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Highly-Efficient and Adaptive Network Monitoring:
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Qitao Zheng, Shaofei Tang, Bofan Chen, and Zuqing Zhu,Senior Member, IEEE

Abstract—The rapid development of software-defined network-
ing (SDN) has promoted the idea of programmable data plane
(PDP), which opens up unprecedented opportunities for realizing
powerful and timely network monitoring. This work explores
the advantages of PDP to merge two famous techniques (i.e.,
the segment routing (SR) and in-band network telemetry (INT))
seamlessly for highly-efficient and adaptive network monitor-
ing. Specifically, by leveraging the protocol-oblivious forwarding
(POF), we propose SR-INT, which time-multiplexes the header
fields in each packet for INT and SR, and keeps packet length
constant end-to-end even though both INT and SR are used.
Hence, our proposal can enjoy the benefits of INT and SR, while
avoiding the accumulated overheads due to simultaneous usage.
We design the packet format of SR-INT, and lay out its packet
processing procedure to guarantee that the configuration ofSR-
INT can be adjusted dynamically to adapt to the requirementsof
network monitoring. We implement and experimentally demon-
strate SR-INT in a POF-based SDN environment. Our results
show that SR-INT not only reduces the bandwidth overheads
of using SR and INT simultaneously but also simplifies the
operations in software-based POF switches.

Index Terms—Segment routing (SR), In-band network teleme-
try (INT), Software-defined networking (SDN), Protocol-oblivious
forwarding (POF), Network monitoring and troubleshooting.

I. I NTRODUCTION

NOWADAYS, the Internet is being reshaped consistently
by technical innovations, to adapt to the skyrocketing of

new network services and the emerging of unique and stringent
quality-of-service (QoS) demands [1–3]. For instance, the
global deployments of datacenters have motivated operators to
upgrade their transport networks from fixed-grid wavelength-
division multiplexing (WDM) to flexible-grid elastic optical
networking (EON) [4–6]. While to improve the flexibility
and efficiency of network control and management (NC&M),
software-defined networking (SDN) [7–10], network function
virtualization (NFV) [11–14], and virtual network slicing[15–
17] have been widely considered in production networks.
Although these new network infrastructures and technologies
are making the Internet more efficient, programmable and
application-aware, they also increase the complexity of NC&M
and cause network elements more prone to faults [18, 19]. This
has stimulated unprecedented demands for realtime, adaptive
and efficient network monitoring techniques [20].

Nevertheless, traditional polling-based network monitoring
techniques (e.g., SNMP [21]) can hardly satisfy the afore-
mentioned demands. This is because the NC&M system pulls
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status data from network elements periodically, which is
neither real-time nor flow-oriented. Recently, with momentum
gained from the programmable data plane (PDP) [22, 23],
network monitoring is becoming more powerful, timely and
efficient. Specifically, PDP enables an operator to customize
the data plane logic of its switches,i.e., defining new packet
fields and programming packet processing pipelines.

According to the protocol independent forwarding (PIF)
project of open network foundation (ONF) [24], PDP can
be realized with two approaches, which are the program-
ming protocol-independent packet processors (P4) [22] and
protocol-oblivious forwarding (POF) [23]. P4 provides the
guidance on how to write and compile packet processing
programs, and with the P4 language, one can program a PDP
switch in two stages,i.e., configuration and runtime [24]. POF
takes a different approach to program a PDP switch in runtime
by installing protocol-oblivious flow tables and composing
packet processing pipelines with them, and to realize this,it
defines the underlying primitive instruction set [25].

In-band network telemetry (INT) [26] is one of the most
famous and successful PDP-enabled network monitoring tech-
niques. Specifically, based on the INT command that has been
precoded in the header of an application packet, each PDP
switch on the packet’s routing path collects its own status
when processing the packet, encodes the status as specific
INT fields, and inserts them in the header of the packet.
Therefore, INT can monitor the end-to-end performance of
a flow by collecting the per-packet/per-hop information of it.
This successfully overcomes the delay and consistency issues
of polling-based network monitoring, visualizes a networkin
a real-time and fine-grained way, and eases the provisioningof
applications with stringent quality-of-service (QoS) demands
(e.g., video streaming [27–29]). Hence, people have designed
and implemented various INT systems based on P4 [30–32]
and POF [33, 34], to explore the technique’s benefits.

However, INT also has its drawbacks,e.g., 1) it can de-
grade the throughput of packet processing in a PDP switch
(especially the software-based one) because of the need of
invoking AddField actions frequently to insert INT fields,
and 2) it can generate excessively long packets due to the
repeated insertions of INT fields. These drawbacks restrict
the usages of INT, especially for the second one. This is
because other network innovations may also add new header
fields in packets. For instance, the well-known segment routing
(SR) [35] lets the source of a packet flow choose its routing
path, represents the path with an ordered list of segments, and
encodes them as a stack of labels in the header of each packet
that belongs to the flow. Then, each switch along the path only
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needs to forward the packets according to the encoded labels.
Therefore, SR simplifies the message exchange between the
control and data planes, and realizes end-to-end policy without
creating any per-flow state in the network [35]. This makes it
promising to apply SR to traffic engineering, failure protection,
etc. Nevertheless, as INT and SR both need to encode a stack
of header fields in a packet, they might not be compatible with
each other due to the upper limit on packet length (i.e., the
maximum transmission unit (MTU)).

To the best of our knowledge, the aforementioned dilemma
has not been addressed in the literature yet. Hence, in this
work, we study how to mitigate the overheads of INT and
SR, and combine them seamlessly to realize highly-efficient
and adaptive network monitoring. We first design the label
field of SR to make its length equal to that of a bundle of
INT fields, and then propose the procedure to replace an SR
label field with a bundle of INT fields at the last switch
of each path segment. To this end, our proposed system,
namely, SR-INT, time-multiplexes the header fields in each
packet for INT and SR, and keeps the packet’s length constant
end-to-end even though both INT and SR are used. This
enables our proposal to explore the benefits of INT and SR,
while avoiding the accumulated overheads due to simultaneous
usage. Moreover, to ensure the adaptivity of SR-INT, we also
incorporate implementations in the control plane such thatthe
configuration of path segments can be adjusted dynamically
to adapt to the requirements of network monitoring.

We implement SR-INT in a POF-based SDN environment.
Specifically, we expand the Open vSwitch (OVS) platform [36]
to realize the data plane functionalities of SR-INT, while its
control plane is programmed based on another open-source
platform, i.e., ONOS [37]. To achieve closed-loop network
automation, we also realize a home-made INT collection and
data analytics module that can capture, parse and analyze the
INT data carried by packets with a high throughput, and then
provide timely and accurate suggestions to the control plane
for network readjustments. The SR-INT system is verified
and evaluated with the experiments in a real network testbed.
Experimental results demonstrate that SR-INT reduces not
only the overheads of using SR and INT simultaneously but
also the operation complexity in OVS, and it achieves highly-
efficient and adaptive network monitoring for fault diagnosis
and can recover the network from soft-failures quickly.

The rest of the paper is organized as follows. Section
II introduces the background of POF and conducts a brief
literature survey. We present the design of SR-INT in Section
III, and the details of system implementation are discussed
in Section IV. The experimental demonstrations are shown in
Section V. Finally, Section VI summarizes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly describe the operation prin-
ciple of POF to provide a context for our design of SR-INT,
and then conduct a literature survey on related researches.

A. Review on Protocol-Oblivious Forwarding (POF)

POF presumes a typical SDN architecture that is similar to
the one considered for OpenFlow,i.e., a centralized control

plane manages the behaviors of the switches in the data plane
by installing flow tables in them [23, 38]. Meanwhile, different
from the protocol-dependent scheme used in OpenFlow, POF
refers to packet fields in a more generic manner, which makes
its field matching and packet processing protocol-independent.
More specifically, POF describes a packet field as a tuple
<offset, length>, whereoffset tells the bit offset of the field
to denote its location in a packet, andlength represents the
length of the field in bits [38]. Then, each entry in a flow
table refers to its match field(s) in the format of<offset,
length>, and specifies the corresponding match action(s) with
the instructions defined in the POF instruction set (POF-FIS)
[25]. Here, the instructions/actions in POF-FIS also operate
based on<offset, length>, and thus a POF-enabled PDP
switch can manipulate any segment of bits in a packet freely.

This makes the specification of POF more flexible and
compact than that of OpenFlow. For example, with OpenFlow
v1.5 [39], we need to first determine the protocol in use and
then select the right action (e.g., PushMPLSandPushVLAN) to
add a field in one packet. This is much more simplified in POF,
because POF-FIS only defines a genericAddFieldaction, and
by using the action with a tuple<offset, length>, we can insert
any type of fields at any location in a packet. In a POF-enabled
PDP switch, the procedures of packet processing are defined
as pipelines, each of which consists of one or multiple stages
of flow tables [9]. To steer packets through each pipeline,
POF-FIS defines theGotoTableaction. Specifically, after being
processed by one flow table, a packet can be forwarded
to the next one defined in its packet processing pipeline
with GotoTable. Meanwhile, POF allows each PDP switch to
allocate a metadata memory to buffer the information about the
switch itself or/and packets [40], for packet processing. POF-
FIS defines the instructions to read/write data in the metadata
memory, which are also based on<offset, length>.

B. Related Work

The technical specifications of INT were released in [26]
to explain how to leverage this PDP-enable technique for
real-time and flow-oriented network monitoring. Based on P4,
the studies in [31, 41] demonstrated INT in software-based
Mininet environments. Kimet al. [31] tried to debug a network
by using INT to collect HTTP latency instantaneously. The
authors of [41] applied data analytics on the telemetry data
collected by INT to realize knowledge-defined networking.
Meanwhile, a few hardware-based INT implementations with
P4 can be seen in [30, 42]. With high-performance field
programmable gate array (FPGA) [30] or application-specific
integrated circuit (ASIC) [42], INT has been demonstrated to
collect per-packet information at100 Gbps line-rate. How-
ever, all the P4-based INT implementations mentioned above
assumed that INT fields would be inserted on per-packet basis,
and did not try to reduce the overheads of INT.

In [32], a P4-based selective INT approach was proposed to
sample packets for inserting INT fields, and thus the overheads
of INT could be reduced significantly. A similar idea was
considered in [20], and moreover, the authors also expanded
the applications of INT to visualize multilayer packet-over-
optical networks in realtime. Note that, as P4-based PDP
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switches are programmed in two stages (i.e., configuration and
runtime) [24], they can hardly readjust their packet processing
pipelines in runtime. This makes it difficult for P4-based INT
approaches to change the locations to collect telemetry data
and the types of telemetry data to collect in runtime. On the
other hand, by leveraging the flexibility of POF, INT can be
realized with better runtime programmability. For instance, we
designed and implemented a runtime-programmable selective
INT scheme (Sel-INT) based on POF in [34]. Although the
studies in [20, 32, 34] proposed various approaches to reduce
the overheads of INT, they did not address how to mitigate
the overheads when INT is used simultaneously with other
techniques, which can also insert new fields in packets.

Generally speaking, SR utilizes the idea of source routing
that let a source specify how its packets will be routed
through a network [35]. The rising of SDN and PDP has
promoted the developments and deployments of SR [43]. The
SR implementations based on OpenFlow have been discussed
in [44, 45], while SR has also been realized with POF [9, 46].
However, the aforementioned studies only considered SR, but
did not try to merge its usage with that of INT. In [47, 48],
the authors proposed to combine SR and INT to realize path-
controllable network monitoring. Nevertheless, they simply
included the header fields for both SR and INT in packets,
and did not pay any attention to the accumulated overheads.
Note that, SR and INT can benefit each other mutually and
make network monitoring more effective. This is because SR
can manage the configuration of INT data collection, while
INT can assist SR to optimize its setting according to network
status. This actually motivates us to study how to combine
them seamlessly with the minimized overheads, for realizing
highly-efficient and adaptive network monitoring.

We started the project on software-based POF switches
in [23] by leveraging the software architecture in [38], and
later on used the data plane development kit (DPDK) [49] to
accelerate the packet processing and achieved a data-rate of 10
Gbps for512-byte packets [50]. Next, in [34], we considered
the OVS platform [36], added the support of POF in OVS
to obtain a software-based POF switch (i.e., OVS-POF), and
implemented Sel-INT in OVS-POF. The experimental results
in [34] indicated that OVS-POF can reach10 Gbps line-rate
when the packet size was set as256 bytes. Hence, considering
the performance of OVS-POF and the ecosystem of OVS for
software switch development, we, in this work, further expand
the functionalities of OVS-POF and realize SR-INT on it.

III. D ESIGN AND OPERATION PROCEDURE OFSR-INT

In this section, we introduce the design of the packet format
for SR-INT and its operation procedure.

A. Packet Format Design

By leveraging the protocol-independent nature of POF, we
design the packet format for SR-INT, which inserts an SR-INT
header in between the Ethernet and IP headers. Fig. 1 gives an
illustrative example on how the fields related to SR and INT
are organized in an SR-INT header. Specifically, at the last
hop of each path segment, SR-INT replaces aSegmentfield

Eth SR-INT Header IP DATA

1 B

1 B

Device ID Output Port Hop Latency Bandwidth

2 B

4 B1 B 1 B 4 B 4 B

INT Metadata 1MapInfoLength Segment 2 … Segment n

LabelTTL

1 B 3 B

INT SR

SR TTL

1 B

Fig. 1. Our design of the packet format for SR-INT.

with an INT Metadatafield. Hence, theSegmentfields in Fig.
1 start fromSegment2, becauseSegment1 has already been
replaced withINT Metadata1. Note that, the insertion of the
SR-INT header will not affect normal checksum operations on
a packet for the following reasons. First of all, as the SR-INT
header is placed before an IP header, its insertion will not
change the content covered by the checksum fields in IP and
TCP/UDP headers. Secondly, for the frame check sequence
(FCS) field in Ethernet frame, it should be recalculated and
updated after an SR-INT header having been inserted. This
is accomplished automatically by the standard Ethernet frame
processing procedure implemented in network interface cards
(NICs), and thus the FCS field in Ethernet frame will be
maintained correctly even with the SR-INT header.

To distinguish a packet with the SR-INT header from regular
ones, we will let a POF switch modify itsEtherTypefield to
0x0808 after inserting the SR-INT header. The descriptions of
the fields in the SR-INT header are as follows.

• SR TTL: This one-byte field records the number of
Segmentfields in the SR-INT header. When a packet has
finished the current path segment, we will replace the
correspondingSegmentfield with anINT Metadatafield,
and decreaseSR TTLby 1. If SR TTLequals0, the packet
reaches its destination switch. Hence, the switch will first
duplicate the packet to send to the data analyzer for INT
collection and data analytics, then remove the SR-INT
header in it, and forward the packet to its end host.

• Length: This is a one-byte field, and it is used to indicate
the number ofINT Metadatafields in the SR-INT header.
Note that, as SR-INT time-multiplexes the header fields
in each packet for INT and SR, it will replace aSegment
field with an INT Metadatafield, when a packet is about
to exit the path segment that is represented by theSegment
field. Hence, each POF switch needs an indicator to locate
the first Segmentfield in an SR-INT header, which is
exactly theLengthfield. Specifically, we initializeLength
as0 at the source of an SR-INT packet, and increase its
value by1 every time when the packet finishes a segment
on its routing path. Then, the offset of the firstSegment
field in a packet can be calculated as(17+4 ·Length) in
bytes, where14 bytes are for the Ethernet header and3
bytes are for theSR TTL, LengthandMapInfo fields.

• MapInfo: This field uses a one-byte bitmap to indicate
the types of INT data to collect at the last switch of each
segment,i.e., an operator has the flexibility to customize
its network monitoring scheme with this field. Specifi-
cally, we use each of the four lowest bits inMapInfo
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to tell whether or not INT should collect the data about
Device ID, Output Port, Hop Latency, and Bandwidth,
respectively, while the remaining bits are unused.

• INT Metadata: This field uses4 bytes to include the INT
data aboutDevice ID, Output Port, Hop Latency, and
Bandwidth. Here,Device IDtells the ID of a switch, and
Output Port stores the output port of the packet on the
switch. Each of these two subfields occupies4 bits, and
they share a byte inINT Metadata. Hop Latencyuses
one byte to record the processing time (inµs) of the
packet in the switch, andBandwidthis a two-byte subfield
that stores the bandwidth usage (in Mbps) of the packet’s
output port. Note that, an SR-INT header can include
multiple INT Metadatafields, each of which denotes the
status of the last switch of a segment.

• Segment: This field has the same length as that ofINT
Metadata, and represents the information of a segment.
It consists of two subfields,i.e., TTL and Label. TTL
uses one byte to identify the position of the packet in
the current segment. Specifically, we initializeTTL as
the hop-count of a segment, and reduce it by one after
each hop. WhenTTL becomes1, the packet reaches the
last switch of a segment, and the switch will replace the
correspondingSegmentfield with anINT Metadatafield.
On the other hand,Label represents a segment on the
packet’s routing path (i.e., each switch on the segment
matches to theLabelto get the output port for the packet).

Note that, we set the length of anINT Metadata field
according to the specifications of INT in [26], and as the
Segmentand INT Metadatafields should be exchangeable
in our SR-INT, they have to use the same length (4 bytes).
Because the SR-INT header increases the length of a packet,
SR-INT does have scalability issues. However, the same issues
also exist in the traditional schemes of INT and SR, while SR-
INT actually addresses them better by integrating INT and SR
with less overheads. Meanwhile, for a flow, if the original
packets without SR-INT headers are relatively long, we can
always divide its path into long segments to reduce the number
of INT Metadata/Segmentfields in each SR-INT header.

With SR-INT, the control plane first partitions the routing
path of a flow into several segments and generates aMapInfo
field according to the monitoring requirement of the flow, then
encodesLabel fields to represent the segments, and finally
installs the corresponding flow tables in all the switches on
the flow’s routing path. Hence, SR-INT is realized in the
data plane for monitoring the flow in realtime. Here, SR
and INT actually benefit each other mutually to make the
network monitoring more effective and adaptive. Specifically,
the control plane can leverage SR to manage the configuration
of INT data collection adaptively (e.g., monitoring the most
important locations and most relevant INT data for the flow),
and in the meantime, the status data collected by INT can in
turn assist the control plane to optimize the settings of SR for
transmitting the flow in a dynamic network environment.

B. Operation Procedure

The operation procedure in a POF switch to realize SR-
INT is shown in Algorithm 1. After receiving a packet, the

switch checks to see whether there are flow rules installed for
it. If no, the switch will send aPacketInmessage to the POF
controller to report the packet, and the controller determines
the flow rules for the packet and sets up the corresponding
flow tables for it in the related switches by sendingFlowMod
messages to them (Lines1-5). Then, if the packet matches to
the flow rules for SR-INT, we first check itsEtherTypefield
to see whether it equals0x0808. If yes, an SR-INT header has
already been inserted in the packet and we can proceed to the
subsequent procedure. Otherwise, this switch is the sourceof
the packet, and we need to modify itsEtherTypeto 0x0808
and insert an SR-INT header in it (Lines7-10).

Algorithm 1: SR-INT Procedure in POF Switch

1 receive a packetPkt;
2 if there is no flow rule forPkt then
3 sendPacketInmessage to controller to reportPkt;
4 set up flow tables forPkt based on theFlowMod

message from controller;
5 end
6 if Pkt matches to SR-INT flow rulesthen
7 if Pkt.EtherType6= 0x0808 then
8 SetField(Pkt.EtherType, 0x0808);
9 insert an SR-INT header inPkt;

10 end
11 locate the firstSegmentfield in Pkt with Length;
12 determine the output port ofPkt based onLabel

in the Segmentfield;
13 reduceTTL in the Segmentfield by 1;
14 if TTL equals1 then
15 collect INT data according toMapInfo and

encode the data as anINT Metadatafield;
16 replace the firstSegmentfield with the INT

Metadatafield;
17 reduceSR TTLby 1 and increaseLengthby 1;
18 end
19 if SR TTL equals0 then
20 duplicatePkt to send to the INT collection

and data analytics module;
21 remove the SR-INT header inPkt;
22 end
23 forward Pkt to its output port;
24 end

Lines 11-12 leverage theLengthfield in the packet’s SR-
INT header to locate the firstSegmentfield in it, and then
match to theLabel in the Segmentfield to determine the
output port of the packet. This is because according to the
principle of SR, the firstSegmentfield always represents the
forwarding scheme of the packet on the current segment. Next,
we decrease theTTL in the Segmentfield by 1 to denote that
one more hop of the current segment has been experienced
(Line 13). If the TTL reaches1 (i.e., the current segment is
finished), we useLines14-18 to collect INT data according to
theMapInfofield, encode the data as anINT Metadatafield to
replace the firstSegmentfield, and update the values of theSR
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TTL andLengthfields accordingly. Then, we checkSR TTLin
Line19. If it equals0, the packet reaches its destination switch,
and thus we invoke the operations for INT data collection and
removing the SR-INT header (Lines 20-21). Finally, inLine
23, we forward the packet to its desired output port.

POF Switch

POF Controller

Data Analyzer

Segment

INT Metadata

Packet

Fig. 2. Architecture of our SR-INT system based on POF.

Fig. 2 shows the system architecture of our proposal, and
provides an illustrative example on the operation procedure
defined in Algorithm 1. Note that, withAlgorithm 1, each
packet only experiences oneAddField operation and one
DelField operation in its source and destination switches for
inserting and removing its SR-INT header, respectively, while
the remaining SR-INT tasks can all be realized withSet-
Field andModifyField operations. This will reduce operation
complexity in the switches (especially for the software-based
ones), becauseSetField and ModifyField normally involve
fewer memory operations and thus can be processed much
faster thanAddFieldandDelField in switches. We will verify
this with experimental results in Section V. Moreover,Algo-
rithm 1 makes the length of each SR-INT packet stay constant
along its routing path in the POF network. This will not
only reduce the bandwidth overheads used for supporting SR
and INT simultaneously, but also avoid the hassle of tracking
the throughput of each flow along its path (e.g., for traffic
engineering or congestion avoidance).

C. Analysis on Feasibility and Adaptability

We hope to point out that even though our SR-INT inte-
grates SR and INT to reduce the overall overheads, its basic
operations for SR and INT are the same as those in their
traditional schemes, respectively. Therefore, SR-INT inherits
the feasibility and adaptability of the traditional SR and INT
schemes. For instance, as SR can adapt to different network
scenarios well (e.g., the network topology changes, the path
length increases, and the segment size and its number varies)
in principle [43] and its feasibility in various topologieshas
been verified in [51–54], SR-INT should have the similar
feasibility and adaptability. This is because same as SR, SR-
INT encodes each path segment as a label in theSegment
field, and thus it can always encode a suitable number ofINT
Metadata/Segmentfields in each SR-INT header by letting
the control plane divide each path into segments properly
according to the actual network scenario.

IV. SYSTEM IMPLEMENTATION

In this section, we will explain how to implement the
proposed SR-INT system based on POF.

A. System Architecture

Fig. 3 shows the architecture of the system to implement
our proposed SR-INT, which involves three major network
elements,i.e., the POF controller based on ONOS, the POF
switch based on OVS (OVS-POF), and the home-made data
analyzer. The POF controller takes care of all the control plane
operations for SR-INT. We modify theProvider&Protocol
module in ONOS to extend the south-bound protocol stack
there and add in the support of POF [55]. Therefore, POF-
based control messages (e.g., FlowModandTableMod), which
encode the tuples of<offset, length> and POF-FIS, can be
conveyed between the control and data planes.

POF Controller (based on ONOS)

POF Protocol Stack

NET-M

Host 

Management

Switch 

Management

Link 

Status

TED

NAM

SR-H EX-H socket

Status 

Database

socket

INT Data 

Parser

Data AnalyzerPOF Protocol

SR-INT Packets
Packets PacketsDPDK

Port

DPDK

Port

Data-Path

Pipeline with POF-FIS

act1

… …

SR-INT OperationGet Port Output

OVS-POF

<offset, length>

Metadata Memory

Action

Data 

Analytics

Exception Reports

Match

Network Operator

Fig. 3. Architecture of SR-INT system.

The network management module (NET-M) controls the
network elements in the data plane and maintains their s-
tatus. Specifically, it leverages the host management, switch
management and link status submodules to manage the host-
s, switches and links, respectively. The network abstraction
module (NAM) takes the information about network status
from the NET-M to obtain a global view about the data plane
and store it in the traffic engineering database (TED). The
SR handler (SR-H) processes the tasks related to SR (e.g.,
path computation, creation of segments, and label assignment),
while the exception handler (EX-H) is in charge of recovering
the network from exceptions (e.g., invoking path switching to
bypass congested link(s)). The socket interface is implemented
to receive the reports on exceptions from data analyzers.

As for the actual SR-INT scheme of each flow (i.e., how
to divide the flow’s routing path into segments, and how
to collect INT data for the segments), the POF controller
determines it according to the policy provided by the network
operator (as shown in Fig. 3). Specifically, to get the policy,
the network operator leverages an SR-INT planner, which
runs an optimization algorithm to divide each flow’s path into
segments properly and assign a suitable INT data collection
scheme to each segment according to the actual network
scenario. Note that, as the focus of this paper is the design and
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implementation of the SR-INT technique, we will consider the
SR-INT planning algorithm in our future work.

Both the OVS-POF and data analyzer are data plane el-
ements. The OVS-POF leverages DPDK [49] to accelerate
packet processing, and it uses pipelines built with flow tables
that are based on POF-FIS to realize the data path for SR-
INT. Meanwhile, the SR-INT operation matches theLabel in
the firstSegmentfield in the SR-INT header to determine the
output port of each SR-INT packet, and accesses the metadata
memory to obtain the required INT data. We will discuss the
detailed implementations in OVS-POF in the next subsection.
When an SR-INT packet is about the leave the POF network,
the egress switch will mirror it to a data analyzer.

Note that, we assume that there can be multiple distributed
data analyzers in the network for INT collection and data
analytics. The data analyzer is home-made, which is obtained
by extending the one in [34]. Specifically, the improvements
are as follows. Firstly, we upgrade the INT data parser to
adapt to the packet format defined in Section III-A. Secondly,
we re-implement the status database based on an open-source
time series database platform (i.e., InfluxData [56]), to ensure
realtime accessibility and high-throughput data indexingand
storage. Finally, we design and implement a data analytics
module in it for network monitoring, which keeps analyzing
the INT data in the status database during operation. If it
detects a network exception, it will generate an exception
report to send to the controller through the socket interface.

B. Implementation of SR-INT in OVS-POF

We extend the OVS-POF in [34] to get a high-performance
software-based POF switch that supports SR-INT. Specifically,
we first leverage the flexibility of POF-FIS to expand the
genericSetFieldand ModifyField actions for SR-INT-related
actions as follows, and then design the flow table in Fig. 4 to
ensure that SR-INT can be executed on OVS-POF effectively.

• Modify_srint_Field<offset, length>: We design this ac-
tion to modify theSR TTLand Length fields andTTL
subfields in an SR-INT header at each hop. As shown in
Fig. 4, Modify_srint_Fieldfirst extracts theSR TTLfield
from a packet and checks its value. If the value equals0,
it means that this is the last hop of the packet, and thus
its SR-INT header needs to be deleted with aDelField
action. Otherwise, the action extracts theTTL subfield in
the first Segmentfield, with the tuple<17 + 4 · Length,
1>. Then, if theTTL subfield equals1, we know that
this is the last hop in the current segment. Hence, we
will first use Modify_srint_Field to update theSR TTL
andLengthfields and then callSet_srint_Fieldto replace
the first Segmentfield with an INT Metadatafield. On
the other hand, If theTTL subfield does not equal1, we
only useModify_srint_Fieldto decrease its value by1.

• Set_srint_Field<offset, length>: This action is designed
to replace aSegmentfield with an INT Metadatafield
and accomplish SR-INT on a packet. It first extracts the
TTL subfield in the firstSegmentfield. Then, if theTTL
subfield equals1, Set_srint_Fieldreplaces the firstSeg-
mentfield with an INT Metadatafield. Specifically, the

action extracts theMapInfofield from the SR-INT header,
composes anINT Metadataaccordingly, and writes the
INT Metadatato the location of the firstSegment.

Note that, other than those mentioned above, we use the
genericAddField and DelField actions in POF-FIS to insert
and delete an SR-INT header in one packet, respectively,
for realizing the procedure inAlgorithm 1. Specifically, the
SR-INT header can be inserted by callingAddField<offset,
length, value>, whereoffset points to its start location (i.e.,
right after the Ethernet header),lengthdenotes its length, and
value represents its content with the format in Fig. 1, while
callingDelField<offset, length> removes the SR-INT header.

OVS-POF

Fig. 4. Flow table on OVS-POF for SR-INT.

C. Adaptive SR-INT

In addition to extending OVS-POF to support SR-INT, we
also implement the whole network system in Fig. 3. The
network system makes SR and INT benefit each other mutually
to achieve highly-efficient and adaptive network monitoring.

SW1

SW4

SW3SW2

SW1

SW4

SW3SW2

Fig. 5. Fast rerouting based on network status with SR-INT.

1) Fast Rerouting based on Network Status:As shown in
Fig. 3, the INT data regarding how a packet is processed in the
POF-enabled network is carried out by the packet itself and
gets parsed and analyzed by the data analyzer in realtime.
If the data analyzer finds any network exceptions, it will
report them to the POF controller, which will reconfigure
related data plane elements to restore the network from the
exceptions. This actually makes the detection of and response
to anomalies, especially the soft failures [19], much more
timely than that with the conventional polling-based approach-
es. Meanwhile, with SR, the POF controller can realize fast
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SW1 SW2 SW3 SW4

SW1 SW2 SW3 SW4

Fig. 6. Self-adaptive network monitoring with SR-INT.

rerouting by only updating the flow tables in the source switch
to modify theSegmentfield(s) in packets’ SR-INT headers.

For example, Fig. 5 provides an intuitive example of the
fast rerouting achieved by SR-INT. Here, the original first path
segment of the flow isSW1→SW2→SW3, which is represented
by the Label 1 in the firstSegmentfield in packets’ SR-INT
headers. Hence, afterSW3, the firstSegmentfield is replaced
by an INT Metadatafield, which records how a packet gets
processed inSW3. Then, at a moment, an exception starts
to happen onSW3and makes its packet processing latency
change abnormally (e.g., congestion). This phenomenon will
be quickly detected by our SR-INT-based network monitoring,
and then the POF controller invokes a fast rerouting by
updating the related flow tables inSW1 to change the label
in the first Segmentfield to Label 2. Therefore, the first path
segment gets updated toSW1→SW2→SW4instantly to bypass
the exception, and closed-loop network monitoring and failure
recovery can be realized efficiently.

2) Self-adaptive Network Monitoring:The example in Fig.
5 might raise the concern that our SR-INT-based network
monitoring only has limited coverage, since the INT data
collection is only conducted on the last switch of each path
segment. We hope to point out that this is actually not an
issue, because the POF controller can leverage SR-INT to
change the configuration of INT data collection adaptively.
More specifically, the controller can check the reports froma
data analyzer and find the key switches and most relevant INT
data to monitor for each flow.

Fig. 6 explains how to realize self-adaptive network moni-
toring with SR-INT. Initially, the routing path of a flow is par-
titioned into two segments,i.e., SW1→SW2→SW3and SW4,
and thus SR-INT collects INT data onSW3andSW4. However,
during operation,SW2 has network congestion, which will
cause slight packet losses on the flow. The exception can be
quickly detected by our SR-INT system, because the flow’s
throughput measured onSW3 is less than the pre-known
value, while the INT data aboutSW3indicates that it operates
normally and thus is not where the exception happens. Hence,
the POF controller decides to change the SR scheme of the
flow to SW1→SW2 and SW3→SW4, and to monitorSW2
instead to find the root-cause of the anomaly. Again, this can
be done by letting the POF controller update the related flow
tables in the source switch (i.e., SW1) to modify theSegment
fields in packets’ SR-INT headers. Therefore, self-adaptive
network monitoring can be realized to check the status of
the switches along a flow’s routing path selectively as well
as reduce the bandwidth overheads of SR-INT effectively.

V. EXPERIMENTAL DEMONSTRATIONS

In this section, we discuss the experiments to demonstrate
and evaluate our proposed SR-INT system.

A. Feature Validation

We first build a network testbed as shown in Fig. 7 to verify
the functionalities of our proposal. The experimental setup
consists of six stand-alone POF switches, a POF controller,
a data-analyzer, and two hosts. Each of the POF switches is
based on OVS-POF, and runs on a high-performance Linux
server with 10 GbE linecards. The POF controller is based on
the ONOS that contains our extensions to support POF in its
south-bound protocol stack. Our experiments send traffic from
Host1 to Host2, and apply SR-INT to the flow.

POF Controller

Data Analyzer

POF Switch

Host1 Host2SW1

SW2

SW3

SW4

SW5

SW6

Fig. 7. Experimental setup for demonstrating SR-INT.

1) Verification of Basic SR-INT Functionalities:For the
flow from Host1 to Host2, we assign its routing path as
SW1→SW2→SW5→SW3→SW4, and divide the path into two
segments,i.e., SW1→SW2→SW5→SW3andSW4. Hence, the
POF controller installs a flow table inSW1to insert an SR-
INT header in each packet of the flow, and lets each ofSW3
andSW4replace the firstSegmentfield in an SR-INT header
with an INT Metadatafield about its own status.

Fig. 8 shows the Wireshark captures of the packets of the
flow at different locations. After being processed bySW1, the
packet in Fig. 8(a) shows that an SR-INT header has been
inserted in it correctly. In the SR-INT header, theSR TTL
equals2, which means that there are twoSegmentfields cor-
responding to the two aforementioned segments, respectively,
theLengthis 0, which suggests that there is noINT Metadata
field in the SR-INT header and thus the firstSegmentfield
is right after theMapInfo field, and theMapInfo field equals
0x0f , which means that INT should collect the data about
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Device ID, Output Port, Hop Latency, andBandwidth(i.e., all
the4 bits in the bitmap are on). Next, theTTL subfields in the
two Segmentfields are3 and 1, i.e., the two path segments
still include 3 and1 switches, respectively.

Then, the Wireshark capture in Fig. 8(b) provides the packet
after SW5. We can see that the packet is almost the same
as that in Fig. 8(a), except that theTTL subfield in the first
Segmentfield gets decreased to1. This is because there is
still one more hop, which isSW3, in the current segment.
Finally, Fig. 8(c) shows the Wireshark capture for the packet
after SW4. Here, asSW4is the last switch of the second path
segment, both of theSegmentfields in the original SR-INT
header have been replaced withINT Metadatafields, which
corresponds to the status onSW3and SW4, respectively. By
checking the details in the twoINT Metadatafields, we can
see that theDevice IDs of the two switches are3 and 4,
respectively, both of the switches output the packet onPort
1, theirHop latenciesare all9 µs, while the usedBandwidths
on their corresponding output ports are different because there
are background traffic in addition to the considered flow.
Hence, the Wireshark captures in Fig. 8 confirm that the basic
functionalities of SR-INT have been implemented correctly.

SR TTL Length

MapInfo Segment Segment

(a) Wireshark capture for a packet afterSW1

SR TTL Length

MapInfo Segment Segment

(b) Wireshark captured for a packet afterSW5

SR TTL Length

MapInfo INT MetadataINT Metadata

(c) Wireshark captured for a packet afterSW4

Fig. 8. Experimental results for verifying basic SR-INT function.

2) Fast Rerouting based on Network Status:Then, we
continue the experiment to measure theHop Latencyon SW3
for 9 seconds, and after the eighth second, we increase the
background traffic throughSW3to induce slight congestion on
it. Fig. 9 shows theHop Latencyon SW3, which is obtained
by the data analyzer. Note that, with SR-INT, each packet is
transmitted to a data analyzer by the egress switch (i.e., the last
switch on its routing path). For example, for the flowHost1to
Host2 in Fig. 7, its packets are duplicated and sent to the data
analyzer bySW4. The data analyzer runs a process to collect
all the packets from the egress switch, and thus it can extract
SR-INT headers from the packets, parse the telemetry data in
them, and process the data for real-time network monitoring.

It can be seen that theHop Latencystays below10 µs for
8 seconds, and then suddenly increases to∼13 µs. The data

analyzer treats the sudden increase as an exception and sends
a report to the POF controller. Specifically, as shown in Fig.
10(a), the data analyzer sets up a TCP connection to report
the exception. Then, the controller decides to reroute the flow
to go throughSW1→SW2→SW6→SW4(i.e., the path marked
with the green line in Fig. 7), and still divide the path into two
segments (i.e., SW1→SW2→SW6andSW4). Fig. 10(b) shows
the Wireshark captures of the packets, which are collected after
SW1, before and after the rerouting. We can see that after the
rerouting, the content of the firstSegmentfield is changed
while that of the second one stays the same. Specifically, the
TTL subfield in the firstSegmentfield becomes2 to denote that
the first segment still containsSW2and SW6after SW1, and
the Label subfield is changed to represent the new segment.
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Fig. 9. Hop Latencyof packets onSW3.

(a) Packets captured on POF controller

Segment Segment

Segment Segment

Before Rerouting

After Rerouting

(b) Wireshark captures for packets afterSW1

Fig. 10. Results on fast rerouting based on network status.

3) Self-adaptive Network Monitoring:To demonstrate
that our SR-INT system can achieve self-adaptive net-
work monitoring, we still let the flow go through
SW1→SW2→SW5→SW3→SW4, but use the POF controller
to change its SR-INT scheme dynamically. Specifically,
the POF controller will re-partition the routing path as
SW1→SW2→SW5and SW3→SW4and instruct the switches
to only collect the INT data aboutDevice ID, Output Port, and
Hop Latency. Fig. 11 shows the Wireshark capture of a packet
after SW4, when the new SR-INT scheme mentioned above
has been applied. Specifically, we can see that theMapInfo
field gets changed to0x03, and theBandwidthsubfields are
always0 since they are excluded from the INT data collection.
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INT MetadataMapInfo INT Metadata

Fig. 11. Wireshark capture for a packet afterSW4with new SR-INT scheme.

Note that, in addition to readjusting the switches and INT
data types to monitor for a flow, self-adaptive network moni-
toring can also be introduced to balance the tradeoff between
the bandwidth overheads and accuracy of network monitoring.
Fig. 12 compares the bandwidth overheads of SR-INT when
different packet sizes and number of monitoring points are
considered. As expected, the bandwidth overheads decrease
with packet size and increase with the number of monitoring
points (i.e., how manySegmentfields are included in an SR-
INT header). In the worst case, the experiments consider4
monitoring points on a routing path and use64-byte packets,
and the bandwidth overheads of SR-INT in Fig. 12 is29.69%.
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Fig. 12. Bandwidth overheads of SR-INT.

B. Packet Processing Performance of OVS-POF with SR-INT

As we have explained before, our design of SR-INT makes
sure that each packet only experiences oneAddFieldand one
DelField throughout its forwarding in the POF network, while
the remaining SR-INT operations are all realized withSetField
and ModifyField operations. Hence, its implementation in
OVS-POF has reduced operation complexity, becauseSetField
and ModifyField normally involve fewer memory operations
and thus can be processed much faster thanAddField and
DelField in software-based switches. To verify this effect,
we conduct experiments to compare the throughput of OVS-
POF for the cases when SR-INT is used and SR and INT
are handled independently (SR+INT). We still let the flow
go through SW1→SW2→SW5→SW3→SW4 and divide the
path into2 segments,i.e., SW1→SW2→SW5→SW3andSW4.
Then, we pump in10 Gbps traffic with different packet sizes
at SW1, and measure the output throughput atSW4.

Fig. 13 shows the results on end-to-end throughput. We
observe that for both SR-INT and SR+INT, their throughputs
increase with the packet size and reach the linerate (10 Gbps)
when1, 024-byte packets are used. This is because when the
packet size becomes smaller, the software-based switches on
the routing path need to process more packets per second.

Meanwhile, the end-to-end throughput of SR-INT is always
higher than that of SR+INT when the packet size ranges within
[64, 512] bytes. This verifies the advantage of our proposal.
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Fig. 13. Comparisons on end-to-end throughput of SR-INT andSR+INT.

Moreover, we measure the processing latency per packet on
SW4for SR-INT and SR+INT, and the results are plotted in
Fig. 14. It can be seen that the packet processing latency of
SR-INT is ∼9.5 µs, while that of SR+INT is∼16 µs. As
SW4is the destination switch, SR-INT applies oneSetField,
oneModifyField and oneDelField on each packet, while for
each packet, SR+INT applies oneAddField to insert an INT-
related field in it, and twoDelField operations (i.e., one is
for removing the field for SR, and the other is for converting
the packet back to a normal one that does not include any
fields related to INT or SR). Therefore, the operations for
SR+INT are more complex, which is the reason why its packet
processing latency in Fig. 14 is much longer.
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Fig. 14. Comparisons of packet processing latency onSW4.

VI. CONCLUSION

In this paper, we proposed SR-INT, which is a network
monitoring system that can combine INT and SR seamlessly
to mitigate their overheads. By leveraging POF, we designed
the packet format of SR-INT and laid out its packet processing
procedure. Moreover, to ensure its adaptivity, we made imple-
mentations in both the control and data planes such that the
configuration of SR-INT can be adjusted dynamically to adapt
to the requirements of network monitoring. The proposed
SR-INT was implemented and experimentally demonstrated
in a POF-based SDN environment. Our experimental results
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showed that SR-INT reduces not only the overheads of using
SR and INT simultaneously but also the operation complex-
ity in software-based POF switches, and it achieves highly-
efficient and adaptive network monitoring for fault diagnosis
and can recover the network from soft-failures quickly.
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