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Abstract: We propose an approach based on deep reinforcement ledbiig to reconfigure
light-tree dynamically for multicast sessions in Elastigti®al Networks (EONS).

1. Introduction

The rising of cloud services, especially the surge in denfandideo conferencing and online classroom services
during the epidemic since 2020, has made multicast serincesasingly popular in the Internet. This puts Internet
infrastructures and service provisioning over them undaméndous pressure [1, 2]. Because of the abundant band-
width on optical fibers, optical networks can enable higtotighput and long distance transmission economically and
efficiently. Furthermore, the advances on the flexible-gtabtic optical networks (EONs) have enhanced the flexi-
bility and effectiveness of optical networks [3, 4]. Thenef, a lot of studies have been done on enabling multicast in
EONSs, and many algorithms have been proposed [5—7]. At tine seme, the dynamic nature of multicast services
further increases the complexity of the problem. As membansoin and leave dynamically during the life-time of a
multicast service, its light-tree can gradually lose th8roglity if it is not reconfigured regularly [8].

The problem of light-tree reconfiguration for dynamic medt in EONs has been explored in [8], in which the
authors divided it into two sub-problemsg,, light-tree selection and light-tree reconfiguration, auitlforward cor-
responding algorithms to solve them. They proposed D-/lQevaased algorithms for the light-tree selection and
developed full/partial rearrangement algorithms to soheslight-tree reconfiguration. Ideally, people would liice
achieve a lower blocking probability with as few reconfigioa operations as possible, which is the most importan-
t tradeoff for evaluating the performance of light-treeamfiguration. However, due to the complexity of dynamic
EONSs, the algorithms developed in [8] can hardly optimizs thadeoff. Hence, we revisited the sub-problem of
light-tree selection with a deep reinforcement learnin®(Ipbased approach [9]. Specifically, we proposed a DRL
model based on graph neural networks (GNNs) [10], which d#aio statistically optimal solutions for the light-
tree selection sub-problem. GNNs enable our proposal &etijrprocess graph-structured data, which overcomes the
limitations of conventional neural networks and avoidsltss of the information about light-tree structures.

2. Network Model and Algorithm Design
The topology of an EON can be represente@ég, E), whereV andE are the sets of nodes and fiber links, respec-
tively. Each nodes € V uses a multicast-incapable (MI) bandwidth-variable gdtswitch for cost-saving [8]. Each
fiber link e € E containg~ frequency slots (FS’), each of which has a bandwidth 0512Hz. We represent each mul-
ticast session a¥lR(s,D,b,t), wheres, D, b andt denote the source, the set of destinations, the bandwidtiaiole
in Gbps and its life-time, respectively. We use the spectfiexible member-only relay (SFMOR) algorithm [7] to
build a logic light-tree for each newly-arrived multicasssionj.e., the lightpaths in the light-tree can only start and
end at the member nodes of the multicast sessienguU D). Since thed € D can join and leave dynamically during
the life-time of MR, the light-tree will be updated constantly and thus can Isseptimality. Hence, we propose to
reconfigure the light-tree from time to time with a graph-esMaRL model [9], whose basic elements are as follows.
Agent: As shown in Fig. 1(a), our DRL agent uses the asynchronouedidge actor-critic (A3C) framework [11],
which leverages multiple pairs of actor GNN (A-GNN) andicrieBNN (C-GNN) for multi-threaded parallel online
training. Here, A-GNN selects proper actions accordindneostate, while C-GNN evaluates the action from A-GNN.
State With the GNNs, we can use graph-structured dﬁ(‘d,\Z E, E) to denote the state information of an EON
and the light-trees in it. Her®, andE are the features &f andE, respectively, which are for the categories of nodes
and the spectrum usages of links. Each lightpath in the-lighets is set up with the fragmentation-aware scheme [12].
Action: The actioma is a Boolean variable, which equals 1 if a light-tree sho@adronfigured, and 0, otherwise.
Reward: The reward can be expressed as the weighted sum of the number of rec@tiiguoperations and the
spectrum resources saved by the reconfiguration. The wefghe former is negative, because we want to reduce
the number of reconfiguration operations. Meanwhile, thigkteof the latter is positive such that the more spectrum
resources can be saved by a reconfiguration operation, ¢lagegithe rewardis.
Fig. 1(a) shows the system architecture and operationiptéof our graph-aware DRL (one of its threads). The
service provisioning will build a light-tree for each newdyrived multicast sessioMR, and update the light-tree



when the members in its multicast group have changed. Sgadbifimulticast session reconfiguration is triggered
periodically, and in each reconfiguration, the feature eegiing module collects the current statef the EON and
the light-tree for each multicast sessidifr;, and sends it to the local DRL agent. The session reconfigaratodule
decides whether to reconfigure théz; based on the output of the local DRL agent, and updates thietlige forMR,

if it needs to be reconfigured. The reward calculation mothéda calculates the rewardrfter the reconfiguration. The
tuple< s,a,r > will be stored in the experience buffer as a training sampleen there are enough training samples,
online training will be triggered to update the global GNNigh will then synchronize the parameters to local GNNs.

3. Performance Evaluation

Our simulations use the NSFNET topology [1], and the capadfiteach fiber link is set to bE = 100 FS’. Each
multicast sessioMR(s, D, b,t) arrives dynamically following the Poisson traffic modelddris uniformly distributed
within [50,200 Gbps, whilet follows the exponential distribution with an average of %id@e-units. For eacMR,;,

the service time of eacth € D follows the exponential distribution, and new destinasiame generated according to
the Poisson model. The DTS and QTS algorithm in [8] are usétleabenchmarks. Due to the page limit, we only
show the results when partial rearrangement is used fat-ligk reconfiguration, in Figs. 1(b) and 1(c). Here, “NR”
denotes the case without any light-tree reconfiguratiom@oed with the benchmarks, our DRL model significantly
reduces the number of reconfiguration operations while ramiimg almost the same blocking probability.
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Fig. 1. System architecture and simulation results (NSEN&iftial rearrangement) (adapted from [9]).
4. Summary

We proposed a graph-aware DRL model to reconfigure the tiglets of dynamic multicast sessions in an EON. The
results showed that our proposal reconfigures light-trem® m@fficiently than the existing deterministic algorithms
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