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Abstract: This paper introduces a new solution to improve network performance by decreasing
spectrum fragmentation, crosstalk interference, blocking of virtual networks, cost, and link load
imbalance. These problems degrade the performance of Elastic Optical Networks with Space-Division
Multiplexing. The proposed solution, called Cognitive control loop (CO-OP), is capable of identifying
a set of problems and creating plans to mitigate these problems. The CO-OP comprises four functions
that employ learning algorithms to identify problems and plan a series of actions to reduce or
eliminate them. The results show that the CO-OP can effectively decrease up to 30% the blocking of
requests and up to 50% the crosstalk occurrence compared to existing algorithms.

Keywords: virtual networks; space-division multiplexing; machine learning; control loop; cognitive
networks

1. Introduction

The increase in network traffic due to widespread bandwidth hunger applications has
demanded network backbones with large capacity. The Wavelength-Division Multiplexing
(WDM) technology, currently used in most optical backbones, allows bandwidth allocation
only in a fixed amount (wavelength), which leads to inefficient use of the optical spec-
trum [1]. Moreover, these networks typically employ Single-Mode Fibers (SMF), whose
capacity will be exhausted in the near future due to network traffic growth.

The Elastic Optical Networks (EONs) technology has been introduced a flexible
bandwidth allocation scheme compared to that adopted in the WDM technology [1–4]. The
EON allows the allocation of bandwidth at a fine granularity that matches the requirements
of requests for lightpath establishment, avoiding bandwidth wastage

Space-Division Multiplexing (SDM) has been employed in optical networks to over-
come the looming fiber capacity crunch by enabling the use of space as an additional
dimension [5,6]. Combined with the EON technology, SDM expands the spectrum band
and maintains EON flexibility in bandwidth allocation.

Network virtualization allows the coexistence and isolation of Virtual Optical Net-
works over the same physical network. The Control Plane of Software-Defined Optical
Networks (SDON) employs a centralized view of the network [7,8], which facilitates the
optimization of resource utilization. The configuration of Virtual Optical Networks (VONs)
initiates upon the arrival of a request, including the mapping of virtual nodes to physical
nodes and virtual links to lightpaths [9–12]. Traffic patterns and resource availability
determine the deployment of VONs [13,14], especially the route and spectrum allocated
to lightpaths. Moreover, resource allocation needs to consider traffic fluctuation and
impairment effect on transmitted signals [15].
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The configuration of VONs is crucial for network operation and affects costs, blocking
of requests, unbalanced link-load, bottleneck links, and impairing crosstalk. Few investiga-
tions [16–18] have addressed the deployment of VONs over EON-SDM but do not account
for multiple factors [10,16–19], which may lead to network states far from optimal.

This paper proposes a framework, called Cognitive control loop (CO-OP), to optimize
resource allocation for VONs over EON-SDM networks. The CO-OP considers a series of
issues, such as spectrum fragmentation, crosstalk interference, blocking of requests, and
link load imbalance. In CO-OP, the control plane is responsible for collecting information
from the virtual and physical networks. The management plane is responsible for updating,
processing, distributing, and storing information for the control loop function. The knowl-
edge plane [20] comprises a control loop (monitor, analyze, plan, and execute functions)
responsible for identifying and creating plans for the solutions to the identified problems.

In the control loop, the information is analyzed, and, if it identified a problem, a
plan to address it is created and executed. We employ machine learning techniques to
analyze and plan potential solutions. Using Reinforcement Learning (RL) to derive plans
assures convergence to an optimized network state since RL adapts the plans, improving
the solutions to the identified problems.

The results derived via simulation show that CO-OP can decrease blocking of VON
requests up to 50% compared to that given by the employment of traditional methods.
Moreover, it can decrease 30% the generated crosstalk, which impacts the blocking of requests.

The remainder of the paper is organized as follows. Section 2 describes related work.
Section 3 describes the problem formulation of the virtual network configuration. Section 5
describes the CO-OP framework. Section 6 shows numerical results. Section 7 concludes
the paper and describes future research directions.

2. Related Work

In VON configuration, each virtual node is mapped onto a physical node, and each
virtual link onto a lightpath [10]. A VON can only be deployed if its resource requirement
(i.e., transponders and frequency slots) can be allocated; otherwise, the request for a VON
configuration is blocked (rejected).

The process of virtual link and node configuration reserves the requested amount of
physical resources. If the physical network does not have enough resources to accommodate
the VON, it is rejected.

VON configuration has been investigated to promote efficient support to Quality-
of-Service. In Reference [10], a heuristic algorithm was introduced to configure VONs
over SMF optical networks. The algorithm analyzes the centrality of the network topology
for embedding a VONs on the physical network. Virtual nodes are mapped to physical
nodes with the largest closeness value. The K-Shortest Paths (KSP) algorithm is employed
to determine a path that has available resources to configure a virtual link between vir-
tual nodes.

In Reference [21], the authors introduced an algorithm to enhance load balance among
network links and reduce spectrum usage. Virtual nodes are sorted using their bandwidth
and the computing resources availability, while physical nodes are sorted using the value
of the Resource Contribution Degree (RCD) of the node, which impacts the allocation of
resources of other nodes.

In Reference [16,17], a load-balancing algorithm was introduced for virtual network
configuration on physical networks employing MCFs and Few-Mode Fibers (FMFs). In
Reference [17], a constrained optimization model was introduced. It searches for the
maximum index value among the unused slots across all links. A genetic algorithm was
employed to solve the proposed formulation. In Reference [16], the authors introduced
a procedure for the configuration VONs over SDM using FMFs. In the first step, the
algorithm maps virtual nodes and links of an incoming VON request onto physical nodes
and links; then, the algorithm verifies if the required QoS of all VONs is maintained in case
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o acceptance of the request. When evaluating a VON interference on the others, the Quality
of Transmission (QoT) in the physical links plays a significant role.

An algorithm for virtual network topology adaptation using artificial neural networks
was introduced in Reference [19]. Data is collected to allow the prediction of traffic
variability so that VONs can be reconfigured onto another set of nodes and links to improve
performance and resource utilization, which can lead to a reduction in the number of
transponders needed.

In Reference [22,23], the authors proposed solutions for virtual network reconfigura-
tion. In Reference [22], they used machine learning algorithms to predict traffic variability
and the need for VON reconfiguration due to network congestion. However, their proposal
does not account for networks employing SDM.

The authors in Reference [18] introduced two algorithms to cope with the spectrum
fragmentation in lightpath establishment for VONs. The algorithms classify VON requests
into immediate or advanced groups. To decrease the blocking of VONs, when slots are not
available at the arrival time of a request, the establishment of a VON can be postponed to a
future time, increasing the chances of accepting the request.

In Reference [24,25], the authors use machine learning to handle the spectrum frag-
mentation problem. In Reference [24], the authors employed a shortest path algorithm
and reinforcement learning to cope with spectrum fragmentation and energy consumption
in elastic optical networks based on single-core fiber [24]. They explored the container
technology to increase the flexibility of virtual network mapping, as well as to provide fast
deployment. The authors also proposed a new network architecture composed of a virtual
network layer, network container layer, and physical network layer. Unsupervised learning
algorithm is employed in Reference [25] to handle spectrum fragmentation in EON-SDM
networks. When the fragmentation ratio reaches a limit, the spectrum is defragmented.
The defragmentation algorithm employs k-Means algorithms to distribute the request on
the spectrum to reduce fragmentation.

In Reference [26], the authors combined a distributed SDN control system with
blockchain technology to improve the quality of services and resource utilization in elastic
optical networks by reallocating the spectrum and reconfiguring VONs.

Most of previous investigations addressed networks based on single-core
fiber [17–19,21,24,26,27] (Table 1). The space dimension in EON-SDM calls for more elabo-
rate solutions, as well as open new opportunities to optimize resource usage. Moreover,
existing solutions try to improve QoS by employing algorithms with high computational
complexity.

Table 1. Existing solutions in the literature.

Reference Year Main Achievement

[10] 2012
Heuristic algorithm to configure VONs over single-mode-fiber optical
networks.

[21] 2017
Algorithm to enhance load balance among network links and reduce
spectrum usage.

[16,17] 2016–2017
Load-balancing algorithms were introduced for virtual network
configuration on physical networks employing MCFs and FMFs.

[19] 2017
Algorithm for virtual network topology adaptation using artificial neural
networks including neural networks.

[22,23] 2018 and 2021
Virtual network reconfiguration algorithms for optical networks with
single-mode fibers.

[18] 2020
Algorithms to cope with the spectrum fragmentation in lightpath
establishment for VONs.
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Table 1. Cont.

Reference Year Main Achievement

[24,25] 2020
Machine learning algorithms to handle the spectrum
fragmentation problem.

[26] 2020 Distributed SDN control system with blockchain technology.

Different from existing solutions that propose algorithms focusing on a single KPI (e.g.,
blocking of VON), we propose the CO-OP framework to support VON configuration taking
into account several metrics, such as spectrum fragmentation, cost, link load balance, and
crosstalk interference. Moreover, CO-OP creates plans to tackle multiple objectives rather
than making decisions on a single metric. Furthermore, existing VON reconfiguration
and spectrum reallocation solutions have not fully explored reinforcement learning as a
solution to automate network management.

3. Statement of the Problem

This section describes the virtual and physical networks and the problem descrip-
tion [10] that CO-OP attempts to solve. The main objective of CO-OP is to increase the
probability of virtual networks being accepted, as well as maximize the use of EON-SDM re-
sources.

3.1. Physical Topology

The physical topology can be modeled as a graph G = (V, E), with V representing
the physical nodes, and E representing the edges. A node v ∈ V has a limited number of
transponders t(v) and CPU capacity c(v).

Physical links eu,v ∈ E connect a pair of nodes u and v, which have several frequency
slots represented by the weight of the physical links. The W variable is the set of link
weights, where W = {w(eu,v) | eu,v ∈ E}, and w(eu,v) is the weight of the link eu,v. The
weight of a link w(eu,v) is the sum of available slots between nodes u and v.

The available capacity of a physical node RV(v), v ∈ V, is defined by RV(v) =
c(v)−∑c(v), in which x ↑ y means that the virtual node x is mapped onto physical link
y. The available bandwidth in a physical link RE(eu,v) is defined by the total bandwidth
available in the physical link eu,v ∈ E, RE(eu,v) = b(eu,v)−. The available bandwidth of a
path p ∈ P is then given by R(p) = mineu,v∈pRE(eu,v).

Table 2 shows the notation used in the paper.

3.2. Virtual Topology

The ith request for the establishment of a VON with lifetime t(Gi
v) is modeled by a

graph Gi
v = (Vi

v, Ei
v), where Vi

v and Ei
v represent the set of virtual nodes and virtual links

of the ith request, respectively. Each virtual node vi
v ∈ Vi

v is associated with a computing
resource requirement c, while each virtual edge ei

v ∈ Ei
v is associated with a bandwidth

requirement bw(ei
v).

A virtual network can be accepted only after its nodes and links have been mapped
to the physical network G = (V, E). Resources are reserved for the entire lifetime of the
VON, t(Gi

v). Physical resources are shared among VONs. When the lifetime of a virtual
network comes to an end, the allocated physical resources are released and can be used by
other VONs.

In the traditional VON allocation problem, the solution is mapping virtual nodes
to physical nodes and virtual links to physical paths [28,29]. In the specific case of the
configuration of VONs over EON-SDM, we need to consider EON-SDM the issues that
might degrade performance, such as spectrum fragmentation.

The unique aspects of CO-OP are the combination of information about the states of
the physical and virtual networks, and the consideration of past decisions in future ones.
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Moreover, CO-OP is capable of identifying multiple problems in the network that can cause
performance degradation and creating a plan to handle them.

Table 2. Notation used in the paper.

Symbol Description

V Set of physical nodes, where V = {v1, v2, . . . , vN}.

E Set of physical links, where E = {e1, e2, . . . , eNl }.

G G = (V, E) represents the physical network.

Nl Number of physical links.

N Number of physical nodes.

F
F = { f1,1, f1,2, . . . , f|F|,|F|} represents the possibilities of usage of the network physical link
spectrum to allocate the requested bandwidth.

Gv Gv = (Vv, Ev) represents the current virtual network.

Vv
Vv = {v1

v, v2
v, . . . , v|Vv |

v } represents a set of virtual requests that have allocated resources on the
physical network

Ev Ev = {e1
v, e2

v, . . . , v|Ev |
e } represents a set of virtual links.

C
Set of compute resource required, where C = {c1, c2, . . . } represents a set of computing
resources in ei,j, where | C | is the number of computing resources required by Gv.

4. Metrics Used

This section shows the metrics used as features in the algorithms employed in the
CO-OP framework.

To measure the dispersion of the network load, we use the standard deviation SD of
the loads on network links [21]:

SD =

√√√√1/(Nl − 1) ∑
li,j∈E

(
max{|Fli,j |} − µs

)2
, (1)

µs = ∑
li,j∈E

max{|Fli,j |}/Nl , (2)

where µs represents the maximum index of a frequency slot used in links, and Nl represents
the number of physical links. A network with a smaller SD value indicates a satisfactory
load balancing performance.

We use the long-term revenue to cost ratio to evaluate the efficacy of resource utiliza-
tion [10]. The revenue denotes the economic benefits of accepting a virtual network request
and the cost denotes the physical resources allocated to virtual networks. The revenue can
be calculated by summing all virtual resources accepted over time, as follows:

R(Gv, t) = ∑
e∈Ev

bw(ev) + ∑
n∈Nv

c(nv), (3)

with Gv being the virtual network, t the time, bw(ev) and c(nv) the bandwidth required by
a virtual link e, and n the computing resource of a virtual node.

The long-term average revenue is defined as [10]:

lim
T→inf

∑T
t=0 R(Gv, t)

T
. (4)
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The cost of the request Gv at time t is defined as [10]:

C(Gv, t) = ∑
p∈P(Gv)

h(p)× bws(p, Gv) + ∑
n∈Nv

c(nv), (5)

where P(Gv) is the entire set of physical paths allocated to the virtual links in Gv, h(p) is
the number of hops in a path p, and bws(p, Gv) is the reserved bandwidth over a path. The
long-term average cost is defined as [10]:

lim
T→inf

∑T
t=0 C(Gv, t)

T
. (6)

The long-term revenue to cost ratio is given by [10]:

lim
T→inf

∑T
t=0 R(Gv, t)

∑T
t=0 C(Gv, t)

. (7)

The fragmentation ratio is defined as the mean ratio between the isolated and small-
sized blocks of slots and the total number of slots in the spectrum [4,30]. These isolated
blocks of slots are neither contiguous in the spectral domain nor aligned along the fiber
links, making it difficult to allocate them for a lightpath.

For the network fragmentation ratio, the routes of source-destination pairs represent
the contiguous aligned available slot ratio in the network. The contiguous and aligned
available slot ratio is defined by φ = ∑d∈D ∑k∈Kd

wdk · ψdk, where ψdk = γdk/Z is a weight
proportional to the traffic load of route k ∈ Kd of source-destination pair d ∈ D, where
∑d∈D ∑k∈Kd

wdk = 1. Z is the number of spectrum slots in each link, assuming that all
links have the same number of slots. D and Kd are the set of all the source-destination
pairs, and the set of routes of source-destination d ∈ D. γdk is the maximum number of
contiguous aligned available slots for route k ∈ Kd of source-destination pair d ∈ D. The
fragmentation is then defined as χ = 1− φ [30].

The closeness centrality [31] expresses how close a node is to all other nodes in a
network. It can be calculated as follows:

CC(υ) =
n− 1

∑
υ 6=ν

d(υ, ν)
, (8)

where CC(υ) is the closeness centrality of the node υ, and d(υ, ν) the shortest distance
between nodes υ and ν.

In EON-SDM networks [32] with multiple core fibers with cores arranged in a hexago-
nal array, the following equation gives mean crosstalk (XT) interference:

XT =
c− c× exp(−(c + 1)× 2× h× L)
1 + c× exp(−(c + 1)× 2× h× L)

, (9)

“where c is the number of adjacent cores, e.g., for seven cores, c is equal to six for the center
core, while it is equal to three for all the other cores; L the length of the fiber, and h the
mean increase in crosstalk per length unit calculated by” [32]:

h = k2 × R/(β×Λ), (10)

“where k is the coupling coefficient, R the bending radius, Λ the core pitch of the lattice,
and β a propagation constant” [32]. The crosstalk interference is proportionally affected by
the number of adjacent cores and the length of the fiber.
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5. Co-Op Framework

This section introduces the Cognitive control loop (CO-OP) framework based on
cognitive networks [33–37]. This framework is designed to tackle problems that occur in the
operation of EON-SDM networks, such as spectrum fragmentation, crosstalk interference,
and link load imbalance. The CO-OP framework is a control loop that uses functions to
analyze and create plans comprising actions to handle impairments in offering the required
QoS and QoT.

Using a cognitive control loop concept based on monitor, analyze, plan, and execute
functions, we can separate the process of finding a problem and creating a solution to it.
Moreover, it allows us to automate the (re)configuration process, ensuring the target metric
values are achieved.

The CO-OP framework uses supervised and reinforcement learning algorithms. The
monitor function collects a set of metrics from the physical network and virtual topologies
to identify the occurrence of potential problems. The problem identified is notified to
the analyze function to determine its criticality by using a supervised learning algorithm.
Such classification is then used by the plan function, which uses reinforcement learning to
generate an optimal plan to mitigate the problem. The execute function coordinates the
execution of the plan on the control plane and then verifies if the proposed changes were
sufficient to solve the identified problem.

Figure 1 illustrates how the CO-OP framework is used to improve the configuration
of VONs. The CO-OP continuously monitors the physical and virtual networks to capture
data to help identify existing problems. The centralized control plane provides statistics
on specific metrics. The collected data is stored in the management plane and used by
the MAPE functions and the control plane. The objective of the CO-OP framework is to
improve the configuration of the network resources.

3

4 5

2
43 23

2

50 Gb

50 Gb
150 Gb

400 Gb
50 Gb

50 Gb 50 Gb
100 Gb

100 Gb

3

8

7

6

1

2 3 4

5

Management 

Plane

Figure 1. The structure of CO-OP framework in EON-SDM networks.

In our framework (Figure 1), the monitor (2) uses a control plane (1) to obtain statistics
from the physical network (6) and the virtual networks (7). We collect the fragmentation
ratio, available transponders ratio, link load, available spectrum resources, blocking ratio,
resource usage and mean crosstalk from the physical network. Moreover, we collect the
mean bandwidth, blocking ratio, and the mean resource demand from the virtual networks.
The monitor is able to detect whether the current network state indicates the existence of
any operational problem. If a problem is detected, CO-OP tries to identify the problem in
the next function (3). The monitor function is able to detect whether the current network
state indicates the existence of an operational problem. If a problem is detected, CO-OP
tries to identify the problem in the next function (3).

The problem is then handed over to the analyze function (3), that tries to identify the
source of the problem. For that, the analyze function uses a supervised machine learning
algorithm. The result of the analysis is passed to the plan function (4). The plan function
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also employs a machine learning algorithm to propose an optimal plan of changes based
on the criticality of the identified problem. The plan is handed over to the execute function
(5), that will coordinate the execution of the plan on the control plane (1). Lastly, the
management plane (8) is updated with information derived in each step and information
on the success of the execution of the plan.

5.1. Monitor Function

The monitor function periodically collects statistics from a centralized control plane
and tries to associate these statistics to symptoms (problems) that are later analyzed. The
monitor plane collects the following set of statistics received from the control plane:

(i) link-load distribution,
(ii) available slot ratio,
(iii) long-term revenue to cost ratio,
(iv) network fragmentation ratio,
(v) mean transponder utilization,
(vi) mean crosstalk interference,
(vii) mean computing resource utilization,
(viii) spectrum fragmentation degree (number of links that have high fragmentation, and
(ix) mean number of lightpaths per link.

The CO-OP framework determines the occurrence of a problem in the network opera-
tion based on the statistics collected by the control plane.

The CO-OP framework employs learning techniques o identify the existence of prob-
lems. Using supervised learning techniques, it is possible to identify problems and com-
prise solutions that can immediately mitigate the problem. In the monitor function, the
input is a set of statistics, and the output generated by the algorithm is a potential problem
limiting the achievement of target network efficiency.

In the CO-OP framework, the monitor function can identify the following problems:
high cost, spectrum inefficiency, traffic load unbalance, and link overload. If a problem is
identified, it is passed to the following function. If there is no problem, the algorithm stores
the generated information for the support of future decisions.

5.2. Analyze Function

The objective of the analyze function is to characterize the problem, generating enough
information to create a plan.

The analyze function is used to determine the criticality of the problem detected by
the monitor function. The criticality gives the extent to which a problem interferes with the
resource allocation to other VONs.

The criticality of a problem can be classified as low, medium, or high, depending on
the risk of compromising the network performance.

A low classification means that the problem is not interfering with the network
performance at that moment, which could also indicate that the problem has recently begun.
A medium classification means that the problem is impacting the network performance,
but not to a significant extend. A high classification means that the identified problem is
causing significant degradation of network performance. CO-OP employs a supervised
learning algorithm to classify identified problems, chosen among those in Table 3.

After classifying a problem, the analyze function provides the information on the
locality of the problem, if it is a local or global problem. A local issue means that few links
or nodes are suffering from the identified problem. On the other hand, a global issue means
that most links or nodes suffer from the identified problem.

The analyze function uses a supervised learning algorithm to classify each node or
link. The statistics used by this function include link fragmentation ratio, number of
transponders used in each link, bandwidth utilization for each virtual link, number of
slots used, crosstalk, number of virtual links configured in each physical link, blocking
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of lightpath establishment in each physical link, and centrality measures (e.g., closeness
centrality). All measures must be correlated in order to mitigate the problem.

For local problems, the analyze function investigates which elements (nodes or links)
are causing a problem. A collection of nodes may cause a problem that propagates globally.
It is also possible that a single node or link is so severely affected that it alone causes
changes in the global network operation.

Table 3. Accuracy of supervised algorithms when used by monitor and analyze functions.

Classifier Description Accuracy of Monitor (%) Accuracy of Analyze (%)

Random Forest

Random Forest classifier
combines random variable
choice at nodes and
bootstrap aggregation. For
training decision trees, it
uses a subset of the dataset.

95 90

K-Nearest
Neighbors

This classifier similar
samples into k groups.

90 95

Naive Bayes

This classifier is a
probabilistic machine
learning model based on
Bayes theorem.

95 97.5

Logistic
Regression

This classifier is a statistical
model that in its basic form
uses a logistic function to
model a binary dependent
variable, although many
more complex extensions
exist.

90 90

Neural
Networks

Neural networks represent
an attempt to mimic the
biological nervous system
for both architecture and
information processing
strategies.

90 90

Support Vector
Machine

This linear model for
classification or regression
can create a line or a hyper
plane which separates the
data into classes.

90 97.8

If the resources used are low, and the associated cost is high, the cost yielded from
the acceptance of a VON request is non-justifiable. The cost associated with a node is
directly proportional to its links utilization. To evaluate the criticality of the cost problem,
the analyze function of CO-OP requires information on the used number of transponders
in nodes, bandwidth usage, the blocked number of requests due to limitations in physical
nodes, and the closeness centrality of physical nodes.

In order to evaluate spectrum usage in each link, the analyze function needs to know
the crosstalk generated, the number of virtual links that are using the physical link, and
the total number of slots required by each virtual link. This metric indicates whether high
crosstalk is either the underlying cause of a problem or the link under a heavy load without
causing any adverse effect. For example, when a link has high crosstalk, and the number
of virtual links using the physical link is small, the allocation algorithm could fail, so the
classification is high. Notice that sometimes only two metrics are necessary to classify a
problem, but, for complex problems, multiple metrics are necessary.

In order to evaluate the relevance of some links to the network operation, the analyze
function needs to know the loads of the links, the number of virtual links that are using this
physical link, and the sum of the closeness centrality values from the source and destination
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nodes associated with this link. Nodes with high closeness centrality values impact the
disjointedness of paths and consequently favor the formation of bottleneck link, as well as
the blocking of requests.

In order to evaluate the relevance of overload links, the analyze function needs
information on the loads of the links, the number of virtual links that are using each
physical links, the crosstalk generated in the available slot ratio per link.

If most of the links/nodes were categorized as high, then the problem is considered
global. After this process, it informs the analysis to the following function (plan), which
will create the new rules to mitigate the existing problem.

5.3. Plan Function

The plan function will comprise plans for the adjustments necessary to enhance the
efficiency of EON-SDM networks based on the results provided by the analyze function. A
plan is defined as a collection of procedures that a centralized control plane will execute
to ameliorate the identified problem. These procedures can limit the resource usage of
the network. The plan function selects procedures to enact the desired alterations done
by the control plane. The aim is to gradually improve the policy used until an optimal, or
near-optimal policy is reached.

In order to create a plan, the CO-OP framework employs the Reinforcement Learning
(RL) algorithm (Figure 2) Q-Learning [38] in the plan function since it does not require a
model of the environment. A plan is a set of changes to be employed in the network. The
basic idea of RL is that an agent can learn from a series of successful and failed actions
based on the received reward for the actions made.

The main advantage of using Q-Learning is the possibility of dynamic composition of
plans that are possible by rewarding the last plan and identifying the effect produced. The
goal of using Q-Learning is to compose a plan with actions that can mitigate the problem of
the network based on exploration and feedback from past experiences. Without the use of
RL algorithms, a static plan could increase the problem, potentially generating additional
problems or simply making useless changes.

The RL algorithm identifies the optimal plans considering the past decisions, and the
rewards received. By employing RL in the CO-OP framework, we are able to decrease the
occurrence of most of the issues described in Section 5.1. If a plan turns out to be not much
effective, CO-OP will learn and adapt.

Q-Learning algorithm is one of the most popular algorithms to determine Q-value
functions in model-free approaches [39,40]. “Q-Learning is exploration-insensitive, mean-
ing that it will converge to the optimal policy regardless of the exploration policy followed,
under the assumption that each state-action pair is visited an infinite number of times, and
the learning parameter α decreases” [38,39].

In Q-Learning [40,41], the policy is composed of a Q-value, Q(s, a) for each of the
possible state-action combination, where Q(s, a) denotes the value of doing action a in state
s. After each learning episode, the Q-values are updated as follows:

Qk+1(st, at) = Qk(st, at) + α
(
rt + γ max

a
Qk(st+1, a)−Qk(st, at)

)
. (11)

“The agent makes a step in the environment from state st to st+1 using action at while
receiving reward rt. The parameters 0 6 α 6 1 and 0 6 γ 6 1 are referred to as learning
rate and discount factor, respectively” [40,41].

The reinforcement learning agent usually has two possible strategies for how actions
are selected:

(i) exploit the knowledge found for the current state s ∈ S by taking action a ∈ A that
maximizes Q(s, a), or

(ii) explore by selecting a different action from the one that is currently considered as
the best one, with the objective of trying to learn if there is a better action than the
chosen one.
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In order to learn, it has to explore but to perform well, it should exploit what it already
knows.

“The ε-greedy action selection is used, ε gives the probability for a random action to
be chosen. The actions are selected by their corresponding Q-values” [41].

Every identified problem can have a possible action to be executed in the network,
where the network is the environment. The agent navigates to create an action. The
resulting plans can comprise multiple changes depending on the Q-Learning algorithm.

State, St+1

Figure 2. Agent-Environment interactions in the RL.

The state-space, action space, and reward function are designed as follows. The
state-space S is represented by the problem evaluation given by the monitor and analyze
functions, i.e., the problem which the network faces.

The action space is represented by the possible changes that can be added to a plan
to mitigate the identified problem. We define the action space as A = {0, 1}, where 1
represents that a change will be added in the plan, and 0 otherwise.

The reward function evaluates if the objective of each action was achieved. The reward
function is calculated based on the action; each plan has its own reward function. Result
values vary between −1 and +1. To achieve the objective associated with each problem,
we developed mechanisms to evaluate the plan. We designed the reward function as the
estimator of a plan to mitigate a problem. The control plane is responsible for collecting
the reward results and informing them to the management plane. The management plane
communicates with the plan function to improve the learning algorithm for future plans.

The agent may decide to do nothing or even decide to promote global changes, such
as defragmentation.

The complexity of the Q-Learning algorithm is O(ln |A|), where A is the set of actions
that could be chosen for handling an existing problem.

5.4. Execute Function

After a plan is generated, a series of rules need to be established in order to reward
the plan. In Table 4, the first column represents the procedures that the control plane will
execute (plan function), the second column gives where this procedure will be executed, the
third column the associated problem (monitor function), and the last column the criticality
of the problem (analyze function).

The plan generated is sent to the execute function which will carry it out. Each action
in a plan has a specific order to be executed in such a way that the result of one action does
not impact changes of another action.

One of the possible actions is a redirection that changes the mapping of a virtual
link to physical links on a route different than the used one. The redirection plan aims at
reducing the load on the links to a specific value. The plan indicated the remapping of all
virtual links mapped onto specific physical links. If the target load cannot be reached, the
information is passed to the management plane so that the reward value can be updated
accordingly.

The blocking action temporarily forbids a physical node or link from being allocated
to a new VON request. The control plane continuously verifies if the condition to unblock
physical nodes and links is satisfied. To unblock a physical link, it must have a number of
available slots equal or greater than the mean available slots, and the link load must be
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lower than the mean link load. The used computing resource must be equal or lower than
the mean computing resource utilization to unblock a node. In addition, the number of
transponders used must be lower than the mean number of transponder used.

The allocation limiting action temporarily limits the resources of a physical node
(transponders) or physical link (spectrum). By doing this, it will force other links and nodes
to be used for configuration, thus balancing the load on the network links. The control
plane removes the limit of a physical link usage when the lifetime of one or more VON
requests expires and the resources are released. It verifies if the link load and available slot
ratio decreased after the plan was executed. The mean crosstalk value must be lower than
the mean crosstalk on the network links.

Table 4. Possible actions given by the Q-Learning algorithm.

Action Application Associated Problem Type

Reconfiguration Link Spectrum inefficiency Medium

Redirection Link Unbalanced load High

Blocking Link
Unbalanced or spectrum
inefficiency

High

Blocking Node Cost High

Limiting Link
Unbalanced, spectrum
inefficiency, or overload

Medium

Limiting Node Cost Medium

Nothing Node or link No problem was identified Low

The reward for limiting actions is only informed when the limitation is removed, at
which point it is possible to see if the action was successful or not. As VONs expire and
resources are released, we evaluate if the goals for the limitation are reached, and, if not,
the reward is decreased. The reward starts positive, but as more VONs expire and the
goals are not reached, the reward will accumulate negatively. When the limitation goals
are reached, the limitation is finally removed, and the accumulated reward is informed to
the management plane so the learning algorithm can learn from this feedback.

In order to execute the actions of a plan, a priority ordering for execution needs to be
defined. The redirection plan is only executed after blocking and limiting actions if they
are present on the same plan, in order to guarantee that plan does not change something
that impacts another.

After an ordering is established, the execute function is responsible for informing the
changes to the control plane. The execute function also informs the control plane about the
verification it needs to periodically do in order to determine whether restrictions can be
removed or not.

5.5. Management Plane

The management plane comprises a database, where all relevant data related to CO-
OP is stored, including analysis, policies, plans, and statistics. This plane has information
on the state of virtual and physical network topologies. The management plane share data
with the MAPE (monitor, analyze, plane, execute) functions.

The MAPE functions generate the data stored and the information sent periodically
by the control plane. The plans are executed by the control plane, and the information
collected during the execution is informed to the knowledge plane. Some actions, such as
the reconfiguration of lightpaths, do not need to be verified periodically. The node blocking
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rule is verified whenever the lifetime of a VON using that node expires and the resources
are released.

Figure 3 shows the flowchart of the proposed solution, including the integration of
CO-OP, the control plane, and the VON configuration algorithm (Step 1). In this figure,
whenever a VON request is rejected due to resource limitations (Step 2), then the CO-OP
framework starts to work (Step 3). All steps of CO-OP are executed when the monitor
function identifies a problem (Steps 3 and 4).

Figure 3. Illustration of how the CO-OP, control plane, and VON configuration algorithm are
integrated.

6. Performance Evaluation

CO-OP employs supervised learning techniques to learn about potential problems
in the operation of EON-SDM networks. Table 3 shows a comparison between different
supervised algorithms for the monitor and analyze functions. The assessments of the
accuracy of these algorithms were conducted independently. To estimate the accuracy
of the analyze and monitor functions, we employed a synthetic dataset produced from
the simulation of networks with different topologies (available at CO-OP framework
repository)). Before the network simulation, we train each model with the same set of
features provided by the synthetic dataset for the monitor and analyze functions, as well
the learning algorithms, and then we calculate the accuracy measure based on the training
results (Table 3). For example, considering the monitor function, during the network
simulation, a set of data (Section 4) are collected and normalized; after that, a sub-set of
features provided by the dataset is used as the input for learning algorithms (Table 3).
To select the features, a feature selection approach is employed, and then these selected
features are used to train the data for all different models.

The codes of the algorithms in Table 3 are available in the Scikit-learn library [42]
and the code for the Q-Learning algorithm in the Reinforcement Learning and Planning
(BURLAP) library [43]. The classification in the monitor function classifies the current state
of the network as either problematic or normal. The problems identified by the monitor
function can be spectrum inefficiency, high cost, and unbalanced load. The analyze function
tries to understand the criticality (low, medium, and high) of the identified problem. The
supervised algorithms must be trained before being employed to detect problems. The
training process aims at reaching accurate classifications.

For the training process of the monitor and analyze functions, we used two syn-
thetic datasets, each having 103 samples. The samples were collected from simulations
using a greedy VON configuration algorithm and the NSFNET and USA topologies [44].

https://bit.ly/2OKwwWI
https://bit.ly/2OKwwWI
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The greedy VON algorithm does not use any optimization approach to allocate VONs.
When a VON request arrives, the algorithm allocates the requests in the first available
node/link with sufficient resources. Samples comprise several characteristics (features)
that define the network state in a period, including the statistics and raw data (described in
Sections 5.1 and 5.2), from virtual and physical networks.

After the dataset was built and the values normalized, outliers were removed and
features selected. Considering supervised algorithms, a feature selection algorithm was
employed to reduce the number of features, which is one of the most critical pars of
learning processes since the number and subsets of features have substantial impact on
the learning process. These features need to represent the selected problems, and they
directly impact the model accuracy. For the data collection, we employed feature selection
to define a group of features that optimally represent the patterns of each problem. We
employed a correlation approach to detect relevant features in order to comprise the dataset
for training. We used the Pandas library to derive correlation matrices and heatmaps to
the selected features. For the analyze function, the selected features were acceptance ratio,
blocking ratio, mean bandwidth required for each VON, and mean resource usage per
VON, blocking ratio, link load, available spectrum resources, available transponders ratio,
mean crosstalk, compute resource usage, and fragmentation ratio.

After performing feature selection, the final datasets are used to train the k-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Neural Network (NN), Naive Bayes,
Random Forest, and Logistic Regression algorithms. The number of correct classifications,
the accuracy, and the errors in numeric predictions were used to evaluate the performance
of these algorithms. The values of accuracy obtained in the evaluation are shown in Table 3.

The KNN algorithm employed in the analyze function was configured with k = 3,
where k is the number of possible criticality classifications considered in this paper. The
Neural Network obtained the best accuracy with five layers, considering at most 6 layers.
Cross-validation adapting for different portions of the dataset was used to increase accuracy,
and 10% to 50% of the dataset was used for this purpose.

For the monitor function, the learning algorithm returns an existing problem in case it
is detected. We performed tests with all the learning models since, in the CO-OP framework,
the result given by one algorithm may impact the result given by another. Evaluating their
interaction with reinforcement learning is crucial for the choice of the best combination of
algorithms to be used.

For comparison purposes, we employed the Key-Link and Resources Contribution
Degree for VONs Mappings (KLRVM) algorithm [21], both with and without the CO-OP
framework. For lightpath selection in KLRVM, we used the K Shortest Path Algorithm
(KSP) (with k = 3). For the spectrum selection, we used different modulation formats.
The First-Core First-Fit (FCFF) algorithm was adopted since it is one of the most popular
algorithms in the literature.

As previously mentioned, the CO-OP framework monitors the network to detect
problems and create plans that can ameliorate these problems, but it does not configure
VON requests. Although the KLRVM algorithm was employed for this purpose, the CO-OP
can work with any VON configuration algorithm.

We considered the NSFNET and CHNNET topologies. The NSFNET topology (Figure 4)
has 14 nodes and 21 optical fiber links, and the CHNNET topology (Figure 5) has 15 nodes
and 27 optical fiber links.

Figure 4. The NSFNET topology with 14 nodes and 21 links.

https://pandas.pydata.org/
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Figure 5. The CHNNET topology with 15 nodes and 27 fiber links.

We employed the FlexGrid simulator [45] to simulate the scenarios used in the eval-
uation of CO-OP framework. The virtualization module in the simulator (available at
https://bit.ly/2OKwwWI)) is based on the set of information described in Reference [10],
and VON requests arrive according to a Poisson process. We assume that the computing
resources of each physical node are 100, and each physical link has seven cores, with 320
frequency slots [44]. For each VON request, the number of virtual nodes is randomly
determined by a uniform distribution in the interval [3, N − 1], and pairs of virtual nodes
are randomly connected with a probability 0.5 [10]. The number of alternative physical
nodes Am

l for nmi
v is chosen using a uniform distribution in the interval [2, 4], and the

computing resources requirement cmi
v is also chosen using a uniform distribution in the

interval [1, 4] [10]. The request capacity of each connection is chosen using a uniform
distribution between 50 Gb to 400 Gb [44]. The number of candidates paths, K, for the KSP
algorithm was set to 3.

We used the Bandwidth Blocking Ratio (BBR), acceptance ratio, and mean crosstalk.
For the evaluation of the supervised algorithm in the monitor and analyze functions, we
performed tests using all possible combinations of algorithms in Table 3. In this paper, we
display the most representative results that illustrate the benefits of using CO-OP. Different
versions of CO-OP employed different combinations of algorithms. In CO-OP I, both the
monitor and analyze functions employ the Random Forest algorithm because it produces
the best overall result. In CO-OP II, the monitor function employs the Random Forest
algorithm, while the analyze function employs Neural Networks. In CO-OP III, both the
monitor and analyze functions employ a Neural Network, while, in CO-OP IV, they use
the Support Vector Machine (SVM) algorithm. The performance of the CO-OP variations is
plotted as a function of the number of VON requests in the simulation.

Figure 6 shows the BBR for the NSFNET topology. The KLRVM algorithm produced
BBR values 20% higher than those produced by the CO-OP IV for 3× 103 VONs. The
KLRVM algorithm produced BBR values 50% greater than those produced by the CO-OP
III for 6× 103 VONs. The CO-OP I produced BBR values two orders of magnitude greater
than those produced by the CO-OP III for 7× 103 VONs. The KLRVM algorithm produced
BBR values 40% greater than those produced by both CO-OP III and CO-OP IV for 104

VONs. These BBR results obtained by employing the CO-OP framework demonstrate its
outstanding performance under heavy traffic load.

Figure 7 shows the BBR results for the CHNNET topology. The KLRVM algorithm
produced BBR values 15% greater than those produced by CO-OP II for 3× 103 VONs. The
CO-OP III produced BBR values 18% lower than those produced by the KLRVM algorithm
for 7× 103 VONs. The CO-OP IV produced BBR values 28% lower than those produced
by the KLRVM algorithm for 104 VONs. The BBR values results differ depending on the
topology due to the connectivity degree. Lower BBR improvements were achieved since
the CHNNET topology has a higher node connectivity degree than the NSFNET topology.
CO-OP III and CO-OP IV consistently produced lower BBR than KLRVM and stayed lower
than 30% across all simulations and lower than 50% across all CO-OP versions. Moreover,
values of BBR greater than 20% for heavily loaded systems in order to evaluate the proposal

https://bit.ly/2OKwwWI
https://bit.ly/2OKwwWI
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under extreme conditions. Under non-extreme conditions, BBR values were below 20%,
which are acceptable values.

Figure 6. BBR for the NSFNET topology.

Figure 7. BBR results for the CHNNET topology.

Figure 8 shows the acceptance ratio for the NSFNET topology. The KLRVM algorithm
produced acceptance ratio values 5% lower than those produced by the CO-OP III for
4× 103 VONs. The CO-OP IV produced acceptance ratio values 28% greater than those
produced by the KLRVM algorithm for 7× 103 VONs. The KLRVM algorithm produced
acceptance values 15 lower than those produced by the CO-OP I for 7× 103 VONs. The
CO-OP III produced acceptance ratio values 30% larger than those produced by the KL-
RVM algorithm considering 104 VONs. In general, the CO-OP III produced the highest
acceptance values compared to the other algorithms. The acceptance ratio values show that
a higher number of VONs can be established when CO-OP is employed. CO-OP allows
the acceptance of VON with large bandwidth demands than do KLRVM. Moreover, the
fragmentation ratio also decreased when the CO-OP framework was used.

Figure 8. Acceptance ratio for the NSFNET topology.
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Figure 9 shows the acceptance ratio for the CHNNET topology. In most of the sce-
narios, the acceptance ratio values obtained by CO-OP were higher than those produced
by the KLRVM algorithm. However, the values for this topology were very similar. The
KLRVM algorithm produced acceptance ratio values 4% lower than those produced by the
CO-OP III with 2× 103 VONs. The acceptance ratio values produced by the CO-OP III and
CO-OP IV were 5% greater than those produced by the KLRVM algorithm with 104 VONs.
The acceptance ratio values did not differ much as a function of the learning algorithm
considered. Comparing with the results for the NSF topology, it is possible to see that,
when the topology has a high node degree, more requests are accepted, resulting in greater
acceptance of VONs, regardless of the type of learning algorithm that the CO-OP used.

Figure 9. Acceptance ratio for the CHNNET topology.

Figure 10 shows the mean crosstalk values for the NSFNET topology. The crosstalk
values produced by CO-OP IV and CO-OP III were similar and higher than those produced
by the other CO-OP variations for most loads. CO-OP III produced crosstalk values 16%
lower than those produced by the KLRVM algorithm for 4× 103 VONs. CO-OP IV pro-
duced crosstalk values 13% lower than those produced by the CO-OP II for 5× 103 VONs.
The KLRVM algorithm produced crosstalk values 31% higher than those produced by the
CO-OP IV for 104 VONs. The crosstalk values demonstrate the efficiency of employing the
CO-OP framework. In most simulations, the crosstalk values were lower than the ones
produced by the KLRVM algorithm. Lower crosstalk values indicate that the quality of
transmission is higher when CO-OP is employed. The mean crosstalk values have the
same behavior as the BBR, showing a correlation between blocking and crosstalk interfer-
ence. Crosstalk values are acceptable according to the interference tolerance reported in
Reference [32], used in this paper.

Figure 10. Mean crosstalk for the NSFNET topology.
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Figure 11 shows the mean crosstalk results for the CHNNET topology. The crosstalk
values produced by CO-OP IV was the lowest for most of the loads. The KLRVM algorithm
produced crosstalk values 8% higher than those produced by the CO-OP IV for 3× 103

VONs. The CO-OP I produced crosstalk values 15% higher than those produced by CO-OP
II for 6× 103 VONs. The KLRVM algorithm produced crosstalk values 21% higher than
those produced by CO-OP IV for 104 VONs. The crosstalk values were significantly lower
when compared to those produced when employing the KLRVM algorithm for the two
topologies, meaning that the CO-OP framework creates effective plans which result in
allocations with better QoT.

Figure 11. Mean crosstalk for the CHNNET topology.

7. Conclusions

In this paper, we introduced the CO-OP framework, to improve the configuration of
VONs. The framework is based on MAPE functions using learning techniques to classify
statistics from the network to identify potential problems. If a problem is identified, the
CO-OP creates a plan using a Q-Learning algorithm, and then a centralized control plane
is responsible for executing the plan.

The results show that the use of CO-OP can decrease BBR up to 30% and VON
acceptance by 50%, and both impact the QoS provided. The use of CO-OP can also reduce
50% of the crosstalk produced, resulting in better QoT compared to that given by traditional
VON configuration algorithms.

In the future, we intend to develop a testbed to evaluate the proposed framework. To
set a testbed, we need to obtain real-world datasets of EON-SDM networks. We then need
to identify a set of features before the experimental operation of the network. The selected
features can differ from the ones presented in this paper since the most significant features
depend on the specific dataset used. To select features, we can employ feature selection
algorithms and also use specialist knowledge. After that, specific supervised learning
algorithms need to be selected for the monitor and analyze functions in the training process.
To select them, we can consider different metrics, such as classification accuracy, logarithmic
loss, F1 score, and mean square error, depending on the learning algorithms employed. In
this paper, we used only the classification accuracy to evaluate the training process.

After training the supervised models for the monitor and analyze functions, we should
determine a continuous process to update the models to improve network performance.
The updates can follow two criteria: the network metrics or data volume. We need to
continuously capture data from the network operation and re-train the model to make
the update. As an optimization, we can compress messages sent, as well as received, to
decrease communication costs.

CO-OP will need to be implemented and integrated with a central control plane in
real operational networks. In this paper, we consider the control plane, management plane,
and knowledge plane. Other metrics can also be considered, such as energy efficiency,
energy consumption, fragmentation ratio, and cost, allowing a thorough comparison with
traditional management schemes to evaluate CO-OP performance.
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In the testbed, dynamically adapting the number of interactions with the control plane
can be a challenging task. Moreover, communication security can also be challenging since
the data collected from the virtual and physical networks can interfere with the network
performance. Moreover, the testbed can employ different Quantum Key Distribution (QKD)
schemes to increase security in inter-plane communications.

Acknowledgments: This work was supported by CAPES, CNPq, and grant 15/24494-8, FAPESP,
BRAZIL.
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