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Abstract: We propose an approach based on deep reinforcement learning(DRL) to reconfigure
light-tree dynamically for multicast sessions in Elastic Optical Networks (EONs).

1. Introduction
The rising of cloud services, especially the surge in demandfor video conferencing and online classroom services
during the epidemic since 2020, has made multicast servicesincreasingly popular in the Internet. This puts Internet
infrastructures and service provisioning over them under tremendous pressure [1, 2]. Because of the abundant band-
width on optical fibers, optical networks can enable high-throughput and long distance transmission economically and
efficiently. Furthermore, the advances on the flexible-gridelastic optical networks (EONs) have enhanced the flexi-
bility and effectiveness of optical networks [3, 4]. Therefore, a lot of studies have been done on enabling multicast in
EONs, and many algorithms have been proposed [5–7]. At the same time, the dynamic nature of multicast services
further increases the complexity of the problem. As memberscan join and leave dynamically during the life-time of a
multicast service, its light-tree can gradually lose the optimality if it is not reconfigured regularly [8].

The problem of light-tree reconfiguration for dynamic multicast in EONs has been explored in [8], in which the
authors divided it into two sub-problems,i.e., light-tree selection and light-tree reconfiguration, andput forward cor-
responding algorithms to solve them. They proposed D-/Q-value based algorithms for the light-tree selection and
developed full/partial rearrangement algorithms to solvethe light-tree reconfiguration. Ideally, people would liketo
achieve a lower blocking probability with as few reconfiguration operations as possible, which is the most importan-
t tradeoff for evaluating the performance of light-tree reconfiguration. However, due to the complexity of dynamic
EONs, the algorithms developed in [8] can hardly optimize this tradeoff. Hence, we revisited the sub-problem of
light-tree selection with a deep reinforcement learning (DRL) based approach [9]. Specifically, we proposed a DRL
model based on graph neural networks (GNNs) [10], which can obtain statistically optimal solutions for the light-
tree selection sub-problem. GNNs enable our proposal to directly process graph-structured data, which overcomes the
limitations of conventional neural networks and avoids theloss of the information about light-tree structures.

2. Network Model and Algorithm Design
The topology of an EON can be represented asG(V,E), whereV andE are the sets of nodes and fiber links, respec-
tively. Each nodev ∈ V uses a multicast-incapable (MI) bandwidth-variable optical switch for cost-saving [8]. Each
fiber link e ∈ E containsF frequency slots (FS’), each of which has a bandwidth of 12.5 GHz. We represent each mul-
ticast session asMR(s,D,b, t), wheres, D, b andt denote the source, the set of destinations, the bandwidth demand
in Gbps and its life-time, respectively. We use the spectrum-flexible member-only relay (SFMOR) algorithm [7] to
build a logic light-tree for each newly-arrived multicast session,i.e., the lightpaths in the light-tree can only start and
end at the member nodes of the multicast session (i.e., s∪D). Since thed ∈ D can join and leave dynamically during
the life-time ofMR, the light-tree will be updated constantly and thus can loseits optimality. Hence, we propose to
reconfigure the light-tree from time to time with a graph-aware DRL model [9], whose basic elements are as follows.

Agent: As shown in Fig. 1(a), our DRL agent uses the asynchronous advantage actor-critic (A3C) framework [11],
which leverages multiple pairs of actor GNN (A-GNN) and critic GNN (C-GNN) for multi-threaded parallel online
training. Here, A-GNN selects proper actions according to the state, while C-GNN evaluates the action from A-GNN.

State: With the GNNs, we can use graph-structured dataG (V,Ṽ ,E, Ẽ) to denote the state information of an EON
and the light-trees in it. Here,̃V andẼ are the features ofV andE, respectively, which are for the categories of nodes
and the spectrum usages of links. Each lightpath in the light-trees is set up with the fragmentation-aware scheme [12].

Action: The actiona is a Boolean variable, which equals 1 if a light-tree should be reconfigured, and 0, otherwise.
Reward: The rewardr can be expressed as the weighted sum of the number of reconfiguration operations and the

spectrum resources saved by the reconfiguration. The weightof the former is negative, because we want to reduce
the number of reconfiguration operations. Meanwhile, the weight of the latter is positive such that the more spectrum
resources can be saved by a reconfiguration operation, the greater the rewardr is.

Fig. 1(a) shows the system architecture and operation principle of our graph-aware DRL (one of its threads). The
service provisioning will build a light-tree for each newly-arrived multicast sessionMR, and update the light-tree



when the members in its multicast group have changed. Specifically, multicast session reconfiguration is triggered
periodically, and in each reconfiguration, the feature engineering module collects the current states of the EON and
the light-tree for each multicast sessionMRi, and sends it to the local DRL agent. The session reconfiguration module
decides whether to reconfigure theMRi based on the output of the local DRL agent, and updates the light-tree forMRi

if it needs to be reconfigured. The reward calculation modulethen calculates the rewardr after the reconfiguration. The
tuple< s,a,r > will be stored in the experience buffer as a training sample.When there are enough training samples,
online training will be triggered to update the global GNN, which will then synchronize the parameters to local GNNs.

3. Performance Evaluation
Our simulations use the NSFNET topology [1], and the capacity of each fiber link is set to beF = 100 FS’. Each
multicast sessionMR(s,D,b, t) arrives dynamically following the Poisson traffic model, and b is uniformly distributed
within [50,200] Gbps, whilet follows the exponential distribution with an average of 500time-units. For eachMRi,
the service time of eachd ∈ D follows the exponential distribution, and new destinations are generated according to
the Poisson model. The DTS and QTS algorithm in [8] are used asthe benchmarks. Due to the page limit, we only
show the results when partial rearrangement is used for light-tree reconfiguration, in Figs. 1(b) and 1(c). Here, “NR”
denotes the case without any light-tree reconfiguration. Compared with the benchmarks, our DRL model significantly
reduces the number of reconfiguration operations while maintaining almost the same blocking probability.
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(a) Architecture and operation principle of our DRL.

(b) Overall blocking probability

(c) Average number of lightpath reroutings per session

Fig. 1. System architecture and simulation results (NSFNET, partial rearrangement) (adapted from [9]).
4. Summary
We proposed a graph-aware DRL model to reconfigure the light-trees of dynamic multicast sessions in an EON. The
results showed that our proposal reconfigures light-trees more efficiently than the existing deterministic algorithms.
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