
CodedINT: Leveraging Network Coding to Improve
the Visibility of In-band Network Telemetry (INT)

Zhihuang Ma, Shaofei Tang, Wenpeng Tao, Yuhan Xue, and Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: {zqzhu}@ieee.org

Abstract—With momentum gained from programmable data
plane (PDP), in-band network telemetry (INT) has been wide-
ly considered as a promising technique for realtime network
monitoring. In this work, we leverage network coding (NC) to
design CodedINT, for improving the visibility of INT in lossy
networks. Specifically, we propose to encode the telemetry data
in multiple packets with NC and distribute the encoded data over
a group of packets. Then, among the group of packets, if we can
receive enough ones that satisfy the decoding condition of NC, the
whole original telemetry data can be recovered. We first explain
the design of CodedINT to elaborate on its operation principle,
packet format, and system implementation. Then, we implement
and experimentally evaluate CodedINT in a real network testbed.
Our experiments demonstrate that in a lossy network with packet
loss rate at 80%, CodedINT ensures that 89.48% of the telemetry
data carried by INT packets can be recovered successfully.

Index Terms—In-band Network Telemetry (INT), Protocol-
oblivious forwarding (POF), OpenvSwitch (OVS), Linear coding.

I. INTRODUCTION

Recently, the rapid growth of network services and traffic
generated by them have reshaped network systems dramatical-
ly [1], and thus introduced numerous new network elements
and protocols in the Internet. For instance, mobile and access
networks are being adapted to support 5G [2], metro and core
networks are being developed based on elastic optical network-
ing (EON) [3–5] for more flexibility, and programmability has
been enhanced everywhere in network systems [6, 7] to un-
leash them from being restricted by the existing packet formats
and forwarding protocols. However, these technical advances
make network infrastructures increasingly complicated, which
calls for more effective methods for network monitoring.

With the development of software-defined network (SDN)
and programmable data plane (PDP) [6, 7], in-band network
telemetry (INT) [8] has been proposed to provide a promising
solution for realtime and fine-grained network monitoring.
Specifically, INT is a PDP-enabled technique, with which the
realtime status of each switch on a packet flow’s forwarding
path is recorded, encoded and inserted as specific INT header
fields in the packets of the flow. Hence, the end-to-end perfor-
mance of each flow can be monitored in a per-packet/per-hop
manner. Compared with the traditional network monitoring
approaches (e.g., the simple network management protocol
(SNMP) [9]), INT is more flexible and enables unprecedented
visibility in the realtime and fine-grained way [10].

However, INT also has drawbacks: 1) it brings additional
bandwidth overheads and increases the processing burden of

switches, and 2) when there are packet losses, the telemetry
data carried by the packets will be lost too. Previously, for
the first issue, people have proposed and demonstrated several
selective INT schemes, which sample packets in each flow to
insert INT header fields [11–15], for relieving the overheads
of INT. Nevertheless, the second issue (i.e., how to improve
the visibility of INT to overcome the impact of packet losses)
has not been widely explored yet.

It is relevant and even necessary to protect telemetry data
from being lost together with packets, and the rationale
behind this is multi-fold. First of all, the telemetry data
carried by a lost packet will be critical for the operator to
reproduce the status of its forwarding path right before the
packet loss. Therefore, obtaining the telemetry data will make
troubleshooting much easier. Secondly, in a lossy network
environment, it will be difficult for the operator to leverage
INT to visualize the operation of a network service in the
complete and realtime manner, especially when the traffic of
the network service flows through many switches and/or does
not use a line topology (e.g., multicast, manycast and network
virtualization [16–19]). Finally, the telemetry data collected by
INT is frequently used to forecast future network status (e.g.,
traffic prediction), while losing data samples due to packet
losses will degrade the accuracy of time series prediction.
Intuitively, telemetry data can be made more survivable by
duplicating it and inserting the copies in multiple consecutive
packets. However, this will increase the overheads of INT
significantly and cannot protect against bursty packet losses.

In this work, we leverage the idea of network coding (NC)
[20] to design an enhanced INT system, namely, CodedINT,
which can improve the visibility of INT in lossy networks in
a programmable and effective way. Specifically, we propose
to encode the INT fields in multiple packets with NC and
distribute the encoded fields over a group of packets. Then,
among the group of packets, if we can receive enough packets
that satisfy the decoding condition of NC, the whole original
telemetry data can be recovered. Meanwhile, by adjusting the
NC scheme of CodedINT, we can tune the tradeoff among data
survivability, INT overheads, and decoding latency adaptively.

To verify our design of CodedINT, we implement it in
an SDN system that enables PDP with protocol-oblivious
forwarding (POF) [7], and demonstrate it experimentally with
a real network testbed. The results validate the functionalities
of CodedINT, and confirm that even when CodedINT is turned
on, both the processing of packets on our switches and the

SDN Controller

SDN Switch

Data Analyzer

Source Host Destination HostSW1 SW2

Monitoring Results

Mirror INT Packets

Normal PacketsNormal Packets

A1 B1 B1 A1
A2 B2 B2 A2

A1 B1 B1 A1

A2 B2 A2

A1 B1 A1

=

Recovery

Fig. 1. Operation principle of CodedINT.

processing of telemetry data on our data analyzer (DA) can
be accomplished in high throughputs (i.e., above 2.00 million
packets per second (Mpps) and 2.66 Mpps, respectively). We
also conduct experiments to study the tradeoff among data
survivability, INT overheads, and decoding latency.

The rest of this paper is organized as follows. We describe
the design and implementation of CodedINT in Sections II and
III, respectively. Experimental demonstrations are discussed in
Section IV. Finally, Section V summarizes the paper.

II. DESIGN OF CODEDINT

In this section, we present the design of CodedINT, includ-
ing the operation principle, key network elements, NC schemes
for telemetry data, and proposed packet format.

A. Operation Principle

We develop CodedINT by extending our previous work of
Sel-INT [13]. Sel-INT samples the packets in a flow to insert
INT fields, such that the tradeoff between network monitoring
accuracy and INT overheads is balanced well. Specifically, in
an SDN-based Sel-INT system, the controller first determines
the INT sampling rate of a flow and installs corresponding
flow tables in the switches on its forwarding path, and then the
switches will select packets to insert INT fields accordingly.
To select a packet for INT field insertion, the ingress switch
encodes an INT header in the packet, and the subsequent
switches will match to it to insert the required INT fields [13].

Therefore, we have two types of packets in a Sel-INT
system, i.e., those that carry INT fields (namely, INT packets)
and the normal ones, while for each flow, the ratio of INT
packets to the total ones is just the sampling rate. Meanwhile,
the results in [13] suggested that for a flow whose rate is 1
Mpps or more, a sampling rate of a few percent can already
guarantee the monitoring accuracy of fast-changing telemetry
data (e.g., bandwidth usage). However, if an INT packet gets
lost in the Sel-INT system, the INT fields carried by it will
be lost too. CodedINT addresses this issue by leveraging NC.

The example in Fig. 1 explains the operation principle of
our proposed CodedINT. Here, the forwarding path of the flow
goes through two switches (i.e., SWs 1 and 2). If we assume
that INT needs to collect two types of telemetry data (i.e.,
types A and B) on each switch and the INT sampling rate

is set as 50%, we can use two packets to collect the two
types of telemetry data, respectively1, and keep the two packets
following them as normal ones. We denote the telemetry data
of type A, which is collected on SW 1, as A1, and so on.

Hence, without CodedINT, we encode four consecutive
packets periodically as p[A], p[B], p[∅], and p[∅], where p[A]
denotes an INT packet carrying the telemetry data of type A
and p[∅] refers to a normal packet. Then, if p[A] or/and p[B]
get lost, we cannot recover the corresponding telemetry data.
One way to relieve the impact of packet loss is to duplicate
and encode the telemetry data repeatedly. For example, we can
encode four consecutive packets periodically as p[A], p[B],
p[A], and p[B], and then if any one of them gets lost, we
can recover the whole telemetry data. Nevertheless, this will
increase the overheads of INT, and in this particular example,
the overheads saved by Sel-INT will be offset completely.

CodedINT addresses the aforementioned issues with NC.
Specifically, as shown in Fig. 1, we can encode four consec-
utive packets periodically as p[A], p[B], p[A ⊕ B], and p[∅],
where A⊕B means that we apply bitwise exclusive OR (XOR)
operation on the INT fields for the telemetry data of types A
and B. Therefore, if any one of the four packets gets lost, we
can still recover the whole telemetry data, while comparing
with the approach that simply duplicates INT packets, the
CodedINT in this example saves the number of INT packets
by 25%. Moreover, we hope to point out that CodedINT also
has the flexibility to arrange the sequence of INT packets and
normal packets, for protecting telemetry data against bursty
packet losses. For instance, we can encode the packets in Fig.
1 as p[A], p[B], p[∅], and p[A⊕B], to reduce the probability
of p[A⊕B] being lost together with p[B].

B. NC Scheme in CodedINT

We refer to a set of consecutive packets on which CodedINT
can encode telemetry data as an NC group, e.g., the four
packets in Fig. 1 are in the same NC group. The NC scheme
of CodedINT can be represented with the following notations.

• M : the number of telemetry data types that CodedINT
needs to collect on each switch (e.g., M = 2 in Fig. 1).

• N : the number of packets in an NC group of CodedINT
(e.g., N = 4 in Fig. 1).

• Xj : the j-th type of telemetry data that CodedINT needs
to collect on each switch (j ∈ [1,M]).

• Yi: the coded INT field that needs to be inserted by each
switch on the i-th packet in an NC group (i ∈ [1, N]).

• ai,j : the boolean parameter that equals 1 if Xj should be
considered in the coding scheme for Yi, and 0 otherwise.

• bi,j : the boolean parameter that equals 1 if Yi should be
used to decode Xj in the data analyzer of CodedINT, and
0 otherwise.

The NC scheme of each packet in an NC group is denoted as

Yi =

M∑
j=1

ai,j ·Xj , , ∀i ∈ [1, N], (1)

1Here, for each packet, we only insert one INT field in it per hop, to avoid
generating excessively long INT packets.

where, in this work, we use
∑

to denote the summation of

bitwise XOR operation, e.g., Y1 =
2∑

j=1

a1,j ·Xj means Y1 =

(a1,1 ·X1)⊕ (a1,2 ·X2). Meanwhile, the decoding scheme is

Xj =

N∑
i=1

bi,j · Yi, , ∀j ∈ [1,M]. (2)

Note that, when the values of M and N are determined,
we totally have 2N ·M possible coding schemes, but not all
of them are feasible or can be used by CodedINT to protect
telemetry data. Therefore, we should carefully select the values
of {ai,j} to design the NC scheme. Meanwhile, for a fixed set
of {ai,j} (i.e., an NC scheme of CodedINT), the values of
{bi,j} that can lead to successful decoding are not unique.
For instance, in Fig. 1, after we have encoded the packets as
p[A], p[B], p[A ⊕ B], and p[∅], both the decoding schemes
of {b1,1 = 1} and {b2,1 = 1, b3,1 = 1} can be leveraged to
decode the telemetry data of type A. This actually explains
why CodedINT introduces redundancy in INT.

To analyze CodedINT’s tolerance to packet losses, we
consider the four NC schemes in Fig. 2. Here, we need to
collect three types of telemetry data (i.e., types A, B and
C) on each switch (M = 3). It can be seen that Scheme 0
actually does not apply NC on INT fields, which is the case
in Sel-INT, and we use it as a benchmark of our analysis.
The performance of the NC schemes in Fig. 2 is compared in
Table I, which verifies that CodedINT can not only effectively
improve the visibility of INT in lossy networks but also avoid
introducing unnecessary INT overheads. For instance, with
Scheme 3, we can recover the whole telemetry data as long as
the packet losses in an NC group are 3 or less. However, if we
want to achieve the same goal by encoding the telemetry data
repeatedly, we need to repeat the 3 INT packets for telemetry
data types of A, B and C for at least 4 times (i.e., having
12 INT packets in each NC group). Finally, we would like to
point out that when there is only one type of telemetry data to
be considered (M = 1), the NC scheme will just duplicate and
encode the telemetry data repeatedly in multiple INT packets,
since bitwise XOR operation is not feasible in this case.

C. System Design

In addition to the operation principle, Fig. 1 also illustrates
the key network elements in a CodedINT system. Here, the
SDN switches should support PDP, and thus they can be
developed based on P4 [6] or POF [7] and use either software-
based or hardware-based platform. Note that, compared with
the traditional INT, CodedINT only requires two additional
functionalities on switches: 1) buffering a very limited number
of INT fields, and 2) applying bitwise XOR operation on INT
fields. These two functionalities can be easily supported on
both software-based and hardware-based PDP switch platform-
s. In this work, we develop CodedINT-enabled switches based
on our previous work of OVS-POF [21], which is a software-
based switch that extends OpenvSwitch (OVS) to support POF.

The SDN controller needs to compute and install CodedINT-
related flow tables in the switches, and we develop it based on
ONOS [22]. Specifically, the flow tables will tell the related

A B C A B C

A B C A B A C B C

A B C A B A C B C A B C

NC Scheme 0

NC Scheme 1

NC Scheme 3

NC Scheme 2

A B C

Pkt 7Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5 Pkt 6

Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5 Pkt 6

Pkt 1 Pkt 2 Pkt 3 Pkt 4

Pkt 1 Pkt 2 Pkt 3

Fig. 2. NC Schemes for CodedINT (M = 3).
TABLE I

COMPARISON OF NC SCHEMES IN FIG. 2

NC Scheme # of INT Packets Tolerance to Packet Lossin each NC Group
0 3 0
1 4 25% (1/4)
2 6 33% (2/6)
3 7 43% (3/7)

switches about: 1) the types of telemetry data to collect, 2)
the INT sampling rate to use, and 3) the NC scheme to
apply. As shown in Fig. 1, the egress switch of each flow will
duplicates INT packets and send the copies to DA, where the
telemetry data in INT fields gets parsed, extracted, decoded,
and analyzed. After obtaining the network monitoring results
from the INT fields, the DA will forward them to the controller.
Meanwhile, the egress switch removes the INT fields on
INT packets and converts them back to normal ones before
forwarding them to the destination host. In this work, the DA
is our homemade software system. Different from Sel-INT and
other existing INT schemes, CodedINT makes the decoding
of INT fields in DAs a stateful operation, which means that
the DA needs to identify the NC groups accurately and apply
correct decoding schemes when different combinations of INT
packets in an NC group were received.

In order to facilitate CodedINT, we design the packet
format as shown in Fig. 3. Specifically, for each INT packet,
CodedINT inserts an INT header in between the IP header
and payload of the packet. In the INT header, the first five
fields (i.e., Type, Length, MapInfo, GroupID, and CodeID) are
fixed ones, which means that they are created when the INT
header is first inserted in a packet by its ingress switch and will
not be removed until the egress switch. The five fixed fields
are followed by a stack of Metadata fields, each of which is
an INT field containing telemetry data. The definitions of the
aforementioned fields are explained as follows.

Type is a 2-byte field that is filled with 0x0908 to let the
switches distinguish INT packets from normal ones. Length
occupies one byte and records how many Metadata fields
have already been encoded in the packet. MapInfo is a 2-byte
bitmap that indicates the selected types of telemetry data to
be collected on each switch and the selected NC scheme. In
this work, we support 10 types of telemetry data (as shown
in Fig. 3), each of which is represented by one among the ten
lowest bits of MapInfo. The remaining 6 bits in MapInfo can
be used to denote the selected NC scheme. GroupID stores the
ID of the NC group that the packet belongs to, while CodeID
tells the sequence ID of the packet in its NC group (i.e., for
NC). For instance, for the packets p[A], p[B], p[A⊕ B], and

Fig. 3. Packet format used in CodedINT.

p[∅] in Fig. 1, their GroupIDs are the same, and the CodeID
of p[A] is 0, and so on. Metadata is a 4-byte field that carries
the coded result of certain telemetry data. For example, for
the INT packets in Fig. 1, the INT fields for A1, A2⊕B2 and
others are each encoded in a Metadata.

III. SYSTEM IMPLEMENTATION

A. Packet Processing for CodedINT on Switches

Algorithm 1 explains the packet processing for CodedINT
on switches. Specifically, for each packet, the procedures of
CodedINT on its ingress, intermediate and egress switches are
in Lines 3-8, 17-19, and 11-15, respectively. Lines 6, 12 and 18
show that a new Metadata field should be buffered locally if
necessary, to enable the NC of Metadata fields. For instance, in
Fig. 1, the Metadata of A1 should be buffered after it has been
encoded in p[A], to enable the generation of the Metadata of
A1⊕B1 for p[A⊕B]. Note that, each Metadata only needs to
be buffered until all the packets of the current NC group have
been processed. In this work, the procedures in Algorithm 1 are
translated into POF-based packet processing pipelines, and we
implement them in our software-based switches accordingly.

B. Implementation of DA

As CodedINT makes the decoding of Metadata fields in
DAs a stateful operation, we make each DA accumulate INT
packets and decode the Metadata fields carried by them on-
the-fly. However, this can make the DA use longer time to
extract and record the telemetry data in INT packets, especially
in a lossy network environment. Hence, we define the duration
between when the DA receives the first INT packet of an NC
group and when it has successfully decoded all the telemetry
data carried by the NC group as the decoding latency.

Fig. 4. Wireshark capture of an INT packet generated by CodedINT.

IV. EXPERIMENTAL DEMONSTRATIONS

To evaluate the performance of our proposed CodedINT, we
conduct experiments in a network testbed whose configuration
is the same as that in Fig. 1. The experimental setup consists

Algorithm 1: Procedure of CodedINT on Switches

1 while a packet is received do
2 if this is its ingress switch then
3 determine whether encoded as an INT packet

based on the INT sampling rate from controller;
4 if the packet should be an INT packet then
5 obtain NC scheme, GroupID, and CodeID;
6 encode Metadata based on the NC scheme

and CodeID, and buffer it if necessary;
7 generate and insert an INT header in packet;
8 end
9 else

10 if this is its egress switch then
11 if the packet is an INT packet then
12 apply CodedINT according to its INT

header, and buffer Metadata if necessary;
13 mirror the packet to DA;
14 remove the INT header from the packet;
15 end
16 else
17 if the packet is an INT packet then
18 apply CodedINT according to its INT

header, and buffer Metadata if necessary;
19 end
20 end
21 end
22 forward the packet to its next hop;
23 end

of two stand-alone SDN switches, an SDN controller, a DA,
and two end-hosts. Each switch is developed by extending our
previous work of OVS-POF [21], and runs on a Linux server
equipped with 10 GbE ports. The controller is implemented
based on ONOS, while the DA is homemade, and they also
run on stand-alone Linux servers. The two end-hosts are
emulated with commercial traffic generators/analyzers [23]. In
the experiments, we let the egress switch (SW 2) randomly
drop certain packets to emulate lossy network environments.

A. Feature Validation
We first try to verify the functionality of CodedINT. Here,

we assume that CodedINT needs to collect the first three types
of telemetry data (i.e., Device ID, In Port, and Out Port) on
each switch (i.e., the NC has M = 3). Then, Scheme 2 in Fig.
2 is used to encode the INT packets, i.e., each NC group has 6
INT packets as p[A], p[B], p[C], p[A⊕B], p[A⊕C], and p[B⊕
C], where A, B and C denote the telemetry data of Device ID,
In Port and Out Port, respectively. We denote Scheme 2 with
a bitmap of 100000, and the bitmap for the selected types
of telemetry data is 0000000111. Hence, we should encode
0x8007 in the MapInfo of INT packets. The Device IDs of
SWs 1 and 2 are 0xffffff01 and 0xffffff02, respectively, and
the used input and output ports on them are both 1 and 2.

Fig. 4 shows the Wireshark capture2 of an INT packet re-

2The Ethertype is set as 0x0908 to trigger Lua plugin for parsing cus-
tomized CodedINT protocol, and therefore the IPv4 header is not parsed here.

3 5 7

Number of Telemetry Data Types

0

0.5

1

1.5

2

2.5

3

3.5

P
a
c
k
e
t
P

ro
c
e
s
s
in

g
 T

h
ro

u
g
h
p
u
t
(M

p
p
s
)

Sel-INT

NC Scheme 0

NC Scheme 1

NC Scheme 2

NC Scheme 3

Fig. 5. Packet processing throughput of SDN switch.

ceived by the DA. Here, we have Type as 0x0908 to indicate an
INT packet. Length=2 means that two Metadata fields are en-
coded (one for each hop), and CodeID=3 suggests that the INT
packet is the fourth one in an NC group (i.e., p[A⊕B]). Hence,
each switch applies bitwise XOR operation on Device ID and
In Port to get a Metadata. Specifically, the Metadata inserted
by SWs 1 and 2 should be 0xffffff01⊕0x00000001=0xffffff00
and 0xffffff02⊕0x00000001=0xffffff03, respectively, which
are exactly the results shown in Fig. 4.

B. Performance Benchmarking

As CodedINT requires more packet processing than Sel-
INT, it might impact the throughput of SDN switches, espe-
cially the software-based ones. Hence, we conduct experiments
to compare the packet processing throughput of CodedINT
with that of Sel-INT. Specifically, we let the source host send
64-byte packets through SW 1, and record the maximal packet
rate at which the switch can achieve 0 packet loss as the
throughput. The experiments consider M ∈ {3, 5, 7} types
of telemetry data, and for each M , there are 4 NC schemes as
listed in Table II. Specifically, for the NC group of each M ,
Scheme 0 does not apply NC, Scheme 1 adds an INT packet
that applies XOR to all the Metadata, Scheme 2 adds INT
packets that apply XOR to pairs of Metadata, and Scheme 3
adds INT packets that apply XOR to 2 and 3 Metadata.

We run each experiment for a minute, and plot the average
throughputs of our switch in Fig. 5. We can see that compared
with Sel-INT, the extra processing in CodedINT does decrease
the switch’s throughput, and the throughput degradation in-
creases with the complexity of NC scheme. Note that, although
NC is not applied in the Scheme 0 of each M , the throughput
is still degraded in Fig. 5. This is because in this case, the
switch still needs to process the GroupID and CodeID in each
INT packet, which is not required in Sel-INT. Fortunately,
except for the cases with M = 7, the throughput degradation
is not significant, and even in the worse experimental scenario
(Scheme 3 of M = 7), the switch’s throughput is still above 2
Mpps. Meanwhile, we also measure the average throughputs
of the DA for Sel-INT and CodedINT, which are 5.02 and 2.66
Mpps, respectively. Here, CodedINT is measured for its worst-
case scenario (M = 7). Hence, even though the throughput of
the DA is still larger than that of the switch, its throughput
degradation is actually larger than that of the switch. This is
caused by the fact that for CodedINT, the stateful decoding in
DA is more complex than the packet encoding in switches.

TABLE II
NC SCHEMES USED IN EXPERIMENTS

of INT Packets in each NC Group
Telemetry Data Types 3 5 7

NC Scheme 0 3 5 7
NC Scheme 1 4 6 8
NC Scheme 2 6 15 28
NC Scheme 3 7 25 63

C. Tradeoff Analysis

1) Recovery Ratio of Telemetry Data: To check CodedIN-
T’s recovery ratio of telemetry data in lossy network envi-
ronments, we set the packet loss rate (PLR) within [0, 100%]
and measure the ratio of the Metadata that can be recovered
at the DA. Each recovery ratio is obtained after processing
1, 000, 000 Metadata. Fig. 6 shows that the protection capa-
bility of Scheme 1 decreases with M , while by encoding many
more INT packets in each NC group, Schemes 2 and 3 achieve
a higher recovery ratio for a larger M . Specifically, in Fig.
6(c), in the lossy network with PLR at 80%, CodedINT can
recover 89.48% of the telemetry data carried by INT packets.

2) Decoding Latency: Note that, for CodedINT, the better
protection capability of a more complex NC scheme does not
come without a price. There are actually two drawbacks of
using a more complex NC scheme. Firstly, the bandwidth
overheads of CodedINT will be larger, and this can be seen
by checking the number of INT packets in each NC group
in Table II. Secondly and more importantly, a more complex
NC scheme will make the decoding latency longer, when there
are packet losses. Therefore, we conduct more experiments to
measure the decoding latency when the packet rate from the
source host is 1 Mpps and the PLR is chosen within [0, 90%].
In each experiment, we only record the decoding latency of the
NC groups whose Metadata can be recovered at the DA, and
the average decoding latency is obtained after the Metadata
of 100, 000 NC groups having been decoded successfully.

Fig. 7 shows the results on average decoding latency. Note
that, as the PLR increases, the ratio of the NC groups whose
Metadata can be fully recovered will become extremely small
for certain NC schemes. Hence, some data points of decoding
latency are absent in Fig. 7. We find that the decoding latency
of a more complex NC scheme generally increases faster with
PLR, which implies that in a lossy network, the redundancy
brought by NC can be heavily utilized for decoding.

Finally, by combining Figs. 6 and 7, we can see the tradeoff
between recovery ratio and decoding latency clearly. Specif-
ically, for each M , the protection capability of CodedINT to
packet losses gets improved with a more complex NC scheme,
while this can also prolong the average decoding latency (i.e.,
degrading the timeliness of INT-based network monitoring),
and vice versa. Therefore, when applying CodedINT in a real-
world network, we should select the NC scheme according to
the actual network status, for balancing this tradeoff well.

V. CONCLUSION

In this work, we leveraged NC to design CodedINT, for
improving the visibility of INT in lossy networks in a pro-
grammable and effective manner. We first laid out the design

0 0.2 0.4 0.6 0.8 1

Packet Loss Rate

0

0.2

0.4

0.6

0.8

1

M
e
ta

d
a
ta

 R
e
c
o
v
e
ry

 R
a
ti
o

Sel-INT

NC Scheme 1

NC Scheme 2

NC Scheme 3

(a) M = 3

0 0.2 0.4 0.6 0.8 1

Packet Loss Rate

0

0.2

0.4

0.6

0.8

1

M
e
ta

d
a
ta

 R
e
c
o
v
e
ry

 R
a
ti
o

Sel-INT

NC Scheme 1

NC Scheme 2

NC Scheme 3

(b) M = 5

0 0.2 0.4 0.6 0.8 1

Packet Loss Rate

0

0.2

0.4

0.6

0.8

1

M
e

ta
d

a
ta

 R
e

c
o

v
e

ry
 R

a
ti
o

Sel-INT

NC Scheme 1

NC Scheme 2

NC Scheme 3

(c) M = 7

Fig. 6. Recovery ratio of telemetry data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Packet Loss Rate

0

2

4

6

8

D
e

c
o

d
in

g
 L

a
te

n
c
y
 (

s
)

NC Scheme 0

NC Scheme 1

NC Scheme 2

NC Scheme 3

(a) M = 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Packet Loss Rate

0

5

10

15

20

D
e

c
o

d
in

g
 L

a
te

n
c
y
 (

s
)

NC Scheme 0

NC Scheme 1

NC Scheme 2

NC Scheme 3

(b) M = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Packet Loss Rate

0

10

20

30

40

50

D
e

c
o

d
in

g
 L

a
te

n
c
y
 (

s
)

NC Scheme 0

NC Scheme 1

NC Scheme 2

NC Scheme 3

(c) M = 7

Fig. 7. Decoding latency of telemetry data.

of CodedINT to explain its operation principle, packet format,
and system implementation. Then, to evaluate its performance,
we implemented CodedINT in an SDN system based on
POF, and demonstrated it experimentally with a real network
testbed. The results validated the functionalities of CodedINT,
and confirmed that even when CodedINT is turned on, both
our software-based switches and our DA could maintain high
throughputs (i.e., above 2.00 Mpps and 2.66 Mpps, respective-
ly). Meanwhile, the experiments also demonstrated that in a
lossy network with PLR at 80%, CodedINT can successfully
recover 89.48% of the telemetry data carried by INT packets.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China (2020YFB1806400), NSFC project
61871357, SPR Program of CAS (XDC02070300), and Fun-
damental Funds for Central Universities (WK3500000006).

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges,
deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, pp.
1201–1221, Jun. 2017.

[3] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[4] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[5] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[6] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[7] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[8] INT dataplane specification. [Online]. Available: https://github.com/
p4lang/p4-applications/blob/master/docs/INT v2 1.pdf.

[9] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),” RFC 1098, May 1990. [Online].
Available: https://tools.ietf.org/html/rfc1157.

[10] L. Tan et al., “In-band network telemetry: a survey,” Comput. Netw.,
vol. 186, p. 107763, Feb. 2021.

[11] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” in Proc. of CloudNet 2018, pp. 1–3, Oct. 2018.

[12] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, Jun. 2019.

[13] S. Tang et al., “Sel-INT: A runtime-programmable selective in-band
network telemetry system,” IEEE Trans. Netw. Serv. Manag., vol. 17,
pp. 708–721, Jun. 2020.

[14] B. Basat et al., “PINT: Probabilistic in-band network telemetry,” in Proc.
of ACM SIGCOMM 2020, pp. 662–680, Aug. 2020.

[15] L. Tan et al., “A packet loss monitoring system for in-band network
telemetry: Detection, localization, diagnosis and recovery,” IEEE Trans.
Netw. Serv. Manag., vol. 18, pp. 4151–4168, Nov. 2021.

[16] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,” IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[17] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[18] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[19] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[20] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216, Jul. 2000.

[21] OVS-POF with Sel-INT module developed by USTC. [Online].
Available: https://github.com/USTC-INFINITELAB/OpenvSwitch-pof/
tree/fast-path.

[22] ONOS. [Online]. Available: https://onosproject.org/.
[23] BigTao220. [Online]. Available: http://www.xinertel.net/nam-portable/

nams-(portable).html.

