
Leveraging Heterogeneous NFV Platforms for
QoS-aware Reconfiguration of vNF Service Trees

(Invited Paper)

Tingyu Li and Zuqing Zhu, Senior Member, IEEE
University of Science and Technology of China, Hefei, Anhui 230027, China, Email: zqzhu@ieee.org

Abstract—We study the problem of how to realize quality-of-
service (QoS) aware reconfiguration of virtual network function
service trees (vNF-STs) over the heterogeneous network function
virtualization (NFV) platforms that include virtual machines
(VMs), docker containers, and programmable data plane switches
(PDP-SWs), and propose an effective heuristic algorithm.

Index Terms—Network function virtualization (NFV), Hetero-
geneous NFV platforms, Virtual network functions (vNFs).

I. INTRODUCTION

Nowadays, the advances on physical-layer [1–4] and virtu-
alization [5–7] technologies have greatly promoted the idea
of network function virtualization (NFV) [8]. Specifically,
instead of relying on special-purpose middle-boxes, NFV real-
izes network services by deploying virtual network functions
(vNFs) on general-purpose software/hardware platforms (e.g.,
virtual machines (VMs), docker containers (Dockers), and
programmable data plane switches (PDP-SWs) [9, 10]) for
high flexibility [11]. For instance, a service provider (SP)
can decompose network services into atomic vNFs, instantiate
them on general-purpose platforms, and steer application traf-
fic through the required vNFs of each network service (i.e.,
setting up network services with vNF service chains (vNF-
SCs)) [12]. Meanwhile, with the fast development of multi-
client network services such as webcasts, online games, and
metaverse, an SP might need to organize vNFs in a tree-type
forwarding graph to satisfy the demands for point-to-multiple-
point communications [13]. Such a vNF forwarding graph
is referred as a vNF service tree (vNF-ST), where one vNF
can process the application traffic to multiple clients, and the
clients on different branches of the vNF-ST can have their
application traffic processed by different sets of vNFs.

Traditionally, vNFs are deployed on software platforms
such as VMs and Dockers, but the emergence of in-network
computing [14] has made SPs realize vNFs on forwarding
devices (e.g., PDP-SWs) to handle computing tasks during
packet processing. PDP-SWs have superior packet process-
ing capability and thus are suitable for carrying bandwidth-
intensive vNFs [15], while VMs and Dockers are runtime
programmable and provide sufficient computing and memo-
ry resources for computing-intensive vNFs [16]. Therefore,
heterogeneous NFV platforms that consist of hardware (PDP-
SWs) and software (VMs and Dockers) systems can unify their
benefits, and provide SPs more flexibility to satisfy various

quality-of-service (QoS) demands cost-effectively. This actu-
ally brings many advantages to the provisioning of vNF-STs.

One important advantage of introducing heterogeneous NFV
platforms is that incremental installation of such platforms
can still effectively improve the QoS of in-service vNF-
STs. Specifically, after installing new NFV platforms in its
network, an SP can plan the deployment of vNFs on them and
reconfigure certain in-service vNF-STs to improve their QoS
performance. However, to the best of our knowledge, how to
design an algorithm to effectively address such a situation has
not been studied in the literature. Previous studies considered
how to provision vNF-SCs over heterogeneous NFV platforms
[15, 17, 18] and how to upgrade an NFV network environment
with heterogeneous platforms [19]. However, due to their
complex topologies, the provisioning and reconfiguration of
vNF-STs are much more challenging than those of vNF-SCs.

In this paper, we address the problem of how to realize
QoS-aware reconfiguration of vNF-STs over heterogeneous
NFV platforms, and propose a layering and aggregation-based
(LAA) algorithm for it. The rest of the paper is organized as
follows. Section II describes the network model and algorithm
design. We present the simulation results in Section III.
Finally, Section IV summarizes the paper.

II. NETWORK MODEL AND ALGORITHM DESIGN

A. Network Model

We model the substrate network (SNT) as an undirected
graph G(V,E), where V and E are the sets of substrate nodes
(SNs) and links, respectively. Each SN v ∈ V can contain a
few heterogeneous NFV platforms. In this work, three types
of heterogeneous NFV platforms are considered, i.e., VMs,
Dockers and PDP-SWs. On them, we assume that a total of
t types of vNFs can be deployed and each NFV platform
can only carry one type of vNFs. Each NFV platform has its
own capacities of IT and bandwidth resources. Fig. 1 shows
an example on the vNF-STs considered in this work, which
consists of a source and several destinations. Each branch in
the vNF-ST is actually a vNF-SC between a source-destination
pair, and we refer to it as a request in this work, which has
its own latency requirement. As shown in Fig. 1(a), different
requests in a vNF-ST can share vNFs, i.e., the sequence of
Source→vNF 1→vNF 2 is shared by Requests 1 and 2.

Based on the vNF-ST deployment in Fig. 1(b), we con-
sider three scenarios of vNF-ST reconfiguration, namely vNF



(a) Topology of vNF-ST

(b) Deployment scheme

Fig. 1. Example on deploying a vNF-ST over heterogeneous NFV platforms.

change, latency requirement change, and platform failure, as
illustrated in Fig. 2. First, Request 1 in the vNF-ST in Fig.
1(b) changes from Node 1→vNF 1→vNF 2→Node 6 to Node
1→vNF 1→vNF 3→Node 6. Hence, the SP changes its path
from 1→2→5→6 to 1→2→3→4→6. Second, the latency
requirement of Request 2 gets tightened, and thus the SP needs
to deploy a vNF 2 on the PDP-SW of Node 5, and reconfigure
Request 2 to use it. Finally, the vNF 1 that was deployed on
a VM on Node 2 is down, and thus a new vNF 1 should
be instantiated there (e.g., on a Docker). In the following,
we will explain our algorithm design to optimize the vNF-
ST reconfiguration scenarios mentioned above.

Fig. 2. Examples on vNF-ST reconfiguration scenarios.

B. Algorithm Design

To plan the vNF-ST reconfiguration cost-effectively, we
design the optimization to consider two aspects jointly, i.e.,
the reconfiguration cost and total resource usage after recon-
figuration. Specifically, the objective is formulated as

Minimize S = α · (Tb + Tv) + (1− α) ·M, (1)

where Tb and Tv respectively denote the overall bandwidth
and IT resource usages, M is the reconfiguration cost due to

migrating vNFs, and α ∈ (0, 1) is the weight coefficient to
balance the importance between the two aspects. Specifically,
when reconfiguring a vNF-ST, we might need to reroute the
traffic to one vNF to a new one, and to make sure that such
a reconfiguration is hitless to the service of the vNF-ST, the
state information of the original vNF needs to be migrated
to the new one. This actually generates additional operational
cost, which can be modeled as M .

We propose an LAA algorithm to optimize the vNF-ST
reconfiguration according to the objective in Eq. (1). The
input to the algorithm is a set of requests that need to be
reconfigured due to the three aforementioned reasons (i.e., vNF
change, latency requirement change, and platform failure), and
it leverages the following steps to reconfigure the requests.

Step1: We conduct the preprocessing to address the platfor-
m failures and change of latency requirements. Specifically, we
first remove the failed platforms from the SNT, and then find
the candidate NFV platforms that might be used to satisfy the
new latency requirements of requests.

Step2: We deploy new vNFs according to the layered idea
as follows. In a vNF-ST, each layer of vNFs refers to the
vNFs that have a equal hop-count to the source. For instance,
in Fig. 1(a), the vNFs 1 and 3 that are directly connected to
the source are in the same layer. For each layer of vNFs, we
first aggregate the vNFs according to their types, and try to
group the vNFs of the same type to be placed on a same
NFV platform. If the IT resource demands of vNFs cannot
be satisfied by one NFV platform, the remaining vNFs will
be included in more groups. Then, we sort the vNF groups in
descending order of their IT resource demands, and deploy the
one with the largest IT resource demand first. Next, for each
vNF group, we find the platform with the smallest deployment
cost to place it, as long as the latency requirements of the
requests that use the vNFs in the group can be satisfied.

Step3: We calculate the shortest paths to connect the
deployed vNFs according to the topologies of the reconfigured
vNF-STs, and obtain the new provisioning schemes of them.

III. PERFORMANCE EVALUATIONS

Our simulations use the 14-node NSFNET topology [20] for
the SNT, and assign a latency to each link in it (as shown in
Fig. 3). On each node in the SNT, we assume that there are one
VM, two Dockers, and one PDP-SW. The weight coefficient
α in Eq. (1) is set as 0.5. According to the realistic data
presented in [15], the normalized unit cost of bandwidth usage
is set as 2 per Gbps, and the normalized costs of instantiating
a VNF on VM, Docker and PDP-SW are 1, 1.6 and 1.76,
respectively. The bandwidth capacities of a VM, a Docker,
and a PDP-SW are assumed to be 1.5 Gbps, 1.3 Gbps, and
10 Gbps, respectively, and the processing latencies of VMs,
Dockers, and PDP-SWs are set as 200 µs, 150 µs, and 10
µs, respectively. The bandwidth requirement of each request
is set as 0.1 Gbps, and its latency requirement is within [0.2, 1]
msec. The simulations average the results from 10 independent
runs to get each data point, for sufficient statistical accuracy.



Fig. 3. NSFNET topology for SNT.

(a) Optimization objective

(b) Average running time

Fig. 4. Performance comparison of LAA and greedy algorithms.

We compare our proposed LAA algorithm (LAA) with a
simple greedy algorithm (Greedy) in the simulations. Specif-
ically, the greedy algorithm sorts the requests that need to
be reconfigured according to their reasons for reconfiguration,
i.e., latency requirement change is the first, platform failure is
the second, vNF change is the last, and then reconfigures the
requests in sorted order one by one. In each simulation, we first
deploy 5 vNF-STs that include 13 requests in total, where each
request consists of [1, 3] vNFs. Then, we consider that there
are {3, 5, 7, 9, 11} requests, which need to be reconfigured, and
randomly select the reconfiguration scenario of each request.

Fig. 4(a) compares the optimization objectives obtained
by the two algorithm. It can be seen that LAA outperforms
Greedy to provide smaller objectives, and when the number
of requests is relatively small, the performance gap is not
very large, but it increases significantly with the number of
requests. This confirms the effectiveness of our proposal. Fig.
4(b) compares the running time of the algorithms, and we can
see that LAA actually runs faster than Greedy. This is because
LAA aggregates requests before reconfiguring them. In all, the
results in Fig. 4 verifies the performance of LAA.

IV. CONCLUSION

In this paper, we proposed an LAA algorithm for realizing
QoS-aware reconfiguration of VNF-STs over heterogeneous
NFV platforms. Simulation results confirmed that our proposal
saves running time and obtains more cost-effective reconfigu-
ration schemes than the greedy approach.

ACKNOWLEDGMENTS

This work was supported by NSFC project 61871357 and
Fundamental Fund for Central Universities (WK3500000006).

REFERENCES

[1] P. Marsch et al., “5G radio access network architecture: Design guide-
lines and key considerations,” IEEE Commun. Mag., vol. 54, pp. 24–32,
Nov. 2016.

[2] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[3] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[4] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[5] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[6] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[7] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[8] M. Chiosi et al. (2012) Network functions virtualisation. [Online].
Available: https://portal.etsi.org/nfv/nfv white paper.pdf.

[9] Tofino switch. [Online]. Available: https://www.barefootnetworks.com/
products/brief-tofino/.

[10] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[11] L. Dong, N. da Fonseca, and Z. Zhu, “Application-driven provisioning
of service function chains over heterogeneous NFV platforms,” IEEE
Trans. Netw. Serv. Manag., vol. 18, pp. 3037–3048, Sept. 2021.

[12] W. Fang et al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[13] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-dc elastic optical networks,” J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[14] N. Zilberman. (2019, Apr.) In-network computing. [Online]. Available:
https://www.sigarch.org/in-network-computing-draft/.

[15] L. Dong et al., “On application-aware and on-demand service compo-
sition in heterogenous NFV environments,” in Proc. of GLOBECOM
2019, pp. 1–6, Dec. 2019.

[16] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[17] L. Dong, N. da Fonseca, and Z. Zhu, “Application-driven provisioning
of service function chains over heterogeneous NFV platforms,” IEEE
Trans. Netw. Serv. Manag., vol. 18, pp. 3037–3048, Sept. 2021.

[18] C. Sun, J. Bi, Z. Zheng, and H. Hu, “Hyper: A hybrid highperformance
framework for network function virtualization,” IEEE J. Sel. Areas
Commun., vol. 35, pp. 2490–2500, Nov. 2017.

[19] Y. Xue and Z. Zhu, “On the upgrade of service function chains
with heterogeneous NFV platforms,” IEEE Trans. Netw. Serv. Manag.,
vol. 18, pp. 4311–4323, Dec. 2021.

[20] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.


