., for the Algorithm 5
in Line 10 of Algorithm 2). Finally, we can confirm that
Algorithm 2 runs in polynomial time.

8

Algorithm 4: Lagrangian Relaxation to Solve Eq. (17)
Input: γ1

1 {Kvr = 0};
2 for each vs ∈ Vs do
3 w = 2, ub = +∞, lb = 0, λ1 = λ2 = λ3 = 0, t = 0;
4 while ub−lb

ub ≥ γ1 do
5 solve Eq. (19) with dynamic programming to get

Ldual (λ1, λ2, λ3) and {K̃vr};
6 if Ldual (λ1, λ2, λ3) < ub then
7 ub = Ldual (λ1, λ2, λ3), t = 0;
8 else
9 if t > tTH then

10 w = w/2, t = 0;
11 else
12 t = t+ 1;
13 end
14 end
15 get S and {Kvr} with {K̃vr} and Algorithm 3;
16 lb = S, get {f(λn1), f(λn2), f(λn3)} with Eq. (20);
17 get step-size µn with Eq. (21);
18 get λn+1

1 , λn+1
2 and λn+1

3 with Eq. (22);
19 λ1 = λn+1

1 , λ2 = λn+1
2 , λ3 = λn+1

3 ;
20 end
21 end
22 return {Kvr};

D. Approximation Algorithm for Lower-level Problem

With a solution of the upper-level problem ({Kvr}), we can
formulate an MILP for the lower-level problem, as described in
Section III-B. To solve the MILP time-efficiently, we propose
a polynomial-time approximation algorithm based on linear
programming (LP) relaxation and randomized rounding.

Algorithm 5 shows the procedure of the approximation
algorithm. Regarding its inputs, M denotes the maximum
number of rounding iterations, and γ2 is the preset parameter
for approximation. In Line 1, we preprocess the MILP for
the lower-level problem and relax the result to get an LP.
Here, the preprocessing is introduced to improve the efficiency
of our problem-solving, and it includes two steps. Firstly,
we remove Eq. (16) from the lower-level MILP, because it
has noting to do with the optimization objective, and then
the lower-level MILP becomes an ILP. Secondly, we add
the following constraints to improve the successful rate of
subsequent randomized rounding (i.e., reducing the probability
of obtaining infeasible solutions).

yvs,us
(vr,ur)

≤ L∗vs,us
, ∀(vr, ur) ∈ Er, ∀vs, us ∈ Vs, (24)

which will not affect the solution of the original lower-level
MILP. In the LP relaxation, we relax all the binary variables
in the ILP to real ones within [0, 1].

The LP is solved in Line 2 to get {P̃ ∗
vr,vs}, {L̃

∗
vs,us
} and

g̃, which are all in real numbers. g̃ is the objective of the LP,
i.e., the number of resource hot-spots, and we round it up in
Line 3 and use it as the lower-bound of the optimal solution
of the lower-level problem. Then, the subsequent while-loop
builds a qualified approximation solution in iterations (Lines

Algorithm 5: LP Relaxation and Randomized Rounding
to Solve Lower-level Problem

Input: {Kvr}, M , γ2
1 preprocess and relax the lower-level MILP with {Kvr} to

get an LP;
2 solve the LP to get the values of {P̃ ∗

vr,vs}, {L̃
∗
vs,us
} and

g̃ in real numbers;
3 g̃ = dg̃e, n = 0;
4 while n < M do
5 for each vr in {vr : Kvr = 0} do
6 determine the SN that VM vr should be migrated

to randomly with {P̃ ∗
vr,vs} as probabilities;

7 update {P ∗
vr,vs} according to the result;

8 end
9 {L∗

vs,us
= 0}, flag = 0;

10 for each vs ∈ Vs do
11 for each us ∈ Vs \ vs do
12 if L∗

vs,us
= 1 then

13 flag = 1;
14 break;
15 end
16 end
17 if flag = 1 then
18 continue;
19 else
20 get the SN us that vs be connected to through

OXC randomly with {L̃∗
vs,us
} as probabilities;

21 update {L∗
vs,us
} according to the result;

22 end
23 end
24 if {P ∗

vr,vs} and {L∗
vs,us
} do not denote a feasible

solution to lower-level MILP then
25 continue;
26 end
27 calculate objective g∗ with {P ∗

vr,vs} and {L∗
vs,us
};

28 if g∗

g̃ < 1 + γ2 then
29 break;
30 end
31 n = n+ 1;
32 end
33 calculate the latency of VM migration T with Eq. (16)

using {P ∗
vr,vs} and {L∗

vs,us
};

34 return {P ∗
vr,vs}, {L

∗
vs,us
}, and T ;

4-32). In the while-loop, we use two for-loops to determine the
values of {P ∗

vr,vs} and {L∗
vs,us
} with randomized rounding,

respectively (Lines 5-23). Specifically, we get the binary
values of {P ∗

vr,vs} and {L∗
vs,us
} randomly with {P̃ ∗

vr,vs}
and {L̃∗

vs,us
} as the probabilities, respectively. Next, Line 24

checks whether the obtained {P ∗
vr,vs} and {L∗

vs,us
} represents

a feasible solution to the original lower-level MILP. If yes, we
calculate the objective of the lower-level problem (g∗) with
{P ∗

vr,vs} and {L∗
vs,us
} (Line 27). Otherwise, we proceed to

the next iteration. Finally, when the objective g∗ satisfies the
approximation ratio, we break the while-loop and calculate the

9

latency of VM migration with the obtained solution.
We can verify that the approximation ratio of Algorithm 5

is at most 1 + γ2 as follows. Because the lower-level MILP is
for minimization, the LP’s solution (i.e., g̃) provides a lower-
bound on the optimal solution, while the feasible solution built
by Algorithm 5 (i.e., g∗) is an upper-bound. Hence, if we
denote the optimal solution as gMILP, the approximation ratio
of Algorithm 5 can be calculated as

ε2 =
g∗

gMILP
≤ g∗

g̃
< 1 + γ2. (25)

We also would like to point out that according to the
principle of LP relaxation with randomized rounding and the
well-known Chernoff-Bound [48], the probability of Algorithm
5 obtaining a qualified solution can approach to 1, as long as
the values of M and γ2 are properly selected. Finally, as the
LP solving in Line 2 can also be finished in polynomial time,
Algorithm 5 is a polynomial-time approximation algorithm.

V. PERFORMANCE EVALUATION

In this section, we perform extensive simulations and dis-
cuss the results to evaluate the performance of our proposal.

A. Simulation Setup

As the classic fat-tree in Fig. 1(a) is one of the most popular
topologies for EPS-based inter-rack networks, the simulations
assume that a classic k-ray fat-tree is used for the EPS part
of the HOE-DCN (e.g., the fat-tree in Fig. 1(a) has k = 4).
Meanwhile, we assume that the oversubscription ratio in the
EPS-based inter-rack network is CBW

BE
= 2 for each rack. It

should be noted that considering the numerous racks in a DCN
and the prohibitive complexity of managing all of them as a
whole, an operator usually manages its DCN in a modular
way. Specifically, the operator can divide its DCN into many
points-of-delivery (PoDs), and treat each PoD as a module of
network, compute and storage components that work together
to deliver network services [49]. Hence, we also divide each
of the HOE-DCNs considered in the simulations into PoDs,
and assume that each VNT can only be mapped and remapped
within one PoD. Specifically, for an HOE-DCN that uses the
k-ray fat-tree as the EPS part, we divide it into k

2 PoDs and
each PoD includes k racks. Regarding the size of the HOE-
DCN, we surveyed the commonly-used scales for fat-trees, and
decide to architect the largest HOE-DCN in our simulations
based on the 128-ray fat-tree [50].

As for the benchmark, we design a weight-based single-
level optimization, also to balance the tradeoff between the
two objectives considered in our proposed bilevel model.

Minimize α · T +
∑

vs∈Vs

(
gIT
vs + gEO

vs + gEI
vs

)
.

s.t. Eqs. (6)− (16),
(26)

where α is the weight for minimizing the estimated latency of
VM migration (i.e., T). Here, we define α = 3 · |Vs| to ensure
that minimizing T is still the primary objective as that in our
bilevel model. We solve the optimization in Eq. (26) with LP
relaxation and randomized rounding, with the procedure that
is similar to that in Algorithm 5.

To make sure that the results are generic, we use “units”
to denote the units of bandwidth and IT resources and “time-
units” to represent the units of time and latency. Note that,
although their units are not the physical ones, we do choose
the distributions of the parameters according to the cases in
real-world DCNs [51] or based on our own observations in
experiments (e.g., in [7, 8]), for ensuring the practicalness of
our simulations. For the k-ray fat-tree, the CPU, memory and
I/O resource capacities of each rack is assume to be CCPU =
100 · k units and CMEM = 128 · k units and CBW = 1000 · k
units/time-unit, respectively, the bandwidth capacity of each
ToR switch to/from the EPS part is set as BE = 1000 · k2
units/time-unit, and the available bandwidth on the ToR switch
in SN vs to/from the EPS part (i.e., BEO

vs /BEI
vs) is randomly

selected within [500 · k2 , 1000 · k2] units/time-unit.
The simulations consider four HOE-DCNs, which are based

on {4, 8, 32, 128}-ray fat-trees. Each VNT includes [2, 20]
VMs whose connectivity is set as 0.3. We include two types
of VNTs in the simulations, i.e., the IT-bound and I/O-
bound ones. The CPU resource demand of each VM in a
IT-bound or I/O-bound VNT is selected within [1, 64] units
or [1, 12] units, respectively. The memory demand of each
VM in a IT-bound or I/O-bound VNT is selected with in
[1, 128] units or [1, 96] units, respectively. The bandwidth
demand of each VL in a IT-bound or I/O-bound VNT is
chosen within [1, 1000] units/time-unit or [1, 2500] units/time-
unit, respectively. The size of data transfers to migrate a VM is
set within [10000, 40000] units. The thresholds for identifying
resource hot-spots (ηIT and ηBW) are both set as 70%, and the
N in Algorithm 2 is chosen as 7.

Our simulations run in the discrete-time way as follows. At
the beginning of each simulation, we embed each VNT in a
PoD of the HOE-DCN according to its resource demands, with
the global resource capacity based VNE algorithm in [52],
such that the IT and bandwidth resource usages in the HOE-
DCN are balanced at the time of initial VNT embedding. Then,
the resource demands of each VNT change over time randomly
according to the aforementioned ranges. At each maintenance
time, we gather the future demands of each VNT to determine
whether the IT and bandwidth resources on racks will be used
up. If yes, VNT remapping will be triggered. This is repeated
until the total simulation time expires. To maintain sufficient
statistical accuracy, the simulations average the results from 60
independent runs to get each data point. Meanwhile, to show
the stability of the algorithms in the simulations, we also mark
the range of the 95% confidence interval in Figs. 3 and 4.

B. Performance in HOE-DCNs in Different Scales

We first evaluate the algorithms with HOE-DCNs in d-
ifferent scales. Fig. 3 shows the simulation results, where
the ratio between IT-bound and I/O-bound VNTs is set as
1 : 1. Here, “Exact” refers to Algorithm 1, which can obtain
the exact solution of our bilevel model, “Bilevel” denotes
our proposed approximation algorithm (Algorithm 2), “Single-
level” is the single-level benchmark mentioned in the previous
subsection, and “CPU-Balance” refers to the VNT remapping
algorithm developed in [24], which tries to remap VNTs to

10

k=4 k=8 k=32 k=128

HOE-DCNs with k-ray Fat-Tree

0

200

400

600

800

1000

1200

E
s
ti
m

a
te

d
 L

a
te

n
c
y
 o

f
V

M
 M

ig
ra

ti
o
n

Exact

Bilevel

Single-level

CPU-Balance

(a) Estimated latency of VM migration

k=4 k=8 k=32 k=128

HOE-DCNs with k-ray Fat-Tree

0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 R

a
ti
o
 o

f
H

o
t-

S
p
o
ts Exact

Bilevel

Single-level

CPU-Balance

(b) Average ratio of resource hot-spots

Fig. 3. Results for HOE-DCNs in different scales (Exact only runs in the
4-ray fat-tree).

balance the CPU usages on the racks in an HOE-DCN. We
set γ1 = γ2 = 0.1 for Bilevel to ensure that its approximation
ratio is at least 0.9, and similarly, the approximation ratios of
Single-level and CPU-Balance are also maintained above 0.9.
Due to the time complexity of Exact, it can only be solved for
the HOE-DCN with 4-ray fat-tree. Fig. 3(a) shows the results
on estimated latency of VM migration, while the results in
Fig. 3(b) denote the average ratio of the number of resource
hot-spots to its upper-limit (i.e., g∗

ĝ). For the HOE-DCN with
4-ray fat-tree, the results in Fig. 3 confirm that the solution of
Bilevel is close to that of Exact, for both the estimated latency
of VM migration and the average ratio of resource hot-spots.

As the primary objective of Single-level is to minimize
the estimated latency of VM migration, it performs the best
among the four algorithms in Fig. 3(a). However, it also
provides much larger average ratio of resource hot-spots in Fig.
3(b) than Exact, Bilevel and CPU-Balance, which suggests
that the single-level optimization has difficulty to balance the
tradeoff between the primary and secondary objectives well
with empirically-assigned weights. Similarly, as the objective
of CPU-Balance is to balance the CPU usages on the racks,
it can reduce the number of resource hot-spots in Fig. 3(b),
with a relatively large number of VM migrations. Hence, its
estimated latency of VM migration is the longest in Fig. 3(a).
On the other hand, Bilevel balances the tradeoff much better
than Single-level and CPU-Balance, especially for the large-
scale HOE-DCNs (i.e., those with {32, 128}-ray fat-trees).

Table V shows the running time of the algorithms. It can
be seen that Exact can only be solved for the HOE-DCN
in the smallest scale, while Bilevel, Single-level and CPU-

TABLE V
RUNNING TIME OF ALGORITHMS (SECONDS)

Scale of HOE-DCN k = 4 k = 8 k = 32 k = 128

Exact 1438.854 - - -
Bilevel 0.0001 0.008 0.434 13.258

Single-level 0.0001 0.010 0.634 35.214
CPU-Balance 0.0001 0.010 0.444 14.137

Balance are much more time-efficient. The running time of
Bilevel is the shortest, which is significantly shorter than that
of Single-level. This is because for Bilevel and Single-level,
the procedure of LP relaxation and randomized rounding takes
the major part of their running time, while Single-level has
more constraints to handle in the procedure.

Balanced-type IT-type I/O-type

HOE-DCN Environment

0

200

400

600

800

1000

E
s
ti
m

a
te

d
 L

a
te

n
c
y
 o

f
V

M
 M

ig
ra

ti
o
n

Bilevel

Single-level

CPU-Balance

(a) Estimated latency of VM migration

Balanced-type IT-type I/O-type

HOE-DCN Environment

0

0.05

0.1

0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 R

a
ti
o
 o

f
H

o
t-

S
p
o
ts Bilevel

Single-level

CPU-Balance

(b) Average ratio of resource hot-spots

Fig. 4. Results for HOE-DCNs with different VNTs (128-ray fat-tree).

C. Performance in HOE-DCNs with Different VNTs

Note that, the network services in DCNs can use different
types of VNTs, e.g., the VNTs focus their resource usages
on IT and bandwidth resources can be classified as IT-bound
and I/O-bound ones, respectively [7]. For instance, a network
service of MapReduce [14] usually organizes its VMs (i.e., the
name-nodes and data-nodes) as a cluster-type VNT. Here, a
typical MapReduce service such as WordCount (i.e., counting
word occurrences in a give set) usually focuses its resource
usages on CPU cycles and memory, and thus it uses an IT-
bound VNT, while another typical service of MapReduce,
namely, Teragen, which generates and distributes random data,
consumes much more bandwidth than WordCount and hence
can be classified as I/O-bound [17]. Meanwhile, there are also
VNTs that have alternate bandwidth-intensive and computing-
intensive phases, e.g., those for distributed machine learning

11

0 2 4 6 8 10

Iteration Number

0

0.1

0.2

0.3

0.4

R
e
la

ti
v
e
 G

a
p

Balanced-type

IT-type

I/O-type

(a) Convergence of Algorithm 4

0 2 4 6 8 10

Iteration Number

0

0.05

0.1

0.15

0.2

0.25

0.3

R
e
la

ti
v
e
 G

a
p

Balanced-type

IT-type

I/O-type

(b) Convergence of Algorithm 5

Fig. 5. Convergence performance of Bilevel (128-ray fat-tree).

[53]. To address these practical cases, we consider three types
of HOE-DCN scenarios, where the ratio between IT-bound
and I/O-bound VNTs is set as 1 : 1, 4 : 1 and 1 : 4, namely,
Balanced-type, IT-type and I/O-type, respectively.

This time, we only consider the HOE-DCN with 128-ray
fat-tree. The results in Fig. 4 still illustrate that Bilevel can
balance the two objectives much better than the benchmarks.
Meanwhile, it is interesting to notice that the average ratios
of resource hot-spots obtained in the I/O-type HOE-DCN
environment are much smaller than those obtained in the other
two environments. This is due to the abundant bandwidth
provided by the OCS part, i.e., if the resource hot-spots are
mainly caused by high bandwidth usages on VLs, they can be
easily addressed with the VNT remapping that reconfigures the
VLs onto optical connections. For these large-scale problems,
we also analyze the convergence performance of Bilevel, and
plot the convergence of the approximation algorithms for
the upper and lower optimizations (i.e., Algorithms 4 and 5,
respectively) in Fig. 5. We observe that the relative gaps of
both algorithms can be reduced to below 0.1 in only a few
iterations, which further verifies the time-efficiency of Bilevel.

Finally, we would like to confirm that for the large-scale
problems, Bilevel can always balance the tradeoff between
the two objectives better than the benchmarks, no matter
what weight α is used in Eq. (26). Fig. 6 shows the results,
where we plot the average ratio of resource hot-spots versus
the estimated latency of VM migration, to show the tradeoff
clearly. Each curve of Single-level is obtained by changing
the value of α. It can be seen that in each case, the data point
for the results from Bilevel is always below the curve for the
results from Single-level. This verifies that Bilevel balances
the tradeoff better than Single-level, regardless of the choice
of α, i.e., the hassle of empirical parameter adjustments can

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Average Ratio of Hot-Spots

0

200

400

600

800

1000

E
s
ti
m

a
te

d
 L

a
te

n
c
y
 o

f
V

M
 M

ig
ra

ti
o
n

Bilevel (Balanced-type)

Bilevel (IT-type)

Bilevel (I/O-type)

Single-level (Balanced-type)

Single-level (IT-type)

Single-level (I/O-type)

CPU-Balance (Balanced-type)

CPU-Balance (IT-type)

CPU-Balance (I/O-type)

Fig. 6. Performance on tradeoff balancing (128-ray fat-tree).

be avoided by Bilevel. Meanwhile, Fig. 6 also indicates that
Bilevel balances the tradeoff much better than CPU-Balance.

VI. CONCLUSION

In this work, we studied the problem of VNT remapping in
an HOE-DCN from a novel perspective, i.e., the remapping
schemes should be optimized for not only the network status
after the remapping but also the transition to realize it.
Specifically, we modeled the problem of VNT remapping as a
bilevel optimization, where the upper-level optimization aims
at selecting proper VMs to migrate such that the estimated
latency of VM migration can be minimized, and the lower-
level optimization determines the actual scheme of VNT
remapping for minimizing the number of resource hot-spots.
We first formulated a BMILP model for the bilevel optimiza-
tion, and then proposed a polynomial time algorithm based on
enumeration to solve it directly but approximately. Extensive
simulations confirmed the effectiveness of our proposal, and
the results verified that it can get near-optimal solutions
whose performance gaps to the optimal ones are bounded, and
balance the tradeoff between the two objectives much better
than the benchmarks based on single-level optimizations.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC project
61871357, SPR Program of CAS (XDC02070300), Funda-
mental Funds for Central Universities (WK3500000006), and
the Science Foundation of Shenzhen City under grants JSG-
G20191127151401743 and JCYJ20190808165401679.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] Cisco Visual Networking Index, 2017-2022. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html.

[3] Y. Tian, R. Dey, Y. Liu, and K. Ross, “Topology mapping and geolo-
cating for China’s Internet,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
pp. 1908–1917, Sept. 2012.

[4] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[5] N. Farrington et al., “Helios: a hybrid electrical/optical switch archi-
tecture for modular data centers,” ACM SIGCOMM Comput. Commun.
Rev., vol. 40, pp. 339–350, Oct. 2010.

12

[6] K. Chen et al., “OSA: An optical switching architecture for data cen-
ter networks with unprecedented flexibility,” IEEE/ACM Trans. Netw.,
vol. 22, pp. 498–511, Apr. 2013.

[7] H. Fang et al., “Predictive analytics based knowledge-defined orchestra-
tion in a hybrid optical/electrical datacenter network testbed,” J. Lightw.
Technol., vol. 37, pp. 4921–4934, Oct. 2019.

[8] Q. Li et al., “Scalable knowledge-defined orchestration for hybrid
optical/electrical datacenter networks,” J. Opt. Commun. Netw., vol. 12,
pp. A113–A122, Feb. 2020.

[9] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[10] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[11] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[12] N. Bitar, S. Gringeri, and T. Xia, “Technologies and protocols for data
center and cloud networking,” IEEE Commun. Mag., vol. 51, pp. 24–31,
Sept. 2013.

[13] M. Bari et al., “Data center network virtualization: A survey,” IEEE
Commun. Surveys Tuts., vol. 15, pp. 909–928, Second Quarter 2013.

[14] D. Borthakur, The Hadoop Distributed File System: Architecture and
Design. Apache Software Foundation, 2007.

[15] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[16] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[17] B. Kong et al., “Demonstration of application-driven network slicing and
orchestration in optical/packet domains: On-demand vDC expansion for
Hadoop MapReduce optimization,” Opt. Express, vol. 26, pp. 14 066–
14 085, May 2018.

[18] J. Duan and Y. Yang, “A load balancing and multi-tenancy oriented data
center virtualization framework,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, pp. 2131–2144, Aug. 2017.

[19] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[20] S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitless vSDN
reconfiguration to balance substrate TCAM utilization: From algorithm
design to system prototype,” IEEE Trans. Netw. Serv. Manag., vol. 16,
pp. 647–660, Jun. 2019.

[21] C. Leiserson, “Fat-trees: Universal networks for hardware-efficient su-
percomputing,” IEEE Trans. Comput., vol. C-34, pp. 892–901, Oct.
1985.

[22] Polatis Series 7000 Software-Defined Optical Circuit Switch.
[Online]. Available: https://www.polatis.com/series-7000-384x384-port/
-software-controlled-optical-circuit-switch-sdn-enabled.asp

[23] S. Zhao and Z. Zhu, “Network service reconfiguration in hybrid opti-
cal/electrical datacenter networks,” in Proc. of ONDM 2020, pp. 1–6,
May 2020.

[24] S. Zhao and Z. Zhu, “On virtual network reconfiguration in hybrid
optical/electrical datacenter networks,” J. Lightw. Technol., vol. 38, pp.
6424–6436, Aug. 2020.

[25] A. Toutov, A. Vorozhtsov, and N. Toutova, “Estimation of total mi-
gration time of virtual machines in cloud data centers,” in Proc. of
IT&QM&IS 2018, pp. 389–393, Nov. 2018.

[26] A. Choudhary et al., “A critical survey of live virtual machine migration
techniques,” J. Cloud Comp., vol. 6, pp. 23:1–41, Nov. 2017.

[27] J. Luo, X. Fan, and L. Yin, “Communication-aware and energy saving
virtual machine allocation algorithm in data center,” in Proc. of HPC-
C/SmartCity/DSS 2019, pp. 819–826, Oct. 2019.

[28] Q. Lv, F. Zhou, and Z. Zhu, “On the bilevel optimization to design
control plane for SDONs in consideration of planned physical-layer
attacks,” IEEE Trans. Netw. Serv. Manag., vol. 37, pp. 1113–1122, Feb.
2021.

[29] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[30] M. Rabbani et al., “On tackling virtual data center embedding problem,”
in Proc. of IFIP/IEEE IM 2013, pp. 177–184, May 2013.

[31] X. Wen et al., “Towards reliable virtual data center embedding in
software defined networking,” in Proc. of MILCOM 2016, pp. 1059–
1064, Nov. 2016.

[32] W. Fang et al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnections,” J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Mar. 2015.

[33] R. Munoz et al., “Integrated SDN/NFV management and orchestration
architecture for dynamic deployment of virtual SDN control instances
for virtual tenant networks [invited],” J. Opt. Commun. Netw., vol. 7,
pp. B62–B70, Nov. 2015.

[34] J. Yin et al., “Experimental demonstration of building and operating
QoS-aware survivable vSD-EONs with transparent resiliency,” Opt.
Express, vol. 25, pp. 15 468–15 480, 2017.

[35] Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,” J. Opt. Commun. Netw., vol. 10, pp. A206–
A215, Feb. 2018.

[36] Y. Cui et al., “Traffic-aware virtual machine migration in topology-
adaptive DCN,” IEEE/ACM Trans. Netw., vol. 25, pp. 3427–3440, Sept.
2017.

[37] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” IEEE Trans. Cloud Comput.,
vol. 7, pp. 1168–1182, May 2019.

[38] S. Zhao, X. Pan, and Z. Zhu, “On the parallel reconfiguration of virtual
networks in hybrid optical/electrical datacenter networks,” in Proc. of
GLOBECOM 2020, pp. 1–6, Dec. 2020.

[39] M. Najm and V. Tamarapalli, “VM migration for profit maximization in
federated cloud data centers,” in Proc. of COMSNETS 2020, pp. 882–
884, Mar. 2020.

[40] A. Zhou, S. Wang, X. Ma, and S. Yau, “Towards service composition
aware virtual machine migration approach in the cloud,” IEEE Trans.
Serv. Comput., vol. 13, pp. 735–744, Dec. 2020.

[41] J. Bard, “Some properties of the bilevel programming problem,” J.
Optimiz. Theory App., vol. 68, pp. 371–378, Feb. 1991.

[42] P. Poirion, S. Toubaline, C. D’Ambrosio, and L. Liberti, “Bilevel
mixed-integer linear programs and the zero forcing set,” Optimiz., pp.
1–15, Nov. 2015. [Online]. Available: http://www.optimization-online.
org/DB FILE/2015/11/5210.pdf.

[43] H. Haghighat and B. Zeng, “Bilevel mixed integer transmission expan-
sion planning,” IEEE Trans. Power Syst., vol. 33, pp. 7309–7312, Aug.
2018.

[44] B. Zeng and Y. An, “Solving bilevel mixed integer program
by reformulations and decomposition,” Optimiz., pp. 1–34, Jun.
2014. [Online]. Available: http://www.optimization-online.org/DB
FILE/2014/07/4455.pdf.

[45] J. Moore and J. Bard, “The mixed integer linear bileve programming
problem,” Oper. Res., vol. 38, pp. 911–921, Jul. 1990.

[46] M. Held, P. Wolfe, and H. Crowder, “Validation of subgradient opti-
mization,” Math. Program., vol. 6, pp. 62–88, Dec. 1974.

[47] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[48] D. Dubhashi and A. Panconesi, Concentration of Measure for the

Analysis of Randomized Algorithms. Cambridge University Press, 2009.
[49] Point of delivery (networking). [Online]. Available: https://en.wikipedia.

org/wiki/Point of delivery (networking)#cite note-1.
[50] S. Zafar, A. Bashir, and S. Chaudhry, “On implementation of DCTCP

on three-tier and fat-tree data center network topologies,” SpringerPlus,
vol. 5, pp. 1–18, Jun. 2016.

[51] Amazon EC2 instances. [Online]. Available: https://aws.amazon.com/
cn/ec2/instance-types/.

[52] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[53] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. of OSDI 2014, pp. 583–598, Oct. 2014.

