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Abstract—Federated Learning (FL) is a distributed machine
learning type of processing that preserves the privacy of user
data, sharing only the parameters of ML models with a com-
mon server. The processing of FL requires specific latency and
bandwidth demands that must be fulfilled by the operation of
the communication network. This paper introduces two Dynamic
Wavelength and Bandwidth Allocation algorithms for TWDM-
PONs: one based on bandwidth reservation and the other on
statistical multiplexing for the Quality of Service provisioning
for FL traffic over 50 Gb/s Ethernet Passive Optical Networks.
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I. Introduction
The traditional use of Machine Learning (ML) models relies

on batch processing in a central server in conjunction with
the employment of datasets containing user data. With the
worldwide adoption of data protection and privacy legislation,
the creation of datasets and applications based on ML has
been considerably limited. One way of coping with such
restrictions is the adoption of Federated Learning (FL), which
is a distributed way of processing machine learning algorithms
that does not disclose private data. In FL, clients train a local
ML model using a private dataset, and the parameters of these
local models are then sent to a central server. The server
then produces a global model on the basis of the numerous
parameter values received and distributes this global model
to the clients for further training. This round of processing
is repeated until the global model produces results with an
acceptable level of accuracy. In this way, user privacy is
preserved. The most common approaches for the consolidation
of the parameters sent by the clients to produce the global
model rely on the assumption that clients are synchronized and
that local datasets are independent and identically distributed
[1].
FL can be classified either as cross-device or cross-silo

[2]. While cross-device FL involves thousands of clients with
limited computational capacity devices, such as smartphones,
cross-silo FL involves hundreds of clients with devices with
a larger computational capacity, such as edge devices. This
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paper focuses on cross-silo FL with edge devices connected to
a passive optical network.
The processing of FL models has brought several challenges

to communication networks. FL clients may, for example,
produce highly bursty traffic when uploading their model
parameters to the server. Clients training a Convolutional
Neural Networks (CNNs) model with few convolution layers
and thousands of parameters may need to send hundreds of
megabytes. When millions of parameters are involved, the
number of bytes sent can be of the order of gigabytes [3].
Moreover, in FL, data transmissions are usually encrypted [4].
Even for small models, the amount of transmitted data can
be huge, due to a 100 to 1000 times increase in data caused
by homogeneous encryption. When, for example, a 10MB
model is trained, the amount of data actually transmitted after
homogeneous encryption can expand to 1-10GB.
Moreover, FL may impose stringent communication delays

for the uploading of client parameters to enhance fast conver-
gence to the global model, especially when the federation in-
volves numerous clients. To cope with diverse communication
delays, the server may either wait for the arrival of the local
parameters from all the clients, increasing convergence time, or
exclude the late arriving data from the parameter consolidation
step, which reduces the accuracy of the model [5]. Moreover,
FL may also require a very large number of training rounds
to produce accurate global models [6]. These challenges call
for efficient resource allocation mechanisms to meet the FL
requirements.
Passive Optical Network (PON) is a cost-efficient access

network technology for delivering broadband services [7].
Operators have already deployed 10Gbps Time Division Mul-
tiplexing (TDM) PONs during the past two decades. In recent
years, the ITU and IEEE standardization groups have proposed
next-generation PONs based on Time and Wavelength Divi-
sion Multiplexing (TWDM) to increase the network capacity
for supporting demanding applications and services. TWDM
allows allocation in various wavelength channels of 25Gbps
(50G-EPON) and 10Gbps (40G-XPON) [8].
A few approaches have been proposed to deal with FL

processing over PONs ([5], [9]). An architecture for scalable
FL involving two-step of aggregation was introduced in [9].
The parameters of local models are first aggregated at clients
connected to an Optical Network Unit (ONU) and then aggre-
gated on a server connected to the Optical Line Terminator
(OLT). As a consequence, the amount of upstream traffic
remains relatively constant, regardless of the number of clients
in the federation. However, this approach does not define a
Dynamic Bandwidth Allocation (DBA) algorithm required to
handle the demands of both FL clients and conventional PON
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clients.
A seminal approach to support FL over TDM-PONs, called

Bandwidth Slicing (BS), was introduced in [5]. It reserves
a certain bandwidth, known as a slice (a fraction of the
PON capacity), for FL clients [5]. Although the bandwidth
reserved can change from round to round in FL processing,
the bandwidth needed to cope with additional demands may
not be available, since it may be allocated to other clients in a
PON. When this happens, clients will need to send the model
parameters to the server in several PON cycles, which increases
the number of clients who are stragglers, and, consequently,
the overall processing time of FL applications. Moreover,
the BS approach does not specify which client is financially
responsible for the reservation, which is not aligned with
traditional PON business models based on charging according
to what has been agreed in a Service Level Agreement (SLA).
Moreover, BS was not developed for TWDM-PON and cannot
be applied to Ethernet-PONs since it requires knowledge of
the cycle length in advance.
This paper introduces a novel algorithm for bandwidth slic-

ing in TWDM PONs, called Multi-wavelength BS algorithm
(MW-BS), as well as three variations of this algorithm each
with different allocation policies. The BS algorithm [5] was
adapted to employ multiple wavelengths, as well as an adaptive
polling cycle as required in 50G-EPON networks with dynamic
resource allocation. However, the MW-BS algorithm does not
overcome the other mentioned limitations of the BS algorithm.
This paper also introduces another novel Dynamic Wave-

length and Bandwidth Allocation (DWBA) algorithm for 50G-
EPONs based on DiffServ-like traffic prioritization. FL traffic
is prioritized to support the demands of FL processing and
communications, while maintaining the traditional guaranteed
bandwidth scheme for all PON customers. Two variations
of the DWBA algorithm using different prioritization policies
for PON traffic are also proposed to reduce the delay of FL
traffic and delay-critical applications in 50G-EPONs. In the
first, the intra-ONU scheduler strictly prioritizes the FL traffic
over that from other types of applications (FL-first policy). In
the second, the delay-critical traffic is prioritized over the FL
traffic (DC-first policy). These two policies differ from BS by
dynamically allocating bandwidth without prior knowledge of
the cycle length.
In summary, this paper introduces the following original

DWBA algorithms for TWDM-PONs:
• A DWBA algorithm for bandwidth slicing based on
reservation and three variations of the algorithm em-
ploying different allocation policies.

• A DWBA algorithm based on traffic prioritization and
two variations of this algorithm.

II. Resource Allocation in Passive Optical Networks
PON is a network access technology that offers larger

capacity, greater cost-efficiency, and more energy savings than
do other network access technologies. There are two main PON
standards: Ethernet PON (EPON) and Gigabit Capable PON
(GPON), with EPON being less expensive. GPON transmis-
sion system employs synchronous frames issued every 125 𝜇s,

while those of EPON use Ethernet frames asynchronously for
transmissions based on granting cycles of variable duration.
While traditional PON standards allow bit rates of 1Gbps and
10Gbps, the next-generation PON standards allow those of
40Gbps to 100Gbps.
The 50Gbps optical access network standardized in IEEE

50G-EPON 802.3ca-2020 [10] is a promising technology for
adoption by Infrastructure Service Providers (InPs) to support
emerging services with stringent latency and bandwidth re-
quirements. This 50G-EPON technology employs the Time and
Wavelength Division Multiple Access (TWDMA) technique
for controlling uplink transmissions between the ONUs and
the OLT. There are three main TWDM-PON-based access
architectures for the connectivity between the OLT and ONUs:
Multiple-Scheduling Domain (MSD), Single-Scheduling Do-
main (SSD), and Wavelength Agile (WA). In the first, ONUs
transmit on a single wavelength at a time. In the second, ONUs
can transmit simultaneously on all wavelengths, and in the
third, more than one wavelength can be granted to a single
ONU.
In this technology, the signaling protocol Multipoint Control

Protocol (MPCP) is employed for resource allocation, using
Report and Gate messages for this purpose. Report messages
are sent on the upstream to the OLT by the ONUs to request
bandwidth, while Gate messages are sent on the downstream
by the OLT to the ONUs to inform the granted wavelength(s)
and transmission windows, as well as the starting time of the
next transmission window. Resource allocation is carried out
in two steps, one for wavelength allocation, and the other
for bandwidth allocation. The use of different schemes for
transmission on multiple wavelengths can be defined on the
basis of conventional DBA algorithms for TDM-PONs.
For dynamic bandwidth allocation over EPONs, the

Interleaved Polling with Adaptive Cycle Time (IPACT) al-
gorithm has been adopted to complement the MPCP pro-
tocol. The IPACT algorithm employs an interleaved polling
and statistical multiplexing technique that leads to efficient
upstream channel usage. The Limited policy has been used to
assure bandwidth to ONUs according to pre-defined Service
Level Agreements. Moreover, the original IPACT algorithm
employs a single wavelength channel for scheduling. It has
been modified to operate with multiple wavelengths in [11],
[12] and [13]. The modified IPACT algorithm was proposed
for the SSD and MSD architectures [11]. Additional algorithms
have also been proposed: the Water-Fill (WF) [12] to promote
fairness in the wavelength utilization and First-Fit (FF) [13] to
provide less delay. Moreover, when there is no scheduler for
Quality of Service (QoS) provisioning in the PON, the First-
Come-First-Served (FCFS) queuing policy is employed. How-
ever, this strategy does not consider the priority or required
bandwidth/delay of the applications.
The performance of diverse applications in a PON is ensured

by the QoS mechanism adopted, which controls the way frames
are queued, prioritized, and scheduled. Such assurance of QoS
can be provided by either the ONU or OLT. In the single-level
architecture, the ONUs report individual queue sizes, while the
OLT distributes the bandwidth for each type of traffic. In the
hierarchical architecture, the OLT allocates bandwidth for each
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Fig. 1: An overview of federated learning over passive optical networks.

ONU, and the ONUs manage the amount of bandwidth to be
allocated for each type of traffic.
The most straightforward method of facilitating QoS pro-

visioning is the Differentiated Service approach. It classifies
network traffic and delivers different services to different
applications. The simplest way to implement this approach
is to employ strict priority scheduling. The ONUs categorize
the incoming traffic and put it in the buffer, imposing the
prioritization of the different traffic classes. With the employ-
ment of Differentiated Services, however, the PON can support
packetized voice and video with strict bandwidth and latency
constraints, as well as Best Effort (BE) traffic [14]. However,
none of the exiting mechanisms have been specially designed
to support the QoS requirements of FL applications.

III. Resource Allocation for Federated Learning
Fig. 1 illustrates the scenario of FL processing over a PON.

FL clients are connected to the ONUs. The FL server is
remotely located in the Internet, and acccess to the server is
provided by the OLT connected to the Internet.
The FL training process can be either asynchronous or

synchronous. In the former, the global model parameters
are computed as soon as the server receives updates of the
parameters of the local models from a certain number of
clients. In the latter, the server aggregates the local parameters
that arrive in a period of constant duration and excludes the
parameters from the late arriving stragglers. Such exclusion
can, however, reduce the accuracy of the model and increase
the time necessary to obtain a final global model.
The synchronization time per round includes the down-

stream, computing, network, and aggregation delays. The
downstream delay includes the propagation and transmission
delays of the parameters of the global model from the server
to the clients. The computing time is the time taken to train

the local model at the client in each round and depends on
the capacity of the client and the size of the training dataset.
The network delay is the time spent in communicating the
local model parameters from the clients to the server, including
both transmission and propagation delays, and depends on the
network load and the mechanism for allocation of bandwidth
and wavelength(s) to the ONUs. Long network delays may
increase the number of straggler clients, decreasing the model
accuracy and increasing the time to reach a final global model.
The aggregation delay is the processing time of the aggregation
algorithm.
The time taken to transmit the local model parameters to

the server depends on the bandwidth allocated to the FL
traffic. PON customers receive a portion of the total available
bandwidth in the PON due to the shared nature of the upstream
channel. Residential and business customers usually have a
guaranteed bandwidth of tens to hundreds of Mbps, while other
PON customers can require on demand up to tens of Gbps.
However, the large size of the local model parameters, which
may be in the order of gigabytes, may demand several seconds
to be fully transmitted, even with guaranteed bandwidth in the
order of Gbps.
The unique characteristics of FL processing, such as desired

synchronization of clients in FL rounds and assurance of
bandwidth, introduce challenges for the management of the
network bandwidth in scenarios with limited bandwidth and a
diversity of customers, such as that in commercial PONs.

IV. DWBA Schemes for Supporting FL traffic over
50G-EPON networks

This section introduces new DBA algorithm for the support
of FL over 50G-EPON networks. These algorithms are based
either on bandwidth reservation (BS) or statistical multiplex-
ing.
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A. Bandwidth Slicing DWBA for TWDM-EPON

The seminal BS approach to support FL over PONs was
designed to operate in TDM-PONs [5]. It reserves bandwidth,
known as slices, for FL clients. The reserved bandwidth can
be allocated according to the ascending order in downstream
client delay and computing time.
BS calculates the number of cycles an FL client requires to

be completely served based on the required bandwidth and the
fixed polling cycle length of 125 𝜇𝑠 employed in the GPON
technology. However, next-generation PONs employ multiple
wavelengths and the cycle duration is unknown a priori when
an adaptive polling cycle mechanism is employed, such as
the EPON technology. Therefore, the proposed BS algorithm
cannot be directly used in TWDM-EPON networks.
We propose a DWBA algorithm based on the BS approach

[5] for TWDM-EPONs called multi-wavelength BS algorithm
(MW-BS) which deals with multiple wavelengths and employs
an adaptive polling cycle for dynamic resource allocation. A
portion of the PON capacity (bandwidth slice) is still reserved
for the FL traffic in each scheduling cycle, but instead of
using the polling cycle information to grant the transmission
windows for FL traffic and then share the remaining slice
capacity with other traffic types, MW-BS reserves the total slice
for the FL traffic as long as a bandwidth request from any FL
client exists. The use of a dynamic polling cycle reduces the
FL traffic delays and avoids the need for information about the
duration of the unknown upcoming cycles. Three variations
of this MW-BS algorithm are proposed for different TWDM
wavelength allocation policies, namely MW-BS-SSD, MW-BS-
MSD, and MW-BS-FF.
The flow diagram in Figure 2 summarizes the proposed

DWBA scheme residing in the OLT. The ONUs send Report
messages requesting bandwidth for Federated Learning as well
as for conventional applications. When a Report message
arrives from an ONU containing a bandwidth request for FL
traffic, the OLT first grants the bandwidth from the reserved
slice, if available; otherwise, the OLT allocates bandwidth for
the conventional traffic.
The OLT also reserves bandwidth for the ONU for upcoming

cycles. It selects the wavelength(s) as a function of the TWDM
wavelength allocation policy, and calculates the next starting
time for the FL transmission. For the SSD policy, the OLT
grants all wavelengths. For the MSD policy, the OLT grants
a predetermined-fixed wavelength. For the FF policy, the
OLT grants the first available wavelength, and then calculates
the transmission window to be granted for each allocated
wavelength, as a function of the number of wavelengths and
the portion of the PON capacity designed for FL use. If the
granted window is equal to the requested one, the FL traffic
will be fully served, and the OLT will make the bandwidth
slice available for the next cycle.
The OLT also calculates the granted bandwidth for con-

ventional applications. If the OLT has previously allocated
the bandwidth for a slice, it selects these wavelength(s) for
the FL traffic. Otherwise, the OLT selects the wavelength(s)
for the FL traffic and calculates the next starting time for
that FL transmission as a function of the TWDM wavelength

allocation policy involved. The transmission window for the
conventional applications is calculated according to the limited
policy. Finally, the OLT issues and sends a Gate message
with the granted bandwidths for both FL and conventional
applications.
Even though the BS approach reduces the latency for FL

applications in relation to the traditional First Come First
Served approach, bandwidth reservation prevents the BS and
MW-BS algorithms from dealing with the requirements of
bandwidth allocation to FL traffic. More specifically,
• The reserved bandwidth for the FL slice is adjusted
according to the number of clients in different FL
rounds. However, this bandwidth may not be available
since InPs provide bandwidth guarantees for other PON
customers according to agreements in the Service Level
Agreements (SLAs).

• There might be not enough reserved bandwidth to cope
with peaks of the bandwidth demands of FL clients, es-
pecially for the transport of large packets in synchronized
FL rounds, unless the slice bandwidth is reserved for
peak demands. Clients may have to send only part of
the local model parameters per cycle, which increases
the number of stragglers clients, and, consequently, the
overall processing time of FL applications.

• The bandwidth of a slice is shared among all FL clients.
This can cause bandwidth starvation for some clients.

• The BS approach is not compatible with the traditional
PON business model, in which customers rent portions
of the PON capacity from the InP to support their
applications. In the BS approach, it is not specified who
pays for the shared slice in the federation.

B. Dynamic Bandwidth Allocation for Federated Learning
Bandwidth reservation brings numerous limitations to the

processing of FL over PONs. To address these limitations, we
propose a DWBA algorithm based on statistical multiplexing
rather than on bandwidth reservation. This provides flexibility
to cope with dynamic bandwidth demands of FL clients.
To guarantee the requirements of FL clients we introduce a
DiffSev-like static prioritization for bandwidth allocation, as
well as a DWBA that supports QoS provisioning for Federated
Learning applications while meeting the requirements of delay-
critical applications in TWDM-EPON networks. The algorithm
is called DWBA for Federated Learning (DWBA-FL).
The idea behind our proposal is to allow PON customers

to employ their guaranteed bandwidth for the scheduling of
the FL application, but without jeopardizing the QoS provi-
sioning of other delay-critical applications. To achieve this,
the proposed mechanism adopts the widely-used Differentiated
Service approach to tackle the QoS provisioning problem of
FL applications over Ethernet PON. Just mapping FL traffic
into a DiffServ per-hop behavior (PHB) does not provide the
bandwidth guarantee needed for FL applications since the FL
traffic would compete with traffic of other type of clients in
the same PHB. By creating a PHB exclusive for FL, it is
possible to treat FL traffic differently from the traffic of other
PON clients, thus, allowing bandwidth allocation mechanisms
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Fig. 2: Flow chart of the bandwidth slicing algorithm adapted for TWDM-EPONs.

to guarantee the required bandwidth. The prioritization of FL
traffic complies with the traditional business model, as well as
to improve statistical multiplexing gain.

The proposal employs an intra-ONU scheduler with a strict
priority queuing policy for the ONU queues, and the ONUs can
arbitrate the transmission demands of the different applications.
Upon the arrival of a Report message, the OLT calculates the
transmission window according to the conventional Limited
policy and selects the wavelength(s) on the basis of the TWDM
wavelength allocation policies. The OLT then sends a Gate
message containing the resource allocation decision. Upon
the receipt of that Gate message, the intra-ONU scheduler
distributes the received bandwidth among the queues in the
ONU. In our model, traffic is classified as FL, delay-critical,
delay-sensitive, or BE. The ONUs maintains four different
queues for buffering frames for these types of traffic.

We propose two prioritization policies. The FL-first policy
defines the FL traffic as that of the ℎ𝑖𝑔ℎ𝑒𝑠𝑡 priority and the
delay-critical, delay-sensitive, and BE traffic being of ℎ𝑖𝑔ℎ,
𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑙𝑜𝑤 priority, respectively. On the one hand, this
strict prioritization of FL frames can reduce synchronization
time for FL processing. It can also increase the delay of
delay-critical application because the FL traffic requires a
large bandwidth per cycle. To help alleviate this problem,
we propose the DC-first policy, assigning highest priority and
reducing Federated Learning traffic to only the ℎ𝑖𝑔ℎ priority.
This proposal has been defined for all TWDM architectures.

The proposed algorithm processes each Report message
from each ONU once per cycle, thus the allocation is per-
formed with a computational complexity of 𝑂(𝑛), where 𝑛 is
the number of ONUs in the PON.

V. Performance Evaluation
The performance of the proposed DWBA scheme was

evaluated using an EPON simulator (EPON-Sim), previously
validated in [15]. This extension supports the three architec-
tures, SSD, MSD and WA, proposed for 50G-EPON networks.
Moreover, our proposed DWBA algorithms were introduced in
the simulator.

A. Simulation Model and Setup
The simulation scenarios include a 50G-EPON network with

1 OLT serving 32 ONUs on an optical distribution network
with a tree topology. Two wavelength channels of 25Gbps were
employed for upstream transmission, giving a total capacity of
50Gbps. The total available bandwidth in the PON was equally
distributed among the ONUs, so that each ONU has the same
guaranteed bandwidth 𝑏𝑖 , while the aggregated offered load per
ONU 𝑙𝑖 varied from 0.6 ·𝑏𝑖 to 1.0 ·𝑏𝑖 (for the sake of clearness
and brevity, herein after, 𝑏𝑖 is omitted from the offered load
values of ONU 𝑖).
The aggregated load included the traffic of the four different

types of application: FL, delay-critical, delay-sensitive, and
BE. The benchmarking framework for learning in federated
settings LEAF [6] was used to generate the FL traffic. The
FEMNIST dataset and CNN with two 5×5 convolution layers
were used for model training, while the FedAvg algorithm was
employed to aggregate the local parameters in the server. Other
configurations for the learning process, such as learning rate
and batch size, followed the settings defined in [9]. FL clients
generated 26.4MBytes of data in each round of training. More-
over, the ONUs put the local parameters into frames according
to the Ethernet protocol, which has a Maximum Transmission
Unit of 1500 bytes and a header field for signaling (preamble)
of 20 bytes.
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The delay-critical applications were modeled employing a
Constant Bit Rate (CBR) flow. It was coded with a fixed-
size packet of 70 bytes and an inter-arrival time of 12.5 𝜇s,
which produces an offered load of 44.8Mbps. The rest of the
offered load 𝑙𝑖 was evenly distributed between delay-sensitive
and BE traffic. The traffic streams were generated employing
Pareto ON-OFF sources. The ON period time and packet-
burst size followed a Pareto and Bounded Pareto distributions,
respectively. The aggregated traffic at the ONU had a Hurst
parameter of 0.8. Moreover, the packet lengths were uniformly
distributed between 64 and 1518 bytes.
A threshold value of 𝜃 = 0.015 was employed in the MW-BS

algorithm, as in [5]. This algorithm reduces the bandwidth for
each ONU since it reserves bandwidth for the slice. Moreover,
the same aggregated offered load was employed in the simu-
lated algorithms to make a fair comparison. The duration of
the guard period was set to 0.624 𝜇𝑠, with a maximum cycle
length of 1ms. Each simulation scenario lasted 100 s and was
replicated 10 times.

B. Simulation Results and Discussion
Mean delay values obtained by the DWBA-FL were less than

80ms and 150ms for the FL traffic in both underloaded and
overloaded conditions, respectively. The delay values given by
BS were at least twice as large as those given by our proposal
(Fig. 3b). This improvement is a consequence of the large
windows allocated for transmissions of FL traffic when our
proposal is employed.
Moreover, the use of the DC-first policy produced lower,

delay values for the delay-critical traffic lower than those given
by either the FL-first policy or the BS algorithm (Fig. 3a).
This result is due to the static allocation of bandwidth slice
for the FL traffic. Furthermore, the strict prioritization of FL
traffic employing the FL-first policy and the huge amount of
traffic produced by the FL application leads to bandwidth
starvation for delay-critical application. The mean delay of
the delay-critical traffic produced by the FL-first policy was
from 200 𝜇s to 1000 𝜇s, greater than that produced by FL-
first policy. Thus, the DWBA-FL with DC-first policy produces
mean delay values for the Federated Learning and delay-critical
applications lower than those for the other algorithms.
Furthermore, the FF policy produces a slight decrease in

delay values for both type of traffic in relation to the other
wavelength allocation policies (i.e., SSD and MSD). These
results are a consequence of the waste of bandwidth due to
the excessive uses of guard periods and poor multiplexing gain
when employing the SSD and MSD, respectively.
In Fig. 4a, the blue curve shows the proportion of clients

involved as a function of the computing time. It shows the
minimal synchronization time per round without any com-
munication delay. The MW-BS algorithm requires a longer
synchronization time per round to produce the same percentage
of the involved clients than is required by the proposed scheme
with DC-first policy. For example, synchronization times of
1.9 s and 2.1 s were required to produce a percentage of
involved clients of 50% with our proposal and the MW-BS
algorithm, respectively.

In the simulations, the target accuracy was obtained after
2000 rounds of training (Fig. 4b), i.e., the verified convergence
time in rounds. To achieve a training accuracy of 76%, the
proposed scheme can reduce 9.5% of the training time required
by the BS algorithm (i.e., 0.2 s less for a synchronization time
of 2.1 s), when the total traffic load is 0.8.
Fig. 5 shows the network delay as a function of the ONU

offered load. The MW-BS produces delay values greater than
300ms, whereas, with the DWBA-FA algorithm, these values
are reduced to less than 150ms. Moreover, for 80% of the
clients, which is the typical percentage of clients that lead
to an accuracy greater than 75% (see Fig. 4), the MW-BS
scheme imposes a network delay greater than 200ms, while
the DWBA-FA imposes delay values less than 100ms, under
underloaded conditions (i.e., load < 0.85). In summary, the
DWBA-FL algorithm reduces the network delay in relation
to the MW-BS scheme. This reduction in delay may decrease
the number of stragglers, which in the end leads to faster
convergence and greater model accuracy.

VI. Conclusion
This paper has introduced two DWBA algorithms for the

support of FL applications over TWDM-EPONs networks. A
DWBA algorithm based on bandwidth reservation, as well as
three different variations of this algorithm have been intro-
duced. Moreover, a DWBA algorithm that employing static
prioritization of FL traffic, with two variations proposed. The
later includes a strict prioritization for FL and delay-critical
traffic.
Results show that the DWBA-FL algorithm with DC-first

policy increases the FL model accuracy and reduces the
delay of federated learning and delay-critical applications when
compared to the BS approach and the FL-first policy.
Future research directions are envisioned as follows. Mech-

anisms are needed to address the QoS provisioning appropri-
ately for diverse FL applications co-existing in the same PON.
These schemes may schedule the FL traffics based on required
bandwidth but also consider the number of stragglers, diverse
FL packet sizes, and synchronization time.
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