Which can Accelerate Distributed Machine Learning Faster:
Hybrid Optical/Electrical or Optical Reconfigurable DCN?
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Abstract: We run various distributed machine learning (DML) architees in a hybrid opti-
cal/electrical DCN and an optical DCN based on Hyper-FId®N. Experimental results show that
Hyper-FleX-LION gains faster DML acceleration and imprewaeceleration ratio by up to 226.
OCIS codes: (060.1155) Software-defined optical networks; (060.428dfvorks, assignment and routing algorithms.

1. Introduction

Recently, the wide applications of Big Data analytics haeslexmachine learning (ML) indispensable in many field-
s [1,2]. The rapid development of ML increased the compjeaftML models and caused the scale of ML training
to be huge. For instance, an ML model used by Google for laggypaocessing may utilize over 4 parameters [2].
Meanwhile, a large Internet company can train an ML modehwiter 1 PB training data for click-through-rate esti-
mation [3]. Such a massive scale of training can hardly rua simgle machine. Hence, distributed ML (DML), which
segments and distributes training data over multiple nmeshfor parallel training, has attracted intensive intsres
recently [4]. DML is usually deployed in a data center neta(@CN) to use its abundant IT resources, bringing new
challenges to DCNSs. Firstly, the jobs of a large-scale DMpidglly have to span across multiple racks. Therefore,
during training, the parameter synchronization among DMtes will generate heavy inter-rack traffic [3]. Secondly,
programmers can arrange a cluster of DML nodes into variotlstactures, each of which leads to a traffic pattern
with unique temporal and spatial characteristics [4]. Bsaiés above can degrade the performance of the DML run-
ning in traditional DCNs based on electronic packet switghiEPS), and prolong the job completion time (JCT) [5].
For example, it is known that the EPS-based DCN built witktifaé cannot efficiently support the DML based on the
Parameter Server architecture due to the inter-rack bottlenecks caused by {iduced congestions [3].

As the parameter synchronization of DML needs to excharrge lamounts of data among DML nodes, the related
inter-rack communications will be elephant flows [2, 3]. ldenthe inter-rack bottlenecks can be relieved by intro-
ducing optical circuit switching (OCS) and building hybdgtical/electrical DCN (HOE-DCN) [6, 7]. Wang al. [5]
verified that by reconfiguring the OCS part of a HOE-DCN adaghyi DML jobs could be accelerated to achieve
reduced JCT. However, their HOE-DCN was built with an optizass-connect (OXC), which can only provide one-
to-one connectivity between inputs and outputs. HenceQiB8 part might have difficulty to properly adapt to the
traffic matrix of an arbitrary DML architecture. On the otheand, researchers showed that the Hyper-FleX-LION
architecture [8] supports reconfigurable all-to-all ogtinterconnects using a Flex-LIONS switch device [9].

In this work, we perform a comparative study to investigatéclv architecture can accelerate DML faster, HOE-
DCN with OXC (HOE-w/OXC) or all-optical DCN based on Flex@NS (Hyper-FleX-LION)? We first analyze the
traffic patterns of four typical types of DML architecturds (i.e., Distributed Data Parallel (DDP), Ring-AllReduce
(Ring), Parameter Server (PS) and Peer-to-Peer (P2P)) and check whether the inter-rack topologies of the two $ype
of DCNs can adapt to them well. Then, to quantitatively eatdithe performance of HOE-w/OXC and Hyper-FleX-
LION on DML, we set up a small-scale DCN testbed that congi# racks. Finally, we connected the racks with
HOE-w/OXC or Hyper-FleX-LION and conducted experimentsamious DML scenarios. Our results show that for
all the experimental scenarios, Hyper-FleX-LION perforpester than or at least as well as HOE-w/OXC on DML
acceleration. Specifically, Hyper-FleX-LION can improhe acceleration ratio up to 2226 (over HOE-w/OXC).

2. Matching Degree between DML Traffic Patterns and DCN Archtectures

Without loss of generality, we analyze the traffic pattefi®DP, Ring, PSandP2P by assuming that the nodes of each
DML architecture are deployed in four racks of a DCN. The #@ectiure and operation principle of Hyper-FleX-LION

is shown in Fig. 1(a). Here, we use off-the-shelf componenisiild the Hyper-FleX-LION, but it can also be realized
in a much more compact and energy-efficient way with integratptical chips [9]. We have an arrayed waveguide
grating router (AWGR) sitting in the middle, and the trantim§ and receiving structures of each rack are located at
its left and right sides, respectively [9]. For each racktdp-of-rack (TOR) switch uses four transceivers (TRXs) as
shown in Fig. 1(a), where we use different numbers to inditla¢ wavelengths used by the TRXs (the color of each
number represents the source rack). In the transmittingtsire, all the outputs of a ToR switch are multiplexed and
then enter a wavelength selective switch (WSS). One of th&W8tputs is connected to the AWGR, while the other



three outputs go directly to the WSS in the receiving stmaswf other racks. In the receiving structure of each rack,
a WSS selects the received signals to distribute them to ¥sTof the ToR switch by a de-multiplexer (DEMUX).
Then, by utilizing the wavelength switching capability betAWGR and adjusting the WSS’ switching states, we can
obtain various topologies to interconnect the raeks. (the configuration in Fig. 1(a) leads to a full-mesh).

Fig. 1(b) shows the traffic patterns of the DML architectuidse colorful arrows denote the traffic generated by
DML, and the purple and blue arrows represent the acceteratindwidth for DML that can be provided by HOE-
w/OXC and Hyper-FleX-LION, respectively. Here, we defthe acceleration bandwidth for DML (Accel-BW) as the
bandwidth that a DCN can provide to DML in addition to that $etting up the basic inter-rack communications. For
instance, botDDP andRing have ring-like traffic matrices, whose basic inter-rack ommications can be supported
with the fat-tree-based EPS part of HOE-w/OXC or two TRXs adcreToR switch in Hyper-FleX-LION. But, then, as
the OXC in HOE-w/OXC only provides one-to-one connectiidy Accel-BW, it can just connect the racks in pairs
(e.g., 1to 2 and 3 to 4 in Fig. 1(b)), but cannot realize a ring-likei-rack topology. On the other hand, as shown
in Fig. 1(c), we can reconfigure Hyper-FleX-LION to set up tueo ring-like inter-rack topology for Accel-BW. This
verifies that, in principle, Hyper-FleX-LION can acceler®tDP andRing faster than HOE-w/OXC.

Next, we considePS, which uses a tree-like topology including a server noderanarker nodes, and denote a
DML with PSasPS(n). We first addresPS(2), and place the server node Back 1 and two worker nodes dracks 2
and 4. Fig. 1(b) suggests that the Accel-BW from HOE-w/OX@avorks for one branch of the tree-like inter-rack
topology €.g., 1 to 2). Meanwhile, with sufficient TRXs and adaptivity, Hyrp=leX-LION can establish another tree-
like topology for Accel-BW. However, the situation beconaif§erent for PS(3), when an additional worker is placed
on Rack 3. As shown in Fig. 1(b), the Accel-BW from HOE-w/OXC still lyrworks for one branch of the tree-like
topology, but as Hyper-FleX-LION already uses 3 TRXsRatk 1 for the basic inter-rack communicationsR(3),
its Accel-BW can only work for a branch of the tree too. Herfoe,PS(3), the Accel-BWs from HOE-w/OXC and
Hyper-FleX-LION are similar. Finally, it i$22P, in which each DML node only talks with one peer at a time. KHere
both HOE-w/OXC and Hyper-FleX-LION can provide Accel-BWitliHyper-FleX-LION can allocate two more TRXs
on each rack to communicate with its peer rack. Hence, HifieX-LION also provides larger Accel-BW fd2P.
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Fig. 1. (a) Hyper-FleX-LION, (b) Traffic patterns of DML aritectures, and (c) Reconfiguration of Hyper-FleX-LION.

3. Experimental Evaluations

To quantify the performance difference of HOE-w/OXC and EypleX-LION on the four DML architectures, we
built a small-scale DCN testbed including four racks, edohtuch consists of two servers. Each server contains four
6-core CPUs and 32 GB of memory. To ensure fair comparisomsguip four 1GbE optical ports on each ToR switch.
For HOE-w/OXC, we connect three ports on each ToR switch @oBRS-based inter-rack topology, which is based
on fat-tree, and the fourth port goes to an OXC. For HypekRIEON, the ports on ToR switches are connected with
the architecture in Fig. 1(a), consisting of oneBAWGR, eight Ix9 WSS’, and several other passive components.
Note that the OXC, AWGR, and WSS’ in the experimental setepadircommercially available products.

As for the DML, we use the famous CIFAR-10 data set (contairiil,000 3% 32 color images in 10 different
classes) and train a convolutional neural network (CNN)iftaige classification. In a DML job, each node runs on
one server. To stress out the DCNs, we run multiple DML jobsufianeously in each experiment and average the
job completion time (JCT) from 10 independent runs to getaberage JCT of the experiment. In each experiment,
we first run the DML job in the EPS part of HOE-w/OXC and recdrnd average JCT as the baseline, and then we
get the actual average JCT by running the job in HOE-w/OXC ypéi-FleX-LION. Next, theacceleration ratio of
HOE-w/OXC or Hyper-FleX-LION can be obtained by dividingthaseline with the actual average JCT [5].

We architect the CNN with the well-known ResNet model, makealepth as 50 layers.¢€., ResNet-50), and use
the DML architectures in Fig. 1(b) to train it with 100% of ttata in CIFAR-10. The results on acceleration ratio are



shown in Fig. 2(a). As expected, Hyper-FleX-LION providagger acceleration ratios than HOE-w/OXC when the
DML usesDDP, Ring, PS(2) andP2P, while the two DCNs perform similarly foPS(3). This verifies our analysis
above. Finally, in Fig. 2(a), it is interesting to observatthven though the traffic patterns@DP andRing are the
same in Fig. 1(b), the acceleration ratio@dP are smaller than those Bfng in both HOE-w/OXC and Hyper-FleX-
LION. This is becaus®DP incorporates specific processing to reduce the data traresfieong the DML nodese.,
DDP incurs less inter-rack communications thaimg [4]. In all, the acceleration ratios in Fig. 2(a) suggest tloa
the five DML architectures, the improvements on accelenatitio achieved by Hyper-FleX-LION over HOE-w/OXC
have a maximum of 23% (Ring) and an average value of 14%.

Next, we focus orRing to further compare the performance of HOE-w/OXC and HydeXF.ION on DML.
First, we consider three CNN modeis., ResNet-18, ResNet-34, and ResNet-50, and train them Wilkolof the
data in CIFAR-10, using the DML witlRing. The experimental results in Fig. 2(b) indicate that HypkxX-LION
outperforms HOE-w/OXC for all the CNN models. Meanwhile, matice that as the complexity of the CNN model
increases, the improvement in acceleration ratio achibyédlyper-FleX-LION becomes larger. This is because when
the CNN model is more complex with a larger number of layérs garameters to be optimized and synchronized in a
DML job increase, which leads to more inter-rack data trarssfThe results in Fig. 2(b) indicate that the improvements
in acceleration ratio achieved by Hyper-FleX-LION over H@EDOXC have an average value of.20.

Finally, as certain DML might not use the full training datt # training, we consider the cases that DML with
Ring uses{25% 50% 75% 100%;} of the data in CIFAR-10 to train the CNN in ResNet-50. The lssare plotted
in Fig. 2(c). Once again, the advantage of Hyper-FleX-LIOGNRML acceleration can be seen clearly. Moreover,
the results also suggest that when the amount of trainirgidateases, the advantage of Hyper-FleX-LION becomes
more significant. This is still because when the amount @frirdck data transfers increases, the higher match degree
between inter-rack topology and DML traffic matrix in HypeleX-LION exhibits a larger effect on reducing JCT. In
Fig. 2(c), the average improvement in acceleration rativesed by Hyper-FleX-LION is 2G%. The results in Figs.
2(b) and 2(c) confirm that the advantage of Hyper-FleX-LIONIML acceleration increases with the CNN model’s
complexity and the amount of training data. This makes HyfleK-LION more promising for large-scale DML.
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Fig. 2. Results on acceleration ratio (those in (b) and (€)o@tained with the DML architecture Bfng).

4. Summary
We compared HOE-w/OXC and Hyper-FleX-LION on DML accelaatheoretically and experimentally. Our results
verified that for all the DML scenarios, Hyper-FleX-LION f@ms better than or at least as well as HOE-w/OXC.
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