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Abstract—The service provisioning in multi-domain software-
defined elastic optical networks (SD-EONs) is an interesting but
difficult problem to tackle, because the basic problem of lightpath
provisioning, i.e., the routing and spectrum assignment (RSA), is
NP-hard, and each domain is owned and operated by a different
carrier. Therefore, even though numerous RSA heuristics have
been proposed, there does not exist a universal winner that can
always achieve the lowest blocking probability in all the scenarios
of a multi-domain SD-EON. This motivates us to revisit the
inter-domain provisioning problem in this paper by leveraging
deep reinforcement learning (DRL). Specifically, we propose
DeepCoop, which is an inter-domain service framework that uses
multiple cooperative DRL agents to achieve scalable network
automation in a multi-domain SD-EON. DeepCoop employs a
DRL agent in each domain to optimize intra-domain service
provisioning, while a domain-level path computation element
(PCE) is introduced to obtain the sequence of the domains to
go through for each lightpath request. By sharing a restricted
amount of information among each other, the DRL agents can
make their decisions distributedly. To ensure scalability and
universality, we design the action space of each DRL agent based
on well-known RSA heuristics, and architect the agents based on
the soft actor-critic (SAC) scenario. We run extensive simulations
to evaluate DeepCoop, and the results show that DeepCoop can
adapt to the dynamic environment in a multi-domain SD-EON
to always select the best RSA heuristic for minimizing blocking
probability, and it outperforms the existing algorithms on inter-
domain provisioning in various scenarios. Moreover, we verify
that the distributed training implemented in DeepCoop ensures
its universality and scalability (i.e., its training and operation do
not depend on the topology of the SD-EON).

Index Terms—Multi-agent system, Deep reinforcement learn-
ing (DRL), Software-defined networking (SDN), Elastic optical
networks (EONs), Multi-domain, Network automation.

I. I NTRODUCTION

BAckbone networks are recently undergoing dramatic
changes to adapt to the rising of new network paradigms

(e.g., cloud computing, virtualization, 5G, and Internet-of-
things (IoT)) [1–6]. This stimulated intensive interests on de-
veloping highly efficient, flexible and scalable optical network-
ing technologies. Hence, flexible-grid elastic optical networks
(EONs), which possess an agile optical layer and thus can
manage optical spectra more flexibly and spectrum-efficiently
than traditional fixed-grid wavelength-division multiplexing
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(WDM) networks [7–9], have been recognized as a promising
backbone infrastructure for future Internet.

Meanwhile, software-defined networking (SDN) [10, 11]
can be leveraged to realize software-defined EONs (SD-EONs)
[12–14]. Note that, for optical networks, the control and data
planes were already separated before the introduction of SDN,
as defined in the generalized multi-protocol label switching
(GMPLS) architecture [15]. Therefore, the actual innovation
of SDN on optical networks is the introduction of a centralized
controller for network control and management (NC&M) and
centralized signaling protocols (e.g., OpenFlow [10]), with
which the advantages of EONs on spectrum management and
network programmability can be further explored [16].

As a backbone network can span over a relatively large
geographical area and/or include network elements produced
by multiple vendors, it is usually operated by more than
one carriers, each of which manages an autonomous domain.
Hence, we should extend the research on SD-EONs to ad-
dress the multi-domain scenario [15, 17, 18]. Specifically,for
the multi-domain scenario, we assume that each domain is
owned and operated by a different carrier, and thus optical-to-
electrical-to-optical (O/E/O) conversions are applied onboth
sides of each inter-domain link to protect domain autonomy
and privacy [17]. Here, one of the most challenging problems
is how to serve inter-domain lightpath requests cost-effectively
and time-efficiently, in consideration of the autonomy of
each domain and scalability issues. Meanwhile, we need to
point out that in certain multi-domain SD-EONs, inter-domain
lightpaths can also be set up all-optically end-to-end [19].

The rationale behind this is three-fold. First of all, the
fundamental problem of service provisioning in EONs,i.e., the
routing and spectrum assignment (RSA), isNP-hard even for
its single-domain version [20]. Secondly, numerous heuristics
have been designed to solve RSA in various EON scenarios
[21], and thus it will be difficult to choose a proper heuristic
even if we do not require a guaranteed performance gap to
the optimal solution. Lastly but most importantly, to ensure
the autonomy of each domain, a domain manager (DM) will
not disclose detailed intra-domain information to its peerDMs
or the domain-level path computation element (PCE) [22],
and thus it would be challenging to coordinate DMs and the
domain-level PCE for high-quality inter-domain service pro-
visioning (i.e., balancing the tradeoff between the optimality
of service provisioning and the autonomy of domains).

Recently, deep reinforcement learning (DRL) has been
widely admitted as a powerful tool that can make timely and
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smart decisions to solve complex optimizations in dynamic
environments [23]. Specifically, DRL leverages one or more
agents, each of which consists of and optimizes deep neural
networks (DNNs), to interact with a dynamic environment and
find the strategy for making the best decision [24]. This feature
opens up a lot of new opportunities to address the complex
optimizations in NC&M. Therefore, the symbiosis of SDN
and DRL has been considered as the most promising method
to realize network automation, and various DRL models have
been proposed to explore its benefits [25–27].

Previously, people leveraged DRL to propose DeepRMSA
[28] to solve RSA in a single-domain EON. Their simulation
results suggested that after being trained with5, 000, 000 re-
quests, DeepRMSA could outperform two well-known heuris-
tics (i.e., the shortest-path routing and first-fit (SP-FF) and
K-shortest-path routing and first-fit (KSP-FF)), and compared
with the better benchmark (KSP-FF), it could reduce the
blocking probability by20.3%. Meanwhile, DeepRMSA was
also considered in a multi-domain SD-EON, to address inter-
domain provisioning [29]. However, DeepRMSA only has
limited scalability and universality1, because it chooses the
actual RSA scheme (i.e., the path and frequency slots (FS’)
on it) for each lightpath. Specifically, the size of DeepRMSA’s
action space will increase dramatically, if the operator wants to
improve its performance and thus considers more routing paths
and more FS blocks on each path for a lightpath. Furthermore,
since the definition of the actions in DeepRMSA is tightly
related to the parameters of an EON (e.g., the topology and
number of FS’ on each link), the DRL model that has been
trained in the EON would become inapplicable in another one.

The aforementioned drawbacks motivated us to propose
DeepCoop in [30], which utilizes multiple cooperative DRL
agents to achieve scalable network automation in a multi-
domain SD-EON. For each lightpath request, DeepCoop first
uses a domain-level PCE to obtain the sequence of the domains
to go through, and then relies on the DRL agents assigned to
the related domains to 1) obtain intra-domain RSA schemes
and 2) select proper inter-domain links to concatenate the
intra-domain path segments. By only sharing a restricted
amount of information among each other, the DRL agents
can make their decisions distributedly. To ensure scalability
and universality, we designed the action space of each DRL
agent based on well-known RSA heuristics. In other words,
instead of selecting the RSA scheme directly, a DRL agent in
DeepCoop chooses a proper RSA heuristic from its algorithm
pool based on the current network status, and then uses the
heuristic to calculate the RSA scheme for a lightpath request.
Hence, the action space becomes significantly smaller, and it
is independent of the parameters of an EON.

Although our preliminary study in [30] has already con-
firmed the scalability and universality of DeepCoop and
verified that it can outperform existing benchmarks, its per-
formance can still be improved. Hence, this paper expands
it to make the problem-solving more comprehensive, with
the following improvements. Firstly, we re-architect its DRL

1Here, the universality means that a DRL-based approach’s design is generic
to the topology and resource configuration of a multi-domainSD-EON.

agents based on the soft actor-critic (SAC) scenario, whichcan
achieve a better tradeoff between exploration and exploitation
[31] than the advantage actor critic (A2C) considered in [30].
This effectively prevents DeepCoop from being trapped by
local optima, so that it can perform better in a multi-domain
SD-EON with many domains. Meanwhile, by sharing limited
state information and obtaining their rewards cooperatively, the
DRL agents can converge faster in distributed online training.

Secondly, we redesign the action and state spaces of each
DRL agent to make DeepCoop more universal. Note that, for
a lightpath request, the DRL agent assigned to each related
domain needs to 1) select a RSA heuristic, and 2) choose an
inter-domain link to go to the next domain. Our design in
[30] architected the action space based on the second task,
which made it domain-specific since inter-domain links can
be different between different domain pairs. Hence, this work
redesigns the action space to fix its dimension over domains.
Similarly, to unify the state spaces of DRL agents, we classify
state information as intra-domain and inter-domain features,
and represent them with feature vectors. Thirdly, we improve
the algorithm used by the domain-level PCE for calculating the
domain sequence of each lightpath request. Hence, it can work
better with the DRL agents to reduce the blocking probability.
Finally, we conduct extensive simulations with a multi-domain
SD-EON whose topology is much larger than the one used in
[30] to evaluate our proposal and verify its effectiveness.

The rest of paper is organized as follows. Section II provides
a brief survey on the related work. We present the architecture
of DeepCoop and its operation principle in Section III. The
detailed design of the multi-agent and cooperative DRL model
for DeepCoop is introduced in Section IV. We evaluate the
performance of our proposal with numerical simulations in
the Section V. Finally, Section VI summaries the paper.

II. RELATED WORK

To facilitate service provisioning, the problem of RSA and
its variants have been studied intensively since the inception
of EONs. Previous investigations have covered the RSA al-
gorithms for almost all types of communications, including
unicast [32–34], multicast [35–37], anycast [38],etc. For a
comprehensive tutorial on RSA algorithms, one is recommend-
ed to refer to [21]. Although for a given EON, the optimal
RSA scheme of one lightpath can be obtained time-efficiently
with the breadth-first search, optimizing the RSA schemes
for multiple lightpaths jointly isNP-hard [20]. Most of the
existing RSA algorithms are time-efficient heuristics, which
cannot provide performance guarantee and might only perform
well for certain specific scenarios. Hence, choosing the right
RSA algorithm will be a hassle, especially when the EON has
a time-variant environment. This is because in dynamic EONs,
lightpath requests can be blocked for various reasons, and thus
a heuristic whose objective is deterministic cannot ensurethe
smallest blocking probability all the time [39].

By implementing RSA algorithms in the control plane, peo-
ple have conducted experiments to evaluate the performance
of single-domain SD-EONs on cost-effectiveness, programma-
bility and resiliency [40–43]. The control plane architecture of
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multi-domain SD-EONs has been considered in [15, 17, 44–
46]. The proposals in [15, 17, 44] let the SDN controllers of
domains (i.e., the DMs) cooperate in a peer-to-peer manner,
and utilized the flat control plane architecture for inter-domain
service provisioning. As there is no domain-level PCE in the
flat architecture, it might take relatively long time to provision
each inter-domain lightpath in a multi-domain SD-EON.

In order to address this scalability issue, the hierarchical
architecture, which uses a domain-level PCE (i.e., a broker)
to coordinate the DMs for inter-domain provisioning, was
proposed in [45]. Specifically, for each lightpath request,the
domain-level PCE first determines the sequence of the domains
to go through, based on the intra-domain virtualized topologies
(ID-VTs) provided by the DMs and the status of inter-domain
links, and then the DM of each selected domain calculates
the RSA scheme for the lightpath segment within its domain.
Hence, inter-domain provisioning can be realized without
violating the autonomy of each domain. To further protect the
domain autonomy, a market-driven multi-broker architecture
was designed in [46] to introduce multiple domain-level PCEs
for avoiding a single one playing the role of monopoly.

The studies in [17, 44] considered the algorithms for realiz-
ing inter-domain provisioning in the multi-domain SD-EONs
that use the flat control plane architecture. Considering the
hierarchical architecture that consists of multiple domain-level
PCEs, we leveraged game theory to tackle the inter-domain
provisioning in it in [18, 47]. One interesting observation
in [47] is that by mixing the usages of two RSA heuristics
adaptively, one can achieve lower blocking probability than
using any one of the heuristics constantly. This actually
motivates us to design the action space of the DRL model
used in this work based on a few well-known RSA heuristics.

Previously, people proposed a game theoretic approach
to deal with the dynamic spectrum management in multi-
domain wireless networks in [48]. Meanwhile, leveraging the
symbiosis of SD-EON and DRL to achieve agile lightpath
provisioning has just started to attract research interestsince
recently [28, 29, 49, 50]. However, these existing approaches
designed the action spaces of their DRL models based on
the actual RSA schemes for lightpaths, which, as we have
explained in the previous section, leads to scalability and
universality issues. Therefore, although the study in [29]also
tried to utilize multi-agent DRL to solve inter-domain lightpath
provisioning, the restrictions on scalability and universality
still exist. Moreover, as the proposal in [29] let the DRL agents
compete but not cooperate with each other, the operation
complexity would actually increase with the number of agents.
Multi-agent DRL was also included in the control plane of a
multi-domain SD-EON in [51], but it was used for quality-of-
transmission (QoT) estimation. Hence, to our best of knowl-
edge, this is the first work that can utilize multiple cooperative
DRL agents to realize scalable network automation for the
inter-domain service provisioning in multi-domain SD-EONs.

III. PROPOSEDSCALABLE INTER-DOMAIN PROVISIONING

FRAMEWORK

In this section, we describe the network architecture of
DeepCoop and explain the inter-domain provisioning with it.

A. Architecture of DeepCoop

We design DeepCoop to tackle inter-domain lightpath pro-
visioning in a dynamic multi-domain SD-EON, which is
a relatively complex problem. Specifically, it involves two
subproblems, 1) finding a domain-level path for each inter-
domain lightpath (i.e., a sequence of domains from the source
to the destination of the lightpath), and 2) calculating a feasible
RSA scheme in each domain on the domain-level path.

The overall system architecture of DeepCoop is shown in
Fig. 1 [30], which utilizes the hierarchical control plane for
inter-domain service provisioning. Specifically, in the multi-
domain SD-EON, each domain has a domain manager (DM),
which is essentially the controller of all the data plane elements
in its domain, and the domain-level PCE is introduced to get
the global information about the domains by merging the intra-
domain status from the DMs, and coordinate the DMs to set
up inter-domain lightpaths accordingly. Here, each DM reports
its intra-domain status by abstracting and submitting an intra-
domain virtualized topology (ID-VT), which is a simplified
topology that only contains aggregated information about the
nodes and links in the domain (i.e., the domain’s border nodes
interconnected with a fully-meshed set of virtual links), for
protecting the autonomy and privacy of each domain [47].

To provision an inter-domain lightpath request, the domain-
level PCE first collects the information about the request and
ID-VTs from the DMs, and then calculates the domain-level
routing path for the request. Note that, there are generallytwo
approaches for the domain-level PCE to calculate a domain-
level routing path: 1) selecting only the domain sequence (i.e.,
the sequence of the domains to go through from the lightpath’s
source to its destination), and 2) selecting the domain sequence
together with related border nodes [52]. We design the domain-
level PCE to use the first approach because it leaves more
space for each DM to optimize intra-domain RSA with DRL.

Each DM includes a DRL agent and an SDN controller. The
controller sends the state of the domain and the information
about pending lightpath requests (if the domain is the source
domain) to the DRL agent, and establishes intra-domain light-
path segments according to the returned provisioning schemes.
Meanwhile, the controller also collects the new state of the
domain after setting up an intra-domain lightpath segment,and
feeds it back to the DRL agent for reward calculation. During
training, the DRL agent learns how to analyze the current state
of the domain to 1) select a proper RSA heuristic from its
algorithm pool to compute an intra-domain lightpath segment,
and 2) choose the best inter-domain link for the lightpath
segment to connect to its next domain. Meanwhile, the DRL
agents share a restricted amount of intra-domain information
among each other and calculate rewards collaboratively to
improve their performance on service provisioning.

B. Operational Principle of DeepCoop

We model a multi-domain SD-EON withN domains as
G = {Gi(V i, Ei), ∀i ∈ [1, N ], Ẽ}. Here,Gi(V i, Ei) denotes
the intra-domain topology ofDomain i, where V i and Ei

are the sets of nodes and links in the domain, andẼ is the
set of inter-domain links. Each intra-domain linkse ∈ Ei in
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Domain i can accommodateF i FS’, while each inter-domain
link ẽ ∈ Ẽ can supportF̃ FS’. As we assume that there are
O/E/O conversions on both sides of each inter-domain link, the
spectrum continuity constraint only needs to be consideredin
intra-domain RSA calculation. An inter-domain link between
Domains i and j can also be denoted as̃ei,ju,v, whereu ∈ V i

andv ∈ V j are the border nodes at its two ends.

Note that, the physical topologyG will not be available to
the domain-level PCE, and it can only merge the ID-VTs from
the DMs to get an aggregated topology.Algorithm 1 explains
the procedure for obtaining the aggregated topology.Lines 2-
14 are for the DMs to abstract and report the ID-VTs regarding
their domains. Specifically, for eachDomain i, we first find
all the intra-domain links, each of which uses at least one
of the border nodes as an end-node, and stores the average
FS usage on them inw′

i (Lines 4-5). Then, in theLines 6-
11, we check all the inter-domain links betweenDomain i

and each of its adjacent domains (e.g., Domain j), store the
average FS usage on them inw′

i,j , aggregate the inter-domain
links as an aggregated link̃e′i,j betweenDomains i and j,
and assign the weight of the aggregated link asw′

i,j . Next,
we abstract the topology ofDomain i (Gi) as an aggregated
node and assign its weight asw′

i, and form an ID-VT with the
aggregated node and all the aggregated links that terminateat
it to report to the domain-level PCE (Lines 12-13). Finally, the
domain-level PCE merges all the received ID-VTs to obtain an
aggregated topology to represent the multi-domain SD-EON
(Line 16), and for each inter-domain lightpath, it calculates the
least-weighted pathP η in the aggregated topology from the
lightpath’s source domain to destination domain (Line 17). The
pathP η is just the domain-level routing path of the lightpath.

Fig. 2 shows an example on how to build an aggregated
topology, where the physical topologyG consists of three do-
mains and four inter-domain links. The domains are abstracted
into three nodes in the aggregated topology, while the inter-
domain links among them are also aggregated correspondingly.
For instance, in the aggregated topology,Domain 2 is abstract-
ed as virtual nodev′2 and the two inter-domain links between it
andDomain 3 (i.e., ẽ2,32,2 andẽ2,33,3), are aggregated as the virtual
link ẽ′2,3 that connects virtual nodesv′2 andv′3. In Domain 2,
all the intra-domain links that directly connect to the border
nodes are in setE′

2 = {e21, e
2
2, e

2
4, e

2
5, e

2
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Fig. 2. Example on constructing an aggregated topology.

on them are{0.7, 0.2, 0.3, 0.4, 0.5}, respectively, which are
marked aside the links in Fig. 2. Hence, the weight of virtual
nodev′2 should bew′

2 = 0.42 (i.e., the average FS usage of
all the links inE′

2), and the weight of virtual link̃e′2,3 should
be the average FS usage ofẽ

2,3
2,2 and ẽ2,33,3 (i.e., w′

2,30.2).

Algorithm 1: Construction of Aggregated Topology

1 Procedure of DMs:
2 for each Domain i ∈ [1, N ] do
3 E′ = ∅;
4 find all the intra-domain links that directly connect to

border nodes inDomain i, and store them inE′

i;
5 calculate average FS usage on all the links inE′

i and
store the value inw′

i;
6 for each neighbor Domainj of Domain i do
7 E′ = ∅;
8 find all the inter-domain links that are between

Domains i andj, and store them inE′

i,j ;
9 calculate average FS usage on all the links in

E′

i,j and store the value inw′

i,j ;
10 aggregate all the links inE′ as an aggregated

link ẽ′i,j and assign a weightw′

i,j to it;
11 end
12 abstractGi(V i, Ei) as an aggregated node and assign

a weightw′

i to it;
13 connect all aggregated links to the aggregated node

to form an ID-VT to report to domain-level PCE;
14 end
15 Procedure of Domain-level PCE:
16 collect all the ID-VTs from DMs and merge them into an

aggregated topology;
17 apply the Dijkstra algorithm to the aggregated topology

to find the least-weighted pathP η;

With the domain-level routing pathP η, the domain-level
PCE can coordinate the related DMs to set up the inter-domain
lightpath end-to-end. Specifically, each related DM leverages
its DRL agent to determine both the RSA scheme of the
lightpath segment in its domain and the inter-domain link to
go to the next domain. Note that, instead of making their



5

SDN Controller 1

Actor & Critic

DNNs

RSA 

Algorithm

Pool

Experience 

Buffer

Feature 

Engineering 

Reward

System

Local 

TED

DRL Agent 1

Actor & Critic

DNNs

RSA 

Algorithm

Pool

Experience 

Buffer

Feature 

Engineering 

Reward

System

Local 

TED

DRL Agent 2

Feedback

S
e
le

c
te

d
 R

S
A

 

A
lg

o
ri

th
m

 &
 

In
te

r-
d
o
m

a
in

 L
in

k
Domain State 

& Requests

Sharing 

State 

Information

Cooperative

Reward 

Calculation 

Selected

Inter-domain 

Link

SDN Controller 2

Fig. 3. Cooperation between two DRL agents for inter-domainprovisioning.

decisions independently, the DRL agents actually cooperate
with each other to improve the performance of inter-domain
service provisioning. We use Fig. 3 to briefly explain the
cooperation among the DRL agents, while their detailed design
and operation principle will be discussed in the next section.
Here, we assume that the domain-level path needs to route
a lightpath fromDomain 1 to Domain 2. First of all, DRL
Agent 1 gets the current state of its domain and also fetches
the state parameters ofDomain 2 from DRL Agent 2. Then,
it selects a proper RSA algorithm and an inter-domain link to
go to Domain 2 based the state information. Next, the RSA
scheme of the lightpath segment inDomain 1 is calculated by
the selected RSA algorithm. Note that, as the lightpath will
experience O/E/O conversion in the related border nodes, we
can simply determine its spectrum assignment on the inter-
domain link with the first-fit approach. Finally, with the intra-
domain RSA scheme and the inter-domain link, the ingress
node inDomain 2 can be determined.

DRL Agent 2 uses the same procedure to obtain the RSA
scheme of the lightpath segment in its domain, but since
Domain 2 is the destination domain, it does not need to
collect the state parameters of the next domain. When the end-
to-end RSA scheme of the inter-domain lightpath has been
determined, the related DMs instruct their SDN controllers
to establish the lightpath and collect the domain states after
the service provisioning. Hence, the reward systems of the
DRL agents can calculate the rewards of their selected actions
collaboratively, for evaluating the whole inter-domain RSA
scheme better. Specifically, each DRL agent on the domain-
level path forwards its reward to the DRL agent of its previous
domain. For instance, in Fig. 3,DRL Agent 2 first calculates
the reward of its selected action based on the new state in
Domain 2, and then sends the reward to the reward system in
DRL Agent 1. Next, DRL Agent 1 calculates its own reward
based on the reward fromDRL Agent 2 and the new state
in Domain 1. After obtaining the reward, each DRL agent
stores the reward and its corresponding action and state in its
experience buffer as a training sample, which will be leveraged
to update its DNNs in the online training.

IV. M ULTI -AGENT AND COOPERATIVE DRL FOR

INTER-DOMAIN SERVICE PROVISIONING

In this section, we elaborate on the multi-agent DRL model
used by DeepCoop for inter-domain service provisioning.

A. Background of Multi-agent DRL

The principle of DRL is about making one or more intel-
ligent agents learn on how to act to maximize the reward by
interacting with a dynamic environment constantly. The learn-
ing process can be modeled as a Markov decision process [24],
which is defined by a tuple{S, A,R,P}. Here,S represents the
state space (i.e., the set of all the states of the environment),A

denotes the action space (i.e., the set of all the actions that the
agent(s) can take),R is the reward function that can be used
to calculate the reward (i.e., the Q-value) obtained by an agent
after it applying an actiona ∈ A in respond to a stateS ∈ S,
and P is the matrix that describes the transition probabilities
of the states. The objective of a DRL is to find the optimal
policy π∗, which can map each stateS ∈ S to a proper action
a ∈ A such that the reward defined byR can be maximized.
Note that, a reward usually contains two parts, which are the
immediate rewardr and state valueδ, and in practice, it can
be approximated by definingR as

R(at, St) =
∑

t

γ
t · rt, (1)

wheret is the time instant,γ is the discount factor, andrt is
the immediate reward at timet.

Multi-agent DRL makes several DRL agents work on coop-
erative task(s) to achieve global optimality, and thus we assign
a DRL agent to each DM and leverage them to realize high-
performance inter-domain service provisioning. Note that, in a
multi-agent DRL model, the DRL agent can cooperate in two
ways. The first one is that the agents will not communicate
with each other, and their cooperation is coordinated with a
central critic neural network (C-NN). Specifically, the central
C-NN can observe the operations of all the DRL agents, esti-
mate their Q-values, and coordinate their cooperative actions
accordingly [53]. Nevertheless, for the service provisioning in
a multi-domain SD-EON, introducing a central C-NN would
limit the scalability of the NC&M and damage the autonomy
of the domains. Moreover, the provisioning of an inter-domain
lightpath might not involve all the DMs, and thus using
the central C-NN to evaluate the actions of all the DRL
agents constantly is not only unnecessary but also misleading.
Therefore, we turn to the second way that lets the agents
communicate with each other for enabling cooperation [54].

B. Modeling Inter-domain Provisioning with Multi-agent DRL

As we have explained in the previous section, the DRL agent
in each DM needs to select both the RSA algorithm to compute
the lightpath segment in its domain and the inter-domain link
to go to the next domain. Hence, its action affects not only
the service provisioning in its own domain but also that in the
next domain. To this end, we design the state of each DRL
agent to include the information about the current and next
domains, and formulate the reward function to consider the
new state of the current domain and the feedback from the
next domain. The model of each DRL agent is as follows.

State: At time instantt, the stateSj
t observed by DRL agent

Ψj in Domain j contains the information about the current and
next domains. For the current domain, its state is represented
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by the status of a few paths, which are from the source node
in it to the border nodes that connect to the next domain.
Here, the source node is just the source of the inter-domain
lightpath if the current domain is the source domain, and it is
where the lightpath enters the current domain, otherwise2. For
each pair of the source node and a feasible border node, we
calculateK shortest paths in the current domain, and record
three parameters about each path as its state, which are 1)
the average size of available FS blocks, 2) the number of
available FS blocks, and 3) the start-index of the first available
FS block, for serving the lightpath request on the path. Hence,
the information about the node pair can be represented by a
feature vector that includes all the parameters of theK paths,
where the length of the feature vector is3·K. With the physical
topology G, we can get the maximum number of feature
vectors for a domain asNb. Therefore, the information about
the current domain can finally be denoted withNb feature
vectors{Φintra

i , i ∈ [1, Nb]}, and if the actual number of feature
vectors is less thanNb, we fill the remaining ones with zeros.

For the next domain, its state is represented by the status of
1) all the inter-domain links between it and the current domain
and 2) a few related paths in it. We record the FS usage on each
inter-domain link. Then, as each inter-domain link determines
the ingress border node in the next domain, the information
about the pair of the ingress border node and a feasible egress
border node3 is also recorded. Specifically, the DRL agent of
the next domain calculatesK shortest paths between the two
border nodes, and reports the average values of 1) the sizes
of available FS blocks, 2) the numbers of available FS blocks,
and 3) the start-indices of the first available FS blocks on the
paths, to the DRL agent of the current domain. Hence, for the
next domain, each feature vector (with a length of 4) includes
the FS usage on an inter-domain link and the three average
values about paths between a related border node pair in it.

For instance, in Fig. 2, if we need to set up a lightpath
from v13 to v34 and its domain-level routing path isDomain 1
→ Domain 2 → Domain 3, the DRL agent forDomain 1 can
get two feature vectors about the next domain (i.e., Domain 2).
The two vectors store the information about{ẽ1,21,1, v21 → v22}

and {ẽ1,21,1, v21 → v23}. Here, v21 → v22 refers to a pair of
ingress border node and egress border node, and features of
the paths between them are considered for the next domain
state. We also fix the number of this type of feature vectors
as its maximal value (i.e., Nl), and thus the information
about the next domain is denoted withNl feature vectors
{Φinter

i , i ∈ [1, Nl]}. Similarly, if the actual number of feature
vectors is less thanNl, we append with zero filling. Finally,
by combining the feature vectors{Φintra

i , i ∈ [1, Nb]} and
{Φinter

i , i ∈ [1, Nl]}, we obtain the state of a DRL agent.
Action: At time instant t, the actionajt taken by DRL

agentΨj in respond to stateSj
t includes a RSA algorithm

to compute the lightpath segmentDomain j and the inter-
domain link for the lightpath go to the next domain. Hence,

2Note that, as each lightpath is sequentially served from source to destina-
tion by the DMs along the domain-level routing path, each DRLagent should
know the source node in its domain when it is invoked.

3Here, a feasible egress border node is one node that connectsto the domain
after the next domain, according to the domain-level routing path.

each action can be represented as a tuple{ωRSA, ẽ}, where
the RSA algorithmωRSA is from an algorithm poolΩRSA, and
ẽ is the selected inter-domain link. In this work, we select
four well-known RSA heuristics to build the algorithm pool
ΩRSA, which are theK-shortest path and first-fit (KSP-FF),K-
shortest path and load-balancing (KSP-LB),K-shortest path
and fragmentation-aware (KSP-FA), and fragmentation-aware
and congestion-avoidance (FA-CA).

These RSA heuristics are considered because they are time-
efficient, and each of them performs well in certain condition
[21]. To provision a lightpath, KSP-FF selects the shortestpath
in hops and uses the first-fit scheme for spectrum assignment
(i.e., it helps to reduce the overall spectrum usage), KSP-LB
checksK shortest paths and tries to balance the spectrum
usages on them (i.e., it can avoid causing bottleneck links
especially when the EON is relatively crowded), KSP-FA
also considersK shortest paths but tries to induce the least
spectrum fragmentation, and FA-CA tries to not only cause the
least spectrum fragmentation but also balance the spectrum
usages onK shortest paths. In this work, we follow their
original designs to implement the RSA heuristics.

Reward: The objective of the inter-domain service provi-
sioning is to minimize the blocking probability of lightpath
requests. Hence, as each actiona

j
t taken by DRL agentΨj

determines not only the algorithm for intra-domain RSA cal-
culation but also the inter-domain link to the next domain, the
instant rewardrjt of DRL agentΨj for the action should relate
to whether or not the lightpath request can be successfully
provisioned in the current and next domains. Specifically, if the
lightpath can be provisioned in a domain, a positive reward is
returned by the domain, and the reward is negative, otherwise.
Then, the instant rewardrjt is obtained by summarizing the
rewards from the current and next domains.

However, it would be difficult to accurately evaluate the
actions, if we only consider whether the lightpaths can be
provisioned. Therefore, the positive reward of successfulpro-
visioning in the current domain is defined as the sum of 1)
the FS availability on the path with the minimum spectrum
usage in statesSj

t+1 and S
j
t , and 2) the ratio of the size

of the largest FS block on the lightpath’s path candidates in
the current domain inSj

t+1 to that in S
j
t . This encourages

DRL agents to select the actions that can leave more spectra
for future requests and thus lead to lower long-term blocking
probability. For the positive reward in the next domain, we
define it as the difference between the maximum and minimum
FS availabilities on the paths between its ingress and egress
border nodes in statesSj

t andSj
t+1, to ensure load-balancing

in the next domain. The negative rewards of the current and
next domains are set as−1. Note that, if the current domain
is the destination domain, the reward in the next domain is0.

C. Design of DRL Agent

We design the structure of each DRL agent based on the soft
actor-critic (SAC) scenario [31], which tries to maximize not
only the long-term reward in Eq. (1) but also the policy entropy
that measures the randomness of policy selection. By doing
so, the DRL agent based on SAC is encouraged to explore
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its action space more thoroughly and reduce the possibilityof
premature convergence in training. Specifically, the training of
DRL agentΨj needs to find the optimal policyπ∗ as

π
∗ = argmax

πj

Eτ∼π

{

∞
∑

t=0

γ
t
[

r
j
t + α ·H(πj(Aj |Sj

t ))
]

}

, (2)

where E(·) calculates the expectation of all the state-action
pairs generated by a policy,πj is the DRL agent’s policy that
can be parameterized by its actor neural network (A-NN) with
parametersθa, τ denotes the trajectories induced by policyπj ,
andrjt is the immediate reward after taking actionajt at state
S
j
t , H(·) calculates the entropy of policyπj as

H [πj(Aj |Sj
t )] = −

∑

aj∈Aj

log(aj |Sj
t ), (3)

γ ∈ [0, 1] is the discount factor for long term reward calcu-
lation andα is weighting factor that determines the relative
importance of the immediate reward and the policy entropy.
As α actually balances the tradeoff between exploration and
exploitation, we set it as a learnable parameter and design an
training process for it. Because the designs of all the DRL
agents are identical, we will not differentiate them and omit
the superscript “j” in the following discussions.

To evaluate policyπ and improve it in the training, we first
need to estimate the Q-valueQ(St, at) (i.e., the long-term
reward of taking actionat at stateSt) and state valueδ(St)
(i.e., the goodness of stateSt). We define the state value as

δ(St) = Eτ∼π

[

∞
∑

t=0

γ
t(rt + α ·H(π(A|St)))

]

. (4)

Meanwhile, according to the Bellman equation [24], the Q-
value can be approximated as

Q(St, at) = Eτ∼π [rt + γ · δ(St+1)] , (5)

By combining Eqs. (4) and (5), we obtain the relation between
δ(St) andQ(St, at) as

δ(St) = Eτ∼π [Q(St, at) + α ·H(π(A|St))] . (6)

Hence,Q(St, at) can be approximated withQ(St+1, at+1) as

Q(St, at) =Eτ∼π {rt + γ · [Q(St+1, at+1) + α ·H(π(A|St+1))]}
(7)

As the action space is limited and discrete, the A-NN outputs
a policy vectorπ(St) (i.e., the distribution of the probabilities
to choose each action inA at stateSt), and eachQ(St, at)
can be estimated. Hence, we simplify Eq. (6) as

δ(St) = π(St)
T ⊙ [Q(St)− α · log(π(St))], (8)

whereπ(St)
T is the transpose ofπ(St), ⊙ is the inner product

for matrices, andQ(St) is the vector that includes all the Q-
values related to stateSt (i.e., [Q(St, at), at ∈ A]).

We design two separate critic neural networks (C-NNs) to
parameterize the aforementioned Q-value estimation, and their
parameters areθc,1 andθc,2, respectively. At each time instant
t, they take a stateSt as the input and output two Q-values,i.e.,
Qc,1 andQc,2, respectively. We take the smaller one ofQc,1

andQc,2 as the actual Q-value, to avoid the overestimation of
state values [55]. Meanwhile, we also design two target C-NNs
whose parameters arẽθc,1 andθ̃c,2, respectively. They are used

Policy Vector ( ) / Q-value Vector ( )

Environment State

Input 

Layer

Concatenate 

Layer

Output 

Layer

Softmax/Relu Activation Function

Fig. 4. Structures of A-NN and C-NNs.

to estimate the Q-value of stateSt+1, and their parameters are
updated slowly with those of the two original C-NNs, which
will be referred to as local C-NNs in the following, as

θ̃c,1 =(1− ρ) · θ̃c,1 + ρ · θc,1,

θ̃c,2 =(1− ρ) · θ̃c,2 + ρ · θc,2,
(9)

where ρ ∈ (0, 1) is a constant. We introduce the target C-
NNs to stabilize the training process [56]. To enable them to
estimate Q-values accurately, we define their loss functions as

JQ(θc,k) = ED

{

1

2
(Qθc,k(St)−Qtarg)

2

}

, k ∈ {1, 2}, (10)

whereED(·) means to calculate the expectation over all the
training samples in the experience bufferD (i.e., each training
sample is a tuple{St, at, rt, St+1}), andQtarg is modeled as

Qtarg = rt+γ ·π(St)⊙
{

min
k

[

Qθ̃c,k
(St+1)

]

− α · log [π(St+1)]
}

.

(11)
Then, the losses of the two local C-NNs are the mean square
error (MSE) between their outputs andQtarg, respectively.

Meanwhile, we define the loss function of the A-NN as

Jπ(θa) = ED

{

π(St)
T ⊙

{

min
k

[

Qθc,k (St)
]

− α · log [πt(St)]
}}

,

(12)
Note that, we setα as a learnable parameter, and thus it should
have a loss function too, which is defined as

Jα = ED

{

−α ·
{

log [π(at|St)] + H̃
}}

, (13)

whereH̃ is a constant scalar that represents the target entropy.
As shown in the Fig. 4, we design the A-NN and C-NNs

with similar and universal structures, and make sure that they
can be applied to an arbitrary domain in the multi-domain
SD-EON. Moreover, as the design of the DRL agent with the
A-NN and C-NNs is universal, when a new domain is added,
we can initialize its DRL agent with the trained A-NN and C-
NNs in an existing domain. This avoids the hassle of training
the A-NN and C-NNs from the scratch. The structure in Fig. 4
consists of three layers,i.e., the input, concatenate, and output
layers. The input layer usesNb two-layer and fully-connected
neural networks (FC-NNs) to take in the feature vectors of
the current domain (i.e., {Φintra

i , i ∈ [1, Nb]}), and Nl two-
layer FC-NNs to receive the feature vectors of the next domain
(i.e., {Φinter

i , i ∈ [1, Nl]}). Their activation function is

Relu(x) = max(0, x), (14)
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which is widely used in machine learning to avoid the van-
ishing gradient problem. Then, the concatenate layer organizes
the feature vectors{Φintra

i , i ∈ [1, Nb]} and{Φinter
i , i ∈ [1, Nl]}

as two long vectors, respectively, from which an FC-NN
abstracts features about the current and next domains.

Algorithm 2: Training of Cooperative DRL Agents

1 initialize parameters of A-NN and C-NNs for all DRL
agents{θja, θ

j
c,1, θ

j
c,2, ∀j ∈ [1, N ]};

2 θ̃
j
c,k = θ

j
c,k, ∀j ∈ [1, N ], k ∈ {1, 2};

3 Dj = ∅, ∀j ∈ [1, N ];
4 for each pending lightpath request do
5 release resources occupied by expired requests;
6 calculate domain-level pathP η for the lightpath

request withAlgorithm 1;
7 for each Domainj ∈ P η (source→destination) do
8 get feature vectors to represent stateS

j
t ;

9 use A-NN to get action asajt = πθa
t (Sj

t );
10 use the RSA heuristicωRSA in a

j
t to calculate

intra-domain RSA scheme;
11 combine intra-domain RSA with inter-domain

link ẽ in a
j
t as the overall RSA forDomain j;

12 if the RSA scheme can be deployed then
13 get the source node in the next domain;
14 record “provisioned” in reward system ;
15 else
16 record “blocked” in reward system ;
17 break;
18 end
19 end
20 reward systems share provisioning results;
21 update domain states as{Sj

t ⇒ S
j
t+1, ∀j ∈ P η};

22 calculate immediate rewards{rjt , ∀j ∈ P η};
23 insert training sample{Sj

t , a
j
t , r

j
t , S

j
t+1} into Dj ;

24 for each Domainj ∈ [1, N ] do
25 if there are enough training samples in Dj then
26 for each training step do
27 randomly select a batch of samples;
28 get losses with Eqs. (10), (12) and (13);
29 θ

j
c,k = θ

j
c,k − λQ · ∇

θ
j

c,k

JQ, ∀k ∈ {1, 2};

30 θja = θja − λπ · ∇
θ
j
a
Jπ;

31 αj = αj − λαj · ∇αjJαj ;
32 θ̃

j
c,k = ρ · θjc,k + (1− ρ) · θ̃jc,k, ∀k ∈ {1, 2};

33 end
34 end
35 end
36 end

The designs of the A-NN and C-NN are identical until now,
and the only difference lies in their output layers. The output
layer of the A-NN uses a two-layer FC-NN with the Softmax
activation function to generate the policy vectorπ(St) for the
current stateSt (i.e., the distribution of probabilities to choose
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Fig. 5. Topology of 9-domain SD-EON used in simulations.

the actions inA). Here, the Softmax activation function is

Softmax(xi) =
exi

M
∑

j=1

exj

, (15)

wherexi is thei-th element in aM -dimension vectorX , and
it helps to normalize the elements inX . On the other hand,
the output layer of a C-NN uses a two-layer FC-NN with the
Relu activation function to provide the Q-value vectorQ(St).
Note that, similar to the normal case of DRL design [23], we
design and tune the architectures of the A-NN and C-NN and
their reward and target Q functions empirically.

D. Training Process of Cooperative Agents

Algorithm 2 explains how to train the cooperative DRL
agents for inter-domain provisioning.Lines 1-3 are for the
initialization, and for each DRL agent, we initialize the pa-
rameters of its A-NN, local C-NNs, and target C-NNs, and
empty its experience buffer. Then, the for-loop serves pending
lightpath requests one-by-one and invokes online training
when enough training samples have been accumulated (Lines
4-36). Here,Lines 5-19 provision an inter-domain lightpath as
we have already explained above, while the training samples
for the related domains are obtained and inserted in the
corresponding experience buffers inLines 20-23. How to
leverage online training to update the parameters of neural
networks in the DRL agents is explained inLines 24-35.
Specifically, for each domain in the multi-domain SD-EON,
Line 25 checks whether there are sufficient training samples
accumulated in the experience buffer. If yes, an online training
will be triggered. Then, in each training step, we randomly
select a batch of samples from the experience buffer, and use
them to calculate the losses of the A-NN, two local C-NNs
and weighting factorα (Lines 27-28). Next, we obtain their
gradients, and use the Adam algorithm [57] with adaptive steps
(i.e., λQ, λπ andλα) to update the parameters (Lines 29-31).
Finally, we use the discounted parameters of the local C-NNs
to update the parameters of the target C-NNs (Line 32).
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TABLE I
INPUT/OUTPUTSIZES OF THEA-NN AND C-NNS IN EACH DRL AGENT

Domain 1 2 3 4 5 6 7 8 9

Nb 1 2 2 2 2 2 2 2 2

Nl 2 1 2 2 2 2 2 2 2

Outputs 8 4 8 8 8 8 8 8 8

V. PERFORMANCEEVALUATIONS

In this section, we conduct extensive simulations to evaluate
DeepCoop from a few perspectives.

A. Simulation Setup

To demonstrate the scalability of DeepCoop on multi-agent
operations, we conduct most of the simulations with a large-
scale multi-domain SD-EON that consists of9 domains with
the topology as shown in Fig. 5 [58]. The multi-domain SD-
EON contains61 nodes,158 intra-domain links and44 inter-
domain links, where each intra-domain and inter-domain link
can accommodate358 FS’ and1074 FS’, respectively4. We
assume that each FS has a bandwidth of12.5 GHz [20]. The
lightpath requests are dynamically generated with the Poisson
traffic model, and specifically, we fix the average number of
requests arriving in a time-unit as10 and change the average
life time of the requests within[13, 17] time-units, to emulate
different traffic loads. Their source and destination nodesare
randomly selected from the nodes in the9 domains, and their
bandwidth demands are uniformly distributed within[2, 9] FS’.

The A-NN and C-NNs in a DRL agent adopt the structure
that is shown in Fig. 4, and the parameters regarding their
input/output sizes are listed in Table I. Here, the values ofNb

andNl determine the input size of the A-NN and C-NNs in
each DRL agent. The key hyper-parameters of DeepCoop (i.e.,
ρ andγ) are empirically set as0.01 and0.95. The experience
buffer of each DRL agent can store the latest3, 000 samples.
To ensure the statistical accuracy, we run20 independent
simulations and average their results to get each data point.
We program DeepCoop with Python, and run the simulations
on a high-performance server that equips Intel Xeon E5-2650
CPU, 128 GB RAM, and four GTX 1080ti GPU cards.

To verify the performance of DeepCoop, we consider six
benchmarks, four of which are well-known RSA heuristics
(i.e., KSP-FF, KSP-LB, KSP-FA, and FA-CA) [21], the fifth
one is DeepRMSA [28], and the last one is DeepInd, which is
developed here with the similar design of DeepCoop, except
for that the DRL agents in it do not share any intra-domain
information or calculate reward cooperatively. The bench-
marks realize inter-domain provisioning with the operational
principle of DeepCoop in Fig. 1. For each benchmark named
with a RSA heuristic, all the DMs use the heuristic for intra-
domain provisioning, and always choose the feasible inter-
domain links that have the minimum spectrum usage to go

4In a multi-domain network, an inter-domain link usually hasa larger
capacity than an intra-domain one to avoid inter-domain bottlenecks. Here,
for each inter-domain link, the number of FS’ on it is actually larger than that
can be accommodated in the C-band of a fiber. There are two waysto achieve
this: 1) using other bands in a fiber, and 2) deploying multiple physical fibers.

TABLE II
AVERAGE RUNNING T IME OF OFFLINE TRAINING (SECONDS)

Domain 1 2 3 4 5

Running Time 2,928 2,880 2,823 2,976 3,600

Domain 6 7 8 9 -

Running Time 3,552 2,823 3,246 3,120 -

to next domains. DeepRMSA employs a DRL agent in each
domain to decide intra-domain provisioning schemes, and also
always chooses the feasible least-used inter-domain linksto
next domains. Note that, as the action space of DeepRMSA is
defined based on intra-domain paths and the FS’ on them,
DRL agents in different domains cannot share any useful
information or cooperate on inter-domain provisioning.

B. Training Performance of DeepCoop

We first evaluate the performance of the training processes
of DeepCoop, which train all the DRL agents to maximize
their long-term rewards. We hope to point out that the training
process of DeepCoop can be manually divided into the offline
and online training phases. In the offline training, the learnable
parameters of its DRL agents are first initialized randomly,
and then optimized to ensure that the DRL agent in each
DM becomes suitable for online operation/training. Hence,
the offline training should be finished before we can put the
DRL agents into operation in the multi-domain SD-EON.
Then, in the online operation/training, DeepCoop leverages
its DRL agents to provision inter-domain lightpaths, records
the provisioning results as new training samples, updates the
parameters of the DRL agents with the training samples, and
makes itself adapt well to the dynamic network environment
of the multi-domain SD-EON. We discuss the running time of
the offline training in this subsection, while that of the online
operation/training will be analyzed in Section V-D.

As Eq. (11) suggests that the target Q-value (Qtarg) can be
used to estimate the long-term reward of each DRL agent, we
plot howQtarg evolves in the offline training of each agent in
Fig. 6. We observe that the values of all the DRL agents’Qtarg

increase quickly and then converge to stable values within
8, 000 training steps. Specifically, Table II lists the average
running time of the offline training of each DRL agent. It can
be seen that for all the agents, the average running time of the
offline training is always within an hour, and the agents for
the domains that sit in the middle of the 9-domain SD-EON
and have relatively large numbers of nodes spend the longest
time on offline training (e.g., those forDomains 5 and 6).

The training performance of DeepCoop can also be verified
with the results in Fig. 7, which show the evolution of blocking
probability5 in the training when the number of served light-
path requests increases (i.e., the traffic load is fixed at1, 500
Erlangs). The blocking probabilities of the RSA heuristicsstay

5Here, we choose blocking probability as the key metrics to evaluate
the inter-domain lightpath provisioning algorithms. Thisis because it relates
directly to the revenues of the DMs in a multi-domain SD-EON,i.e., each
blocked lightpath request reduces the revenues of the related DMs. Meanwhile,
there are clear correlations between it and other metrics (e.g., spectrum usage).
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(a) Agents 1-3 (b) Agents 4-6 (c) Agents 7-9

Fig. 6. Evolving of target Q-valueQtarg in the offline training.
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Fig. 7. Evolving of blocking probability (traffic load fixed at 1, 500 Erlangs).

almost unchanged throughout the process, which is expected,
while those from the DRL-based approaches decrease with the
number of served requests. It can be seen that the blocking
probability from DeepCoop converges much faster than that
from DeepRMSA, and is the lowest in Fig. 7 after DeepCoop
being trained with2 × 104 requests. On the other hand,
DeepRMSA can only slightly outperform KSP-LB after being
trained with more than105 requests. This is because we design
the actions of the DRL agents in DeepCoop as RSA heuristics,
which contributes to a much smaller and more relevant action
space than that of DeepRMSA. The blocking probability from
DeepCoop converges to∼1.85× 10−3 after6× 104 requests,
and compared with the heuristics (i.e., KSP-FF, KSP-LB, KSP-
FA and FA-CA), it achieves53.8%, 60%, 40%, and 49.8%
reduction on blocking probability, respectively.

We notice that the blocking probability of DeepInd con-
verges faster than DeepCoop. This is because the DRL agents
of DeepInd is trained independently. Here, in Fig. 7, we can
still treat DeepCoop as in its offline training phase before the
training processes converge. We also repeat the simulations
with various traffic loads, and verify that the results follow the
same trend as that in Fig. 7. This confirms that the agents in
DeepCoop select RSA heuristics adaptively to serve requests
in a dynamic environment, and can achieve better blocking
performance than any of the heuristics in its action space.

C. Performance on Dynamic Multi-Domain Provisioning

We then provision dynamic lightpath requests in the multi-
domain SD-EON with the algorithms. Fig. 8 shows the results
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Fig. 8. Results on blocking probability (9-domain SD-EON).

on blocking probability, which indicates that DeepCoop pro-
vides the lowest blocking probability at all the traffic loads.
Specifically, compared with the best deterministic heuristic in
Fig. 8 (KSP-FA), DeepCoop reduces the blocking probability
72.25% at most (at1, 300 Erlangs) and by23.55% on average.
DeepInd performs worse than DeepCoop in Fig. 8, which
verifies the benefits of making the DRL agents cooperate with
each other. Note that, DeepCoop only makes the DRL agents
share limited intra-domain information, and thus it balances
the tradeoff between the performance of lightpath provisioning
and the autonomy and privacy of domains well.

To further analyze how each agent of DeepCoop selects
RSA heuristics adaptively, we record the distributions of
selected heuristics inDomains 4 and 5 at different loads,
and plot them in Figs. 9 and 10, respectively. We can see
that the agent inDomain 4 prefers KSP-LB and KSP-FF,
while the one inDomain 5 selects KSP-FA or FA-CA at the
highest probability. This is because the topology ofDomain
4 is relatively simple such that spectrum fragmentation might
not be an issue in the dynamic provisioning in it,i.e., the
border nodes ofDomain 4 are usually inter-connected with
only one intra-domain link. On the other hand, the topology
of Domain 5 is much more complex, and thus fragmentation-
aware provisioning schemes are more beneficial.

Meanwhile, we notice that even for the same domain, the
most selected heuristic can be different at different traffic
loads. For instance, when the traffic load increases from1, 350
Erlangs to1, 550 Erlangs, the agent inDomain 4 changes
its most-preferred heuristic from KSP-LB to KSP-FF. This is
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Fig. 10. Distribution of selected heuristics inDomain 5.

because even though KSP-LB can balance the spectrum usages
in a domain, it provisions lightpaths with a longer average path
length than KSP-FF. The longer average path length leads to
more spectrum usage per lightpath, which might lead to higher
blocking probability when the network is more congested,
especially due to the fact thatDomain 4 sits in the middle of
the multi-domain SD-EON and thus has a higher probability of
being used as an intermediate domain. To this end, we can see
that for inter-domain service provisioning, the best heuristic
to use in each domain depends on a few factors (e.g., the
topology, traffic load, and position of the domain), and thusthe
mechanism to choose the right heuristic is rather complicated,
especially when the network state can be time-varying. This
makes it infeasible to select the heuristics with a deterministic
algorithm. However, DeepCoop can leverage DRL to tackle
the complicated problem, and it always uses the suitable RSA
heuristic to minimize the blocking probability.

D. Evaluations on Universality and Scalability

In order to show the universality of the design of DeepCoop,
we change the topology of the multi-domain SD-EON to that
in Fig. 11 and redo the simulations. This time, the topology
only contains three domains, but each domain is generally
larger than those in the 9-domain topology in Fig. 5. Except
for the necessary minor changes to adapt to the new topology,
we do not change anything in DeepCoop and apply it directly
to the inter-domain provisioning in the 3-domain SD-EON.
Fig. 12 shows the evolution of the blocking probability in the

TABLE III
AVERAGE RUNNING T IME PER INTER-DOMAIN L IGHTPATH PROVISIONING

(MILLISECONDS)

Algorithm KSP-FF KSP-LB KSP-FA FA-CA

3-domain 2.72 3.51 4.20 3.60

9-domain 6.45 7.23 7.68 7.85

Algorithm DeepCoop DeepRMSA DeepInd -

3-domain 8.88 4.29 7.32 -

9-domain 10.43 8.27 9.65 -
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Fig. 11. Topology of 3-domain SD-EON used in simulations.

training when the number of served requests increases (i.e.,
the traffic load is fixed at1, 300 Erlangs). It can be seen that
DeepCoop providers lower blocking probabilities than all the
heuristics after being trained with2 × 104 requests, and its
training converges after6 × 104 requests. Specifically, if we
compare the results in Figs. 7 and 12, we can see that even
though the multi-domain SD-EONs use completely different
topologies, the training of the DeepCoop in them performs
similarly. This confirms the universality and scalability of the
distributed online training implemented in DeepCoop. Fig.13
plots the results on blocking probability in the 3-domain SD-
EON, which follow the similar trend as that in Fig. 8.

Table III lists the average running time per inter-domain
lightpath provisioning of the algorithms. Here, for all theDRL
models (i.e., DeepCoop, DeepRMSA and DeepInd), the run-
ning time is only for their online operation/training, because
the offline training should be finished before they can be put
into operation (i.e., the running time of the offline training does
not affect the time-efficiency of the online operation/training).
The results in Table III suggest that, similar to the deterministic
heuristics, DeepCoop only uses a few milliseconds to serve
each inter-domain lightpath request. This confirms that it is
suitable for dynamic provisioning. Meanwhile, we notice that
due to the complexity of the analysis in each DRL agent,
DeepCoop generally takes more time than the deterministic
heuristics to provision each inter-domain lightpath. On the
other hand, when the number of SD-EON domains increases
from 3 to 9, the running time of the deterministic heuristics
generally doubles, while that of DeepCoop only increases
slightly. This verifies the scalability of DeepCoop.

VI. CONCLUSION

In this paper, we designed and optimized DeepCoop, which
is an inter-domain service framework that utilizes multiple
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Fig. 12. Evolving of blocking probability in 3-domain SD-EON (traffic load
fixed at1, 300 Erlangs).

Fig. 13. Results on blocking probability (3-domain SD-EON).

cooperative DRL agents to achieve scalable network au-
tomation in a multi-domain SD-EON. Specifically, DeepCoop
employs a DRL agent in each domain to optimize intra-domain
service provisioning, while a domain-level PCE is introduced
to calculate the sequence of the domains to go through for
each lightpath request. By sharing a restricted amount of
information among each other, the DRL agents can make their
decisions distributedly. To ensure scalability and universality,
we designed the action space of each DRL agent based on
well-known RSA heuristics, and architected the agents based
on the SAC scenario. With extensive simulations, we demon-
strated that DeepCoop can analyze the network environment
in a multi-domain SD-EON to always select the best RSA
heuristic to minimize the blocking probability, it outperforms
the existing algorithms on inter-domain provisioning in various
simulation scenarios, and the distributed training implemented
in it ensures its universality and scalability (i.e., its training and
operation do not depend on the topology of the SD-EON).
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