
On the Distributed Routing and Data Scheduling in
Interplanetary Networks

Xiaojian Tian1 and Zuqing Zhu1,†
1School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: {zqzhu}@ieee.org

Abstract—With the advances on human’s exploration of the
universe, interplanetary networks (IPNs) are attracting more
and more research interests. However, the unique characteristics
of IPNs make many of the networking technologies on Earth
not applicable. In this work, we design a routing and data
scheduling algorithm that can make interplanetary data transfers
(IP-DTs) more scalable and robust. Specifically, we propose an
online approach to schedule and route IP-DTs in the distributed
way, by leveraging the Lyapunov optimization. With extensive
simulations, we show that our proposed algorithm can optimize
the performance of IP-DTs with only the information about local
queues on each node in an IPN. The simulation results also verify
that our algorithm outperforms the existing ones significantly in
terms of the average E2E latency of IP-DTs, and properly adjusts
the tradeoff between average E2E latency and delivery ratio.

Index Terms—Interplanetary network (IPN), Delay tolerant
network (DTN), Queue scheduling, Lyapunov optimization.

I. INTRODUCTION

Nowadays, we have already witnessed the rapid develop-
ment of Internet infrastructure on our planet [1–3]. Mean-
while, the increasing activities on deep space (DS) explo-
ration have promoted the research and development (R&D)
on interplanetary networks (IPNs). An IPN is responsible for
the communications among DS objects [4], and thus it is a
critical infrastructure to facilitate DS missions and operates
significant differently from the networks on Earth [5–7]. Due
to the unique applications, current IPNs usually have relatively
simple architectures with sparse topology density. However,
the ongoing and future plans of DS missions are bringing more
DS objects and services in IPNs, which will not only increase
their scales and density but also differentiate the traffic in them
[8]. Hence, it is relevant and necessary to accelerate the R&D
on networking technologies for IPNs, especially the routing
and data scheduling algorithms that will make interplanetary
data transfers (IP-DTs) more scalable and robust.

Fig. 1 shows an example of IPN that consists of a ground
station and a geostationary satellite, which are on or around
Earth, as well as the relay satellites and rovers for other
celestial bodies (i.e., Moon and Mars). Here, the relay satellites
and rovers are just the DS objects in IPN. The difficulty
of realizing scalable and robust IP-DTs mainly comes from
two aspects. Firstly, the movement of DS objects and shields
of celestial bodies make the links in IPNs time-varying and
unstable, and thus we often cannot find available end-to-end
routing paths to support IP-DTs. Secondly, the links in IPNs
are normally several magnitudes longer than the communica-

tion links on Earth, and they are always exposed to complex
electro-magnetic interferences in the universe. Therefore, the
data transmission on each link will be extremely unreliable.

Earth

Moon

Mars

Fig. 1. An example of IPN.

To address these challenges, people have proposed delay
tolerant networking (DTN) [9], which adopts the way of store-
carry-forward (SCF) to realize IP-DTs. Specifically, DTN
defines a series of contiguous data blocks as a “bundle”, and
each bundle contains sufficient information, with which an
application on the destination can make progress [10]. People
have standardized several protocols for DTN (e.g., in [10]), and
the National Aeronautics and Space Administration (NASA)
has conducted in-depth R&D and space tests on them.

As DS objects and celestial bodies usually have fixed orbits
and operation periods, the contact plan of each link in an
IPN is actually determined, i.e., the topology of each IPN is
time-varying but predictable. Hence, the contact graph routing
(CGR) [11] was proposed to compute routes for IP-DTs with
the predictable topology, and it assumes that pending bundles
are sent immediately upon each contact of a link, i.e., the
queuing delay of bundles is ignored. However, in a real-world
IPN (especially a busy one in the future), many bundles can be
buffered at a node, and thus their queuing delay can become
long enough to let them miss the planned contacts. To address
this issue, the authors of [12] designed the algorithm of CGR-
ETO to enhance CGR such that the routing calculation will
take the estimated queuing delay of each bundle into account.

Nevertheless, both CGR and CGR-ETO assume that bundles
are handled in queues in the first-in-first-out (FIFO) manner,
i.e., they do not optimize the scheduling in queues to fur-
ther improve the performance of IP-DTs. Later on, in [13],
Ramamurthy et al. proposed to jointly optimize the routing
and data scheduling of IP-DTs based on the multi-attribute
decision making principle. Although their proposed algorithm
(namely, MARS) performs better than those that only address
the routing, it only schedules the bundles in a single queue

and does not optimize the scheduling of multiple queues on a
same node jointly. Note that, multiple queues can be allocated
in a node of IPN, to correspond to different next hops or/and
various network services. Moreover, MARS ranks the bundles
in a queue to transmit greedily, which is still relatively simple
and might not guarantee the best scheduling performance.

In this work, we propose an online approach to schedule
and route IP-DTs in the distributed way. The rationale behind
designing the distributed algorithm is that the characteristics
of IPN make it difficult for nodes to collect information about
others, and even if the information can be obtained, it will be
out-of-date due to the long latency between nodes. We leverage
the Lyapunov optimization [14] to design the distributed online
approach, and prove that it can optimize the performance of
IP-DTs with only the information about local queues on each
node in an IPN. Simulation results confirm that our proposed
algorithm can outperform the existing ones in the literature.

The rest of the paper is organized as follows. Section II
formulates the problem of routing and data scheduling in an
IPN. The algorithm design is presented in Section III, and we
discuss the simulations for performance evaluation in Section
IV. Finally, Section V summarizes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model the topology of an IPN as a temporal graph
Gt(V,Et), where V is the set of IPN nodes and Et denotes
the set of temporal links at time t. The nodes can be ground
stations or control centers on Earth, satellites, and DS objects
(e.g., probes and rovers). We use et = (u, v, ts, te, r, τ) ∈ Et
to represent a temporal link from u to v (u, v ∈ V), where ts
and te denote the start time and stop time of the link’s contact,
respectively, and r and τ are the data rate and transmission
latency of the link, respectively. As the contact plan of each
link in the IPN is predictable, the parameters of {ts, te, r, τ}
are actually known for et when t is provided. Meanwhile, for
simplicity, we assume that the values of r and τ do not change
during each contact of et. This is similar to the assumption
used in previous studies [11, 13]. Note that, some of the links
can exist consistently in an IPN, e.g., those between ground
stations and geostationary satellites. Hence, the values of ts
and te of such a permanent link is set as 0 and∞, respectively.

We define the IP-DT request of a bundle as B(s, d, β, ta, td),
where s and d are its source and destination (s, d ∈ V),
respectively, β represent the data size of the bundle, ta is
the time that the request arrives at s, and td is the deadline
by when the bundle should be delivered to d. If the bundle
cannot reach d by td, it will be discarded by the IPN.

B. Distributed Routing and Data Scheduling in IPN

Algorithm 1 shows the operation principle of our proposed
approach for distributed routing and data scheduling on each
node of an IPN. Specifically, the idea is that we create a few
queues on each node v ∈ V of the IPN Gt(V,Et) to buffer
bundles, and at each time instant t, we leverage the Lyapunov
optimization to select bundles from the queues to transmit

Algorithm 1: Distributed Routing and Data Scheduling
1 t = 0, initialize Qv and {Qv,u};
2 while node v ∈ V is operational do
3 insert all the newly generated/received bundles in Qv;
4 for each bundle B in Qv do
5 if the routing path of B is undetermined then
6 calculate a routing path p for B with the CGR

algorithm, and record p in B.path;
7 end
8 if B.path 6= ∅ then
9 get the next hop u for B from B.path;

10 insert B in Qv,u and remove B from Qv;
11 end
12 end
13 for each queue Qv,u do
14 if et = (v, u) is in contact then
15 use Algorithm 2 to select bundles in Qv,u to

transmit and remove them from Qv,u;
16 else
17 for each bundle B in Qv,u do
18 mark routing path of B as undetermined;
19 insert B in Qv and remove it from Qv,u;
20 end
21 end
22 end
23 t = t+ 1, remove expired bundles in Qv and {Qv,u};
24 end

according to the current network status. Hence, each node
works as a discrete-time system that operates on time-slots
(TS’), each of which has a fixed duration of ∆t1. This means
that the IP-DT scheme on each node can be changed at the
beginning of each TS (i.e., t = ∆t, 2∆t, · · ·). For simplicity,
we normalize the system time as t ∈ {1, 2, · · · }.

The queues on each node v ∈ V belong to two categories,
i.e., the buffering and outgoing queues. First of all, we allocate
a buffering queue Qv to store all the bundles, which can be
either locally generated or received from adjacent nodes for
being relayed. Secondly, for each node {u : u 6= v, u ∈ V }
that can have direct contact with node v, we create an outgoing
queue Qv,u to store all the bundles that will use node u as
their next hop. In Algorithm 1, Line 1 initializes the queues on
node v, while Line 3 explains the enqueue operation of Qv .

The for-loop that covers Lines 4-12 processes the bundles
in Qv to insert them in {Qv,u} accordingly. Specifically, if
the routing path of a bundle B is undetermined, we calculate
a routing path p by applying the CGR algorithm [11] on
the temporal graph Gt(V,Et) of the IPN, and store the path
as an attribute of B (i.e., B.path = p) (Lines 5-7). Note
that, promoted by NASA, CGR is the most prominent routing
algorithm used in IPNs [13]. Based on the temporal graph
Gt(V,Et), CGR first represents the contact plan of each link
et = (u, v, ts, te, r, τ) ∈ Et as a time-ordered list, each
element in which denotes the information of a “contact” (i.e.,
{ts, te, r, τ}). Then, for each bundle B(s, d, β, ta, td), CGR
considers the contact plans to find the routing path from s to d,

1Here, the value of ∆t should be selected to guarantee that the largest
possible bundle can be transmitted within ∆t on the link whose data rate is
the lowest in the IPN. This is because the bundle protocol in [10] specifies
that for the IP-DTs in an IPN, each bundle is atomic.

which does not have to be continuous in time but can achieve
the shortest end-to-end latency. There is a “forfeit time” for
each node on the path, which tells the deadline by when B
has to be sent to the next hop to be able to reach d by td.

For bundle B, if its routing path can be found by CGR, we
get the next hop u, and move it from Qv to Qv,u (Lines 8-
11). As CGR assumes that each bundle will be transmitted
immediately when its contact starts, the algorithm ignores
the queuing delay after which the bundle’s data transfer can
actually take place. This, however, can make the bundle miss
its forfeit time on certain node of its routing path, especially
when the traffic load in the IPN is relatively high. This issue
can be addressed with the data scheduling in Lines 13-22,
where the bundles in each outgoing queue Qv,u are scheduled.

Specifically, for an outgoing queue Qv,u, we first check
whether the corresponding outgoing link is in contact. If yes,
we use Algorithm 2 to select bundles inQv,u to transmit (Lines
14-15). Otherwise, we mark the routing paths of the bundles
in Qv,u as undetermined and move them from Qv,u back to
Qv , to invoke rerouting for them in the next iteration (Lines
16-20). Here, Algorithm 2 is our proposed distributed data
scheduling algorithm, which will be elaborated in the next
section. Finally, the system time proceeds for a TS, and we
remove all the bundles whose deadlines have already been
passed from the queues on node v (Line 23).

III. ALGORITHM DESIGN OF DATA SCHEDULING

Comparing with other networks that also require distribut-
ed routing and data scheduling, IPN normally has a more
sophisticated contact plan. In this section, we explain our
algorithm design to realize distributed data scheduling on each
node in an IPN. Specifically, on each node v ∈ V , the data
scheduling leverages Lyapunov optimization to select bundles
in the outgoing queues {Qv,u} to transmit, based on the node’s
local information. To facilitate the Lyapunov optimization, we
preprocess each outgoing queue Qv,u to categorize the bundles
in it based on their previous hop before node v (i.e., node v̂)
and put them into several virtual queues accordingly.

Each virtual queue can be denoted as Qv̂v,u, which stores the
bundles that are in Qv,u and were sent to node v from node v̂.
Here, we can have v̂ = v, which means that the corresponding
bundles are locally generated at node v, and we should also
ensure v̂ 6= u to avoid routing loops. If we define the set
of nodes, which can have direct contact with node v, as Vv
and assume |Vv| = K, the aforementioned preprocessing will
distributes the bundles in each outgoing queue Qv,u to |(Vv \
u)∪{v}| = K virtual queues. Hence, we can assign a unique
index k to each v̂, where we have k ∈ [1,K], and simplify
Qv̂v,u as Qk. Then, the data scheduling needs to schedule the
data transfers of bundles in Qv,u, according to the status of
all of its virtual queues (i.e., {Qk,∀k}).

A. Lyapunov Optimization Model

Lyapunov optimization [14] is a powerful scheduling tech-
nique that can achieve time-average optimization in stochastic
systems. To represent the time-varying state of virtual queues

{Qk,∀k}, we define the vector of current queue backlogs as
Q(t) = [Q1(t), · · · ,QK(t)], where Qk(t) denotes the state of
virtual queue Qk at TS t. The queue evolution over time is

Qk(t+ 1) = max [Qk(t)− bk(t), 0] +Ak(t), ∀k, t, (1)

where Ak(t) denotes the number of bundles that are put in Qk
at TS t, and bk(t) is the number of bundles that are selected
for being sent on link et = (v, u) at TS t.

Then, we can define a Lyapunov function L(Q(t)) as

L(Q(t)) ,
1

2

K∑
k=1

[Qk(t)]2 , (2)

which represents a scalar measure of queue congestion, and
the conditional Lyapunov drift of TS t can be obtained as

∆(Q(t)) , E {L(Q(t+ 1))− L(Q(t)) | Q(t)} , (3)
which denotes the expectation of the change in L(Q(t)) due
to channel states, queue states and control actions. With Eq.
(3), we can push L(Q(t)) to low congestion consistently as,

L(Q(t+ 1))− L(Q(t)) =
1

2

K∑
k=1

[
Qk(t+ 1)2 −Qk(t)2

]
=

1

2

K∑
k=1

{
{max [Qk(t)− bk(t), 0] +Ak(t)}2 −Qk(t)2

}
≤

K∑
k=1

[
Ak(t)2 + bk(t)2

]
2

+

K∑
k=1

Qk(t) · [Ak(t)− bk(t)] ,

(4)

because for any Q ≥ 0, b ≥ 0, A ≥ 0, we have the inequality
{max [Q− b, 0] +A}2 ≤ Q2 +A2 + b2 + 2Q · (A− b). (5)

Therefore, the Lyapunov drift ∆(Q(t)) in Eq. (3) satisfies

∆(Q(t)) ≤ E

{
K∑

k=1

[
Ak(t)2 + bk(t)2

]
2

| Q(t)

}

+

K∑
k=1

Qk(t) · λk − E

{
K∑

k=1

Qk(t) · bk(t) | Q(t)

}
,

(6)

where λk denotes the time-average value of E {Ak(t) | Q(t)},
which can be got as λk = E {Ak(t) | Q(t)} = E {Ak(t)}.
This is because Ak(t) denotes the arrivals of new bundles to
Qk, which is independent of the current queue state Q(t).

As Ak(t) and bk(t) are finite, we can verify that the first
term on the right side of Eq. (6) has a finite upper-bound M

E

{
K∑
k=1

[
Ak(t)2 + bk(t)2

]
2

| Q(t)

}
≤M. (7)

Meanwhile, to express the impact of data transfer decisions
on the stochastic system, we rewrite bk(t) as

bk(t) = b̂k(α(t),S(t)), (8)
where α(t) denotes the data transfer decision for TS t (i.e.,
from which queue among {Qk(t)} we choose bundles to
transmit at TS t), and S(t) is the current state vector of
temporal link et = (v, u) (i.e., S(t) = [ts, te, r, τ]).

By combining Eqs. (6)-(8), we can obtain

∆(Q(t)) ≤M +

K∑
k=1

Qk(t) · λk

− E

{
K∑

k=1

Qk(t) · b̂k(α(t),S(t)) | Q(t)

}
.

(9)

As the right side of Eq. (9) actually denotes the upper-bound
of the Lyapunov drift ∆(Q(t)), we need to minimize it by
making the right data transfer decision α(t). Note that, α(t)
only affects the last term in the upper-bound, and thus we
actually need to maximize the following expression

E

{
K∑

k=1

Qk(t) · b̂k(α(t),S(t)) | Q(t)

}
. (10)

The conditional expectation in Eq. (10) can be maximized
opportunistically by observing Q(t) and S(t) and selecting
the right data transfer decision α(t) to maximize [14]

K∑
k=1

Qk(t) · b̂k(α(t),S(t)). (11)

Assuming that α∗(t) is the optimal data transfer decision at
TS t, which can maximize the term in Eq. (11), we can define
b∗k(t) = b̂k(α∗(t),S(t)). Then, Eq. (9) gets transformed into

∆(Q(t)) ≤M +

K∑
k=1

Qk(t) · λk − E

{
K∑

k=1

Qk(t) · b∗k(t) | Q(t)

}

= M −
K∑

k=1

Qk(t) · [E {b∗k(t) | Q(t)} − λk] .

(12)
As α∗(t) is a particular data transfer decision, it is independent
of Q(t). Hence, to ensure the stability of queues, there exists
an ε ≥ 0 that can make [E {b∗k(t) | Q(t)} − λk] non-negative,

E [b∗k(t) | Q(t)]− λk = E [b∗k(t)]− λk ≥ ε, ∀k. (13)

Hence, Eq. (12) can be transformed into

∆(Q(t)) ≤M −
K∑

k=1

Qk(t) · ε. (14)

By taking the expectation of both sides, we can get
E [∆(Q(t))] = E {E [L(Q(t+ 1)− L(Q(t)) | Q(t)]}

= E [L(Q(t+ 1)]− E [L(Q(t)]

≤M − ε ·
K∑

k=1

E [Qk(t)] .

(15)

Then, by defining the system’s operation time as T (i.e.,
t ∈ [0, T − 1]), we can get the telescoping sum of Eq. (15) as

E {L(Q(T)}−E {L(Q(0)} ≤M ·T−ε·
T−1∑
t=0

K∑
k=1

E {Qk(t)} . (16)

Eq. (16) can be further reduced as follows, after dividing both
sides by ε · T and utilizing the fact that L(Q(T)) ≥ 0

1

T

T−1∑
t=0

K∑
k=1

E [Qk(t)] ≤ M

ε
+

E [L(Q(0)]

ε · T . (17)

Apparently, we have E {L(Q(0)} � ∞. Therefore, when T
approaches ∞, we can get

lim sup
T→∞

1

T

T−1∑
t=0

K∑
k=1

E [Qk(t)] ≤ M

ε
, (18)

which verifies that all the queues are strongly stable [14] while
the time-average length of the queues is bounded.

B. Distributed Data Scheduling Algorithm

In order to improve the delivery ratio of bundles and reduce
their average data transfer latency, we need to minimize their
average queuing delay on the nodes in an IPN. Meanwhile,

according to the Little’s Theorem [15], the average queuing
delay is proportional to the time-average length of queues.
Hence, based on the derivations in the previous subsection, we
can obtain an effective algorithm to schedule the data transfers
on each node distributedly, such that the time-average length
of queues can be minimized. Algorithm 2 shows the details
of the distributed data scheduling, which schedules the data
transfers of bundles in an outgoing queue Qv,u on node v.

Algorithm 2: Distributed Data Scheduling in IPN
Input: {Qk(t), ∀k}, et = (v, u), S(t) = [ts, te, r, τ]

1 max = 0, α∗(t) = 0, Ĉ = r ·∆t;
2 while Ĉ > 0 do
3 for k = 1 to K do
4 α(t) = k, bk(t) = 0, C = Ĉ;
5 sort bundles in Qk(t) in descending order of their

deadlines;
6 while Qk(t) > 0 do
7 pop a bundle B(s, d, β, ta, td) from Qk(t);
8 if C − β ≥ 0 then
9 bk(t) = bk(t) + 1, C = C − β;

10 else
11 break;
12 end
13 end
14 x = Qk(t) · bk(t);
15 if x > max then
16 max = x;
17 α∗(t) = α(t), b∗k(t) = bk(t), C∗ = C;
18 end
19 end
20 send bundles according to α∗(t) and b∗k(t);
21 if b∗k(t) > 0 then
22 Ĉ = C∗;
23 else
24 Ĉ = 0;
25 end
26 end

In Algorithm 2, Line 1 is for initialization, where max
and α∗(t) will store the maximal value of Qk(t) · bk(t) and
the optimal data transfer decision obtained in each iteration,
respectively, and Ĉ records the available throughput that can
be provided by the link et = (v, u) within ∆t. Then, the
while-loop tries to distribute all the throughput of Ĉ to the
bundles in {Qk(t)} (Lines 2-26). Specifically, in each iteration
of the while-loop, we first check all the virtual queues and
find the one that transferring the bundles in it can maximize
Qk(t) · bk(t) (i.e., to maximize the term in Eq. (11)) (Lines
3-19), and then send the selected bundles and update the
available throughput accordingly (Lines 20-25). Note that, in
Lines 23-24, we will set Ĉ as 0 if we have b∗k(t) = 0. This
is because b∗k(t) = 0 means that either all the bundles in
{Qk(t)} have been transmitted or the remaining throughput
cannot cover any pending bundle in {Qk(t)}. Therefore, the
while-loop of data scheduling should be terminated.

C. Time Complexity Analysis

The while-loop of Lines 2-26 in Algorithm 2 can run K+1
times at most, while the for-loop of Lines 3-19 will execute
for K times. The complexity of the sorting in Line 5 can be

assumed to be O(n2), where n denotes the average length of
Qk(t). As for the while-loop of Lines 6-13, it can run η = Ĉ

β

times, where β is the average bundle size. Hence, the time
complexity of Algorithm 2 is O(K2 · (n2 + η)).

IV. PERFORMANCE EVALUATION

A. Simulation Setup

Our simulations consider two IPN topologies. The small-
scale topology contains 8 nodes spanning across Earth, Moon,
and Mars, while the large-scale one includes 18 nodes. Figs.
2(a) and 2(b) illustrate the configurations of the small-scale
and large-scale topologies, respectively. We use the satellite
tool kit (STK) [16] to generate the 24-hour contact plan of each
topology. The simulation parameters use similar settings as
those in [13]. Specifically, the bundle requests are dynamically
generated according to the Poisson traffic model. For each
request B(s, d, β, ta, td), its source s and destination d are
randomly selected, its data size β distributes uniformly within
[1, 1024] KByte, and the average value of its lifetime (td− ta)
is set as 7, 200 seconds. The duration of each TS is set as ∆t =
256 seconds, to ensure that the data transfer of each bundle
is atomic. More specifically, the setting of ∆t guarantees that
the largest bundle of 1 MByte can be transmitted over the link
with the lowest data rate (i.e., 32 Kbps) within a TS.

We use the CGR that processes bundles in the FIFO manner
(CGR) and the MARS algorithm in [13] as the benchmarks,
and evaluate the algorithms’ performance on interplanetary
data transfers (IP-DTs) in terms of delivery ratio and average
end-to-end (E2E) latency of IP-DTs. To ensure sufficient
statistical accuracy, the simulations average the results of 5
independent runs to get each data point. Note that, the authors
of [13] considered different weight configurations in MARS.
Specifically, the weights address the size (w1), remaining
lifetime (w2), priority (w3), and time in queue (w4) of each
buffered bundle request. Due to the page limit, we adopt two
typical configurations of MARS in our simulations: 1) MARS-
1 with {w1 = 0.1, w2 = 0.4, w3 = 0.4, w4 = 0.1}, and
MARS-2 with {w1 = 0.5, w2 = 0.1, w3 = 0.1, w4 = 0.3}.

B. Small-Scale Simulations

As shown in Fig. 2(a), the small-scale IPN topology consists
of three ground stations and a ground control center on Earth,
as well as two communication systems for Moon and Mars,
respectively, each of which includes a rover and a relay
satellite. Note that, Fig. 2(a) only shows a snap-shot of the
IPN, where the satellites only communicate with one of the
ground stations, but each satellite actually can talk with all the
ground stations at the right time of contacts, respectively.

Fig. 3(a) shows the results on average E2E latency of
IP-DTs, which indicate that our Lyapunov-based algorithm
(Lyapunov) achieves significantly shorter average E2E latency
than the benchmarks. This verifies the effectiveness of the
distributed routing and scheduling in Lyapunov. Meanwhile,
it is interesting to observe that the average E2E latencies from
the algorithms actually decrease with the traffic load slightly

Moon

MarsEarth

(a) Configuration of small-scale topology

Earth

Low orbit satellite
× 7

Medium-high orbit satellite
× 3

Rover

× 4

(b) Configuration of large-scale topology

Fig. 2. IPN topologies used in simulations.

in Fig. 3(a). This phenomenon can be explained as follows.
The connectivity of the small-scale IPN topology in Fig. 2(a) is
actually not very good due to the sparse and time-varying links
in it. Hence, when the traffic load increases, the IP-DTs whose
latencies have already been relatively long have a larger chance
to be dropped by the intermediate nodes on their routing paths,
and this helps reduce the average E2E latency slightly.

As for the MARS-based algorithms, their average E2E
latencies are slightly longer than CGR. We believe that this
is because the scheduling in MARS helps more IP-DTs reach
their destinations successfully. The results on delivery ratio in
Fig. 3(b) confirm this analysis, which shows that the MARS-
based algorithms achieves slightly larger delivery ratios than
CGR. Meanwhile, by combining the results in Figs. 3(a) and
3(b), we can see that MARS can adjust the tradeoff between
average E2E latency and delivery ratio by using different
weight configurations. Specifically, the weight configuration of
MARS-2 is better because it provides larger delivery ratios and
shorter average E2E latency. On the other hand, by comparing
MARS-2 and Lyapunov, we find that Lyapunov adjusts the
tradeoff between average E2E latency and delivery ratio even
better. This is because the delivery ratio of Lyapunov is only
slightly less than that of MARS-2 (i.e., the gap is typically
less than 1%), while the average E2E latency of Lyapunov is
much shorter than that of MARS-2.

C. Large-Scale Simulations

To further evaluate the algorithms in a larger-scale topology
with more complex intermittent connections, we simulate them
with the IPN topology in Fig. 2(b), which consists of 3
ground stations, 1 ground control center, 4 rovers, 7 low orbit

(a) Average E2E latency

(b) Delivery ratio

Fig. 3. Results of simulations with small-scale topology.

satellites, and 3 medium-high orbit satellites on/around Earth,
Moon, and Mars. This time, the average E2E latencies in
Fig. 4(a) generally increase with the traffic load, because of
the much better connectivity of the large-scale IPN topology.
We can see that Lyapunov provides the shortest average E2E
latency among all the algorithms, and its results are still signif-
icantly shorter than those of the benchmarks. Meanwhile, the
results in Fig. 4(b) suggest that Lyapunov outperforms MARS-
1 and CGR in terms of delivery ratio, and the performance
gap of Lyapunov and MARS-2 on delivery ratio is smaller
than that in Fig. 3(b). Therefore, Fig. 4 verifies that Lyapunov
still adjusts the tradeoff between average E2E latency and
delivery ratio the best among all the algorithms, and it actually
performs better in a larger scale IPN topology.

V. CONCLUSION

In this work, we proposed an online approach to schedule
and route IP-DTs distributedly in an IPN. We leveraged
the Lyapunov optimization to design the distributed online
approach, such that it can optimize the performance of IP-DTs
with only the information about local queues on each node in
an IPN. Our simulation results confirmed that our proposed
algorithm outperforms the existing ones significantly in terms
of the average E2E latency of IP-DTs, and can properly adjust
the tradeoff between average E2E latency and delivery ratio.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China (2020YFB1806400), NSFC project
61871357, SPR Program of CAS (XDC02070300), and Fun-
damental Funds for Central Universities (WK3500000006).

(a) Average E2E delay

(b) Delivery ratio

Fig. 4. Results of simulations with large-scale topology.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[3] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[4] M. Marchese, “Interplanetary and pervasive communications,” IEEE
Aerosp. Electron. Syst. Mag., vol. 26, pp. 12–18, Feb. 2011.

[5] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[6] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[7] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[8] A. Alhilal, T. Braud, and P. Hui, “The sky is NOT the limit anymore: Fu-
ture architecture of the interplanetary Internet,” IEEE Aerosp. Electron.
Syst. Mag., vol. 34, pp. 22–32, Aug. 2019.

[9] S. Burleigh et al., “Delay-tolerant networking: an approach to interplan-
etary Internet,” IEEE Commun. Mag., vol. 41, pp. 128–136, Jun. 2003.

[10] K. Scott and S. Burleigh, “Bundle protocol specification,” RFC 5050,
Nov. 2007. [Online]. Available: http://tools.ietf.org/html/rfc5050.

[11] S. Burleigh, “Contact graph routing,” Jul. 2010. [Online]. Available:
https://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-01.

[12] N. Bezirgiannidis, F. Tsapeli, S. Diamantopoulos, and V. Tsaoussidis,
“Towards flexibility and accuracy in space DTN communications,” in
Proc. of ACM CHANTS 2013, pp. 43–48, Sept. 2013.

[13] S. El Alaoui and B. Ramamurthy, “MARS: A multi-attribute routing
and scheduling algorithm for DTN interplanetary networks,” IEEE/ACM
Trans. Netw., vol. 28, pp. 2065–2076, Oct. 2020.

[14] M. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. San Rafael, CA, USA: Morgan and
Claypool, 2010.

[15] D. Bertsekas, R. Gallager, and P. Humblet, Data Networks. New Jersey,
USA: Prentice-Hall International, 1992.

[16] Satellite tool kit. [Online]. Available: http://www.agi.com/products/stk/.

