
Research Article Journal of Optical Communications and Networking 1

Topology configuration scheme for accelerating Coflow
in Hyper-FleX-LION
HAO YANG1,2 AND ZUQING ZHU1,*

1School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
2Department of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
*Corresponding author: zqzhu@ieee.org

Compiled August 17, 2022

In order to address the challenges that data center networks (DCNs) are currently facing, people have
tried to introduce optical circuit switching (OCS) in DCNs and proposed a number of architectures, for
improving DCNs’ performance on port capacity, energy efficiency, data transfer latency, etc. This led to a
few all-optical interconnects (AOIs), among which Hyper-FleX-LION possesses the reconfigurability that
can support various traffic patterns efficiently. In this work, we study the topology management of AOIs in
Hyper-FleX-LION for efficiently scheduling Coflows in them, such that the average Coflow completion
time (CCT) can be minimized. We first propose time-efficient algorithms to address the provisioning
of a single Coflow and then extend them for multi-Coflow scenarios. Simulation results demonstrate
that AOIs in Hyper-FleX-LION can accelerate Coflows better than the traditional AOIs based on optical
cross-connects (OXCs), and achieve an acceleration of up to 5.6× under the assumed situations. Our
simulations also verify that for Coflow scheduling in Hyper-FleX-LION, our proposal can reduce the
average CCT of Coflows and outperform benchmarks significantly. © 2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Recently, the explosive development of cloud services has moti-
vated intensive research and development on data centers (DCs)
[1]. Therefore, the infrastructure of DC networks is undergo-
ing revolutionary changes to address the mismatch between
quality-of-service (QoS) demands of network services and ca-
pacity/latency/cost of the interconnects among computing and
storage platforms in DCs. Specifically, the traditional intercon-
nects that are solely based on electrical packet switching (EPS)
are facing many challenges such as limited port capacity, ever-
increasing energy consumption, and prolonged latency due to
packet processing and queuing in EPS switches [2, 3]. Mean-
while, optical circuit switching (OCS) is a promising alternative,
since it provides larger port capacity, higher energy efficiency,
and shorter data transfer latency than EPS [4–8]. To this end,
all-optical interconnects (AOIs) based on OCS have been intro-
duced to DC networks (DCNs) [9–14] to relieve the EPS-induced
bottlenecks there, especially for accelerating the tasks whose
completion relies on the delivery of huge amounts of elephant
flows (e.g., large-scale distributed machine learning (DML) [15]).

Compared with EPS, OCS improves the performance of in-
terconnects, but it is also less adaptive due to the relatively
large switching granularity at the port or wavelength level [4].
Although this drawback can be partially addressed by lever-
aging virtualization techniques to groom the traffic of similar

network services with virtual networks [16–18], the reconfigura-
bility of an AOI cannot be fully explored without a sophisticated
algorithm to manage its topology and schedule traffic through
it adaptively [19]. However, for each type of AOIs, such an
algorithm is unique. Hence, the topic is still under-explored,
especially for new types of AOIs.

More importantly, an emerging network service such as DML
can involve multiple correlated data flows, whose overall per-
formance determines its QoS [15]. Therefore, the topology man-
agement and traffic scheduling algorithm that treats the data
flows independently might not work well in such a situation.
The correlated data flows of a network service can be modeled
as a Coflow, whose completion time (i.e., Coflow completion
time (CCT)) is the time when the data transfers of all the flows
have been accomplished [20]. To minimize CCT, previous stud-
ies have proposed various algorithms to schedule Coflows in
EPS-based DCNs [21–23], and people have also addressed the
problem of topology management and Coflow scheduling in a
few specific AOIs [24–27].

Lately, Yoo et al. have proposed and fabricated an integratable
OCS device, namely, FleX-LIONS [28, 29], with which large-scale
reconfigurable AOIs (i.e., Hyper-FleX-LIONs) can be built to sup-
port various traffic patterns efficiently [13]. Fig. 1(a) shows an
illustrative example on an AOI that is in Hyper-FleX-LION and
connects four top-of-rack switches (ToRs). The AOI has an ar-

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Research Article Journal of Optical Communications and Networking 2

A

W

G

R

Rack

1

T

O

R

0

1

2

3

M
U
X 0123

W
S
S

0123

Rack

2

T

O

R

0

1

2

3

M
U
X

0123

W
S
S

0123

Rack

3

T

O

R

0

1

2

3

M
U
X

0123

W
S
S

Rack

4

T

O

R

0

1

2

3

M
U
X

0123

W
S
S

0123

Rack

1

T

O

R

0

1

2

3

D
E
M
U
X

0321

W
S
S

0321

Rack

2

T

O

R

0

1

2

3

D
E
M
U
X

1032

W
S
S

1032

Rack

3

T

O

R

0

1

2

3

D
E
M
U
X

2103

W
S
S

Rack

4

T

O

R

0

1

2

3

D
E
M
U
X

3210

W
S
S

3210

rack2

rack4

rack3

rack1

rack4

rack3

rack1

rack4

rack2

rack1

rack3

rack2

rack1

rack1

rack1

rack2

rack2

rack2

rack3

rack3

rack3

rack4

rack4

rack4

All-Optical Interconnect

(a) Network architecture

(b) Topology configuration for scheduling a Coflow

Fig. 1. Coflow scheduling in an AOI that is in Hyper-FleX-
LION and connects four ToRs, MUX/DEMUX: wavelength
multiplexer/demultiplexer, WSS: wavelength selective switch,
AWGR: arrayed waveguide grating router.

rayed waveguide grating router (AWGR) working as the core,
and the sending/receiving parts of each ToR are respectively
plotted at its left/right sides. In general, for a Hyper-FleX-LION
that connects N ToRs (i.e., N = 4 in Fig. 1(a)), each ToR equips
N transceivers (TRXs), each of which transmits in a unique
wavelength-division multiplexing (WDM) channel and can re-
ceive optical signal in any of the N WDM channels. In Fig.
1(a), we label the WDM channels from the TRXs with numbers
and color each number to mark the source ToR of each optical
connection.

In the sending part, all the outputs of a ToR are first multi-
plexed by a WDM multiplexer (MUX) and then sent to a 1×N
wavelength selective switch (WSS). The WSS connects one of
its outputs to the AWGR, while its remaining N − 1 outputs
directly go to the N − 1 WSS’ that locate in the receiving parts
of other ToRs, respectively. For instance, the second output of
the WSS in the sending part of ToR 1 connects to the second
input of the WSS in the receiving part of ToR 2. Then, in the
receiving part of each ToR, the optical signals, which are from
the WSS’ in the transmitting parts of other ToRs and the AWGR,
are distributed to the ToR’s TRXs by a WSS and a WDM demul-
tiplexer (DEMUX).Note that, together with the WSS, the AWGR
achieves effective wavelength switching with a small port count.
Specifically, it switches optical signals from an input to different
outputs according to their WDM channels. For instance, in Fig.
1(a), ToR 1 has four TRXs operating in different WDM channels,
respectively, and after the WSS in the sending part, the WDM
channels are all forwarded to the first input of the AWGR, which
respectively switches them to the four outputs according to their
wavelengths (i.e., Channel 0 to the first output, Channel 1 to the

second output, and so on so forth). The AWGR is a necessary
component in the integrated Silicon photonic version of Hyper-
FleX-LION [28]. However, it can be replaced with a full-mesh
interconnection in the Hyper-FleX-LION in Fig. 1(a) (i.e., an im-
plementation of the integrated version with bulk components),
because the WSS’ can also realize wavelength switching.

Such a structure brings high flexibility to the traffic schedul-
ing in AOIs. Specifically, we can adjust the WSS’ in the send-
ing/receiving parts of an AOI in Hyper-FleX-LION and utilize
the wavelength switching in its AWGR to realize various AOI
topologies for adaptive traffic scheduling, especially to support
the inter-rack communications other than unicast (e.g., multicast
and incast). Moreover, although an AOI in Hyper-FleX-LION
uses the OCS facilitated by the WSS’ and AWGR, it does not rule
out the possibility of packet switching for highly dynamic flows
in DCs. This is because the ToR switches are packet-based, i.e.,
even without changing the topology of the AOI, the ToR switches
can switch flows to different TRXs at the packet level. For ex-
ample, in [30], we experimentally demonstrated that an AOI
in Hyper-FleX-LION achieved better acceleration of DML jobs
than a hybrid optical/electrical interconnect (HOEI) that was
architected with packet switches and an optical cross-connect
(OXC).

Fig. 1(b) explains how to leverage the flexibility of Hyper-
FleX-LION to schedule a Coflow. Here, the left subplot shows
the configuration of the Coflow, where each of the destination
ToRs of a ToR is plotted as a row and the block in each row
represents the amount of data transfer to the destination ToR for
the Coflow. For instance, at ToR 1, the Coflow needs to transmit
3 units and 1 unit of data to ToRs 2 and 4, respectively. Then, we
can configure the Hyper-FleX-LION as that in the right subplot
to minimize the CCT of the Coflow, where the WDM channels
without boxes are switched by the AWGR and those marked
with boxes go directly between WSS’ in the sending/receiving
parts. For example, λ0 and λ2 from ToR 1 are sent to ToR 2
directly without going through the AWGR. Hence, at ToR 1, the
capacity bandwidth to ToR 2 is three times of that to ToR 4, which
ensures that their data transfers can be finished at the same time
to shorten the Coflow’s CCT.

To the best of our knowledge, the topology management
and Coflow scheduling algorithm that is specifically designed
for the AOIs in Hyper-FleX-LION has not been addressed in
the literature, even though Hyper-FleX-LION’s ability on accel-
erating Coflows can be easily observed in the example in Fig.
1(b). Meanwhile, we can also see that due to the unique flexi-
bility of Hyper-FleX-LION, the algorithms that were designed
for scheduling Coflows in other types of AOIs [24–26] are not
applicable. This motivates us to study how to configure the
topology of an AOI in Hyper-FleX-LION and route the traffic of
Coflows accordingly to minimize CCT.

Specifically, we consider the algorithm design to schedule one
and multiple Coflows in an AOI in Hyper-FleX-LION, where
the network model is built with realistic system parameters, e.g.,
reconfiguration latency of Hyper-FleX-LION. We propose time-
efficient dynamic topology management and Coflow scheduling
algorithms to address the two scenarios, for minimizing CCT
as well as maximizing the port usage in Hyper-FleX-LION. Ex-
tensive simulations suggest that the AOIs in Hyper-FleX-LION
can accelerate Coflows better than the traditional AOIs that are
based OXCs, and our proposed algorithms can effectively reduce
CCT in both the single- and multi-Coflow scenarios.

The rest of the paper is organized as follows. We first briefly
survey the related work in Section 2. Section 3 provides the

Research Article Journal of Optical Communications and Networking 3

problem descriptions for the singe- and multi-Coflow scenarios.
In Section 4, we discuss the algorithm design, and the numer-
ical simulations are presented in Section 5. Finally, Section 6
summarizes the paper.

2. RELATED WORK

Considering the limitations of the model that treats the data
flows of a network service independently, people defined the
concept of Coflow in [20], which quickly gained intensive re-
search interests. As the primary and most-used inter-rack archi-
tecture for DCNs, EPS-based interconnects have been extensively
studied for Coflow scheduling. Varys [21] focused on sorting
out the correlations among Coflows and proposed a heuristic to
reduce the average CCT. The study in [23] formulated an inte-
ger linear programming (ILP) model to plan the provisioning
of a known set of Coflows for minimizing the total weighted
CCT, and it also designed approximation algorithms to reduce
the time complexity of problem solving. Zhang et al. [31] tried
to locate the critical data transfer in a Coflow, and developed
a bandwidth algorithm to avoid bandwidth contention. The
authors of [32] performed bandwidth-constrained routing for
each data transfer in a Coflow to reduce the chance of band-
width competition and thus minimize the average CCT. CODA
[33] leveraged machine learning to accurately identify the traffic
matrices of Coflows in a DCN, for optimizing their scheduling.
However, as the aforementioned studies were all based on EPS-
based interconnects, their proposals cannot be applied to solve
the problem of topology management and Coflow scheduling
in AOIs.

With the trend of adding OCS in DCNs, both HOEIs [9, 10]
and AOIs [11–13] have been proposed and demonstrated in
the past decade. Meanwhile, a few studies have considered
topology management and Coflow scheduling in these archi-
tectures, with the assumption that the OCS is based on OXC(s),
which can only provide one-to-one connectivity and a limited
number of topology variations [34]. For scheduling a single
Coflow, the study in [24] formulated an ILP model to solve the
topology management problem for minimizing the CCT, and
designed a polynomial-time approximation algorithm. Tan et
al. [25] leveraged the Birkhoff-von Neumann decomposition to
match the traffic matrix of each Coflow to a feasible AOI topol-
ogy, for reducing not only the CCT but also the number of OXC
reconfigurations. The authors of [26] tried to optimize the place-
ment of Coflow-related jobs, such that Coflows generated by the
jobs can make the best utilization of the OCS bandwidth in an
HOEI. Except for the OXC-based architectures considered above,
there are other AOI architectures that can offer better flexibility
(e.g., in [12, 19]), but Coflow scheduling has not been studied
in them. As for Hyper-FleX-LION, the existing investigations
only addressed the chip design and fabrication [28, 29], architec-
tural optimization [13], and proof-of-concept applications [30],
but Coflow scheduling was not considered either. In all, to the
best of our knowledge, the topology management and Coflow
scheduling in Hyper-FleX-LION have not been studied in the
literature, which justifies the novelty and contribution of this
work.

3. PROBLEM DESCRIPTION

In this section, we first explain the network model of topology
management and Coflow scheduling in Hyper-FleX-LION, and
then describe the optimizations that we would like to tackle with
algorithm design.

A. Network Model
We consider an AOI in Hyper-FleX-LION that connects N ToRs
and operates with the principle shown in Fig. 1(a). In the AOI,
each ToR equips N TRXs, which transmit in N adjacent WDM
channels (i.e., {λi, i ∈ [1, N]}). We denote the bandwidth capac-
ity of each TRX as B. Each Coflow can be defined as ck, where
k is its unique index, and the Coflow has two key parameters,
which are its arrival time tk

a and the data transfer matrix (DTM)
D̂k. The DTM D̂k is an N×N matrix, each of whose element d̂k

i,j
represents the size of the data that a Coflow ck needs to transfer
from ToR i to ToR j (i, j ∈ [1, N]). For the sake of convenience, we
normalize each element in DTM D̂k with the bandwidth capacity
of a TRX (i.e., B), and get a normalized DTM Dk for each Coflow
ck. Specifically, each element dk

i,j ∈ Dk is obtained as

dk
i,j = ⌈

d̂k
i,j

B
⌉, ∀i, j ∈ [1, N]. (1)

We assume that the time when dk
i,j has been transferred is tk

i,j.

Then, the CCT of ck is τk = max
∀i,j∈[1,N]

(
tk
i,j − tk

a

)
. Hence, to accel-

erate a Coflow ck, we need to minimize τk. Here, as the focus
of this work is algorithm design, we follow the existing studies
in this area [24–26] to assume that the CCT can be accurately
obtained with calculations. In real-world network systems, the
completion time of a data flow can also be got accurately with
a few methods, such as time-stamping [30, 35] and monitoring
the relevant packet queues on ToR switches [36]. Meanwhile, as
multi-hop forwarding will make traffic be processed by more
ToR switches and thus increase the average CCT of Coflows, we
do not consider it in this work. Specifically, we assume that for
transferring the data of Coflows, each ToR switch only receives
the traffic whose destination is its rack.

For simplicity, we denote a Hyper-FleX-LION that connects
N ToRs as N-Hyper-FleX-LION in the following discussions.
As the configuration of the N-Hyper-FleX-LION is the key for
Coflow acceleration, we define the network model for it based
on a binary variable f l

i,j, which equals 1 if ToR i uses the l-th TRX
on it to set up an optical connection to ToR j. Therefore, to avoid
wavelength contention at the receiving part of N-Hyper-FleX-
LION, its configuration should follow the following constraints.

∑
j∈[1,N]

f l
i,j ≤ 1, ∀i ∈ [1, N], ∀l ∈ [1, N],

∑
i∈[1,N]

f l
i,j ≤ 1, ∀j ∈ [1, N], ∀l ∈ [1, N],

(2)

which ensures that N-Hyper-FleX-LION can switch the optical
signal from each TRX on a ToR to one ToR at most, and all the
optical signals switched to a ToR have to use different WDM
channels.

Note that, to reconfigure N-Hyper-FleX-LION, we need to
change the status of the WSS’ in it, which also introduces latency,
and the reconfiguration latency of a WSS is usually in the range
of a few hundred milliseconds to seconds [37], and all the WSS’
in N-Hyper-FleX-LION can be reconfigured in parallel. Hence,
we define the latency of reconfiguring N-Hyper-FleX-LION once
as ϵ seconds, and to focus the analysis in this work more on the
architectural differences between AOIs and Coflow scheduling
algorithms, we consider the worst case scenario and assume
that the reconfiguration of N-Hyper-FleX-LION follows the all-
stop model [38], i.e., each reconfiguration increases the CCT of
each active Coflow by ϵ. Meanwhile, we need to check the
current network status from time to time to reconfigure the AOI

Research Article Journal of Optical Communications and Networking 4

for Coflow scheduling, with an interval that is longer than the
reconfiguration latency ϵ. Otherwise, AOI reconfigurations will
be triggered too frequently before they can actually be finished.
Moreover, we should set the interval properly to adjust the
tradeoff between the performance and complexity of Coflow
scheduling. To adapt to highly dynamic network environments,
the interval will be chosen empirically in real-world operations.

Fig. 2. Example on topology management for Coflow schedul-
ing.

B. Single-Coflow Scenario
Note that, an AOI in Hyper-FleX-LION can adjust its topology
freely with wavelength switching, and thus its switching granu-
larity is smaller than some well-known commercial OXCs (e.g.,
Polatis Series 6000 OXC), which can only switch at the port level
[25]. Therefore, compared with the AOIs built with such OXCs,
AOIs in Hyper-FleX-LION are more flexible and can support the
inter-rack communications other than unicast better. Specifically,
it can realize uneven connectivity among the N ToR more easily,
which is essential for Coflow acceleration. The single Coflow
acceleration scenario only tries to schedule the data transfers of
one Coflow c to minimize its CCT τ. For instance, we assume
that a Coflow c needs to be scheduled in the 4-Hyper-FleX-LION
shown in Fig. 1(a). The Coflow’s DTM D contains four non-zero
elements, as d1,2 = d2,3 = d3,4 = d4,1 = 3. If we denote the
bandwidth allocation from ToR i to ToR j as bi,j (having been

normalized with B already), the completion time of di,j is di,j
bi,j

.
Therefore, if we configure the AOI as that in the right subplot of
Fig. 1(b), the CCT of c is τ = 3

3 = 1.
Fig. 2 shows a straightforward example to explain why topol-

ogy management is important for Coflow scheduling. Here, we
consider a Coflow that needs to transfer data from ToR 1 to other
ToRs in an AOI in 4-Hyper-FleX-LION, with the DTM in Fig.
2(a), i.e., d1,2 = 12, d1,3 = 2, and d1,4 = 2. Fig. 2(b) illustrates a
feasible configuration of the AOI, where each black arrow de-
notes the optical connection from a TRX and the number on it
shows the calculation of the completion time for the data trans-
fer using it. For example, the completion time of d1,3 is 2

2 = 1.
Then, the CCT of the Coflow using the configuration in Fig. 2(b)
is 12. Similarly, the CCT with the configuration in Fig. 2(c) is 6,
representing a better solution.

Note that, the CCTs in Figs. 2(b) and 2(c) are obtained by
only planning the AOI’s configuration once, and we can further
reduce the Coflow’s CCT by leveraging the reconfigurability of
Hyper-FleX-LION. Specifically, with the configuration in Fig.

2(c), we can find that the TRXs for d1,3 and d1,4 become idle
after t = 2, when the data transfers using them have been done.
Hence, we can reconfigure the AOI to use the topology in Fig.
2(d) after t = 2. Then, the completion time of d1,2 = 12 be-
comes 4

2 + ϵ + 8
4 = 4 + ϵ, where ϵ is the reconfiguration latency.

Therefore, the Coflow’s CCT is further reduced.

C. Multi-Coflow Scenario
In a dynamic DCN environment, multiple Coflows can be gen-
erated on-the-fly. Therefore, we need to manage the topology of
Hyper-FleX-LION and schedule Coflows in it dynamically.For
this scenario, we aim to minimize the average CCT of all the
Coflows, following the optimization models in [25, 26].

Minimize
1
K ∑

k∈[1,K]
τk , (3)

where K is the total number of Coflows.

Fig. 3. Example on the effect of Coflow serving order on CCT.

When there are multiple Coflows, the order that we use to
serve them can also significantly affect their CCTs, as explained
in Fig. 3. Here, we need to schedule three Coflows whose arrival
time and completion time are marked with red and green vertical
lines, respectively. It can be seen that for the scheduling scheme
in Fig. 3(a), the three Coflows need to count 2 + 2 = 4 units of
waiting time in their CCTs, while the one in Fig. 3(b) only lets
c1 wait for 2 time units. Then, the serving order in Fig. 3(b) is
apparently better.

4. ALGORITHM DESIGN

In this section, we propose time-efficient dynamic topology man-
agement and Coflow scheduling algorithms to address the two
scenarios defined in the previous section.

A. Algorithm for Single-Coflow Scenario
We first propose an algorithm to solve the topology manage-
ment and Coflow scheduling in Hyper-FleX-LION for the single-
Coflow scenario. The algorithm treats an AOI in N-Hyper-FleX-
LION as a directed graph, where each node vi corresponds to
a ToR (i ∈ [1, N]) and each directed edge represents an optical
connection from a TRX. Then, the topology management is just
to plan the edges such that a Coflow’s CCT can be minimized.
The rationale behind our design is to find the necessary CCT τmin
for the Coflow and use it to guide the planning of the edges.
Specifically, τmin refers to the shortest time that is required for

Research Article Journal of Optical Communications and Networking 5

completing the Coflow, and it is determined by the largest ele-
ment(s) in its DTM. Therefore, for any data transfers in the DTM,
if the planned edges can already make its completion time not
longer than τmin, we do not need to allocate more edges to it.

Algorithm 1 describes our proposed procedure for calculat-
ing the configuration of an AOI in Hyper-FleX-LION based on
the remaining DTM of a Coflow D̃, each element of which is
the amount of remaining data that still needs to be transferred.
Lines 1-2 are for the initialization, where insert a node vi in the
directed graph G(V, E) to represent each ToR i, N+

i /N−
i denote

the numbers of available input/output ports on ToR i, respec-
tively, and bi,j is used to record the number of allocated edges
from ToR i to ToR j. Then, we calculate the total amounts of
data that each ToR needs to send and receive, and calculate the
necessary CCT τmin based on them (Lines 3-5). Lines 6-10 allocate
edges in G(V, E) based on each nonzero element in D̃. Next,
we check whether each nonzero element d̃i,j ∈ D̃ has a feasible
return path for the communication in the reverse direction, and
will add a direct edge (vj, vi) if the route does not exist (Lines
11-13). This operation is needed because for each data transfer
d̃i,j ∈ D̃, a connection in the reverse direction is still required for
supporting the data transfer protocol (e.g., carrying the control
signals of transmission control protocol (TCP)), even though the
actual data amount that is transmitted on the connection can be
very small.

Lines 14-24 try to assign more edges to accelerate each
nonzero data transfer d̃i,j ∈ D̃. Here, we use τi,j to record the
current completion time of d̃i,j (Line 16). If it is already not longer
than τmin, we do not need to assign more edges to it (Lines 17-
18). Otherwise, we assign more edges to it greedily until we
have τi,j ≤ τmin or the available ports on ToRs i and j have been
used up (Lines 19-24). Finally, Line 25 assigns WDM channels
to the allocated edges in G(V, E) under the constraints in Eq. 2,
which can be solved with an existing polynomial-time coloring
algorithm [39].

With Algorithm 1, we can obtain the configuration of an AOI
for a specific remaining DTM. Then, we design Algorithm 2 for
the topology management of the single-Coflow scenario, which
leverages reconfigurations to accelerate a Coflow. Line 1 uses Al-
gorithm 1 to obtain the initial serving scheme of the Coflow based
on its DTM D and provision it accordingly. Then, the while-loop
that covers Lines 2-11 constantly checks to see whether any data
transfer in D (i.e., di,j) has been accomplished. If yes, we deter-
mine whether and how to reconfigure the AOI with Lines 3-11.
Specifically, the idea is to leverage a reconfiguration to improve
the related port usage and reduce the completion time of a data
transfer if its current completion time is still longer than τmin.
Therefore, Line 4 gets the current running time t of the Coflow ,
and Lines 5-7 calculate the remaining running time t̂ of the data
transfers from ToR i. If we have t + t̂ > τmin, Algorithm 1 is ap-
plied to re-plan the AOI’s topology according to the remaining
DTM D̃ (Line 9). Then, Lines 10-11 check the remaining running
time τ′

min in the new topology, and only reconfigure the AOI if
the sum of τ′

min and reconfiguration latency ϵ is less than the
current remaining running time t̂.

B. Algorithm for Multi-Coflow Scenario

As for the algorithm that addresses the multi-Coflow scenario,
we would like to first reduce the average CCT by optimizing the
serving order of Coflows. Specifically, we get the necessary CCT
τmin,k of each Coflow k and serve the Coflows in the ascending
order of their necessary CCTs. Meanwhile, as τmin,k depends

Algorithm 1. Calculating AOI Configuration

Input: N, D̃
Output: G = (V, E), τmin, {bi,j, i, j ∈ [1, N]}

1: V = {vi, i ∈ [1, N]}, E = ∅, {bi,j = 0, ∀i, j ∈ [1, N]}
2: {N+

i = N−
i = N, ∀i ∈ [1, N]}, τmin = 0

3: for each ToR i ∈ [1, N] do

4: B1 = 1
N

N
∑

j=1
d̃i,j, B2 = 1

N

N
∑

j=1
d̃j,i

5: τmin = max (τmin, B1, B2)

6: for each ToR i ∈ [1, N] do
7: for each ToR j ∈ [1, N] do
8: if d̃i,j > 0 then
9: (vi, vj) → E, N+

i = N+
i − 1, N−

j = N−
j − 1

10: bi,j = bi,j + 1

11: for each d̃i,j > 0 in D̃ do
12: if no feasible path from vj to vi then
13: add (vj, vi) into E and update N+

j , N−
i and bj,i

14: for each ToR i ∈ [1, N] do
15: for each ToR j ∈ [1, N] do
16: τi,j = d̃i,j
17: if τi,j ≤ τmin then
18: continue
19: while (N+

i > 0) AND (N−
j > 0) do

20: bi,j = bi,j + 1
21: τi,j =

τi,j
bi,j

22: (vi, vj) → E, N+
i = N+

i − 1, N−
j = N−

j − 1;
23: if τi,j ≤ τmin then
24: break
25: use available WDM channels to color edges in G(V, E)
26: return G = (V, E), τmin, {bi,j, i, j ∈ [1, N]}

on the remaining DTM D̃k, its ranking may change as time
goes (or a new Coflow comes in). Therefore, we design our
algorithm based on the preemptive scheduling, which updates
the serving order of Coflows based on their latest necessary
CCTs and prioritizes the Coflow with the shortest τmin,k from
time to time.

Algorithm 3 shows our proposed algorithm for addressing the
multi-Coflow scenario, where we store all the pending Coflows
in set C and denote the main active Coflow as c∗ (whose cur-
rent necessary CCT is τmin,∗). Line 2 ensures that C is always
up-to-date. Then, we get the current remaining DTM D̃k of
each pending Coflow ck, update its necessary CCT, and sort the
Coflows in C accordingly (Lines 3-9). Next, if there does not
exist a main active Coflow, Lines 10-12 select the first Coflow
in C (i.e., the one with the shortest necessary CCT) as c∗, and
serve it with Algorithm 2. Here, the Algorithm 4 in Line 12 en-
ables the provisioning of the Coflows other than c∗ with the
remaining bandwidth resources in the AOI, and we will discuss
it later. Otherwise, if there exists a main active Coflow c∗ but its
necessary CCT satisfies τmin,1 + ϵ < τmin,∗ (i.e., the main active
Coflow should be replaced with the first Coflow in C), we stop
the provisioning of c∗ and update it as the first one in C (Lines
13-16).

Algorithm 4 explains how to leverage the remaining band-
width resources during serving the main active Coflow for pro-
visioning other Coflows in C. Line 1 is for the initialization.
Then, in the for-loop that covers Lines 2-5, we check each pend-

Research Article Journal of Optical Communications and Networking 6

Algorithm 2. Topology Management for Single-Coflow

Input: N, c, D, ϵ
1: apply Algorithm 1 with D̃ = D to get G = (V, E), τmin, and

{bi,j, i, j ∈ [1, N]}, and serve Coflow c accordingly
2: while Coflow c has not been completed do
3: if a data transfer di,j ∈ D is completed then
4: record the current running time in t
5: get the remaining DTM D̃, and assign t̂ = 0
6: for each ToR j′ ∈ [1, N] do

7: t̂ = max (t̂,
d̃i,j′

bi,j′
)

8: if t + t̂ > τmin then
9: apply Algorithm 1 with D̃ to get new G = (V, E),

τ′
min, and {bi,j, i, j ∈ [1, N]}

10: if t̂ > τ′
min + ϵ then

11: reconfigure AOI according to new G = (V, E)
for serving Coflow c

Algorithm 3. Topology Management for Multi-Coflow

Input: N, ϵ, C
1: while there still exist unfinished Coflows do
2: update C for newly-arrived/finished Coflow(s)
3: for each Coflow ck ∈ C do
4: get remaining DTM D̃k of ck
5: τmin,k = 0
6: for each ToR i ∈ [1, N] do

7: B1 = 1
N

N
∑

j=1
d̃k

i,j, B2 = 1
N

N
∑

j=1
d̃k

j,i

8: τmin,k = max (τmin,k, B1, B2)

9: sort Coflows in C in ascending order of {τmin,k}
10: if there does not exist an active Coflow then
11: select the first Coflow c1 in C as c∗

12: use Algorithm 2 to serve c∗ (with Algorithm 4)
13: else if τmin,1 + ϵ < τmin,∗ then
14: stop Algorithm 2
15: update c∗ to be the first Coflow c1 in C
16: use Algorithm 2 to serve c∗ (with Algorithm 4)

ing Coflow in C \ c∗, and try to relieve its bottleneck by assigning
edges to it greedily. Next, if there still exist available ports, we
allocate them to the data transfers of pending Coflows in sorted
order. Finally, for the updated graph G(V, E), Line 8 assigns
WDM channels to the newly-added edges under the constraints
in Eq. 2. Note that, to reduce the number of reconfigurations, Al-
gorithm 4 is only invoked when an AOI reconfiguration is about
to happen in Algorithm 2.

C. Complexity Analysis
Table 1 lists the time complexity of our algorithms, which sug-
gests that all of them run in polynomial time. Meanwhile, the
mutual calls among the algorithms are also in constant levels.
Therefore, our algorithms can solve the problems of topology
management and Coflow scheduling for the single- and multi-
Coflow scenarios in Hyper-FleX-LION time-efficiently.

5. PERFORMANCE EVALUATIONS

In this section, we discuss the numerical simulations that eval-
uate the performance of Hyper-FleX-LION on serving Coflow
and our proposals.

Algorithm 4. Filling Free Ports with Coflows

Input: G(V, E), C
Output: G(V, E)

1: calculate {N+
i , N−

i , ∀i ∈ [1, N]} according to G(V, E)
2: for each Coflow ck ∈ C \ c∗ do
3: get its remaining DTM D̃k
4: find the bottleneck that prolongs its CCT
5: add edges into E greedily to relieve the bottleneck and

update the corresponding {N+
i , N−

i }
6: while there still exist N+

i > 0 and N−
i > 0 and pending

Coflows do
7: add edges into E greedily for pending Coflows and up-

date the corresponding {N+
i , N−

i }
8: use available WDM channels to color edges in G(V, E)
9: return G(V, E)

Table 1. Time Complexity of Algorithms

Algorithms Time Complexity

Algorithm 1 O(3N2 + N3)

Algorithm 2 (each loop) O(N + 3N2 + N3)

Algorithm 3 (each loop) O(N + (|C|+ 3) · N2 + N3 + |C|2)
Algorithm 4 O((2|C|+ |C|2) · N2)

A. Simulation Setup
In the simulations, we assume that the Coflows are generated by
MapReduce. Specifically, we leverage the MapReduce traces col-
lected by Facebook and Yahoo [40] and adopt them to generate
the Coflows in the simulations. In order to describe the Coflows
clearly, we define three parameters as follows.

• Size of Coflow (α): It denotes the value of the largest element
in the DTM Dk of a Coflow ck, i.e., α = max

∀i,j
(dk

i,j).

• Density of Coflow (β): It denotes the ratio of nonzero ele-
ments in the DTM Dk of a Coflow ck. The higher the density
of a Coflow is, the more complex its inter-rack communi-
cations are. If the density of a Coflow equals 1, its DTM
requires all-to-all communications.

• Number of Coflows (γ): It describes the number of Coflows
that come in within a fixed interval.

With the parameters above, the simulations generate the
Coflows as follows. We first follow a specific density of Coflow
β to finalize the number of nonzero elements in the DTM of a
Coflow, and randomly choose the nonzero elements. Then, for
each nonzero element in the DTM, we randomly set its value
according to a specific size of Coflow α within [α

10 , α] Gb. In
order to emulate realistic traces, we leverage the scheme used in
[40] to combine the Coflows of different sizes as three workload
scenarios, as shown in Table 2.

The simulations consider four densities of Coflow as β ∈
{0.2, 0.4, 0.6, 0.8}, and set the duration of each simulation as
1, 000 seconds, i.e., dynamic Coflows are generated and served
within [0, 1000] seconds. In order to verify the algorithms’ per-
formance under different arrival speeds of Coflows, we simu-
late four scenarios, which have their number of Coflows set as
γ ∈ {200, 400, 600, 800} in each simulation, respectively.

Research Article Journal of Optical Communications and Networking 7

Table 2. Workload Scenarios in Simulations

Scenarios

Size in Gb (α)
10 100 500 1, 000

Low 60% 40% - -

Medium 40% 40% 20% -

High 30% 30% 20% 20%

We use the number of racks N to denote the scale of an AOI
in Hyper-FleX-LION. Since the scale of Hyper-FleX-LION can
be limited by a few factors, we set the upper-bound of N as
64 in the simulations, according to the analysis in [28]. Specifi-
cally, the simulations consider five types of Hyper-FleX-LION
in different scales, with N ∈ {4, 8, 16, 32, 64}. The bandwidth
capacity of each TRX is set as B = 10 Gbps, and the latency of
each reconfiguration is assumed to be ϵ = 1 second, according
to the experimental results in [30].

For performance evaluations, we introduce the metrics of
acceleration ratio. Specifically, we use the average CCT (defined
in Eq. (3)) of Hyper-FleX-LION or our proposals as the baseline,
compare the average CCT of the benchmarks to it, and obtain
the ratio between them as the acceleration ratio. For instance, if
the average CCT of our algorithm is 2 seconds while that of a
benchmark is 5 seconds, the acceleration ratio achieved by our
algorithm is 2.5. To maintain sufficient statistical accuracy, the
simulations average the results from 60 independent runs to get
each data point. Meanwhile, to show the stability of algorithms
in the simulations, we mark the range of 95% confidence interval
in our results.

B. Comparison of AOIs with OXC and Hyper-FleX-LION
We first compare an AOI in Hyper-FleX-LION with that built
with OXC to see their performance on Coflow scheduling. The
detailed simulation setup is as follows

• AOI in Hyper-FleX-LION: The AOI is built with an N-
Hyper-FleX-LION, and the Coflows in it are served with
Algorithms 1-4 designed in Section 4.

• AOI with OXC: The AOI is built with an N×N OXC, which
can switch at the port level. Specifically, as shown in Fig.
4, we replace the WSS’ and AWGR in Hyper-FleX-LION
with such an OXC, i.e., each ToR still equips N TRXs whose
outputs are multiplexed and connect to one port on the
OXC. Then, the capacity of each port on OXC is N · B. We
use the algorithm developed in [25] to serve Coflows in the
AOI.

The simulations set the parameters of Coflows as β = 0.4, γ =
400, and consider all the workload scenarios in Table 2.

Fig. 5 shows the results on normalized average CCT obtained
in AOIs with OXC and Hyper-FleX-LION. Here, for illustrative
comparisons, we first normalize the average CCT obtained in
the AOI in Hyper-FleX-LION as 1, and then respectively nor-
malize the results obtained in the AOI with OXC accordingly.
Therefore, the normalized average CCT of the AOI with OXC
can also be understood as the acceleration ratios of the AOI
in Hyper-FleX-LION achieved over it. We first only consider
the medium workload scenario and simulate AOIs in various
scales. Fig. 5(a) illustrates the results, which indicate that the
AOI in Hyper-FleX-LION always provides a shorter average
CCT than that with OXC. More importantly, the advantage of

A

W

G

R

Rack

1

T

O

R

0

1

2

3

M
U
X 0123

W
S
S

0123

Rack

2

T

O

R

0

1

2

3

M
U
X

0123

W
S
S

0123

Rack

3

T

O

R

0

1

2

3

M
U
X

0123

W
S
S

Rack

4

T

O

R

0

1

2

3

M
U
X

0123

W
S
S

0123

Rack

1

T

O

R

0

1

2

3

D
E
M
U
X

0321
W
S
S

0321

Rack

2

T

O

R

0

1

2

3

D
E
M
U
X

1032

W
S
S

1032

Rack

3

T

O

R

0

1

2

3

D
E
M
U
X

2103

W
S
S

Rack

4

T

O

R

0

1

2

3

D
E
M
U
X

3210

W
S
S

3210

rack2

rack4

rack3

rack1

rack4

rack3

rack1

rack4

rack2

rack1

rack3

rack2

rack1

rack1

rack1

rack2

rack2

rack2

rack3

rack3

rack3

rack4

rack4

rack4

All-Optical Interconnect

Optical Cross-Connect (OXC)

Fig. 4. Structures of AOI in Hyper-FleX-LION and AOI with
OXC.

Hyper-FleX-LION increases significantly with the scale of the
AOI. The reason for this is two-fold: 1) compared with OXC,
Hyper-FleX-LION provides more flexibility for managing the
AOI topology, which is essential for scheduling Coflows adap-
tively, and 2) our proposed algorithms are well-designed to fully
explore the flexibility of Hyper-FleX-LION. In Fig. 5(a), the ac-
celeration ratios of the AOI in Hyper-FleX-LION over that with
OXC have an average of 3.06 and the maximum of 5.6.

Fig. 5(b) shows the results on normalized average CCT for
different workloads, which are obtained by fixing the scale as
N = 16. We can see that the AOI in Hyper-FleX-LION still al-
ways outperforms that with OXC. This time, when the workload
increases, the performance gap between the two types of AOIs
actually decreases. This is because for a higher workload, more
of the TRXs in the AOI are saturated, which makes the flexibility
of Hyper-FleX-LION less beneficial. Note that, according to the
analysis in [40], the Coflows in very large sizes in the medium
and high workload scenarios (i.e., those with α = {500, 1000}
Gb) are actually rare in realistic DCNs. Therefore, the AOI’s
performance for the low workload scenario is more important
in practice. In Fig. 5(b), the acceleration ratios of the AOI in
Hyper-FleX-LION have an average of 3.3 and the maximum of
5.1.

C. Coflow Scheduling in Hyper-FleX-LION
We then further evaluate the performance of our proposed algo-
rithms for the topology management and Coflow scheduling in
AOIs in Hyper-FleX-LION. The simulations consider the follow-
ing algorithms. As we have explained, due to the uniqueness
of Hyper-FleX-LION, the algorithms designed for scheduling
Coflows in other types of AOIs become inapplicable in it. There-
fore, it is difficult for us to use existing algorithms in the litera-
ture as benchmarks.

• Ours: Our complete proposal that uses Algorithms 1-4.

• Rand: The algorithm that follows the general procedure of
Ours but allocates TRXs to Coflows randomly, not based on
their necessary CCTs.

• SimpleFill: The algorithm that follows the general pro-
cedure of Ours but does not use Algorithm 4. Instead, it
randomly selects unserved Coflows to fill the unused TRXs
in the AOI.

Research Article Journal of Optical Communications and Networking 8

4 8 16 32 64

Scale of AOI (N)

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

C
T

(a) Performance of AOIs in various scales (medium workload)

Low Medium High

Workload Scenarios

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

C
T

(b) Performance for different workloads (N = 16)

Fig. 5. Normalized average CCT in AOIs with OXC and
Hyper-FleX-LION.

• FAFS: The algorithm that follows the general procedure of
Ours, except for the preemptive scheduling. Specifically, it
serves the Coflows in the order of their arrival time (i.e., first
arrive and first serve (FAFS)), and only proceeds to serve the
next Coflow when the current one has been accomplished.

We first perform simulations to compare the algorithms’ per-
formance in different scales of Hyper-FleX-LION. Specifically,
we set β = 0.6 and γ = 600, select the medium workload sce-
nario, and change N from 4 to 64. Fig. 6 shows the results
on normalized average CCT. This time, we first normalize the
average CCT obtained with Ours as 1, and then respectively
normalize the results of other algorithms accordingly. Therefore,
the results of other algorithms can also be understood as the ac-
celeration ratios of Ours achieved over it. We observe that Ours
performs the best to provide the shortest average CCT, followed
by FAFS, while the performance of Rand is the worst. Moreover,
the performance gap between Ours and Rand increases signif-
icantly with N. This actually confirms the effectiveness of our
bandwidth allocation scheme based on Coflow’s necessary CCTs,
i.e., the scheme can effectively relieve the bottleneck of the data
transfers in each Coflow. Meanwhile, the advantages of Ours
over SimpleFill and FAFS verify the effectiveness of Algorithm 4
and our preemptive scheduling. In Fig. 6, the acceleration ratios
of Ours over Rand, SimpleFill and FAFS have averages of 3.08,
1.68, and 1.32, respectively.

Then, we fix N = 32 and consider different workload scenar-

4 8 16 32 64

Scale of AOI (N)

0

1

2

3

4

5

6

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

C
T

Fig. 6. Performance of algorithms for Hyper-FleX-LION in
different scales.

ios. The results are shown in Fig. 7, which indicates that Ours
still performs the best, and the Rand’s performance is still the
worst. This further justifies the need of our necessary CCT based
bandwidth allocation scheme. Meanwhile, it is interesting to no-
tice that the performance gap between Ours and FAFS increases
with the workload, while that between Ours and the SimpleFill
decreases, and SimpleFill can perform worse than FAFS in the
high workload scenario. This suggests that when the workload
is higher, the importance of preemptive scheduling becomes
more but Algorithm 4 tends to be less beneficial. In Fig. 7, the
acceleration ratios of Ours over Rand, SimpleFill and FAFS have
averages of 4, 1.86, and 1.43, respectively.

Low Medium High

Workload Scenarios

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

C
T

Fig. 7. Performance of algorithms for different workloads.

Finally, we choose the medium workload scenario, fix N =
32, and change the values of β and γ to study their effects on
the algorithms’ performance, respectively. Fig. 8 explains the
effect of the density of Coflows β. Ours still performs the best,
followed by FAFS, and the performance of Rand is the worst,
except for the case of β = 0.8, where SimpleFill is the second best
algorithm. It can be seen that the performance gaps between
Ours and other algorithms generally decrease with the density
of Coflows β except FAFS. This is because when β increases, the
DMTs of Coflows become less sparse, which makes the adaptive
topology management enabled by Ours less effective over the
benchmarks. Meanwhile, a larger β can indirectly lead to more
Coflows being queued after their arrivals, which increases the
advantage of preemptive scheduling. Note that, according to
the study in [41], the inter-rack traffic density in realistic DCNs

Research Article Journal of Optical Communications and Networking 9

is usually low. In Fig. 8, the acceleration ratios of Ours over
Rand, SimpleFill and FAFS have averages of 4.17, 2.08, and 1.39,
respectively.

0.2 0.4 0.6 0.8

Density of Coflows ()

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

C
T

Fig. 8. Performance of algorithms for different densities of
Coflows.

Fig. 9 shows the effect of the number of Coflows γ. Once
again, Ours still performs the best, followed by FAFS, and the
performance of Rand is the worst. This time, the performance
gaps between Ours and other algorithms increase with the num-
ber of Coflows γ. This is because when γ increases, the arrival
interval between adjacent Coflows decreases, which makes the
adaptive topology management and Coflow scheduling enabled
by Ours more effective over the benchmarks. In Fig. 9, the ac-
celeration ratios of Ours over Rand, SimpleFill and FAFS have
averages of 4.22, 1.9, and 1.4, respectively.

200 400 600 800 1000

Number of Coflows ()

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

C
T

Fig. 9. Performance of algorithms for different numbers of
Coflows.

In all, the simulation results in Figs. 6-9 prove that Ours
is well-designed to fully explore the flexibility of Hyper-FleX-
LION for optimizing the topology management and Coflow
scheduling in AOIs in Hyper-FleX-LION.

6. CONCLUSION

In this work, we studied the topology management and Coflow
scheduling in AOIs in Hyper-FleX-LION. We first proposed
time-efficient algorithms to address the provisioning of a single
Coflow and then extended them for multi-Coflow scenarios. Our
simulation results confirmed that AOIs in Hyper-FleX-LION

could accelerate Coflows better than the traditional OXC-based
AOIs, and achieved an acceleration of up to 5.6×. As for the
Coflow scheduling in Hyper-FleX-LION, our proposal could
effectively reduce the average CCT of Coflows and outperform
all the benchmarks significantly.

ACKNOWLEDGMENTS

This work was supported by NSFC project 61871357 and Funda-
mental Fund for Central Universities (WK3500000006).

DISCLOSURES

The authors declare no conflicts of interest.

REFERENCES

1. P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly-efficient data
migration and backup for Big Data applications in elastic optical inter-
datacenter networks,” IEEE Netw. 29, 36–42 (2015).

2. W. Lu, L. Liang, B. Kong, B. Li, and Z. Zhu, “AI-assisted knowledge-
defined network orchestration for energy-efficient data center networks,”
IEEE Commun. Mag. 58, 86–92 (2020).

3. S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, and Z. Zhu, “Pro-
tocol oblivious forwarding (POF): Software-defined networking with
enhanced programmability,” IEEE Netw. 31, 58–66 (2017).

4. N. Bitar, S. Gringeri, and T. Xia, “Technologies and protocols for data
center and cloud networking,” IEEE Commun. Mag. 51, 24–31 (2013).

5. Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Light. Technol. 31, 15–22 (2013).

6. L. Gong, X. Zhou, X. Liu, W. Zhao, W. Lu, and Z. Zhu, “Efficient
resource allocation for all-optical multicasting over spectrum-sliced
elastic optical networks,” J. Opt. Commun. Netw. 5, 836–847 (2013).

7. Y. Yin, H. Zhang, M. Zhang, M. Xia, Z. Zhu, S. Dahlfort, and S. Yoo,
“Spectral and spatial 2D fragmentation-aware routing and spectrum
assignment algorithms in elastic optical networks,” J. Opt. Commun.
Netw. 5, A100–A106 (2013).

8. W. Shi, Z. Zhu, M. Zhang, and N. Ansari, “On the effect of bandwidth
fragmentation on blocking probability in elastic optical networks,” IEEE
Trans. Commun. 61, 2970–2978 (2013).

9. N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical
switch architecture for modular data centers,” ACM SIGCOMM Comput.
Commun. Rev.. 40, 339–350 (2010).

10. G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-Through: Part-time optics in data centers,”
ACM SIGCOMM Comput. Commun. Rev.. 41, 327–338 (2011).

11. J. Benjamin, T. Gerard, D. Lavery, P. Bayvel, and G. Zervas, “PULSE:
Optical circuit switched data center architecture operating at nanosec-
ond timescales,” J. Lightw. Technol.. 38, 4906–4921 (2020).

12. H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, B. Thomsen, K. Shi, and H. Williams, “Sirius: A
flat datacenter network with nanosecond optical switching,” in Proc. of
ACM SIGCOMM 2020, (2020), pp. 782–797.

13. G. Liu, R. Proietti, M. Fariborz, P. Fotouhi, X. Xiao, and B. Yoo, “Ar-
chitecture and performance studies of 3D-Hyper-FleX-LION for recon-
figurable All-to-All HPC networks,” in Proc. of SC 2020, (2020), pp.
1–16.

14. Y. Lu and H. Gu, “Flexible and scalable optical interconnects for data
centers: Trends and challenges,” IEEE Commun. Mag. 57, 27–33
(2019).

15. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proc. of OSDI 2016, (2016), pp. 265–283.

16. L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Light. Technol. 32, 450–460 (2014).

Research Article Journal of Optical Communications and Networking 10

17. Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service
chain deployment based on affiliation-aware vNF placement,” in Proc.
of GLOBECOM 2016, (2016), pp. 1–6.

18. J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,” IEEE Trans. Netw. Serv. Manag.
14, 543–553 (2017).

19. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “OSA: An optical switching architecture for data
center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw.
22, 498–511 (2013).

20. M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. of ACM HotNets 2012, (2012), pp. 31–36.

21. M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow scheduling
with Varys,” in Proc. of ACM SIGCOMM 2014, (2014), pp. 443–454.

22. H. Zhang, X. Shi, X. Yin, and Z. Wang, “Yosemite: Efficient scheduling
of weighted coflows in data centers,” in Proc. of ICNP 2017, (2017), pp.
1–2.

23. M. Shafiee and J. Ghaderi, “An improved bound for minimizing the total
weighted completion time of Coflows in datacenters,” IEEE/ACM Trans.
Netw. 26, 1674–1687 (2018).

24. H. Wang, X. Yu, H. Xu, J. Fan, C. Qiao, and L. Huang, “Integrating
Coflow and circuit scheduling for optical networks,” IEEE Trans. Parallel
Distrib. Syst. 30, 1346–1358 (2019).

25. H. Tan, C. Zhang, C. Xu, Y. Li, Z. Han, and X. Li, “Regularization-based
Coflow scheduling in optical circuit switches,” IEEE/ACM Trans. Netw.
29, 1280–1293 (2021).

26. Z. Li and H. Shen, “Co-Scheduler: A Coflow-aware data-parallel job
scheduler in hybrid electrical/optical datacenter networks,” IEEE/ACM
Trans. Netw., Press. pp. 1–14 (2022).

27. Y. Lu, H. Gu, X. Yu, and P. Li, “Fast control plane for flexible and
scalable optical interconnects,” Opt. Express 30, 3316–3328 (2022).

28. X. Xiao, R. Proietti, G. Liu, H. Lu, P. Fotouhi, S. Werner, Y. Zhang,
and B. Yoo, “Silicon photonic Flex-LIONS for bandwidth-reconfigurable
optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 26, 1–10
(2020).

29. X. Xiao, R. Proietti, G. Liu, H. Lu, Y. Zhang, and B. Yoo, “Multi-FSR
silicon photonic Flex-LIONS module for bandwidth-reconfigurable all-
to-all optical interconnects,” J. Lightw. Technol.. 38, 3200–3208 (2020).

30. H. Yang, Z. Zhu, R. Proietti, and B. Yoo, “Which can accelerate dis-
tributed machine learning faster: Hybrid optical/electrical or optical
reconfigurable DCN?” in Proc. of OFC 2022, (2022), pp. 1–3.

31. T. Zhang, R. Shu, Z. Shan, and F. Ren, “Distributed bottleneck-aware
Coflow scheduling in data centers,” IEEE Trans. Parallel Distrib. Syst.
30, 1565–1579 (2019).

32. C. Chiu, D. Singh, Q. Wang, K. Lee, and S. Park, “Minimal Coflow rout-
ing and scheduling in OpenFlow-Based cloud storage area networks,”
in Proc. of IEEE CLOUD 2017, (2017), pp. 222–229.

33. H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “CODA:
Toward automatically identifying and scheduling Coflows in the dark,”
in Proc. of ACM SIGCOMM 2016, (2016), pp. 160–173.

34. S. Zhao and Z. Zhu, “On virtual network reconfiguration in hybrid
optical/electrical datacenter networks,” J. Light. Technol. 38, 6424–
6436 (2020).

35. Q. Li, H. Fang, D. Li, J. Peng, J. Kong, W. Lu, and Z. Zhu, “Scalable
knowledge-defined orchestration for hybrid optical/electrical datacenter
networks,” J. Opt. Commun. Netw.. 12, A113–A122 (2020).

36. X. Xue, F. Yan, K. Prifti, F. Wang, B. Pan, X. Guo, S. Zhang, and
N. Calabretta, “ROTOS: A reconfigurable and cost-effective architecture
for high-performance optical data center networks,” J. Light. Technol.
38, 3485–3494 (2020).

37. S. Liu, B. Niu, D. Li, M. Wang, S. Tang, J. Kong, B. Li, X. Xie, and
Z. Zhu, “DL-assisted cross-layer orchestration in software-defined IP-
over-EONs: From algorithm design to system prototype,” J. Lightw.
Technol.. 37, 4426–4438 (2019).

38. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in Proc. of ACM SIGCOMM 2013,
(2013), pp. 447–458.

39. “Edge coloring,” Wikipedia [Online] .
40. Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating

MapReduce performance using workload suites,” in Proc. of MASCOTS
2011, (2011), pp. 390–399.

41. S. Chandrasekaran, Understanding Traffic Characteristics in a Server
to Server Data Center Network (Master Thesis, Rochester Institute of
Technology, 2017).

	Introduction
	Related Work
	Problem Description
	Network Model
	Single-Coflow Scenario
	Multi-Coflow Scenario

	Algorithm Design
	Algorithm for Single-Coflow Scenario
	Algorithm for Multi-Coflow Scenario
	Complexity Analysis

	Performance Evaluations
	Simulation Setup
	Comparison of AOIs with OXC and Hyper-FleX-LION
	Coflow Scheduling in Hyper-FleX-LION

	Conclusion

