
Self-Taught Black-Box Adversarial Attack to
Multilayer Network Automation

Xiaoqin Pan†‡ and Zuqing Zhu†
†School of Information Science and Technology, University of Science and Technology of China, Hefei, China

‡Engineering Technology Center, Southwest University of Science and Technology, Mianyang, China
†Email: {zqzhu}@ieee.org

Abstract—Although the idea of multilayer network automation
(MLy-NA) has gained its initial success due to the advances on
software-defined networking (SDN) and machine learning (ML),
the security vulnerabilities brought by the reduction of human
intervention in network operation should not be ignored. In this
work, we study how to mislead the ML-based classifiers for
anomaly detection in MLy-NA of packet-over-optical networks,
and propose a self-taught black-box adversarial attack (BB-AdA)
scheme. Specifically, we design novel algorithms to synthesize
and label training data for the substitute classifier used by the
BB-AdA. The algorithms not only generate synthetic data to
cover all the anomaly types based on a small set of legitimate
telemetry data only containing the “Normal” type, but also label
the data with minimized queries to the target classifier in MLy-
NA. Extensive simulations are conducted with the telemetry data
collected from a real-world packet-over-optical network testbed.
The results show that with our self-taught BB-AdA, an attacker
can interact with an MLy-NA system quietly and efficiently to
train itself adaptively, generate well-crafted adversarial samples
to mislead the target classifiers in different ML architectures
and severely affect their performance on anomaly detection, and
disturb the operation of MLy-NA in the hard-to-detect manner.

Index Terms—Machine learning (ML), Multilayer Networks,
Network automation, Adversarial samples, Black-box attack.

I. INTRODUCTION

Nowadays, emerging network services have dramatically
reshaped metro/core networks [1], and brought new challenges
to network control and management (NC&M), especially for
anomaly detection and location. The difficulties mainly come
from the following three aspects. Firstly, network infrastruc-
tures are becoming more heterogeneous with the advances
on various physical-layer technologies [2–6], which has com-
plicated the relation between network state and quality-of-
service (QoS) metrics. Secondly, the wide usage of virtualiza-
tion technologies, such as virtual network slicing [7, 8] and
network function virtualization (NFV) [9, 10], improves the
flexibility of networks at the cost of loosening the correlation
between network services and physical devices. Finally, to re-
alize high resource utilization and satisfactory QoS, operators
of metro/core networks need to manage multilayer network
architectures with intelligent and timely decisions [11].

The aforementioned issues can be mostly addressed by
introducing multilayer network automation (MLy-NA), which
has been promoted by the symbiosis of software-defined net-
working (SDN) [12] and machine learning (ML) [13]. Specifi-
cally, MLy-NA can be realized by inserting an ML-based data

analytics (ML-DA) module into the centralized control plane
and establishing the decision loop of “observe-analyze-act”
(as shown in the left of Fig. 1): 1) Observe: the control plane
collects realtime telemetry data regarding network elements in
the packet and optical layers, by leveraging the programmable
data plane (PDP) [14], 2) Analyze: the ML-DA analyzes the
telemetry data for accurate anomaly detection/location, and
3) Act: the SDN controller makes timely decisions to address
the anomalies detected/located by the ML-DA [15]. Therefore,
MLy-NA not only makes NC&M more efficient but also
reduces unnecessary human intervention in network operation.

Despite the bright future of MLy-NA, we should be careful
about the security issues caused by reducing human inter-
vention in network operation, especially when considering to
apply MLy-NA in real-world metro/core networks. As shown
in Fig. 1, both the telemetry data from data collection agents
(DCAs) and analysis results from ML-DA are transmitted
through control channels, which can span over geographically-
distributed locations and are set up with the protocols (e.g., the
transport layer security (TLS)) that are known to be vulnerable
to man-in-the-middle attacks [16]. This makes the control
channels vulnerable to eavesdropping and tampering. Hence,
a malicious party can easily disturb the operation of MLy-NA
with adversarial attacks, i.e., misleading ML-DA by sneaking
well-craft adversarial samples in its inputs [17].

Therefore, it is relevant to study the potential ways that can
be leveraged to launch adversarial attacks for disturbing the
operation of MLy-NA and analyze their consequences. Previ-
ously, the authors of [18] showed that the traffic prediction
by ML could be easily misled to generate incorrect forecasts
by the adversarial attacks, which only injected hard-to-detect
adversarial traffic samples. Note that, time series prediction
is just one kind of tasks that ML-DA performs in MLy-NA,
while another kind is classification tasks, which are also fre-
quently used, especially for anomaly detection/location. This
motivates us to investigate the adversarial attacks to MLy-NA,
considering the classification for anomaly detection/location.

Fig. 1 explains the principle of the black-box adversarial
attack (BB-AdA) that can be launched to disturb the ML-
based classifiers for MLy-NA [19]. Specifically, the BB-AdA
is launched with the following procedure. First, the attacker
gets a small set of legitimate telemetry data by eavesdropping
the control channels, and build a substitute classifier that will
be used to mimic the operation of the target classifier in978-1-6654-3540-6/22 c© 2022 IEEE

Observe

Optical Layer

Fiber LinkServer OXC

Host

OPM

PDP-SW

Normal Packet Field INT Field

DCAs

Data Plane

Control Plane Learn

& Act

Analysis Results

Eavesdrop

Query

Eavesdrop & Tamper

Classifier……………
……………

ML-DA

Attacker

Substitute Classifier

Adversarial Sample

Generator

Legitimate

Telemetry Samples

Adversarial

Telemetry Samples

Centralized SDN Controller

Multilayer Network Automation

Fig. 1. Multilayer network automation and black-box adversarial attack to it, PDP-SW: programmable data plane switch, OXC: optical cross-connect, OPM:
optical performance monitor, DCAs: data collection agents, ML-DA: machine learning based data analytics.

ML-DA. Second, the attacker trains the substitute classifier
with a training set that contains both legitimate telemetry
data and synthetic data generated locally, where the synthetic
data is labeled by first sneaking it in the control channels
between DCAs and ML-DA and then tapping the control
channel between ML-DA and SDN controller to eavesdrop
the classification results from the target classifier. Third, after
being trained, the substitute classifier can help the attacker
to craft adversarial telemetry samples, which will be injected
back to the control channels between DCAs and ML-DA, for
misleading the target classifier in ML-DA.

We refer to the attack strategy above as “black-box” because
the attacker does not need to have any pre-knowledge about
the training/testing data sets or architecture of the target
classifier [19]. Note that, comparing with directly tampering
the classification results from ML-DA, BB-AdA is more
sophisticated and much more difficult to be detected [17, 19].
This justifies the motivation and necessity of studying it thor-
oughly. Nevertheless, the question “Can BB-AdA be launched
to disturb the operation of the MLy-NA in practical metro/core
networks?” can only be answered after the following two
issues have been addressed properly. First, as a network mostly
operates in the normal state [20], it will be difficult for the
attacker to eavesdrop a set of legitimate telemetry data that
contains sufficient anomaly types. Second, when generating
and labeling synthetic data, the queries from the attacker to the
target classifier should be minimized to avoid being detected.

In this work, we propose a self-taught BB-AdA scheme
to address the two aforementioned issues. Specifically, we
design novel algorithms to synthesize and label training data
for the substitute classifier. The algorithms not only generate
synthetic data to cover all the anomaly types based on a small
set of legitimate telemetry data only containing the “Normal”
type, but also label the data with minimized queries to the
target classifier. We conduct simulations with the telemetry
data collected from a real-world packet-over-optical network
testbed to evaluate our proposal. The results demonstrate

that with our proposed self-taught BB-AdA, an attacker can
interact with an MLy-NA system quietly and efficiently to train
itself adaptively, generate well-crafted adversarial samples to
mislead the target classifiers in different ML architectures and
severely affect their performance on anomaly detection, and
disturb the operation of MLy-NA in the hard-to-detect manner.

The rest of the paper is organized as follows. Section II
explains the principle of BB-AdA. We design our self-taught
BB-AdA scheme in Section III. Simulation results are shown
in Section IV. Finally, Section V summarizes the paper.

II. OPERATION PRINCIPLE

As the attacker does not have any pre-knowledge about
the target classifier in ML-DA, we model the target classifier
as a black box, denoted as T . The input to T is a multi-
dimensional vector x, in which each dimension corresponds
to a type of telemetry data about the multilayer packet-over-
optical network, e.g., optical signal-to-noise-ratio (OSNR) of
a lightpath, or packet processing latency in a PDP switch. To
launch adversarial attacks, the attacker is capable of querying
T with an arbitrary x by eavesdropping and tampering the con-
trol channels between DCAs and ML-DA, and collecting the
corresponding label T (x) through tapping the control channel
between ML-DA and SDN controller. The adversarial attack
is essentially on the output integrity of the target classifier.
Specifically, the attacker finds a minimal perturbation δx to
form an adversarial sample x∗ = x + δx to mislead T to
output incorrect classification, and thus δx is expressed as

δx = argmin ||x∗ − x||p for T (x∗) 6= T (x), (1)

where δx is measured with the lp norm.
As shown in Fig. 1, a key task of the attacker is to train

the substitute classifier, denoted as S, to imitate the operation
of the target classifier T in ML-DA. After getting S trained,
the attacker can intercept a legitimate telemetry sample x by
tapping on the control channels, and input x to S to get the
minimal perturbation δx. Then, it crafts an adversarial sample

x∗ according to Eq. (1) with the help of S, and injects x∗

back to the control channel between DCA and ML-DA, for
misleading T to output incorrect classification.

III. DESIGN OF SELF-TAUGHT BB-ADA

In this section, we design the procedure of the self-taught
BB-AdA, which includes two major steps: 1) synthesizing the
training data set for S, and 2) crafting adversarial samples.

A. Synthesizing Training Data Set

Algorithm 1 explains our proposed procedure of synthe-
sizing the training data set for the substitute classifier S.
Before invoking Algorithm 1, the attacker needs to hack into
the control channels among the DCAs, ML-DA, and SDN
controller to get a small set of labeled telemetry samples
{D, T (D)}, where T (D) stores the labels of the legitimate
samples in D. Line 1 is for the initialization, and the usages
of the coefficients will be explained later. Then, preprocessing
is performed for improving the efficiency of data synthesizing
(Line 2). Specifically, the attacker calculates the convex hull
D∗ of the samples in “Normal” type in D with the Quick-
hull algorithm [21], extracts the samples in other types, i.e.,
anomaly types (if there is any1), and merges them with D∗ to
get the initial seed set D0. Line 3 constructs the training data
set {O, T (O)} for S with {D0, T (D0)}.

Next, the while-loop covering Lines 4-25 extends the train-
ing data set in iterations until the maximum number of queries
(qmax) or the maximum number of iterations (imax) has
been reached. Line 5 gets perturbations Ni (i = 0 initially)
according to the Gaussian distribution N (µ, σ), and adds them
to the samples in seed set Di for synthesizing new samples in
Pi (i.e., Pi = Di+Ni). To minimize the number of queries to
the target classifier T , we use Lines 6-10 to select the samples
in Pi, which are outside of the convex hull set D∗, to insert in
set P ′i . This is because only these samples are necessary, i.e.,
labeling other samples in Pi with T will not bring any new
information for the training of S. The same filtering is applied
to Di to insert the necessary samples in set D′i. Line 11 updates
the Di with D′i. Then, Lines 12-13 query T with P ′i to label
its samples and obtain a set of labeled samples {P ′i , T (P ′i)},
which are then included in the training set {O, T (O)}.

To equalize samples in different types, Lines 14-19 select
the samples whose type has less than γ samples in P ′i , put
them in the selected set Si, and merge Si with Di to get
the seed set for the next iteration {Di+1, T (Di+1)}. Line 20
invokes Algorithm 2 to perform the data argument to further
extend {O, T (O)} with the selected set {Si, T (Si)}. Finally,
after the data synthesization has been accomplished, Line 26
returns the synthetic training data set {O, T (O)} for S.

The procedure of the data argumentation for extending the
training data set {O, T (O)} with the selected set {Si, T (Si)}
is shown in Algorithm 2. Intuitively, the data argumentation

1Here, we consider the cases in which there are samples in anomaly types
in D just for not losing the generality, while our proposal can work for the
extreme case where all the samples in D are in “Normal” type.

Algorithm 1: Synthesizing Training Data Set for S
Input: maximum iterations imax, maximum queries

qmax, initial set of labeled samples {D, T (D)}.
Output: synthetic training data set {O, T (O)}.

1 initialize coefficients {γ, δ, µ, σ, α}, q = i = 0;
2 get initial seed set {D0, T (D0)} and convex hull set
{D∗, T (D∗)} with preprocessing;

3 {O, T (O)} = {D0, T (D0)};
4 while q < qmax do
5 get Gaussian perturbations Ni with N (µ, σ) and new

synthesized samples Pi = Ni +Di, and set P ′i = ∅;
6 for each sample x ∈ Pi do
7 if x is outside of convex hull set D∗ then
8 insert x in P ′i , get the sample d ∈ Di for

generating x and insert d in D′i;
9 end

10 end
11 Di = D′i;
12 query T to label samples in P ′i , and q = q + |P ′i |;
13 O = O ∪ P ′i , T (O) = T (O) ∪ T (P ′i);
14 for each data type in P ′i according to T (P ′i) do
15 if samples in the type is less than γ then
16 put the samples and labels in Si and T (Si);
17 end
18 end
19 Di+1 = Di ∪ Si, T (Di+1) = T (Di) ∪ T (Si);
20 invoke Algorithm 2 for data augmentation with

{Si, T (Si)} to update {O, T (O)}, A, B and C;
21 i = i+ 1;
22 if i ≥ imax then
23 break;
24 end
25 end
26 return({O, T (O)});

should synthesize more samples near the boundaries of clas-
sification to improve the accuracy of the training of S. Fig. 2
explains the data argumentation based on this idea clearly, i.e.,
how to generate new samples based on the seed set Di, current
training data set O, and selected set Si. Line 1 of Algorithm
2 is to initialize the temporary sets G1, G2, and G3. The for-
loop of Lines 2-12 checks each sample in x ∈ Si. First, if its
label is different from the sample x′ ∈ Di, which was used to
generate it, we insert x′ and x in sets G1 and G2, respectively
(Lines 3-6). Second, Lines 7-11 select all the samples whose
Euclidian distances from x are less than δ, and insert them in
G1. As shown in Fig. 2, we find the blue diamond x′ and blue
circle y, based on the yellow triangle x ∈ Si. Then, we get
new samples based on G1 and G2 with

m = x+ η · (x′ − x), x′ ∈ G1, x ∈ G2, (2)

where η is randomly selected from [0, 1) (Line 13). Specifi-
cally, Eq. (2) applies the linear interpolation with slope η to x′

and x, to get a new sample m [22]. For instance, in Fig. 2, m1

and m2 are generated with {x, x′} and {x, y}, respectively.
Next, we update A, B, and C with G3, G1, and G2,

Boundary

Training data set O

Selected set

Seed set

New data points

Fig. 2. Example on data argumentation of the training data set for S.

respectively (Line 14), query T to label new samples in G3

(Line 15), and update the training set {O, T (O)} to include
{G3, T (G3)} (Line 16). To balance the number of samples in
each type in {O, T (O)}, samples in the α largest types are
removed from A (Line 17). Then, Lines 18-19 apply the same
logic of Lines 3-6 to get B′ and C ′ based on A, B, and C, and
Line 20 operates similarly as Line 13 to generate new samples
in A′ based on B′ and C ′, for pushing the new samples closer
to the boundaries of classification. For example, in Fig. 2, new
samples n1 and n2 are generated with {m1, x

′} and {m2, y},
respectively. Finally, the new samples in A′ are labeled in Line
21, and inserted in the training set {O, T (O)} (Lines 22-23).

Algorithm 2: Data Augmentation for Training Data Set

1 G1 = G2 = G3 = ∅;
2 for each sample x ∈ Si do
3 get the sample x′ ∈ Di for generating x;
4 if T (x′) 6= T (x) then
5 insert x′ and x in G1 and G2, respectively;
6 end
7 for each sample y ∈ Oi do
8 if ||x− y||2 < δ then
9 insert y and x in G1 and G2, respectively;

10 end
11 end
12 end
13 generate new samples with Eq. (2) based on G1 and G2,

and put the results in G3;
14 A = A ∪G3, B = B ∪G1, C = C ∪G2;
15 query T to label samples in G3, and q = q + |G3|;
16 O = O ∪G3, T (O) = T (O) ∪ T (G3);
17 remove samples in the α largest types from A, and also

update B and C accordingly;
18 select the samples in B and C whose labels are different

from those of samples generated based on them in A;
19 put the selected samples in B′, and C ′ = A;
20 generate new samples with Eq. (2) based on B′ and C ′,

and put the results in A′;
21 query T to label samples in A′, and q = q + |A′|;
22 A = A′, T (A) = T (A′), B = B′, C = C ′;
23 O = O ∪A′, T (O) = T (O) ∪ T (A′);

B. Crafting Adversarial Samples
After obtaining the training data set {O, T (O)} for the

substitute classifier S, the attacker selects a proper architecture

to build S, and trains it for imitating the operation of the target
classifier T in ML-DA. Specifically, S is trained with the
classic back-propagation and gradient-descent algorithm [23].
With the trained substitute classifier, the attacker can leverage
existing algorithms (e.g., FGSM [24] and DeepFool [25]) to
craft adversarial samples for BB-AdA accordingly [19].

IV. PERFORMANCE EVALUATION

In this section, we perform simulations with the telemetry
data collected from a real-world packet-over-optical network
testbed to evaluate our self-taught BB-AdA scheme.

A. Telemetry Data Set

We collect telemetry data from a small but real packet-over-
optical network testbed [26], where the optical layer consists of
bandwidth-variable wavelength-selective switches (BV-WSS’)
and optical line systems (OLS’), and the packet layer is built
with client hosts, PDP switches (PDP-SWs), and DCAs (as
shown in Fig. 1). Each BV-WSS is commercially-available in
the configuration of 1×9, and it can switch optical spectrum at
a granularity of 12.5 GHz according to flexible grids [27]. The
OLS’ are also commercial products, each of which includes
a pair of bandwidth-variable transponders (BV-Ts) on nodes
and in-line erbium-doped fiber amplifiers (EDFAs) on the fiber
links between them. Each BV-T supports line-rates ranging
in [100, 400] Gbps. The MLy-NA system for the packet-
over-optical network collects telemetry data regarding both
the optical and packet layers, and then leverages ML-DA to
analyze the data for anomaly detection/location.

Specifically, the overall telemetry data set contains ∼95, 000
samples, each of which contains six dimensions, correspond-
ing to OSNR, power-level, chromatic dispersion regarding the
optical layer, and packet forwarding latency and bandwidth
usage on ports about the packet layer, respectively. Then, each
sample can be labeled to denote its anomaly type, which can be
“Normal”, “High Power”, “Low Power”, “Degraded OSNR”,
“WSS-Left-Shift”, “WSS-Right-Shift”, “High Delay”, “Packet
Congestion”, “Packet Loss”, or “Switch Misconfiguration”.
We build the target classifier T based on a deep neural network
(DNN), put 90% and 10% of the samples in the telemetry data
set in its training and testing sets, respectively, and train T to
get a classification accuracy of 99.99% on the testing set.

B. Performance of Self-Taught BB-AdA

We use the BB-AdA scheme developed in our previous work
[19] as the benchmark, which requires that the initial legitimate
telemetry data eavesdropped by the attacker to include data in
all the anomaly types, and does not optimize the queries from
the attacker to the target classifier. We first assume that the
initial seed set D0 contains 770 samples, which cover all the
10 anomaly types (i.e., |D0| = 770 and |T (D0)| = 10), and
for simplicity, “Normal” is also treated as an anomaly type
in the following discussions. Similar as the target classifier,
the substitute classifier S is also built with DNN. In the
simulations, the attacker uses the benchmark and our self-
taught BB-AdA (i.e., Algorithm 1) to synthesize the training

data set, and trains the substitute classifier S with imax = 15
and qmax = {4000, 5000, 6000, 7000, 8000}. To guarantee
sufficient statistical accuracy, we average the results from 10
independent runs to get each data point in the simulations.

The accuracies of the substitute classifiers on the testing
set, which are trained with different BB-AdA schemes, are
listed in Table I. As expected, the accuracies of the substitute
classifiers trained with both algorithms increase with the
number of allowed queries (qmax), because more queries
to the target classifier T can obtain a larger training data
set {O, T (O)} to improve the performance of the substitute
classifier. Meanwhile, we notice that our self-taught BB-AdA
with Algorithm 1 achieves much higher accuracies than the
benchmark in all the cases. Specifically, the substitute classifier
trained with the training data set from Algorithm 1 achieves
more than 99% accuracy with only 6, 000 queries, while the
one trained with the benchmark cannot realize more than
95% accuracy even with 8, 000 queries. This suggests that
the data synthesization of our self-taught BB-AdA is much
more efficient and intelligent, such that S can be trained more
effectively to mimic the operation of T precisely.

TABLE I
PERFORMANCE OF ALGORITHMS

Accuracy on Testing Set

qmax 4,000 5,000 6,000 7,000 8,000

Benchmark 78.78% 87.59% 89.89% 90.69% 94.01%

Algorithm 1 97.57% 97.95% 99.02% 99.07% 99.07%

To further verify the performance of our proposal, the
simulations also consider the cases in which the attacker has
to start with an initial seed set D0 that only contains data
in “Normal” type (i.e., D0 = 500 and |T (D0)| = 1). Then,
the substitute classifiers used by the attacker are still based
on DNN, and they are trained by using the benchmark and
Algorithm 1 with qmax = 8, 000. We respectively obtain
the classification accuracies of the substitute classifiers as
45.92% and 88.30% on the testing set, which still confirms
the effectiveness of our self-taught BB-AdA.

Next, we evaluate the performance of the BB-AdA schemes
that use the trained substitute classifiers to craft adversarial
samples. We first introduce the following performance metric.

Definition 1: We define the transferability rate of BB-
AdA as the ratio of misclassification by the target classifier
T on the samples tampered by the attacker, which can be
used to evaluate the effectiveness of adversarial attacks.

Fig. 3 compares the transferability rates of the BB-AdA
schemes that use the substitute classifiers trained with the
benchmark and Algorithm 1, when the adversarial samples
are crafted with FGSM and DeepFool. Here, the “perturbation
degree” refers to δx in Eq. 1. It can be seen that our self-
taught BB-AdA outperforms the benchmark in all the cases.
Meanwhile, we notice that the transferability rate increases
with |T (D0)| for both schemes, but it increases more sig-
nificantly when the substitute classifier is trained with the
benchmark. This suggests that our self-taught BB-AdA is
much less sensitive to the pre-knowledge of anomaly types
in the initial telemetry data set, and thus justifies that our

0.01 0.025 0.05 0.075 0.1 0.125 0.15
Perturbation Degree

0

0.2

0.4

0.6

0.8

1

T
ra

ns
fe

ra
bi

lit
y

R
at

e

Benchmark with |T(D
0
)| = 10

Algorithm 1 with |T(D
0
)| = 10

Benchmark with |T(D
0
)| = 1

Algorithm 1 with |T(D
0
)| = 1

(a) FGSM

0.01 0.025 0.05 0.075 0.1 0.125 0.15
Perturbation Degree

0

0.2

0.4

0.6

0.8

T
ra

ns
fe

ra
bi

lit
y

R
at

e

Benchmark with |T(D
0
)| = 10

Algorithm 1 with |T(D
0
)| = 10

Benchmark with |T(D
0
)| = 1

Algorithm 1 with |T(D
0
)| = 1

(b) DeepFool

Fig. 3. Transferability rate of BB-AdA schemes.

proposed scheme does have the capability of self-teaching.
Moreover, for the extreme cases with |T (D0)| = 1 (i.e.,
the initial telemetry data set only contains data in “Normal”
type) in Fig. 3(a), our proposal can achieve more than 0.5
transferability rate (i.e., the BB-AdA will make the target
classifier in ML-DA to misclassify 50% of telemetry samples)
when the perturbation degree is only 0.05. This confirms the
effectiveness and practicalness of Algorithm 1, because the
BB-AdA with it can effectively mislead the target classifier
in ML-DA, when the attacker has to start with an initial
telemetry data set that only contains data in “Normal” type and
the maximum data tampering for generating the adversarial
samples cannot exceed 0.05.

C. Generalization of Self-Taught BB-AdA

Finally, we conduct simulations to verify that our proposal
can affect the target classifiers, which are built with various
structures. Specifically, we use the logistic regression (LR),
decision tree (DT) and support vector machine (SVM) to
architect the target classifier T , train them in the same way as
in Section IV-A. Then, with the initial seed set (i.e., D0 = 500
and |T (D0)| = 1), we use Algorithm 1 to synthesize the
training data set and train the substitute classifiers in DNN
accordingly. When T is architected with LR, DT and SVM,
we respectively obtain the classification accuracies of the
substitute classifiers in DNN on the testing set as 76.40%,
82.55%, and 77.34%. Then, we craft adversarial samples with
DeepFool, i.e., the one performs worse in Fig. 3 for showing
the worst-case scenario of our proposal’s performance.

0.01 0.025 0.05 0.075 0.1 0.125 0.15

Perturbation Degree

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

ns
fe

ra
bi

lit
y

R
at

e

DNN
LR
SVM
DT

Fig. 4. Transferability rate of self-taught BB-AdA with DeepFool.

We plot the results on transferability rate in Fig. 4, which
suggests that the target classifiers in different structures can all
be severely misled by our self-taught BB-AdA, even though
the substitute classifier is always built with DNN. Moreover,
we can see that our proposal performs similarly in Fig. 4,
except for the case in which T is architected with DT. This
confirms the generalization of our proposed self-taught BB-
AdA, i.e., its attacking performance does depends much on
the architecture of the target classifier. Specifically, if we limit
the perturbation degree as 0.05, the transferability rate induced
by our self-taught BB-AdA is still higher than 20% when the
target classifier is in DT (i.e., the worst case).

V. CONCLUSION

In this paper, we proposed a self-taught BB-AdA scheme
targeting on the ML-based classifiers for anomaly detection
in MLy-NA. Specifically, our proposal eavesdropped and tam-
pered legitimate telemetry samples to craft and inject adver-
sarial samples adaptively, for disturbing the operation of ML-
based classifiers on anomaly detection and in turn misleading
MLy-NA to make incorrect NC&M decisions. We designed
novel algorithms to synthesize and label training data for the
substitute classifier used by the BB-AdA. With the telemetry
data collected from a real-world packet-over-optical network
testbed, we demonstrated that with our self-taught BB-AdA
scheme, an attacker could interact with an MLy-NA system
quietly and efficiently to train itself adaptively, generate well-
crafted adversarial samples to mislead the target classifiers in
different ML structures to severely affect their performance on
anomaly detection, and disturb the operation of MLy-NA in the
hard-to-detect manner. Hence, our self-taught BB-AdA could
launch effective attacks without much pre-knowledge about
the target MLy-NA, justifying its capability of self-teaching.

ACKNOWLEDGMENTS

This work was supported by NSFC project 61871357 and
Fundamental Fund for Central Universities (WK3500000006).

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[3] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[4] W. Shi, Z. Zhu, M. Zhang, and N. Ansari, “On the effect of bandwidth
fragmentation on blocking probability in elastic optical networks,” IEEE
Trans. Commun., vol. 61, pp. 2970–2978, Jul. 2013.

[5] P. Marsch et al., “5G radio access network architecture: Design guide-
lines and key considerations,” IEEE Commun. Mag., vol. 54, pp. 24–32,
Nov. 2016.

[6] M. Zhang et al., “Bandwidth defragmentation in dynamic elastic optical
networks with minimum traffic disruptions,” in Proc. of ICC 2013, pp.
3894–3898, Jun. 2013.

[7] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[8] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[9] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service
chain deployment based on affiliation-aware vNF placement,” in Proc.
of GLOBECOM 2016, pp. 1–6, Dec. 2016.

[10] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[11] S. Tang, J. Kong, B. Niu, and Z. Zhu, “Programmable multilayer INT:
An enabler for AI-assisted network automation,” IEEE Commun. Mag.,
vol. 58, pp. 26–32, Jan. 2020.

[12] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[13] X. Chen et al., “DeepRMSA: A deep reinforcement learning framework
for routing, modulation and spectrum assignment in elastic optical
networks,” J. Lightw. Technol., vol. 37, pp. 4155–4163, Aug. 2019.

[14] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, Aug. 2019.

[15] S. Liu et al., “Highly-efficient and automatic spectrum inspection based
on AutoEncoder and semi-supervised learning for anomaly detection in
EONs,” J. Lightw. Technol., vol. 39, pp. 1243–1254, Mar. 2021.

[16] M. Brinkmann et al., “ALPACA: Application layer protocol confusion-
analyzing and mitigating cracks in TLS authentication,” in Proc. of
SSYM 2021, pp. 4293–4310, Aug. 2021.

[17] N. Papernot et al., “The limitations of deep learning in adversarial
settings,” in Proc. of Euro S&P 2016, pp. 372–387, Mar. 2016.

[18] M. Wang, H. Lu, S. Liu, and Z. Zhu, “How to mislead AI-assisted
network automation in SD-IPoEONs: A comparison study of DRL- and
GAN-based approaches,” J. Lightw. Technol., vol. 38, pp. 5574–5585,
Oct. 2020.

[19] X. Pan, H. Yang, Z. Xu, and Z. Zhu, “Adversarial analysis of ML-based
anomaly detection in multi-layer network automation,” submitted to J.
Lightw. Technol., 2022.

[20] X. Chen et al., “Self-taught anomaly detection with hybrid unsu-
pervised/supervised machine learning in optical networks,” J. Lightw.
Technol., vol. 37, pp. 1742–1749, Apr. 2019.

[21] C. Barber, D. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for
convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483,
Dec. 1996.

[22] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: Synthetic
minority over-sampling technique,” J. Artif. Int. Res., vol. 16, pp. 321–
357, Jun. 2002.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[24] I. Goodfellow et al., “Explaining and harnessing adversarial examples,”
arXiv:1412.6572, 2014. [Online]. Available: https://arxiv.org/abs/1412.
6572.

[25] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. of CVPR
2016, pp. 2574–2582, Jun. 2016.

[26] X. Pan et al., “Privacy-preserving multilayer in-band network telemetry
and data analytics: For safety, please do not report plaintext data,” J.
Lightw. Technol., vol. 38, pp. 5855–5866, Nov. 2020.

[27] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

