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Abstract—In-band network telemetry (INT) can monitor net-
works in a flow-oriented and realtime way. The bandwidth
overheads caused by per-packet INT can be effectively reduced
by selective INT (Sel-INT), i.e., sampling packets or/and types of
telemetry data for INT. For the sampling in Sel-INT, there is a
tradeoff between bandwidth overheads and monitoring accuracy,
which can be adjusted by the sampling ratio. In this paper, we
investigate how to adjust the sampling ratio of Sel-INT adaptively
such that the tradeoff can be balanced precisely. We first develop
a theoretical model to analyze the accuracy of Sel-INT for traffic
trace reconstruction under different sampling ratios. We assume
that the data samples of a flow’s traffic trace (i.e., bandwidth
usage) follow the Gaussian random process, and the traffic trace
is reconstructed with linear interpolation based on the samples
collected by Sel-INT. We analyze this process theoretically and
derive the expected reconstruction error (RCE) between the
original and reconstructed traces. Then, we use RCE to determine
whether the sampling ratio of Sel-INT is properly set and propose
two algorithms, namely, RCESA and pRCESA, to adjust the
sampling ratio adaptively. Extensive simulations with realistic
traffic traces verify the effectiveness of our proposal.

Index Terms—In-band network telemetry (INT), Selective INT
(Sel-INT), Sampling error, Traffic monitoring.

I. INTRODUCTION

Recent advances on data-centers and 5G networks have
greatly reshaped Internet infrastructures [1] and stimulated
innovations in a number of areas (e.g., physical-layer tech-
nologies [2–5] and network virtualization [6–9]). Despite their
advantages, these innovations make networks more prone
to faults and thus complicate network monitoring and trou-
bleshooting. Therefore, today’s network operators are eager to
have network monitoring techniques that can visualize network
status in a fine-grained, realtime, and efficient manner, such
that exceptions can be detected, located, and recovered quickly.
However, these requirements can hardly be satisfied by the
conventional network monitoring techniques [10], because
they either are not precise enough to capture network status
in realtime or cannot reveal the end-to-end operation of flows.

This dilemma can be overcome by leveraging the progresses
on programmable data plane (PDP) [11, 12] to create novel
network monitoring techniques. For instance, in-band network
telemetry (INT) [13] has been proposed to monitor networks
and locate exceptions in a flow-oriented, realtime, and effective
way. Implemented with PDP, INT inserts an INT header in
each packet of a service flow. The INT header consists of
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Fig. 1. Operation principle of Sel-INT.

specific INT fields to store telemetry instructions for the flow
and the telemetry data that is collected on each hop according
to the instructions. Hence, by extracting the INT header at the
flow’s egress switch, one can analyze the telemetry data in it
to reveal how the packet was processed in a network.

Note that, INT samples the network status experienced by a
flow in a per-packet way. This might not be necessary since the
operation of a network usually would not change dramatically
at the time granularity of a single packet, especially when
the flow’s data-rate is relatively high. Therefore, people have
proposed several schemes to reduce the bandwidth overheads
of INT and avoid seizing too much bandwidth from normal
traffic, by sampling packets or/and types of telemetry data for
INT [14–17]. These schemes categorize packets in a flow into
two types: 1) the normal packets that are not selected for INT,
and 2) the INT packets that carry INT headers. For instance,
Fig. 1 explains the operation of the selective INT (Sel-INT)
in [16] when the sampling ratio of INT packets is 1

n .
When sampling is considered for INT, there is a tradeoff

between bandwidth overheads and monitoring accuracy, which
can be adjusted by the sampling ratio. Although previous
studies have considered the tradeoff and explained how to
adjust it in different scenarios [16–18], none of them has
tackled the problem from the theoretical perspective. Hence,
their approaches for adjusting the sampling ratio could be
arbitrary and might not always balance the tradeoff properly.

In this work, we first develop a theoretical model to analyze
the accuracy of Sel-INT for traffic trace reconstruction under
different sampling ratios. We assume that the data samples of a
flow’s traffic trace (i.e., bandwidth usage) follow the Gaussian
random process, and the traffic trace is first collected with Sel-
INT and then reconstructed with linear interpolation based on
the sampled results. We analyze the process theoretically and978-1-6654-3540-6/22 © 2022 IEEE



derive the expected reconstruction error (RCE) between the
original and reconstructed traces based on conditional mean
and variance (CMV). Next, as RCE can quantify the accuracy
of traffic trace reconstruction precisely, we use it to determine
whether the sampling ratio of Sel-INT is properly set and
propose two algorithms to adjust the sampling ratio adaptively.
Finally, we conduct extensive simulations to demonstrate the
effectiveness of our proposed model and algorithms.

The rest of this paper is organized as follows. Section II
surveys the related work briefly. In Section III, we describe
our problem and derive the theoretical model for RCE. The
algorithms are designed in Section IV and the simulations are
shown in Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

Since INT provides a promising way to monitor networks
effectively, it has attracted intensive R&D interests. The first
specification of INT has been released in [13], which suggests
to collect telemetry data on a per-packet basis. To reduce the
redundant bandwidth overheads of per-packet INT, previous
studies [14–17] proposed a few schemes to sample packets
or/and types of telemetry data for INT. The studies in [14,
15] assumed a preset sampling ratio, Sel-INT in [16] can be
programmed in runtime to change the sampling ratio on-the-
fly, and PINT in [17] leveraged probabilistic sampling to select
the types of telemetry data for INT. Nevertheless, none of these
sampling schemes tried to determine the sampling ratio with
a solid theoretical model, and thus their ways of selecting the
sampling ratio could be arbitrary and might not always balance
the tradeoff between the bandwidth overheads and monitoring
accuracy of INT properly.

In addition to sampling schemes, people have also consid-
ered to reduce the bandwidth overheads of INT by planning
flow paths to avoid collecting redundant telemetry data and to
maximize the coverage of network monitoring (e.g., in [19]).
However, these proposals cannot reduce the bandwidth over-
heads of INT on each flow after its path has been determined.

To the best of our knowledge, none of the existing s-
tudies has analyzed the accuracy of INT sampling schemes
theoretically or proposed algorithms to adjust the sampling
ratio precisely to balance the tradeoff between the bandwidth
overheads and monitoring accuracy of INT properly.

III. THEORETICAL ANALYSIS

In this section, we first present the problem of analyzing the
accuracy of Sel-INT for traffic trace reconstruction, and then
derive the theoretical model to solve it.

A. Problem Description

Per-packet INT collects the network status experienced by
a flow with the highest accuracy, and thus we can treat its
monitoring results as the “ground truth”. On the other hand,
Sel-INT samples the network status with a sampling ratio to
reduce the bandwidth overheads of network monitoring, and
then relies on the data analyzer (DA) to reconstruct the original
network status with the sampled results (as shown in Fig.

(a) Reconstruction in case of under-sampling

(b) Reconstruction in case of proper sampling

Fig. 2. Examples of traffic trace reconstruction with Sel-INT.

1). Although Sel-INT can effectively reduce the bandwidth
overheads, it could bring in RCE and make the reconstructed
network status be different from the ground truth, especially
when the sampling ratio is not properly set.

Note that, Sel-INT can collect various types of telemetry
data, which can be categorized as static ones (e.g., In Port/Out
Port and Device ID), slow-varying ones (e.g., Hop Latency),
and fast-varying ones (e.g., Bandwidth) [16]. As the recon-
struction of static and slow-varying telemetry data will not be
affected significantly with the sampling ratio, we only study
the RCE of the fast-varying telemetry data (i.e., Bandwidth)
in this work. Specifically, we assume that Sel-INT samples
bandwidth usage of a flow with a preset sampling ratio and
then reconstructs the original bandwidth usage with linear
interpolation, and develop a theoretical model to analyze the
RCE generated in the process. Fig. 2 gives examples on traffic
trace reconstruction with Sel-INT. When the sampling ratio is
too small, the reconstructed trace in Fig. 2(a) does not match
with the ground truth, but if the sampling ratio is properly set,
that in Fig. 2(b) can approximate the ground truth well.

With a theoretical model to estimate the RCE, we can set
an upper-limit on it to ensure the accuracy of traffic trace
reconstruction, and then adjust the sampling ratio of Sel-
INT accordingly to balance the tradeoff between bandwidth
overheads and monitoring accuracy precisely.

B. Theoretical Model

The bandwidth usage of a dynamic flow can be highly
uncertain, and people have tried to model it with various
stochastic processes. Among them, the Gaussian process has
been used to model traffic traces in different networks [20–
22], and more importantly, it enables us to obtain closed-form



expressions in theoretical analysis. Therefore, we leverage it in
this work to model the traffic samples of a flow. Specifically,
we assume that the traffic samples (i.e., the ground truth) can
be modeled with a stationary Gaussian random process, i.e.,
each sample follows a Gaussian distribution whose mean and
variance are µ and σ2, respectively. Here, the values of µ and
σ2 are known (e.g., obtained by historical observations).

We denote the traffic samples of the ground truth as
{x(t1), · · · , x(tn)}, where {t1, · · · , tn} are the indices of the
time instances when the samples could be collected with per-
packet INT. Similarly, the reconstructed samples with Sel-INT
can be denoted as {x̃(t1), · · · , x̃(tn)}. Then, the error at an
arbitrary time index ti can be obtained as |x(ti)− x̃(ti)|.

Definition 1: We define the reconstruction error (RCE)
of n consecutive samples reconstructed by Sel-INT as

ξRCE(n) =
1

n

n∑
i=1

[x̃(ti)− x(ti)]2 . (1)

We assume that the indices of the time instances for Sel-INT
to sample the traffic trace are {T1, · · · , TN}. Then, the traf-
fic samples collected with Sel-INT are {x(T1), · · · , x(TN )}.
Then, for any two consecutive samples x(Ti) and x(Ti+1),
we use linear interpolation to reconstruct the skipped traffic
samples {x(t∗1), · · · , x(t∗m)} between them

x̃(t∗k) = x(Ti) +
k

m+ 1
· [x(Ti+1)− x(Ti)]. (2)

Here, the sampling ratio of Sel-INT is 1
m+1 . As the actual

values of the skipped traffic samples {x(t∗1), · · · , x(t∗m)} are
unknown, we have to treat them as random variables. There-
fore, the expectation of the RCE of {x̃(t∗1), · · · , x̃(t∗m)} is

E(ξRCE(m)) = E

(
1

m

m∑
k=1

[x̃(t∗k)− x(t∗k)]
2

)

=
1

m

m∑
k=1

[
E(x2(t∗k))− 2 · x̃(t∗k) · E(x(t∗k)) + x̃2(t∗k)

]
.

(3)

It is known that the traffic samples of a network flow
are long-range dependent [23, 24]. Hence, the values of
E(x2(t∗k)) and E(x(t∗k)) should be dependent on the collect-
ed samples x(Ti) and x(Ti+1). We define the conditional
mean µ(t∗k) = E(t∗k|x(Ti), x(Ti+1)) and conditional variance
σ2(t∗k) = V(t∗k|x(Ti), x(Ti+1)) and calculate them as{

E(x(t∗k)) = µ(t∗k),

E(x2(t∗k)) = µ2(t∗k) + σ2(t∗k),
(4)

Then, the expectation of RCE in Eq. (3) gets transformed into

E(ξRCE(m)) =
1

m

m∑
k=1

[
µ2(t∗k) + σ2(t∗k) + x̃2(t∗k)− 2x̃(t∗k)µ(t

∗
k)
]
.

(5)
We can derive the values of µ(t∗k) and σ2(t∗k) as [25]

µ(t∗k) = µ+

2∑
i′=1

2∑
j′=1

K(t∗k, Ti+i′−1) ·ai′,j′ · [x(Ti+j′−1)−µ], (6)

σ2(t∗k) = σ2−
2∑

i′=1

2∑
j′=1

K(t∗k, Ti+i′−1) ·ai′,j′ ·K(Ti+j′−1, t
∗
k). (7)

Here, K(ti, tj) is the covariance function of traffic samples
x(ti) and x(tj). As we assume that the traffic samples follow
a stationary random process, the value of K(ti, tj) only
depends on the index interval τ = |ti − tj |. Hence, we have
K(ti, tj) = K(τ) and can estimate its value from historical
traffic samples of the trace. Specifically, if we assume that a
series of N samples {y1, · · · , yN} have already been collected
for the flow, the covariance function can be estimated as

K(ti, tj) = K(τ) =
1

N − τ

N−τ∑
i=1

(yi − µ) · (yi+τ − µ). (8)

Meanwhile, the ai′,j′ in Eqs. (6) and (7) refers to a corre-
sponding element in the inverse covariance matrix A:

A =

[
K(Ti, Ti) K(Ti, Ti+1)

K(Ti+1, Ti) K(Ti+1, Ti+1)

]−1

=

[
σ2 K(τ̃)

K(τ̃) σ2

]−1

, (9)

where τ̃ = Ti+1−Ti denotes the sampling period of Sel-INT,
and K(τ̃) can be obtained with Eq. (8).

Theorem 1: The matrix A defined in Eq. (9) always exists.
Proof: The inverse covariance matrix A should satisfy

A ·
[
σ2 K(τ̃)

K(τ̃) σ2

]
=

[
σ2 K(τ̃)

K(τ̃) σ2

]
· A = I, (10)

where I is a 2×2 identity matrix. Hence, we can get

A =

[
σ2

σ4−K2(τ̃)
K(τ̃)

K2(τ̃)−σ4

K(τ̃)
K2(τ̃)−σ4

σ2

σ4−K2(τ̃)

]
. (11)

It can be seen that A will not exist only when we have K(τ̃) =
σ2. However, by definition, we only have K(τ̃) = σ2 when
τ̃ = 0. In other words, K(τ̃) is a monotonically decreasing
function and its maximum is σ2 when Ti+1 − Ti = 0. Note
that, the operation principle of Sel-INT ensures that Ti and
Ti+1 are for different time instants. Hence, the matrix A always
exists, and it can be calculated with Eq. (11).

In all, with Eqs. (2), (5)-(8), and (11), we can get the ex-
pected RCE of the reconstructed samples {x̃(t∗1), · · · , x̃(t∗m)}
between x(Ti) and x(Ti+1), and can use it to determine
whether the current sampling ratio of Sel-INT is proper set
to ensure the accuracy of traffic trace reconstruction.

IV. ALGORITHM DESIGN

In this section, we propose two algorithms to adjust the sam-
pling ratio of Sel-INT adaptively according to the expectation
of RCE and an upper-limit on RCE.

A. RCE-Sensitive Algorithm (RCESA)

With an upper-limit on RCE to ensure the accuracy of traffic
trace reconstruction, we first design a RCE-sensitive algorithm
(RCESA) to adjust the sampling ratio of Sel-INT adaptively.
Algorithm 1 shows the procedure of RCESA. As for the inputs
of Algorithm 1, ξ̂ denotes the upper-limit of RCE for ensuring
the accuracy of traffic trace reconstruction, m is the initial
sampling interval (i.e., the number of traffic samples that Sel-
INT skips between two consecutive data collections initially),
η ∈ (0, 1) is the proportional coefficient that will be applied



to ξ̂, and N is the threshold for the collections conducted by
Sel-INT, above which the sampling ratio can be changed.

Specifically, the rationale of introducing η and N is as
follows. As we try to maintain the expected RCE below ξ̂, the
sampling ratio of Sel-INT should be increased immediately
if we observe E(ξRCE) ≥ ξ̂. Otherwise, when we have
E(ξRCE) < ξ̂, we should be cautious about decreasing the
sampling ratio. This is because decreasing the sampling ratio
too fast can make the expected RCE exceed ξ̂ and thus invoke
unnecessary adjustments. Hence, we introduce η and N to
ensure that the sampling ratio is only reduced when necessary.

In Algorithm 1, Line 1 is for the initialization. Here, we
allocate a variable x to store the last traffic sample collected
by Sel-INT, and it is initialized as −1 to avoid confusion (i.e.,
a valid traffic sample should be non-negative). k1 and k2 are
two counters to determine whether the sampling ratio should
be decreased. After getting a new traffic sample with Sel-
INT, Lines 3-20 update the sampling ratio adaptively. Line 4
calculates the expected RCE of the traffic trace reconstruction
that is based on the latest collected sample with the theoretical
model derived in the previous section.

If the expected RCE reaches the preset upper-limit ξ̂, Lines
5-6 decrease the sampling interval m immediately and reset
k1 and k2. Otherwise, Lines 7-18 adjust the sampling ratio
according to the actual value of E(ξRCE). If we have E(ξRCE) <
η · ξ̂, which means that the expected RCE has certain distance
from its upper-limit, we will increase the sampling interval
m after the situation has been persisted for N samples from
Sel-INT (Lines 7-15). Otherwise, we have E(ξRCE) ∈ [η · ξ̂, ξ̂),
which means that even though the expected RCE is smaller
than its upper-limit, the gap between them is still relatively
small. Hence, we will only flag the case by increasing k2 but
will not change the sampling ratio.

Algorithm 1: RCE-Sensitive Algorithm

Input: upper-limit of RCE ξ̂, initial sampling interval m,
proportional coefficient η, threshold on samples N

1 k1 = k2 = 0, x = −1;
2 while get a new traffic sample x(Ti) with Sel-INT do
3 if x 6= −1 then
4 calculate E(ξRCE) based on x and x(Ti) with Eqs. (2),

(5)-(8), and (11);
5 if E(ξRCE) ≥ ξ̂ then
6 m = m− 1, k1 = k2 = 0;
7 else if E(ξRCE) < η · ξ̂ then
8 if k2 > 1 then
9 k1 = 1, k2 = 0;

10 else
11 k1 = k1 + 1, k2 = 0;
12 end
13 if k1 = N then
14 m = m+ 1, k1 = k2 = 0;
15 end
16 else
17 k2 = k2 + 1;
18 end
19 end
20 x = x(Ti);
21 end

B. Probabilistic RCE-Sensitive Algorithm (pRCESA)

Although RCESA can ensure the accuracy of traffic trace
reconstruction of Sel-INT to the maximum extent, it becomes
sensitive when the expected RCE exceeds its upper-limit.
However, packet losses may happen in a network, which can
make Sel-INT lose some of its collected traffic samples and
thus decrease the sampling ratio unexpectedly, resulting the
expected RCE to exceed its upper-limit. In this case, increasing
the sampling ratio might not be necessary, because it is a false
positive to see that Sel-INT is under-sampling the traffic trace.

To address the issue above, we propose a probabilistic RCE-
sensitive algorithm (pRCESA) to make the adjustment of the
sampling ratio less sensitive to the cases of E(ξRCE) ≥ ξ̂.
Algorithm 2 shows the procedure of pRCESA. This time, we
introduce four counters {ki, i ∈ [1, 4]} to determine whether
the sampling ratio should be changed. pRCESA increases the
sampling ratio mainly based on the value of k1, as shown in
Lines 5-11. The f(k1) in Line 6 is a monotonically increasing
function whose output range is [0, 1]. Hence, if E(ξRCE) ≥ ξ̂
does not happen frequently (i.e., it is caused by occasional
packet losses), the value of k1 will remain as small and thus
the probability of increasing the sampling ratio will be low, and
vice versa (as shown in Lines 7-11, where the random(0, 1) in
Line 7 returns a random real number within (0, 1)). k3 is used
to reset k1 to avoid a long interval between two consecutive
counts (Lines 13-16), while k4 is introduced to reset k2 for
the similar reason (Lines 18-22). The remaining operations
in pRCESA are similar to those in RCESA. Even though
pRCESA might not always ensure the accuracy of traffic
trace reconstruction, it can save more bandwidth overheads,
especially when there are occasional packet losses.

V. PERFORMANCE EVALUATION

Our simulations select 10 traces from the data set in
[26], which were for traffic traces collected from real-world
networks. Each trace consists of more than 800 samples,
each of which denotes the bandwidth usage collected by a
packet. We assume the bandwidth overhead of Sel-INT on each
INT packet is 4 Bytes. We first try to verify our theoretical
model about RCE in Section III-B. Specifically, we change
the sampling interval m ∈ [1, 5], calculate the expected RCE
E(ξRCE(m)) with our model, and compare it with the real
value in Fig. 3. Here, all of the 10 traces are considered, and
we average the results to get each data point in Fig. 3. It can
be seen that the RCEs from our model match with the real
ones very well, confirming the accuracy of our model.

Next, we compare our algorithms with three benchmarks,
i.e., the per-packet INT and Sel-INT schemes with sampling
intervals m = {1, 4}. Fig. 4 shows the results on average RCE
and bandwidth overheads when we change the preset upper-
limit on RCE (ξ̂) and assume that there is no packet loss.
Here, we still consider all the traces, and for pRCESA, we
run 100 independent simulations for each trace to emulate the
scenarios due to its probabilistic adjustment, and average the
results to get each data point. Fig. 4(a) indicates that our pro-
posed algorithms (RCESA and pRCESA) adjust the sampling



Algorithm 2: Probabilistic RCE-Sensitive Algorithm

Input: upper-limit of RCE ξ̂, initial sampling interval m,
proportional coefficient η, threshold on samples N

1 k1 = k2 = k3 = k4 = 0, x = −1;
2 while get a new traffic sample x(Ti) with Sel-INT do
3 if x 6= −1 then
4 calculate E(ξRCE) based on x and x(Ti) with Eqs. (2),

(5)-(8), and (11);
5 if E(ξRCE) ≥ ξ̂ then
6 k1 = k1 + 1, p = f(k1);
7 if random(0, 1) < p then
8 m = m− 1, k1 = k2 = k3 = k4 = 0;
9 else

10 k3 = 0;
11 end
12 else
13 k3 = k3 + 1;
14 if k3 > 2 then
15 k1 = k3 = 0;
16 end
17 if E(ξRCE) < η · ξ̂ then
18 if k1 + k4 > 1 then
19 k2 = 1, k4 = 0;
20 else
21 k2 = k2 + 1, k4 = 0;
22 end
23 if k2 = N then
24 m = m+ 1, k1 = k2 = k3 = k4 = 0;
25 end
26 else
27 k4 = k4 + 1;
28 end
29 end
30 end
31 x = x(Ti);
32 end

Fig. 3. Average RCE of Sel-INT with different sampling intervals.

interval of Sel-INT adaptively according to the requirement
on RCE, while the benchmarks can only provide fixed RCE.
The adaptivity of RCESA and pRCESA enables them to
save bandwidth overheads intelligently, as shown in Fig. 4(b).
Hence, the results in Fig. 4 confirm that our algorithms balance
the tradeoff between bandwidth overheads and monitoring
accuracy better than the benchmarks. Moreover, by comparing
RCESA and pRCESA in Fig. 4, we find that pRCESA balances
the aforementioned tradeoff better. Specifically, with a given
upper-limit on RCE ξ̂, RCESA can restrict RCE too small
and thus introduce certain unnecessary bandwidth overheads.

(a) RCE

(b) Bandwidth overheads

Fig. 4. Performance of algorithms without packet losses.

(a) RCESA (b) pRCESA

Fig. 5. Distribution of sampling intervals with ξ̂ = 0.1 and no packet loss.

The analysis can be verified with the distributions of sampling
intervals in Fig. 5, which shows that pRCESA uses more large
sampling intervals (i.e., m = {3, 4}) than RCESA.

Finally, we consider the cases where packet losses are
possible. This time, we fix ξ̂ = 0.06 and change the packet
loss rate within [0.01, 0.05]. Fig. 6(a) shows that the RCEs
of all the INT schemes increase with the packet loss rate,
which is expected. The results in Fig. 6 still confirm that our
algorithms balance the tradeoff between bandwidth overheads
and monitoring accuracy better than the benchmarks. Mean-
while, pRCESA still performs better than RCESA, and the
performance gap between them actually increases with the
packet loss rate. Fig. 7 shows the distributions of the sampling
intervals from RCESA and pRCESA, suggesting that pRCESA
still tends to use more large sampling intervals than RCESA.

VI. CONCLUSION

In this paper, we studied the problem of how to adjust the
sampling ratio of Sel-INT adaptively such that the tradeoff
between bandwidth overheads and monitoring accuracy can



(a) RCE

(b) Bandwidth overheads

Fig. 6. Performance of algorithms with packet losses and ξ̂ = 0.06.

(a) RCESA (b) pRCESA

Fig. 7. Distribution of sampling intervals with packet loss rate as 0.05.

be balanced precisely. We first developed a theoretical model
to analyze the RCE of Sel-INT for traffic trace reconstruction
under different sampling ratios. Then, as RCE can quantify the
accuracy of traffic trace reconstruction precisely, we leveraged
it to determine whether the sampling ratio of Sel-INT is
properly set and proposed two algorithms, namely, RCESA
and pRCESA, to adjust the sampling ratio adaptively. We
conducted extensive simulations with realistic traffic traces to
evaluate our algorithms. The simulation results suggested that
both RCESA and pRCESA can adjust the sampling interval
of Sel-INT adaptively according to the requirement on RCE,
and thus balance the tradeoff between bandwidth overheads
and monitoring accuracy much better than existing bench-
marks. Moreover, between RCESA and pRCESA, pRCESA
performed better, especially when packet losses can happen.
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