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Abstract—The service provisioning in multi-domain software- (WDM) networks [7-9], have been recognized as a promising
defined elastic optical networks (SD-EONS) is an interestmmbut  packbone infrastructure for future Internet.
difficult problem to tackle, because the basic problem of ligtpath — peanwhile, software-defined networking (SDN) [10, 11]
provisioning, i.e., the routing and spectrum assignment (RSA), is can be Ievera, ed to realize software-defined EONs (SD—’EONs)
NP-hard, and each domain is owned and operated by a different g g
carrier. Therefore, even though numerous RSA heuristics hee  [12—14]. Note that, for optical networks, the control andeda
been proposed, there does not exist a universal winner thataa ~ planes were already separated before the introduction df, SD
always achieve the lowest blocking probability in all the senarios  as defined in the generalized multi-protocol label switghin
of a multi-domain SD-EON. This motivates us to revisit the  (gMp|S) architecture [15]. Therefore, the actual innovati
inter-domain provisioning problem in this paper by leveragng of SDN on optical networks is the introduction of a centradiz
deep reinforcement learning (DRL). Specifically, we propos P
DeepCoop, which is an inter-domain service framework that ges controller for network control and management (NC&M) and
multiple cooperative DRL agents to achieve scalable netwar centralized signaling protocols.§., OpenFlow [10]), with
automation in a multi-domain SD-EON. DeepCoop employs a which the advantages of EONs on spectrum management and
DRL agent in each domain to optimize intra-domain service network programmability can be further explored [16].

provisioning, while a domain-level path computation elemst A backb twork latively |
(PCE) is introduced to obtain the sequence of the domains to S a backbone nework can span over a relatvely large

go through for each lightpath request. By sharing a restriced geographical area and/or include network elements pratiuce
amount of information among each other, the DRL agents can by multiple vendors, it is usually operated by more than
make their decisions distributedly. To ensure scalabilityand one carriers, each of which manages an autonomous domain.
universality, we design the action space of each DRL agent bad Hence. we should extend the research on SD-EONs to ad-
on well-known RSA heuristics, and architect the agents baskeon ' . . . .

the soft actor-critic (SAC) scenario. We run extensive simlations dress th(_a multl—_domaln s_cenano [15, 17, 18]. Spemﬂc;kﬂy,_ )
to evaluate DeepCoop, and the results show that DeepCoop canthe multi-domain scenario, we assume that each domain is
adapt to the dynamic environment in a multi-domain SD-EON owned and operated by a different carrier, and thus optizal-

to always select the best RSA heuristic for minimizing blockg electrical-to-optical (O/E/O) conversions are appliedbath
probability, and it outperforms the existing algorithms on inter- sides of each inter-domain link to protect domain autonomy

domain provisioning in various scenarios. Moreover, we veafy d ori 171 H fth t chall . bl
that the distributed training implemented in DeepCoop ensues 2nd privacy [17]. Here, one of the most challenging problems

its universality and scalability (i.e., its training and operation do IS how to serve inter-domain lightpath requests cost-gffely
not depend on the topology of the SD-EON). and time-efficiently, in consideration of the autonomy of

Index Terms—Multi-agent system, Deep reinforcement learmn- each domain and scalability issues. Meanwhile, we need to
ing (DRL), Software-defined networking (SDN), Elastic optcal Point out that in certain multi-domain SD-EONSs, inter-doma
networks (EONs), Multi-domain, Network automation. lightpaths can also be set up all-optically end-to-end.[19]

The rationale behind this is three-fold. First of all, the
fundamental problem of service provisioning in EONs, the

_ routing and spectrum assignment (RSA)Ni$-hard even for
Ackbone networks are recently undergoing dramatit gingje-domain version [20]. Secondly, numerous héiogs

changes to adapt to the rising of new network paradigni§,e peen designed to solve RSA in various EON scenarios
(eg. cloud computing, virtualization, 5G, and Internet-off51) “anq thus it will be difficult to choose a proper heusti
things (loT)) [1-6]. This stimulated intensive interests@e- 0, it e do not require a guaranteed performance gap to
veloping highly efficient, flexible and scalable opticalwetk- o o htimal solution. Lastly but most importantly, to eresur
ing technolo_gles. Hence, ﬂemblg-grld glasnc opticalwaks the autonomy of each domain, a domain manager (DM) will
(EONSs), which possess an agile optical layer and thus Cag: gigciose detailed intra-domain information to its péfs
manage optical spectra more flexibly and spectrum-effisient, yhe gomain-level path computation element (PCE) [22],
than traditional fixed-grid wavelength-division multigleg and thus it would be challenging to coordinate DMs and the
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smart decisions to solve complex optimizations in dynamagents based on the soft actor-critic (SAC) scenario, wtéch
environments [23]. Specifically, DRL leverages one or momhieve a better tradeoff between exploration and expioita
agents, each of which consists of and optimizes deep neygl] than the advantage actor critic (A2C) considered in.[30
networks (DNNSs), to interact with a dynamic environment an@his effectively prevents DeepCoop from being trapped by
find the strategy for making the best decision [24]. Thisdeat local optima, so that it can perform better in a multi-domain
opens up a lot of new opportunities to address the compl8-EON with many domains. Meanwhile, by sharing limited
optimizations in NC&M. Therefore, the symbiosis of SDNstate information and obtaining their rewards cooperbtitiee
and DRL has been considered as the most promising metialdL agents can converge faster in distributed online trgjni
to realize network automation, and various DRL models haveSecondly, we redesign the action and state spaces of each
been proposed to explore its benefits [25-27]. DRL agent to make DeepCoop more universal. Note that, for
Previously, people leveraged DRL to propose DeepRMSA lightpath request, the DRL agent assigned to each related
[28] to solve RSA in a single-domain EON. Their simulatiomlomain needs to 1) select a RSA heuristic, and 2) choose an
results suggested that after being trained vgith00, 000 re- inter-domain link to go to the next domain. Our design in
guests, DeepRMSA could outperform two well-known heurig30] architected the action space based on the second task,
tics (i.e, the shortest-path routing and first-fit (SP-FF) and@hich made it domain-specific since inter-domain links can
K-shortest-path routing and first-fit (KSP-FF)), and comgaréde different between different domain pairs. Hence, thiskwo
with the better benchmark (KSP-FF), it could reduce thedesigns the action space to fix its dimension over domains.
blocking probability by20.3%. Meanwhile, DeepRMSA was Similarly, to unify the state spaces of DRL agents, we cfgssi
also considered in a multi-domain SD-EON, to address intestate information as intra-domain and inter-domain fessur
domain provisioning [29]. However, DeepRMSA only hasnd represent them with feature vectors. Thirdly, we improv
limited scalability and universality because it chooses thethe algorithm used by the domain-level PCE for calculativey t
actual RSA schemei.€, the path and frequency slots (FS’)Ydomain sequence of each lightpath request. Hence, it caa wor
on it) for each lightpath. Specifically, the size of DeepRNsSAbetter with the DRL agents to reduce the blocking probapbilit
action space will increase dramatically, if the operatontsd@o Finally, we conduct extensive simulations with a multi-cam
improve its performance and thus considers more routingspaSD-EON whose topology is much larger than the one used in
and more FS blocks on each path for a lightpath. Furthermof20] to evaluate our proposal and verify its effectiveness.
since the definition of the actions in DeepRMSA is tightly The rest of paper is organized as follows. Section Il provide
related to the parameters of an EO&Ig(, the topology and a brief survey on the related work. We present the architectu
number of FS’ on each link), the DRL model that has beesf DeepCoop and its operation principle in Section Ill. The
trained in the EON would become inapplicable in another ongetailed design of the multi-agent and cooperative DRL rhode
The aforementioned drawbacks motivated us to propoke DeepCoop is introduced in Section IV. We evaluate the
DeepCoop in [30], which utilizes multiple cooperative DRLperformance of our proposal with numerical simulations in
agents to achieve scalable network automation in a muiltie Section V. Finally, Section VI summaries the paper.
domain SD-EON. For each lightpath request, DeepCoop first
uses a domain-level PCE to obtain the sequence of the domains I
to go through, and then relies on the DRL agents assigned to
the related domains to 1) obtain intra-domain RSA schemesl© facilitate service provisioning, the problem of RSA and
and 2) select proper inter-domain links to concatenate tfig variants have been studied intensively since the inoept
intra-domain path Segmentg_ By on|y Sharing a restrict@ﬂ EONSs. Previous investigations have covered the RSA al-
amount of information among each other, the DRL ager%)l’ithms for almost all types of communications, including
can make their decisions distributedly. To ensure scatyabilunicast [32-34], multicast [35-37], anycast [3&l¢. For a
and universality, we designed the action space of each DR@mprehensive tutorial on RSA algorithms, one is recommend
agent based on well-known RSA heuristics. In other worded to refer to [21]. Although for a given EON, the optimal
instead of selecting the RSA scheme directly, a DRL agent fHSA scheme of one lightpath can be obtained time-efficiently
DeepCoop chooses a proper RSA heuristic from its algorith#ith the breadth-first search, optimizing the RSA schemes
pool based on the current network status, and then uses félemultiple lightpaths jointly isA"P-hard [20]. Most of the
heuristic to calculate the RSA scheme for a lightpath requeeXisting RSA algorithms are time-efficient heuristics, e¥hi
Hence, the action space becomes significantly smaller, tangannot provide performance guarantee and might only perfor
is independent of the parameters of an EON. well for certain specific scenarios. Hence, choosing thitrig
A|though our pre”minary Study in [30] has a|ready CO”RSA algorithm will be a hassle, eSpeCiaIIy when the EON has
firmed the scalability and universality of DeepCoop an@ time-variant environment. This is because in dynamic EONs
verified that it can outperform existing benchmarks, its- peightpath requests can be blocked for various reasons targd t
formance can still be improved. Hence, this paper expanddeuristic whose objective is deterministic cannot engee
it to make the problem-solving more comprehensive, witmallest blocking probability all the time [39].

the following improvements. Firstly, we re-architect itRD ~ BY implementing RSA algorithms in the control plane, peo-
ple have conducted experiments to evaluate the performance

IHere, the universality means that a DRL-based approachigiilés generic Of _single-domain SD-EONSs on cost-effectiveness, programm
to the topology and resource configuration of a multi-donBi+EON. bility and resiliency [40—43]. The control plane architeet of
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multi-domain SD-EONSs has been considered in [15, 17, 44 Architecture of DeepCoop

46]. T_he proposals in [15, 17, 44] !et the SDN controllers of \y,e design DeepCoop to tackle inter-domain lightpath pro-
domains (., the DMs) cooperate in a peer-to-peer mann&fisioning in a dynamic multi-domain SD-EON, which is
and utilized the flat control plane architecture for interthin 5 relatively complex problem. Specifically, it involves two
service provision_ing._ As there is no domain—_level PCE in thﬁprroblems, 1) finding a domain-level path for each inter-
flat architecture, it might take relatively long time to pi®ion  4omain lightpathi(e,, a sequence of domains from the source
each inter-domain lightpath in a multi-domain SD-EON. {5 the destination of the lightpath), and 2) calculatingasfele
In order to address this scalability issue, the hierar¢hic@sa scheme in each domain on the domain-level path.

architecture, which uses a domain-level PGIE.(a broker)  The gverall system architecture of DeepCoop is shown in
to coordinate the DMs for inter-domain provisioning, Wagig 1 [30], which utilizes the hierarchical control planer f
proposed in [45]. Specifically, for each lightpath requésé, jnierdomain service provisioning. Specifically, in the Itau
domain-level PCE first determines the sequence of the d@Majy main SD-EON. each domain has a domain manager (DM)
to go through, based on the intra-domain virtualized togi@l® \ypich is essentially the controller of all the data planeredats
(ID-VTs) provided by the DMs and the status of inter-domaip, jis domain, and the domain-level PCE is introduced to get

links, and then the DM of each selected domain calculalgg, giobal information about the domains by merging thesintr
the RSA scheme for the lightpath segment within its domaigomain status from the DMs, and coordinate the DMs to set
Hencg, inter-domain provisioning can be realized W'thO‘ﬂfpinter—domain lightpaths accordingly. Here, each DM ré&po
violating the autonomy of each domain. To further proteet thyg jntra-domain status by abstracting and submitting arin
domain autonomy, a market-driven multi-broker archite€tu yomain virtualized topology (ID-VT), which is a simplified
was designed in [46] to introduce multiple domain-level BCEqpo10gy that only contains aggregated information abbat t
for avoiding a single one playing the role of monopoly.  ho4es and links in the domaind, the domain’s border nodes

~ The studies in [17, 44] considered the algorithms for realig, o connected with a fully-meshed set of virtual linksdr f
ing inter-domain provisioning in the multi-domain SD-EON$,gtecting the autonomy and privacy of each domain [47].
that use the flat. control plane ar_chltecture.. ConS|der_|mg th 1o provision an inter-domain lightpath request, the domain
hierarchical architecture that consists of multiple d_omdavel level PCE first collects the information about the request an
PCEs, we leveraged game theory to tackle the inter-domgil\/ s from the DMs, and then calculates the domain-level
provisioning in it in [18, 47]. One interesting observation sing path for the request. Note that, there are genefatly

in [47] is that by mixing the usages of two RSA heuristic§ ), naches for the domain-level PCE to calculate a domain-
adaptively, one can achieve lower blocking probabilitynthg e, e| routing path: 1) selecting only the domain sequenes (
using any one of the heuristics constantly. This actualhz|e sequence of the domains to go through from the lightpath’

motivates us to design the action space of the DRL modg, e 19 its destination), and 2) selecting the domainesezg:
used in this work based on a few well-known RSA heurlstlc§O

. _ ether with related border nodes [52]. We design the domai
Previously, people proposed a game theoretic approe}gg

X X , eVel PCE to use the first approach because it leaves more
to deal with the dynamic spectrum management in muliig, ;6 for each DM to optimize intra-domain RSA with DRL.
domain wireless networks in [48]. Meanwhile, leveraging th

L ) S Each DM includes a DRL agent and an SDN controller. The
symbiosis of SD-EON and DRL to achieve agile lightpathyro|ier sends the state of the domain and the information
provisioning has just started to attract resee_lrc_h INSEEE 50t pending lightpath requests (if the domain is the sourc
recently [28, 29, 49, 50]. However, these existing appreachyomain) to the DRL agent, and establishes intra-domairt-ligh
designed the action spaces Of, their DRL models based Ony, segments according to the returned provisioning sehem
the a_ctual _RSA schemes for "Qh‘paths’ which, as we h anwhile, the controller also collects the new state of the
explameq in the previous section, leads to scal_ablllty and main after setting up an intra-domain lightpath segneerd,
universality issues. Therefore, although the study in B19D o0 it hack to the DRL agent for reward calculation. During
tried to utilize multi-agent DRL to solve inter-domain ligiath training, the DRL agent learns how to analyze the curreié sta
provisioning, the restrictions on scalability and uniaity of the domain to 1) select a proper RSA heuristic from its
still exist. Moreover, as the propgsal in [29] let the DRL atge algorithm pool to compute an intra-domain lightpath segimen
compete but not cooperate with ef%h other, the operatigd, 2) choose the best inter-domain link for the lightpath
complexny would actually Increase W_'th the number of agemsegment to connect to its next domain. Meanwhile, the DRL
Mult!—agent_DRL was a_Iso mclude(_j in the control plan_e of Qgents share a restricted amount of intra-domain infoomati
multi-domain SD-EON in [51], but it was used for quality-0f-5 g each other and calculate rewards collaboratively to
transmission (QoT) estimation. Hence, to our best of kno"‘%prove their performance on service provisioning.
edge, this is the first work that can utilize multiple coopieea
DRL agents to realize scalable network automation for the
inter-domain service provisioning in multi-domain SD-E©N B. Operational Principle of DeepCoop
We model a multi-domain SD-EON witv' domains as
[Il. PROPOSEDSCALABLE INTER-DOMAIN PROVISIONING ¢ — {(Gi(V?, E),¥i € [1,N], E}. Here,G*(V?, E') denotes
FRAMEWORK the intra-domain topology oDomain i, where V* and E*

In this section, we describe the network architecture afe the sets of nodes and links in the domain, &hi the

DeepCoop and explain the inter-domain provisioning with iset of inter-domain links. Each intra-domain linksc E° in
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Fig. 1. Network architecture of DeepCoop.

Fig. 2. Example on constructing an aggregated topology.

Domain i can accommodat&® FS’, while each inter-domain

link ¢ € E can supportt” FS'. As we assume that there aren them are{0.7,0.2,0.3,0.4,0.5}, respectively, which are
O/E/O conversions on both sides of each inter-domain limk, tmarked aside the links in Fig. 2. Hence, the weight of virtual
spectrum continuity constraint only needs to be considarednode v/, should bew!, = 0.42 (i.e,, the average FS usage of
intra-domain RSA calculation. An inter-domain link betweeall the links in E3), and the weight of virtual link; ; should
Domains i and j can also be denoted a§’,, whereu € V' be the average FS usagedf,; andé;; (i.e., w 50.2).

andv € V7 are the border nodes at its two ends.

Note that, the physical topology will not be available to Algorithm 1: Construction of Aggregated Topology
the domain-level PCE, and it can only merge the ID-VTs from

the DMs to get an aggregated topologygorithm 1 explains 1 Procedure of [_)MS:

the procedure for obtaining the aggregated topolbgyes 2- 2 for ee}ch Domaini & [1, N] do

14 are for the DMs to abstract and report the ID-VTs regardiry E =0; _ o )

their domains. Specifically, for eadbomain i, we first find 4 | find all the intra-domain links that directly connect to
all the intra-domain links, each of which uses at least one | POrder nodes irbomain i, and store them ik,

of the border nodes as an end-node, and stores the average calculate average !:S usage on all the linkgfnand
FS usage on them im) (Lines 4-5). Then, in theLines 6- store the value inv;; o

11, we check all the inter-domain links betweBomain i © | fF ee}ch neighbor Domain j of Domaini do

and each of its adjacent domairesg(, Domain j), store the ' E =0 _ -

average FS usage on themi);, aggregate the inter-domain® find all the inter-domain links that a/re.between
links as an aggregated link ; betweenDomains i and j, Domains i andj, and store them itk ;;
and assign the weight of the aggregated linkugs. Next, ° caltlculate average FS usage on all the links in
we abstract the topology ddomain i (G?) as an aggregated Ej,; and store the value i

node and assign its weight ag, and form an ID-VT with the ° a_tggr~e/gate all the links i’ as an aggregated
aggregated node and all the aggregated links that termaate link ¢; ; and assign a weigh; ; to it

it to report to the domain-level PCEifies 12-13). Finally, the 1 | €nd o _
domain-level PCE merges all the received ID-VTSs to obtain ¥ | abstractG’(V", E*) as an aggregated node and assign
aggregated topology to represent the multi-domain SD-EON | & Weightw; to it; _

(Line 16), and for each inter-domain lightpath, it calculates thg | connect all aggregated links to the aggregated node
least-weighted pattP” in the aggregated topology from the to form an ID-VT to report to domain-level PCE;
lightpath’s source domain to destination domaim¢ 17). The 4 €nd

path P" is just the domain-level routing path of the lightpattts Procedure of Domain-level PCE:

. . 16 collect all the ID-VTs from DMs and merge them into an
Fig. 2 shows an example on how to build an aggregated i
aggregated topology;

topplogy, wherg the phy5|c_al _topolo@ conS|s_ts of three do- 'y apply the Dijkstra algorithm to the aggregated topology
mains and four inter-domain links. The domains are abscac . . )

: : . : to find the least-weighted pathR”;

into three nodes in the aggregated topology, while the -inter
domain links among them are also aggregated correspogding|

For instance, in the aggregated topologgmain 2 is abstract- ~ With the domain-level routing pati#”, the domain-level

ed as virtual node, and the two inter-domain links between itPCE can coordinate the related DMs to set up the inter-domain
andDomain 3 (i.e., ’égjg andééjg), are aggregated as the virtualightpath end-to-end. Specifically, each related DM legesa
link &; 5 that connects virtual nodeg andwv;. In Domain 2, its DRL agent to determine both the RSA scheme of the
all the intra-domain links that directly connect to the bard lightpath segment in its domain and the inter-domain link to
nodes are in sek, = {e?,¢e3,e3,e2,e2}, and the FS usagesgo to the next domain. Note that, instead of making their
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The principle of DRL is about making one or more intel-
ligent agents learn on how to act to maximize the reward by
interacting with a dynamic environment constantly. Theriea
ing process can be modeled as a Markov decision process [24],

which is defined by a tupléS, A, R, P}. Here,Srepresents the
o - | o state spacei €, the set of all the states of the environmerit),
____________________ ’ denotes the action spadee(, the set of all the actions that the
Feedback agent(s) can take)R is the reward function that can be used
to calculate the reward.é., the Q-value) obtained by an agent
after it applying an actiom € A in respond to a stat§ € S,
Fig. 3. Cooperation between two DRL agents for inter-donmavisioning. and P is the matrix that describes the transition probabilities
of the states. The objective of a DRL is to find the optimal

olicy 7*, which can map each statte Sto a proper action

dgcisions independ.ently, the DRL agents actua]ly cooqaer%tG A such that the reward defined By can be maximized.
with each other to improve the performance of inter-domajjote that, a reward usually contains two parts, which are the

service provisioning. We use Fig. 3 to briefly explain thg, e iate reward and state valué, and in practice, it can
cooperation among the DRL agents, while their detailect‘masibe approximated by defining as

and operation principle will be discussed in the next sectio
Here, we assume that the domain-level path needs to route R(a¢, St) = Zwt T, (@)
a lightpath fromDomain 1 to Domain 2. First of all, DRL t
Agent 1 gets the current state of its domain and also fetch@geret is the time instanty is the discount factor, ang} is
the state parameters &fomain 2 from DRL Agent 2. Then, the immediate reward at time
it selects a proper RSA algorithm and an inter-domain link to Multi-agent DRL makes several DRL agents work on coop-
go to Domain 2 based the state information. Next, the RSArative task(s) to achieve global optimality, and thus veigams
scheme of the lightpath segmentomain 1 is calculated by a DRL agent to each DM and leverage them to realize high-
the selected RSA algorithm. Note that, as the lightpath wilerformance inter-domain service provisioning. Note, tirag
experience O/E/O conversion in the related border nodes, W@lti-agent DRL model, the DRL agent can cooperate in two
can simply determine its spectrum assignment on the int@fays. The first one is that the agents will not communicate
domain link with the first-fit approach. Finally, with the iat  with each other, and their cooperation is coordinated with a
domain RSA scheme and the inter-domain link, the ingreggntral critic neural network (C-NN). Specifically, the trh
node inDomain 2 can be determined. C-NN can observe the operations of all the DRL agents, esti-
DRL Agent 2 uses the same procedure to obtain the RSfate their Q-values, and coordinate their cooperativaasti
scheme of the lightpath segment in its domain, but sing@cordingly [53]. Nevertheless, for the service provigigrin
Domain 2 is the destination domain, it does not need tg multi-domain SD-EON, introducing a central C-NN would
collect the state parameters of the next domain. When the efghit the scalability of the NC&M and damage the autonomy
to-end RSA scheme of the inter-domain lightpath has begfthe domains. Moreover, the provisioning of an inter-dama
determined, the related DMs instruct their SDN Controlleqﬁ‘ghtpath m|ght not involve all the DMS, and thus using
to establish the lightpath and collect the domain statesr affhe central C-NN to evaluate the actions of all the DRL
the service provisioning. Hence, the reward systems of thgents constantly is not only unnecessary but also misigadi
DRL agents can calculate the rewards of their selectedrextiorherefore, we turn to the second way that lets the agents

collaboratively, for evaluating the whole inter-domain /RS communicate with each other for enabling cooperation [54].
scheme better. Specifically, each DRL agent on the domain-

level path forwards its reward to the DRL agent of its pregiou ] ] o . .

domain. For instance, in Fig. BRL Agent 2 first calculates B- Modeling Inter-domain Provisioning with Multi-agent DRL

the reward of its selected action based on the new state imAs we have explained in the previous section, the DRL agent
Domain 2, and then sends the reward to the reward systemiineach DM needs to select both the RSA algorithm to compute
DRL Agent 1. Next, DRL Agent 1 calculates its own reward the lightpath segment in its domain and the inter-domaik lin
based on the reward froRL Agent 2 and the new state to go to the next domain. Hence, its action affects not only
in Domain 1. After obtaining the reward, each DRL agenthe service provisioning in its own domain but also that ie th
stores the reward and its corresponding action and state innext domain. To this end, we design the state of each DRL
experience buffer as a training sample, which will be legeth agent to include the information about the current and next
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to update its DNNs in the online training. domains, and formulate the reward function to consider the
new state of the current domain and the feedback from the
IV. MULTI-AGENT AND COOPERATIVEDRL FOR next domain. The model of each DRL agent is as follows.
INTER-DOMAIN SERVICE PROVISIONING State: At time instantt, the stateS] observed by DRL agent

In this section, we elaborate on the multi-agent DRL mod&l’ in Domain j contains the information about the current and
used by DeepCoop for inter-domain service provisioning. next domains. For the current domain, its state is repredent



by the status of a few paths, which are from the source nogach action can be represented as a typlBSA &}, where
in it to the border nodes that connect to the next domaithe RSA algorithmoRSA is from an algorithm poo2RSA, and
Here, the source node is just the source of the inter-domairs the selected inter-domain link. In this work, we select
lightpath if the current domain is the source domain, and it four well-known RSA heuristics to build the algorithm pool
where the lightpath enters the current domain, othedvBer QRSA which are thei(-shortest path and first-fit (KSP-FH),-
each pair of the source node and a feasible border node, sh@rtest path and load-balancing (KSP-LBJ;shortest path
calculate KX shortest paths in the current domain, and recoahd fragmentation-aware (KSP-FA), and fragmentationrawa
three parameters about each path as its state, which arearid congestion-avoidance (FA-CA).
the average size of available FS blocks, 2) the number ofThese RSA heuristics are considered because they are time-
available FS blocks, and 3) the start-index of the first atd@ efficient, and each of them performs well in certain conditio
FS block, for serving the lightpath request on the path. ldeng21]. To provision a lightpath, KSP-FF selects the shonpash
the information about the node pair can be represented bynshops and uses the first-fit scheme for spectrum assignment
feature vector that includes all the parameters ofkhpaths, (i.e, it helps to reduce the overall spectrum usage), KSP-LB
where the length of the feature vectoBid<. With the physical checks K shortest paths and tries to balance the spectrum
topology G, we can get the maximum number of feature@sages on themi.¢, it can avoid causing bottleneck links
vectors for a domain ad,. Therefore, the information aboutespecially when the EON is relatively crowded), KSP-FA
the current domain can finally be denoted with feature also considerds shortest paths but tries to induce the least
vectors{ @@ ; ¢ [1, N,]}, and if the actual number of featurespectrum fragmentation, and FA-CA tries to not only cause th
vectors is less thav,, we fill the remaining ones with zeros.least spectrum fragmentation but also balance the spectrum
For the next domain, its state is represented by the statusuehges onK shortest paths. In this work, we follow their
1) all the inter-domain links between it and the current dimmaoriginal designs to implement the RSA heuristics.
and 2) a few related paths in it. We record the FS usage on eacReward: The objective of the inter-domain service provi-
inter-domain link. Then, as each inter-domain link deter@si sioning is to minimize the blocking probability of lightpat
the ingress border node in the next domain, the informatioequests. Hence, as each acth:{ntaken by DRL agenty’
about the pair of the ingress border node and a feasiblesgréstermines not only the algorithm for intra-domain RSA cal-
border nodgis also recorded. Specifically, the DRL agent ofulation but also the inter-domain link to the next domatie t
the next domain calculate shortest paths between the twdnstant reward- of DRL agent®7 for the action should relate
border nodes, and reports the average values of 1) the siwesvhether or not the lightpath request can be successfully
of available FS blocks, 2) the numbers of available FS blpcksrovisioned in the current and next domains. Specificdltipg
and 3) the start-indices of the first available FS blocks @n tightpath can be provisioned in a domain, a positive reward i
paths, to the DRL agent of the current domain. Hence, for theturned by the domain, and the reward is negative, otherwis
next domain, each feature vector (with a length of 4) inctud&hen, the instant reward is obtained by summarizing the
the FS usage on an inter-domain link and the three averageards from the current and next domains.
values about paths between a related border node pair in it. However, it would be difficult to accurately evaluate the
For instance, in Fig. 2, if we need to set up a lightpathctions, if we only consider whether the lightpaths can be
from v} to v} and its domain-level routing path Bomain 1  provisioned. Therefore, the positive reward of succesgsfat
— Domain 2 — Domain 3, the DRL agent foDomain 1 can visioning in the current domain is defined as the sum of 1)
get two feature vectors about the next domaia (Domain 2). the FS availability on the path with the minimum spectrum
The two vectors store the information abe[uﬂ} 1, v3 = v3} usage in statess: .+1 and S7, and 2) the ratio of the size
and {e1 1, v? — v2}. Here,vi — o3 refers to a pair of of the largest FS block on the lightpath’s path candidates in
ingress border node and egress border node, and featurethefcurrent domain mS‘tJJrl to that in /. This encourages
the paths between them are considered for the next domBiRL agents to select the actions that can leave more spectra
state. We also fix the number of this type of feature vectofar future requests and thus lead to lower long-term blogkin
as its maximal valuei., N;), and thus the information probability. For the positive reward in the next domain, we
about the next domain is denoted wiflj, feature vectors define it as the difference between the maximum and minimum
{@MeT j ¢ [1, N;]}. Similarly, if the actual number of featureFS availabilities on the paths between its ingress and ggres
vectors is less thaiv;, we append with zero filling. Finally, border nodes in state/ and StJH, to ensure load-balancing
by combining the feature vector§d™@ i ¢ [1,N,]} and in the next domain. The negative rewards of the current and
{@"e" i € [1, N;]}, we obtain the state of a DRL agent. next domains are set asl. Note that, if the current domain
Action: At time instantt, the actiona] taken by DRL is the destination domain, the reward in the next domain is
agent U’ in respond to statéS{ includes a RSA algorithm
to compute the lightpath segmeBiomain j and the inter- :
domain link for the lightpath go to the next domain. Hence(,:' Design of DRL Agent
We design the structure of each DRL agent based on the soft
2Note that, as each lightpath is sequentially served fromcsoto destina- actor-critic (SAC) scenario [31], which tries to maximizetn

tion by the DMs along the domain-level routing path, each C¥gent should ~ i ;
know the source node in its domain when it is invoked. only the long-term reward in Eq. (1) but also the policy epjro

3Here, a feasible egress border node is one node that conageesdomain  that measures the randomness of POl'Cy selection. By doing
after the next domain, according to the domain-level raupath. so, the DRL agent based on SAC is encouraged to explore



its action space more thoroughly and reduce the possilfity ~ Policy Vector m(S;) /Q-value Vector Q(S,)

premature convergence in training. Specifically, the ingjrof 1S°ﬂma></Re'U Activation Function
DRL agent¥’ needs to find the optimal policy* as % Output
Layer
* t[ g . J(Ad| Qi
™ = argmax B {;7 [” +a- Hr(4 |Sf))] } @ [0 9878 ® 8.8 8] Concatenate
i e @ - ; Layer
where E(-) calculates the expectation of all the state-action 0.9 LI TIE 8.9
pairs generated by a poli(_:y,j is the DRL agent's policy that. t t t t Input
can be parameterized by its actor neural network (A-NN) with ¢ ¢ ® & ® Layer
parameters,, T denotes the trajectories induced by policy t t t 1 o Stat
andr] is the immediate reward after taking actio at state QYLTE o QIILTG inter - pliter  EIVIONTEEM SIETe
S7, H(-) calculates the entropy of policy’ as ‘
H[Wj(Aj|SZ)] _ Z log(aj|5{) A3) Fig. 4. Structures of A-NN and C-NNs.
al € AJ

~ € [0,1] is the discount factor for long term reward calcuto estimate the Q-value of stafg, ;, and their parameters are
lation and« is weighting factor that determines the relativeipdated slowly with those of the two original C-NNs, which
importance of the immediate reward and the policy entropyill be referred to as local C-NNs in the following, as
As « actually balances the tradeoff between exploration and G —(1— 5

L . . 1 =(1—=p)-0c1+p-0c,
exploitation, we set it as a learnable parameter and design a < < 9)
training process for it. Because the designs of all the DRL Oc2 =(L=p) Ocp+p- e,
agents are identical, we will not differentiate them and tomihere p € (0,1) is a constant. We introduce the target C-
the superscriptj” in the following discussions. NNSs to stabilize the training process [56]. To enable them to

To evaluate policyr and improve it in the training, we first estimate Q-values accurately, we define their loss funstin

need to estimate the Q-valug(S:,a:) (i.e, the long-term 1 )
reward of taking action:, at stateS;) and state valué(s;) Ja(0ex) = Ep {g(Q@c,k(St) — Qtarg) } ke{t2}, (10)

(i, the goodness of statg,). We define the state value as whereEp(-) means to calculate the expectation over all the

> training samples in the experience bufi(i.e., each training
p— t .
0(5t) = Err ;7 (re + o H(m(A]$)))) | “) sample is a tupl€ S, at, 7+, Si11}), and Quarg is modeled as
Meanwhile, according to the Bellman equation [24], the QRtarg= rt—i—’y-ﬁ(St)@{mkin [ank(sﬁl)} —a-log [w(StH)]}.
value can be approximated as (11)
Q(St,a1) = Eron [re + 7 - 6(Se1)], ) Then, the losses of the two local C-NNs are the mean square

o . . error (MSE) between their outputs aiilrg respectively.
By combining Egs. (4) and (5), we obtain the relation between Meanwhile, we define the loss function of the A-NN as

5(S) andQ(Sy, ar) as Ja(62) = Ep {W(St)T o {mm [Qo, ()] — - log [m(St)]}},
6(St) = Ernn [Q(St, a1) + o H(m(A|Sh))] - (6) i 12)

Hence,Q(S;, a;) can be approximated With)(S; 1, a;41) as Note that, we set as a learnable parameter, and thus it should

have a loss function too, which is defined as
Q(St,a1) =Ermn {re + v [Q(St+1,at41) + - H(m(A|Se+1))]}
(7

Jo =Ep{—a-{log[r(alS)] + A }}, (13)
As the action space is limited and discrete, the A-NN outputs .
a policy vectorr(S;) (i.e., the distribution of the probabilities whereH is a constant scalar that represents the target entropy.

to choose each action il at stateS,), and each)(S,,a,) AS Shown in the Fig. 4, we design the A-NN and C-NNs
can be estimated. Hence, we simplify Eq. (6) as with similar and universal structures, and make sure thayt th
' can be applied to an arbitrary domain in the multi-domain

§(St) = 7(S1)" © [Q(Se) — - log(m(S))], (8) SD-EON. Moreover, as the design of the DRL agent with the
wherer(S;)7 is the transpose of(S;), @ is the inner product A“NN and C-NNs is universal, when a new domain is added,
for matrices, and)(S;) is the vector that includes all the Q-We can initialize its DRL agent with the trained A-NN and C-
values related to stats, (i.e., [Q(S, ar), a; € A)). NNs in an existing domain. This avoids the hassle of training

We design two separate critic neural networks (C-NNs) the A—NN and C-NNs f_rom the_scratch. The structure in Fig. 4
parameterize the aforementioned Q-value estimation, keid t consists of t_hree layersge., the input, concatenate, and output
parameters aré. ; andd, », respectively. At each time instantl@yers. The input layer uses, two-layer and fully-connected
¢, they take asteitst as the input and output two Q-valués, neural networks (FC-NNs) to take in the feature vectors of
Q.1 and Q... respectively. We take the smaller one@f, the current domaini, {®"%i € [1,Ny]}), and N two- _
andQ. , as the actual Q-value, to avoid the overestimation fver FC—tNNs to receive the feature vectors of the next domai

’ H inter . 1 I 1 1 1
state values [55]. Meanwhile, we also design two target GNI{ € {27 € [1, Ni]}). Their activation function is
whose parameters aflg; andé. o, respectively. They are used Relu(z) = max(0, x), (14)



which is widely used in machine learning to avoid the van-
ishing gradient problem. Then, the concatenate layer azgan
the feature vector§®"@ ; € [1, N,]} and{®!Me" ; € [1, N;]}

as two long vectors, respectively, from which an FC-NN
abstracts features about the current and next domains.

Algorithm 2: Training of Cooperative DRL Agents

1 initialize parameters of A-NN and C-NNs for all DRL

agents{03, 6. .0 ,, Vj € [1,N]};

2 éz,_k = ez,k’ VJ € [LN]ak € {172};
3 D) =0, Vjel[l,NJ
4 for each pending lightpath request do

5
6

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

release resources occupied by expired requests;
calculate domain-level patR” for the lightpath
request withAlgorithm 1;

for each Domainj € P" (source—destination) do
get feature vectors to represent stafe;

use A-NN to get action as] = wf (S);

use the RSA heuristieRS” in o] to calculate
intra-domain RSA scheme;

combine intra-domain RSA with inter-domain
link ¢ in o/ as the overall RSA fobomain j;
if the RSA scheme can be deployed then

get the source node in the next domain;
record “provisioned” in reward system ;
else

record “blocked” in reward system ;
break;

end

end

reward systems share provisioning results;
update domain states 4§} = S/, Vj € P"};
calculate immediate rewards?, Vj € P"};

insert training sampléS;, a, . S7.,} into D7;
for each Domainj € [1, N] do

if there are enough training samples in D’ then
for each training step do

randomly select a batch of samples;

eik = eik - )\Q . VeikJQ, Vk € {1,2};
0 =67 — A\ - V%Jﬂ;

ol =af — )\aj 'Vajz]aj;

0., =p 0L+ (1 —p)-0,,Vke{l,2};
end

end

end

end

get losses with Egs. (10), (12) and (13);

Domain 1 Domain 2 Domain 3

Domain 9

Domain 8

Domain 7

Fig. 5. Topology of 9-domain SD-EON used in simulations.

the actions inA). Here, the Softmax activation function is

Softmaxz;) = Me% , (15)

> et
j=1

wherez; is thei-th element in al/-dimension vectofX, and

it helps to normalize the elements iXi. On the other hand,
the output layer of a C-NN uses a two-layer FC-NN with the
Relu activation function to provide the Q-value vectpfS;).
Note that, similar to the normal case of DRL design [23], we
design and tune the architectures of the A-NN and C-NN and
their reward and target Q functions empirically.

D. Training Process of Cooperative Agents

Algorithm 2 explains how to train the cooperative DRL
agents for inter-domain provisionindLines 1-3 are for the
initialization, and for each DRL agent, we initialize the-pa
rameters of its A-NN, local C-NNs, and target C-NNs, and
empty its experience buffer. Then, the for-loop serves jmend
lightpath requests one-by-one and invokes online training
when enough training samples have been accumulaieds(
4-36). Herelines 5-19 provision an inter-domain lightpath as
we have already explained above, while the training samples
for the related domains are obtained and inserted in the
corresponding experience buffers lines 20-23. How to
leverage online training to update the parameters of neural
networks in the DRL agents is explained innes 24-35.
Specifically, for each domain in the multi-domain SD-EON,
Line 25 checks whether there are sufficient training samples
accumulated in the experience buffer. If yes, an onlineingi
will be triggered. Then, in each training step, we randomly
select a batch of samples from the experience buffer, and use
them to calculate the losses of the A-NN, two local C-NNs

The designs of the A-NN and C-NN are identical until nonand weighting factory (Lines 27-28). Next, we obtain their

and the only difference lies in their output layers. The atitpgradients, and use the Adam algorithm [57] with adaptivpsste
layer of the A-NN uses a two-layer FC-NN with the Softmaxi.e., Ao, Ar and\,) to update the parameterisiijes 29-31).
activation function to generate the policy vectdiS;) for the Finally, we use the discounted parameters of the local C-NNs
current states; (i.e., the distribution of probabilities to chooseto update the parameters of the target C-Nhisi¢ 32).



TABLE | TABLE Il

INPUT/OUTPUTSIZES OF THEA-NN AND C-NNs IN EACH DRL AGENT AVERAGE RUNNING TIME OF OFFLINE TRAINING (SECONDY
Domain [ 1[2]3]4[5][6[7][8]09 Domain 1 2 3 4 5
N, 1121212122222 Running Time | 2,928 | 2,880 | 2,823 | 2,976 | 3,600
N, |2|1|2|2|2|2]|2]|2]|2 Domain 6 | 7 | 8 | 9 | -
Outputs | 8 | 4 | 8| 8| 8| 8| 8| 8|8 Running Time | 3,552 | 2,823 | 3,246 | 3,120 -
V. PERFORMANCEEVALUATIONS to next domains. DeepRMSA employs a DRL agent in each
In this section, we conduct extensive simulations to evaluglomain to decide intra-domain provisioning schemes, asul al
DeepCoop from a few perspectives. always chooses the feasible least-used inter-domain limks

next domains. Note that, as the action space of DeepRMSA is
) _ defined based on intra-domain paths and the FS’ on them,
A. Smulation Sefup DRL agents in different domains cannot share any useful
To demonstrate the scalability of DeepCoop on multi-ageiformation or cooperate on inter-domain provisioning.
operations, we conduct most of the simulations with a large-
scale multi-domain SD-EON that consists flomains with
the topology as shown in Fig. 5 [58]. The multi-domain SD
EON contaings1 nodes,158 intra-domain links and4 inter- We first evaluate the performance of the training processes
domain links, where each intra-domain and inter-domaik lirof DeepCoop, which train all the DRL agents to maximize
can accommodatgs8 FS’ and 1074 FS’, respectively. We their long-term rewards. We hope to point out that the tragni
assume that each FS has a bandwidth®df GHz [20]. The process of DeepCoop can be manually divided into the offline
lightpath requests are dynamically generated with thesais and online training phases. In the offline training, thereste
traffic model, and specifically, we fix the average number glarameters of its DRL agents are first initialized randomly,
requests arriving in a time-unit d$) and change the averageand then optimized to ensure that the DRL agent in each
life time of the requests withifil 3, 17] time-units, to emulate DM becomes suitable for online operation/training. Hence,
different traffic loads. Their source and destination noales the offline training should be finished before we can put the
randomly selected from the nodes in thelomains, and their DRL agents into operation in the multi-domain SD-EON.
bandwidth demands are uniformly distributed witfin9] FS’.  Then, in the online operation/training, DeepCoop levesage
The A-NN and C-NNs in a DRL agent adopt the structurés DRL agents to provision inter-domain lightpaths, retsor
that is shown in Fig. 4, and the parameters regarding th#he provisioning results as new training samples, updaies t
input/output sizes are listed in Table I. Here, the valued’pf parameters of the DRL agents with the training samples, and
and N; determine the input size of the A-NN and C-NNs irmakes itself adapt well to the dynamic network environment
each DRL agent. The key hyper-parameters of DeepCioap ( of the multi-domain SD-EON. We discuss the running time of
p and~) are empirically set a8.01 and0.95. The experience the offline training in this subsection, while that of theioal
buffer of each DRL agent can store the lat@s100 samples. operation/training will be analyzed in Section V-D.
To ensure the statistical accuracy, we r2f independent As Eq. (11) suggests that the target Q-valQk.f) can be
simulations and average their results to get each data.poirged to estimate the long-term reward of each DRL agent, we
We program DeepCoop with Python, and run the simulatiopdot how Qiarg €volves in the offline training of each agent in
on a high-performance server that equips Intel Xeon E5-266@®. 6. We observe that the values of all the DRL age@ksg
CPU, 128 GB RAM, and four GTX 1080ti GPU cards. increase quickly and then converge to stable values within
To verify the performance of DeepCoop, we consider sk 000 training steps. Specifically, Table Il lists the average
benchmarks, four of which are well-known RSA heuristicgunning time of the offline training of each DRL agent. It can
(i.e., KSP-FF, KSP-LB, KSP-FA, and FA-CA) [21], the fifth be seen that for all the agents, the average running timeeof th
one is DeepRMSA [28], and the last one is Deeplind, which @ffline training is always within an hour, and the agents for
developed here with the similar design of DeepCoop, excdpe domains that sit in the middle of the 9-domain SD-EON
for that the DRL agents in it do not share any intra-doma@nd have relatively large numbers of nodes spend the longest
information or calculate reward cooperatively. The benchime on offline training €.9., those forDomains 5 and 6).
marks realize inter-domain provisioning with the opemaélb  The training performance of DeepCoop can also be verified
principle of DeepCoop in Fig. 1. For each benchmark namedth the results in Fig. 7, which show the evolution of blawudi
with a RSA heuristic, all the DMs use the heuristic for intraprobability? in the training when the number of served light-
domain provisioning, and always choose the feasible intgrath requests increasdse( the traffic load is fixed at, 500
domain links that have the minimum spectrum usage to dwlangs). The blocking probabilities of the RSA heuristtay

B. Training Performance of DeepCoop

4In a multi-domain network, an inter-domain link usually haslarger SHere, we choose blocking probability as the key metrics talumte
capacity than an intra-domain one to avoid inter-domairtldrztcks. Here, the inter-domain lightpath provisioning algorithms. Thésbecause it relates
for each inter-domain link, the number of FS’ on it is actyddirger than that directly to the revenues of the DMs in a multi-domain SD-EOQMN,, each
can be accommodated in the C-band of a fiber. There are twoteachieve blocked lightpath request reduces the revenues of thedelaitls. Meanwhile,
this: 1) using other bands in a fiber, and 2) deploying mutjpiysical fibers. there are clear correlations between it and other meteigs épectrum usage).
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Fig. 6. Evolving of target Q-valu&arg in the offline training.

10r | | | . : | 107" T T T
| I I ——KSP-FF ] : : : J
P ! ! ! —KSP-LB || i ! =
e ! I ! ——KSP-FA ! >qa2bo o . N —
]t REEEY EE NI 210 |
z | |—Doescoop || g |
a : ! ! DeepRMSA| | ng 3 ! d . —¥—KSP-FF
S M\ Thme 1 [——Deepind |, L 107 FnEnTg P et —%—KSP-LB |3
© I : ~ ] l £ / —#—KSP-FA
g S %% —#—FA-CA
'é @ 107 / T ~|=¥—DeepCoop |7
m 2. ] DeepRMSA
| —¥—Deeplnd
: 10° '
0 2 4 6 8 1012 1300 1400 1500 1600 1700
Number of Served Requests (x 10%) Traffic Load (Erlangs)

Fig. 7. Evolving of blocking probability (traffic load fixed &, 500 Erlangs). Fig. 8. Results on blocking probability (9-domain SD-EON).

almost unchanged throughout the process, which is expecigd plocking probability, which indicates that DeepCoop-pro
while those from the DRL-based approaches decrease with {iges the lowest blocking probability at all the traffic Isad
number of served requests. It can be seen that the b|OCk§thcificaIIy, compared with the best deterministic heirist
probability from DeepCoop converges much faster than thajy g (KSP-FA), DeepCoop reduces the blocking probability
from DeepRMSA, and is the lowest in Fig. 7 after DeepCoop, 95% at most (atl, 300 Erlangs) and by3.55% on average.
being trained with2 x 10* requests. On the other ha”dDeepInd performs worse than DeepCoop in Fig. 8, which
DeepRMSA can only slightly outperform KSP-LB after beingerifies the benefits of making the DRL agents cooperate with
trained with more than0® requests. This is because we desiggach other. Note that, DeepCoop only makes the DRL agents
the actions of the DRL agents in DeepCoop as RSA heuristighare limited intra-domain information, and thus it baksc
which contributes to a much smaller and more relevant actigh tradeoff between the performance of lightpath prowisig
space than that of DeepRMSA. The blocking probability frorgnq the autonomy and privacy of domains well.
DeepCoop converges tol.85 x 10~ after 6 x 10° requests, o further analyze how each agent of DeepCoop selects
and compared with the heuristids(, KSP-FF, KSP-LB, KSP- pga heuristics adaptively, we record the distributions of
FA and FA-CA), it achieve$3.8%, 60%, 40%, and49.8%  selected heuristics ifDomains 4 and 5 at different loads,
reduction on blocking probability, respectively. and plot them in Figs. 9 and 10, respectively. We can see
We notice that the blocking probability of Deeplnd conghat the agent irDomain 4 prefers KSP-LB and KSP-FF,
verges faster than DeepCoop. This is because the DRL aggtSie the one inDomain 5 selects KSP-FA or FA-CA at the
of Deepind is trained independently. Here, in Fig. 7, we Ca{jghest probability. This is because the topologyDufmain
still treat DeepCoop as in its offline training phase befo®e t 4 is rejatively simple such that spectrum fragmentationhig
training processes converge. We also repeat the simuatioRy pe an issue in the dynamic provisioning in iie., the
with various traffic loads, and verify that the results fallthe porder nodes oDomain 4 are usually inter-connected with
same trend as that in Fig. 7. This confirms that the agentsd'my one intra-domain link. On the other hand, the topology
DeepCoop select RSA heuristics adaptively to serve re§Uest pomain 5 is much more complex, and thus fragmentation-
in a dynamic environment, and can achieve better blocking,,re provisioning schemes are more beneficial.
performance than any of the heuristics in its action space. Meanwhile, we notice that even for the same domain, the

most selected heuristic can be different at different taffi
C. Performance on Dynamic Multi-Domain Provisioning loads. For instance, when the traffic load increases frods0
We then provision dynamic lightpath requests in the multerlangs to1,550 Erlangs, the agent ilbomain 4 changes
domain SD-EON with the algorithms. Fig. 8 shows the resulits most-preferred heuristic from KSP-LB to KSP-FF. This is
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. training when the number of served requests increases (
KSP-FF KSP-LB KSP-FA FA-CA the traffic load is fixed at, 300 Erlangs). It can be seen that
DeepCoop providers lower blocking probabilities than hé t
Fig. 10. Distribution of selected heuristics Domain 5. heuristics after being trained with x 10* requests, and its

training converges afte x 10* requests. Specifically, if we

compare the results in Figs. 7 and 12, we can see that even

because even though KSP-LB can balance the spectrum usagg§gh the multi-domain SD-EONs use completely different
in a domain, it provisions lightpaths with a longer averagtp topologies, the training of the DeepCoop in them performs
length than KSP-FF. The longer average path length leadsgf@yijarly. This confirms the universality and scalabilitytbe
more spectrum usage per lightpath, which might lead to highgsyipyted online training implemented in DeepCoop. Hi.

blocking probability when the network is more congesteghsis the results on blocking probability in the 3-domain-SD
especially due to the fact th&omain 4 sits in the middle of £qN which follow the similar trend as that in Fig. 8.

the multi-domain SD-EON and thus has a higher probability of Tanje 111 lists the average running time per inter-domain

being used as an intermediate domain. To this end, we can gegmath provisioning of the algorithms. Here, for all tB&L

that for inter-domain service provisioning, the best h&igi ,54els {e., DeepCoop, DeepRMSA and Deeplind), the run-
to use in each domain depends on a few facter. (the ning time is only for their online operation/training, besa
topology, traffic load, and position of the domain), and tthes he offine training should be finished before they can be put
mechanism to choose the right heuristic is rather comltat i operationi(e., the running time of the offline training does
espemqlly whep the network state can be time-varying. Thigt affect the time-efficiency of the online operationiag).
make_s it infeasible to select the heuristics with a deteistih T results in Table 111 suggest that, similar to the deteistic
algorithm. However, DeepCoop can leverage DRL 10 tacklgs ristics, DeepCoop only uses a few milliseconds to serve
the complicated problem, and it always uses the suitable R@4ch inter-domain lightpath request. This confirms thasit i

heuristic to minimize the blocking probability. suitable for dynamic provisioning. Meanwhile, we noticatth
due to the complexity of the analysis in each DRL agent,
D. Evaluations on Universality and Scalability DeepCoop generally takes more time than the deterministic

In order to show the universality of the design of DeepCooB,eUfiStiCS to provision each inter-domain lightpath. Or th
we change the topology of the multi-domain SD-EON to th&ther hand, when the number of SD-EON domains increases
in Fig. 11 and redo the simulations. This time, the topologﬂ?om 3 to 9, the running time of the deterministic heuristics
only contains three domains, but each domain is generadignerally doubles, while that of DeepCoop only increases
larger than those in the 9-domain topology in Fig. 5. Exceptightly. This verifies the scalability of DeepCoop.
for the necessary minor changes to adapt to the new topology,
we do not change anything in DeepCoop and apply it directly VI. CONCLUSION
to the inter-domain provisioning in the 3-domain SD-EON. In this paper, we designed and optimized DeepCoop, which
Fig. 12 shows the evolution of the blocking probability irethis an inter-domain service framework that utilizes muéipl
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[20]

[11]

[12]

(23]

cooperative DRL agents to achieve scalable network au-
tomation in a multi-domain SD-EON. Specifically, DeepCooB‘”
employs a DRL agent in each domain to optimize intra-domain
service provisioning, while a domain-level PCE is introedc [15]
to calculate the sequence of the domains to go through for
each lightpath request. By sharing a restricted amount of
information among each other, the DRL agents can make thidfl

decisions distributedly. To ensure scalability and ursaéty,

we designed the action space of each DRL agent based[om

well-known RSA heuristics, and architected the agentsdase
on the SAC scenario. With extensive simulations, we demon;

0[’181

strated that DeepCoop can analyze the network environmen
in a multi-domain SD-EON to always select the best RSA

heuristic to minimize the blocking probability, it outperis
the existing algorithms on inter-domain provisioning imigas
simulation scenarios, and the distributed training immated

in it ensures its universality and scalabilityg, its training and
operation do not depend on the topology of the SD-EON).
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