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Abstract—With the fast deployment of datacenters (DCs), than a natural packet-switched network. More promisirtly,
bandwidth-intensive multicast services are becoming mor@nd advances on the flexible-grid elastic optical networks (BPN
more popular in metro and wide-area networks, t0 support  can fyrther improve the performance of optical switching on

dynamic applications such as DC synchronization and backup t ffici dantivit d licati
Hence, this work studies the problem of how to formulate and spectrum-efficiency, adaptivity and application-awassngs—

reconfigure multicast sessions in an elastic optical netwkr(EON)  7]. Note that, for bandwidth-intensive and long-lastinglga-
dynamically. We proposed a deep reinforcement learning (DR)  tions (e.g, DC backup), realizing multicast directly in the op-
model based on graph neural networks (GNNs) to solve the tical domain has the benefits such as less bandwidth/protoco
sub-problem of multicast session selection in a more univeal overheads and easier to obtain large throughputs [8]. The

and adaptive manner. The DRL model abstracts the topology . . .
information of the EON and the current provisioning scheme 2dility of EONs would further promote these benefits, which

of a multicast session as graph-structured data, and analgs Motivated people to study how to provision multicast sewic
the data to intelligently determine whether the session shdd in EONs and proposed various algorithms [9—-14].

be selected for reconfiguration. We evaluate our proposal Meanwhile, the semi-permanent optical layer in telecommu-
extensive simulations that consider different EON topologgs, and nication networks might not adapt to the dynamic applicegio

the results confirm its effectiveness and universality. Sppfically, . . .
the results show that it can balance the tradeoff between the and traffic in DCls [15]. Therefore, a dynamic optical layer

number of reconfiguration operations and blocking performance  With fast reconfiguration speed is desired. For instance, th
much better than the existing algorithms, and the DRL model standardization effortin [16] suggested that to propeufyport
trained in one EON topology can easily adapt to solve the jnter-DC communications, a dynamic optical network should
problem of dynamic multicast session reconfiguration in oter g yeconfigurable within a few milliseconds. Following this
topologies, without being redesigned or retrained. - . L
_ _ _ _ trend, researchers have considered different dynami@atper
Index Terms—Optical multicast, Elastic optical networks gcenarios for EONs.g, the reconfiguration to accommodate
(EONSs), Network reconfiguration, Deep reinforcement learing time-varying unicast traffic [17, 18], spectrum defragnagion
(DRL), Graph neural network (GNN). . . ! ’ .
[19], lightpath restoration [20], and spectrum retuning fo
bulk data transfers [21]. The dynamic nature of the multicas
I. INTRODUCTION services in DCls determines that each multicast sessiohtmig

- . , ., also need to be updated consistently to maintain the optimal
In recent years, the rising of cloud services and live videq. . S .
. . . ot ifs service provisioning schemed, the one that consumes

streaming has made multicast services more and more popuylar .
. . € least spectrum resources) [22]. For example, duringea on
in the Internet [1]. This trend becomes even more remarkable A . :
. : . 0-many DC backup, each destination DC joins the multicast
since 2020, because of the surge in demands for video con- . o
session when the data of its interest starts to be trandferre

ferencing and online classroom services during the epiclemi L . . .
g 9 P Rd it will leave the session when its data transfer is done.

Meanwhile, due to the fast deployment of datacenters (Dcfas) . .
all over the world, the popularit)[/) of multicast services edso Th.e prqblem of how to formulate and reconﬂgurg mgltlcast
be seen in metro and wide-area networks [2], especially @?sspps in EONs dynam|c_al_ly was previously S.tUd'ed in.[22]
bandwidth-intensive applications such as DC synchroinizat peuﬂcally, the aqthors d'V'.dEd the prob_lem Into t.WO Sl‘.'b'
and backup, distributed scientific computingtc [3]. This problems,i.e., session selection and session reconfiguration,
' . . and designed algorithms to solve them. The session setectio
has put great pressure on DC interconnects (DCIs) and maa eorithm finds the most “critical” multicast sessions whos
multicast provisioning in DCIs an attractive research ¢opi ?)visionin schemes waste the mMost SDECITUM IeSOUTCEs
With the tremendous bandwidth in each optical fiber, opticgf g P

networking plays an important role in DCIs, and a Iatest;stuty\men being compared with the optimal onés( off their

[4] even suggested that an optical-circuit-switched aetiire optima the most), to reconfigure. A fter the_ sessions have
. . een selected, they can be reconfigured with either full or

could be more scalable and cost-effective for regional DCIS . : . . i

partial rearrangements in the session reconfigurationg&op
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readjust the provisioning schemes of multicast sessiotierbeworks, and Sahasrabuddle¢ al. [8] first came up with the
to save more spectrum resources, and thus a lower blockguncept of light-tree for it. One can refer to the survey in
probability will be get in the future. Hence, to maximizg26] for a complete review of optical multicast in fixed-grid
the efficiency of the reconfiguration, we should use the leaatDM networks. The proposals of flexible-grid EON [5-7]
reconfiguration operations to achieve the largest reduaio considered to leverage bandwidth-variable transpond®vs (
blocking probability. However, to the best of our knowledgeTs) and bandwidth-variable switches (BV-WSS’) to manage
how to optimize this tradeoff has not been fully explored. yethe spectrum allocation in the optical layer with a fine granu
We can see that in the reconfiguration of multicast seksrity of 12.5 GHz or even less, and thus can make the optical
sions, the sub-problem of session selection is more relevéayer more spectrum-efficient and adaptive. Meanwhile, the
to the aforementioned tradeoff. Nevertheless, the héuristiexible spectrum management in EONs transforms the well-
approaches developed in [22].€, the D-/Q-value based known routing and wavelength assignment (RWA) problem in
selection strategies) cannot universally adapt to dyn&al WDM networks into a more complex onieg., the routing and
environments, and the problem of how to select between thepectrum assignment (RSA) [27]. Hence, the provisioning of
and determine their key parameters can only be tackled in @ptical multicast should be revisited for EONSs.
empirical manner. This motivates us to revisit the sub-fmob  In [9], the authors proposed two multicast-capable RSA
in this work. Note that, deep reinforcement learning (DR&)c (MC-RSA) algorithms for EONs and analyzed their perfor-
obtain statistically optimal solutions for complex and ¢im mance. Liuet al. [12] improved the performance of MC-RSA
varying problems without explicit programming [23]. Henceby leveraging layered auxiliary graphs. Neverthelessélieo
we try to replace the heuristic approaches for sessiontgatec studies did not consider the adaptive modulation-levedcsel
with a DRL-based algorithm, and expect that it can balanten in EONs. The multicast provisioning with impairment-
the tradeoff between the number of reconfiguration oparatioaware routing, modulation and spectrum assignment (RMSA)
and blocking probability better. was addressed in [11], where the authors designed two intege
Note that, in order to select multicast sessions in an EQMNear programming (ILP) models and a few heuristics. Then,
to reconfigure, we need to process data in graph structuiee multicast-capable RMSA (MC-RMSA) algorithms to sup-
which can hardly be handled well by the neural networksort distance-adaptive transmissions were developed3dh [1
(NNs) in linear structures. This is because certain imprtaThe authors of [14] introduced light-forest to further irope
information buried in the graph-structured data can be, loshe performance of MC-RMSA and proposed a polynomial-
and the DRL models with NNs in linear structures need to ligne approximation algorithm. In addition to algorithmiore
redesigned and retrained when the EON's topology changgthutions, people have also leveraged the idea of software
Fortunately, graph neural networks (GNNs) [24] can fulfillefined EON (SD-EON) to experimentally demonstrate the
the requirements much better, as they can operate directlyamntrol plane operations for optical multicast in [28].
graph-structured data to understand the complex relailons However, the aforementioned studies all assumed that the
it for the applications related to networks [25]. optical switches are multicast-capable (MQE{( supporting
In this work, we propose a DRL model based on GNNight-splitting). Note that, MC optical switches usuallpaJe
to solve the sub-problem of multicast session selection incamplicated architectures and thus can be relatively esipen
more universal and adaptive way. The DRL model takes tf@6]. Therefore, it might not be cost-effective to build an
topology information of the EON and the current provisianinEON with them, since the majority of the communications
scheme of a multicast session as the input, abstracts theninathe EON will still be for unicast services. This issue can
graph-structured data, and analyzes the data to intelligerbe addressed by realizing multicast with multicast-intédea
determine whether the multicast session should be selémted(MI) optical switches,i.e., establishing a logic light-tree for
reconfiguration. We evaluate the proposed graph-aware DBach multicast session with multiple unicast lightpath@].[1
model with extensive simulations that consider differe@NE Specifically, the study in [10] proposed a spectrum-flexible
topologies. The simulation results confirm the effecti@nemember-only relay (OL-M-SFMOR) scheme for this purpose.
and universality of our proposal, and show that it can baanc Another benefit of realizing multicast with M| optical
the tradeoff between the number of reconfiguration operatioswitches is that the multicast sessions can be reconfigared i
and blocking probability much better than the existing i®eur a local and easier manner. This is because the multicast with
tic approaches, without empirical parameter adjustments. MC optical switches has the restriction that all the brasabfe
The rest of the paper is organized as follows. Section dl light-tree should have the same spectrum assignmente whil
briefly surveys the related work. We describe the netwotkis is not required by the OL-M-SFMOR scheme [10]. In [22],
model and operation principle of the dynamic reconfiguratiche authors studied how to formulate and reconfigure musltica
of multicast sessions in EONSs in Section Ill. The graph-awagessions dynamically, assuming that OL-M-SFMOR is used in
DRL model for session selection is designed in Section I\, amn EON built with MI optical switches. Nevertheless, as we
we discuss its performance evaluations in Section V. Ripalhave already explained, the algorithms proposed in [22] for

Section VI summarizes the paper. multicast session selection still have a few drawbackschwvhi
motivate us to revisit the sub-problem in this work and try to
Il. RELATED WORK solve it better with a novel graph-aware DRL model.

Multicast in the optical domain has been studied since thePreviously, Liet al. [29] designed a deep neural network
inception of wavelength-division-multiplexing (WDM) net (DNN) to predict the performance of multicast light-trees.



However, the DNN still uses a linear architecture, which isolve two sub-problems for the reconfiguratiom, session
not good at processing graph-structured data, and the topédection [ine 12) and session reconfiguratiddrfe 13). The
was not on multicast reconfiguration. Due to its promisingession selection needs to find the most “critical” multicas
performance on processing graph-structured data, GNN Is&ssions whose logic light-trees are off their optima thestmo
attracted great attention nowadays [25], especially fa tho reconfigure. The session reconfiguration rearrangesgie |

complex optimizations in networks [30, 31]. light-trees of the selected sessions to save spectrumreEsyu
which can be done with either full or partial rearrangements
[1l. PROBLEM DESCRIPTION [22]. Specifically, the full rearrangement recalculates lttgic

: . . . light-tree of each selected session with OL-M-SFMOR, while
In this section, we explain the network model and operatlcgﬁ

o . . . L e partial rearrangement only chooses certain lightpaths
principle of the dynamic multicast reconfiguration in EONs.the logic light-tree of each selected session to reconfigure

according to the average cost of the lightpaths in it
A. Network Model

The topology of an EON for DCI is modeled as a directedAlgorithm 1: Dynamic provisioning of multicast sessions
graphG(V, E), whereV and E are the sets of DCs and fiber, \ hile the EON is operationatlo

links, respectively. Here, similar to the case in [22], weimse for each newly-arrived sessiall R; (s, D, b, t) do

that the EON is built with MI optical switches. On each link, try to set up a logic light-tree for it with
e € I, there aref’ frequency slots (FS’), each of which has a OL-M-SFMOR;
bandwidth of12.5 GHz. The BV-Ts that terminate each fiber4 if the light-tree cannot be establishéien
link are assumed to be the sliceable ones [32], which means | mark MR, as blocked:
that as long as there are sufficient spectrum resources on & end
link, its BV-Ts can always be sliced to facilitate the receds end
lightpath transmissions. _ s | for each existing sessioM R;(s, D,b,t) do
We model each multicast session &&R(s, D, b,t), where ¢ if ¢ has been expirethen
s € V denotes the sourcé) represents the set of destinations,, | remove M R; and free its resources;
b is the bandwidth demand in Gbps, ahdtands for its life- |, end
time. In this work, we consider a dynamic EON environme[g if D has changedhen
that each multicast sessidi i(s, D, b, t) can come and leave, , update its logic light-tree with
on-the-fly, and during its life-time, the DCs inD can change OL-M-SFMOR;
over time too. Hence, when a new multicast session firgt end
comes in, we leverage the OL-M-SFMOR scheme in [10] end
to set up several lightpaths for establishing a logic lighty | it it is the time to reconfigure multicast sessidghen
tree, such that each destination I can receiveb Gbps , select existing multicast sessions to reconfigure;
from the sources through one or more lightpaths. Here, each reconfigure the selected multicast sessions;

lightpath for serving the multicast session can only stad a4 end
end at its member nodesg, those ins U D) for saving ,; ang
BV-Ts, according to the principle of OL-M-SFMOR [10].
As the optical signal is only transmitted all-optically oach
lightpath, the RSA schemes of different lightpaths in thgido =~ Throughout the aforementioned process, we need to balance
light-tree are independenite., the spectrum assignments orthe tradeoff between the number of lightpath reroutings and
different branches of the light-tree can be different. overall blocking probability of multicast sessions. It cha
After the initial provisioning of the multicast sessiongth seen that the sub-problem of session selection is morearglev
DCs in D can change over time. Then, when a DC leavds this tradeoff. Hence, in the following, we first review the
the session or a new DC joins in, the lightpaths in the logl@-/Q-value based selection strategies designed in [22]yaa
light-tree are updated, still with OL-M-SFMOR. Neverthede their drawbacks, and then explain the principle of our graph
this might gradually degrade the optimality of the logichlig aware DRL based selection algorithm.
tree, the RSA schemes of certain lightpaths in it can be sub-The D-value of a logic light-tree is actually the hop-count
optimal and waste spectrum resources. Therefore, we needatdts longest-destination branch [22]
reconfigure the multicast session adaptively from timerteeti

D(T) = max [hops(s — d), Vd € D], (1)

B. Dynamic Reconfiguration of Multicast Sessions whereT is the light-tree for multicast sessiof R(s, D, b, t)

. . . - dh -) ret the hop- t of ti th. With th
We useAlgorithm 1 to explain the operation principle ofan ops(+) rewims the hop-count of & routing pa ! €

q i f lati q f i f multicast . definition in (1), the D-value based selection (DTS) strateg
ynamic formutation and reconfiguration of mutticast SeSS| g, o5\cyates the average D-value of all the in-servicdtimu

[22]. Ll_nes 2-10 explains how .to for_m ulate mu_Itlcast SESSIONG st sessions, and then selects those whose D-valuesgee lar
dynamically. Then, the reconfiguration of multicast sessiis

t_riggered peri_Odica"Y to mai_ntain the (_)ptimality of theglo Here, the cost of a lightpath was defined in [22], which depenu the
light-trees of in-service multicast sessions. Here, wednee lightpath’'s spectrum usage and the number of hops of itingutath.



than the average value to reconfigure. As DTS only considers upcate 12) [ Gniing

i Global GNN i

the branch lengths of each logic light-tree but does notesdr ' y ©) T""‘":gd. t
the overall tree structure or the spectrum assignment on the parameters | 09 —
links, it might not always select the most critical sessitms yver s
reconfigure. (e DRL Agent
The Q-value of a logic light-tree considers the overall tree Action Action Reward
. . . A-GNN T————= C-GNN
structure and the spectrum assignment on its links [22] (o Evaluation
Reward
oT) hops(T™) - hidz(T™) @ @ ’ (s) Calculation
= tate tate
hops(T) - hidz(T) ’ Session
. o . . Reconfiguration IFEEIve State
where 7* is the logic light-tree that is calculated with OL- Engineering otuork Statue
M-SFMOR based on the current network status, a(-) @ Network status [(4) ©)
returns the highest index of the used FS’ on a light-treehWit Topology hservce
(2), the Q-value based selection (QTS) strategy first clteose Senice i_estsif_msl
a thresholdQy,, and then selects those whose Q-values are | Povsioning ™(5)"| | ["Seriee | jicas .
;maller t.harQ“, to regonfigure. Although QTS con;iders more — Engineemgs;z:;:se : Trigger
information of a logic light-tree than DTS, the information Dynamic
is still somehow limited, and the value @, can only be i@ __ Requests
. .. . . rp . . @ @ ! New Multicast |
determined empirically, which is rather difficult in a dynam L 2 | RequestHandler «<———'  Sessions |
EON or for EONs with various topologies. (" Destinations
To address the issues of DTS and QTS, this work proposes i midl

to select multicast sessions in a self-adaptive manner with

graph-aware DRL. More specifically, the DRL model takes theg. 1. Architecture and operation principle of our grapteee DRL model.
topology information of the EON and the current provisianin

scheme of a multicast session as the input, abstracts them

as graph-structured data, and analyze the data with GNNsPf@Visioning module. As explained Wigorithm 1, the service
intelligently determine whether the multicast sessioruthbe  Provisioning module serves the dynamic requests and update
selected for reconfiguration. Meanwhile, after offlinerirag, their provisioning results in the TED. Then, the reconfigiora

the DRL model is also trained in the online manner to mal@ Multicast sessions is triggered periodically, and itrtsta
sure that it can optimize its decision-making automatjcaiid from TED sending the current network status to the feature
adaptively according to the reward feedbacks from a dynanq@gineering module, which abstracts the network status to a
EON environmentj.e., its effectiveness and universality carstate that consists of graph-structured data. The DRL agent

be guaranteed without empirical parameter adjustments. US€S two GNNsi.e,, the actor GNN (A-GNN) and critic GNN
(C-GNN), to analyze the state of each in-service multicast

sessions and select certain sessions to reconfigure.
Next, the action from the DRL agent.€., the selected
This section elaborates on our graph-aware DRL model fg{ylticast sessions) is forwarded to the session reconfigara
multicast session selection. Note that, to determine Vmeth'noduie, which works with the service provisioning module to
a multicast session should be selected for reconfiguration@configure the selected sessions. After this, the TED sends
not, we need to process graph-structured daeg the tree the new network status to the reward calculation module to
topology and the spectrum usages on its links). This taskdptain the reward of the last action conducted by the DRL
suitable for GNNs, because NNs in linear structures noggma&gent. Then, we organize the state, action and reward as a
only deal with the data in Euclidean domains well [25].  training sample, and store it in the experience buffer. When
enough entries of experience have been accumulated, the
A. System Architecture online training module invokes a training process to update

We still assume that the EON for DCI is operated by Ievetrhe global GNN, which in turn updates the parameters of the

aging software-defined networking (SDN), which means théfGNN and C-GNN in the DRL agent accordingly.

the control plane consists of a centralized controller todha )

the tasks for network control and management (NC&M). O Preprocessing of Data

graph-aware DRL model obtains the information about the To prepare the input to the graph-aware DRL model, we

EON and the multicast sessions in it from the controller, arabstract the topology information of the EON and the current

selects the most critical sessions to reconfigure. provisioning scheme of a multicast session as graph-simeatt
Fig. 1 explains the operation principle of the graph-awadataG(V,V, E, E), whereV and E still represent the sets

DRL model, and its work-flow is illustrated with step num-of DC nodes and fiber links in the EON, respectively, while

bers. Dynamic requests regarding multicast sessiomsiew V and E denote the features of the nodes and linksVin

multicast sessions and changes on in-service sessionfi)sareand F, respectively, regarding the current provisioning scheme

processed by the request handler, which dispatches thenatmulticast sessiod/ R(s, D, b, t). Specifically, according to

both the traffic engineering database (TED) and the servide current logic light-tre¢/” of M R, we classify the nodes

IV. GRAPH-AWARE DRL BASED APPROACH



in V into 5 categoriesj.e., the sources, destinations inD, Global Network
. . . . Parameter

intermediate node off that used to be a destination, normal Updates < AGNN B C-GNN
intermediate node, and nodes that are not7anThen, the =
feature of a node € V' can be described with a corresponding

vector o € V, with one-hot coding. Here, we usebits to 5

represent the aforementioned node categories, respgckoe §’

instance, if we have a node= s, its feature vectof should &

be [1,0,0,0,0], or if the nodev is a destination, its feature

vectors should bel0, 1,0, 0, 0]. On the other hand, the feature Thread 1 Thread 2 Thread n

of alinke € E is defined ag = %, wheref is the number of Experience Experience Experience

unused FS’ on linke and F is the total number of FS’ there. Buffer Buier Bufleg
Here, for simplicity, we do not consider distance-adaptiv: !, £ = £

A-GNN Z C-GNN A-GNN Z C-GNN A-GNN Z C-GNN

modulation selection, and assume that all the lightpatles.ain
logic light-tree use the lowest modulation levek( BPSK). Ilnteract llnteract llnteract
Note that, if we need to consider distance-adaptive moidulat

selection, the only difference is that we should let our DRL = Environment1 EQvionment2 - SN
model learn the relation between the transmission distahce

a lightpath and the number of FS’ that it uses. Hence, WheR. 2. Training of DRL model in A3C framework.
preprocessing the graph-structured dat& 0f, V', £, E), we

need to include the length of each fiber link as an attribute,

modify the feature of each link if and £ accordingly, and D. Design of Graph-aware DRL Model

redesign the GNNs in the DRL model to accommodate the
changes. This will be considered in our future work.

We design the four basic elements of the DRL model as

« Agent: The DRL agent is based on the asynchronous
C. Structure of GNN advantage actor-critic (A3C) framework [34], which uses

We design the GNNs used in our DRL model based on Multiple pairs of A-GNN and C-GNN for parallel online
graph convolutional network (GCN) [33]. The GCN takes the  training in several threads. For each pair of A-GNN and
graph-structured da@(V, V', E, E) as the input, and performs ~ C-GNN, the A-GNN provides an action policy(s5)
two types of operations on the data., the message transfer ~ Pased on the statg in graph structure, and chooses the
and information reduction. For the two types of operations, ~2&PPropriate action according to the poligyS). The C-
we define two functions as follows. The message function GNN is responsible for learning the value of statand

calculates the message to be sent from node nodeu evaluating the action from A-GNN based onit.
« State The stateS contains the topology information

msg(v,u) =06 vueV, e=(v,u) €E, ) of the EON and the current provisioning scheme of a
where nodes andu are connected with a link = (v, u) in multicast session, and it is just the graph-structured data
G(V,V,E, E). The reduction function reduces the messages G(V,V,E, E) obtained by the data preprocessing.
that each node iV receives from its neighbors. « Action: The action is modeled with a binary variable

rdu(v) = Z msg(u,v), veV. @ a, i.e, if tht_e multicast session should be sele_cted for
reconfiguration, we have = 1, anda = 0, otherwise.
{u:(u,v)EE} )
_ « Reward: We define the reward as follows

Then, we sendrdu(v), Yv € V} through a linear network §

in the GCN to obtain the new feature vector @f and the r=—k1 Nre+ kz - [slots(T) — slots(T")] @)
transfer function from layet-to layer{l + 1) is defined as + ks - [euts(T) — cuts(T7)],

7 = (W - rdu® (v) + b), (5) where k1, k, and ks are the positive coefficients for

normalization, N,.. represents the number of lightpath
reroutings to reconfigure the multicast sessign,and

T* denote the logic light-trees for the multicast session
before and after the reconfiguration, respectivelyts(-)
returns the number of FS’ used by a logic light-tree, and
cuts(+) returns the number of spectrum cuts [19] caused
by a logic light-tree. Hence, the reward in (7) decreases
with the number of lightpath reroutings, and increases
with the spectrum usage and spectrum cuts saved by

wherelV andb denote the weight matrix and bias of the linear
network, respectivelyg(-) is the nonlinear transfer function,
and rdu® (v) represents the reduced information for nade
obtained in layet-of the linear network.

After several layers of GCNs, we introduce a pooling layer
to aggregate the processed graph-structured data and get a
vector for representing it. Specifically, we select the puapl
layer that averages the feature vectors of each node as

G = ﬁ AN (6) the reconfiguration. In other words, by maximizing the

veV reward, our graph-aware DRL model tries to invoke the

whereg is the obtained vectot)/| is the number of nodes in ~ smallest number of lightpath reroutings on a multicast
V, andk is the number of GCN layers. Finally, we seddo session to achieve the largest savings on spectrum usage

go through several linear layers, for getting the final otitpu and spectrum cuts.



As shown in Fig. 2, we duplicate the A-GNN and C-GNN Algorithm 2: Training process of a thread
into several copies, use one copy as the global GNN, and guf- — 0]
each of the others in a training thread to expedite the wgini , \\nije 7 < T s do
process. Specifically, each training thread uses its A-GNN a,, if it is the time to reconfigure multicast sessichen
C-GNN to interact with an EON environment independently for each in-service multicast sessiddR; do

to obtain training samples. In the iterative manner, théallo 5 get stateS; of MR;:
GNN collects the gradients generated by the training theead put S; into the A-G;\IN to get an action;:
leverages them to update the parameters of its A-GNN and apply a; to the EON environment; ’

C-GNN, and synchronizes the updated parameters to the A- calculate reward;:

GNNs and C-GNNs in the training threads. As each thread push{S;,a;,r;} to experience buffer;
is trained independently to obtain the gradients, the majgr end

benefit of this approach is that it effectively reduces the | o

correlations among training samples. Meanwhile, the mulfj if experience buffer is futhen

thread training can make full use of available computing reset the gradients as 0:

resources to accelerate the online training. 14 calculate the loss with A-GNN and C-GNN using
Algorithm 2 explains the training process in a thread in the training samples in experience buffer;

detail, where we usd’ to record the number of training,, get the gradients with the loss;

iterations, andl’,,... is the upper-limit on training iterations.16 send the gradients to the global GNN:

Lines 3-9 use the local A-GNN and C-GNN of the thread, update the parameters of A-GNN and C-GNN

to interact with its own EON environment, for collecting according to the feedback from the global GNN;

training samples. Then, when enough training samples haye empty the experience buffer;

been collectedLines 11-17 perform one iteration of the g T=T+1;

training. Specifically, the gradients are first calculatecally end

with the obtained training sampleiges11-13), then they are,; o

forwarded to the global GNNL{ne 14), and finally the thread
updates the parameters of its A-GNN and C-GNN according

to the feedback from the global GNN and prepares itself for ) .
the next iteration of trainingLnes 15-17). QTS), and consider both the partial and full rearrangements

for session reconfiguration. To ensure sufficient stagktic

accuracy, we average the results frénindependent runs to
V. PERFORMANCEEVALUATION . .
obtain each data point.

In this section, we conduct extensive numerical simulation

to evaluate our proposed approach based on graph-aware D§.L'Training Performance

_ _ We first evaluate the training performance of our DRL

A. Simulation Setup model. Note that, the DRL model needs to first go through

The simulations use the four topologies in Fig. 3 for ththe offline training that optimizes its parameters initialio
EONSs for DCls, to confirm the universality of our proposal imake it suitable for being put into online operation/trami
terms of topologies. The capacity of each fiber link is asslimélence, we study the performance of the offline training in
to be F' = 100 FS’, where each FS has a bandwidth othis subsection, and will consider that of the online opera-
12.5 GHz to deliver12.5 Gbps throughput. For each multicastion/training in subsequent ones. Figs. 4(a) and 4(b) show h
sessionM R(s, D, b, t), s and D are randomly selected fromthe average number of lightpath reroutings per session and
the nodes in the EOND contains[2, 5] destinations initial- blocking probability change in the training process, respe
ly, the bandwidth demand is uniformly distributed within tively, for the case in the NSFNET topology with the traffic
[50,200] Gbps, and the life-time follows the exponential load at25 Erlangs. For comparisons, we also plot the results
distribution with an average &0 time-units. As the multicast from DTS-based and QTS-based algorithms in Fig. 4. Here,
sessions are dynamic, we generate new multicast sessialhighe algorithms assume that full rearrangement is used to
according to the Poisson traffic model, and for each in-servireconfigure the selected multicast sessions, and thus tieey a
multicast, destinations can join or leave dynamically dgri labeled with “-F”. In the following, the algorithms labeledth
its life-time. Specifically, the service time of each deation “-F” and “-P” mean that they accomplish multicast session
follows the exponential distribution, and it leaves its tioalst reconfiguration with the full and partial rearrangement@Rj,
session when the service time expires, while new destimaticespectively. Meanwhile, for QTS-based algorithms, we can
are generated with the Poisson distribution. In Section, V-Ehoose their thresholds on Q-value for session selectien (
we will change the settings mentioned above and run magk,), and thus they are also labeled with th@i, values. For
simulations to further verify the universality of our pragab. instance, the QTS-B8 in Fig. 4 means that the multicast

The reconfiguration of multicast sessions is invoked evergconfiguration uses QTS to select multicast sessions with
100 time-units, and this interval is empirically set. The sim&);, = 0.8, and reconfigures them with partial rearrangement.
ulations compare our proposal based on graph-aware DRLThe results in Fig. 4(a) show that compared with QTS-P-
with the heuristics for session selection in [2R¢( DTS and 0.8, DTS-P achieves a lower blocking probability by invoking
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Fig. 4. Training performance (NSFNEZ5 Erlangs).

TABLE |
AVERAGE RUNNING TIME OF OFFLINE TRAINING(SECONDS

Topology | NSFNET USB EUB | RT

DRL-P 25167.35| 34698.01| 34944.14 | 32342.45
DRL-F 31541.22| 40423.58| 45508.86 | 36843.80

(d) 20-node random topology (RT)

and average number of lightpath reroutings per sessiorgm Fi
Fig. 3. EON topologies used in simulations. 4(a) and 4(b), respectively. Note that, we also check other
traffic loads in NSFNET and the cases with full rearrangement
and confirm that our DRL-based approach can always achieve
much more lightpath reroutings per session. Meanwhiley aftsimilar training performance as that in Fig. 4. Hence, the
being trained with more tha®, 000 episodes, our DRL-P canresults are omitted due to the page limit.
obtain a blocking probability that is as low as that of QTS- Table | lists the running time of the offline training that
P-0.8, while its average lightpath reroutings per session imakes our DRL model suitable for online operation/training
fewer than that of QTS-B-8 in Fig. 4(b). In other words, by We observe that for the EONs with the NSFNET, US Back-
utilizing its graph-aware intelligence, our DRL-P can mla bone (USB), European Backbone (EUB), and random (RT)
the tradeoff between overall blocking probability and ager topologies, the running time actually increases with thee si
lightpath reroutings per session much better than the twb the topology. Meanwhile, the DRL model that is for the
benchmarks that use deterministic strategies. full rearrangement scheme usually takes longer offlinaimgi
Moreover, to clearly see how the average value of DRItime than that for the partial rearrangement scheme, résssd
P’s reward correlates with the metrics in Figs. 4(a) and 4(bj the topology. These trends are expected, because when
in the training, we plot it in Fig. 4(c). Here, we empiricallythe topology of the EON becomes larger or the multicast
set the positive coefficients in (7) &s = 6.0, k2 = 1.0 and reconfiguration changes from partial rearrangement toré&ill
ks = 2.0. It can be seen that the average reward generayrangement, the problem of multicast reconfigurationadlytu
increases with the decreases of overall blocking proligbilbecome more complex.



N
o

N
o

—e— NR —®- AR

Blocking Probability
8\

Blocking Probability
S
N

) —¥— DTS-P —¥— DTSF
10 ° —*x— QTS-P-0.8 —*— QTS-F-0.8
—— DRL-P 107 —— DRL-F
15 20 25 30 35 40 45 15 20 25 30 35 40 45
Traffic Load (Erlangs) Traffic Load (Erlangs)
(a) Overall blocking probability (a) Overall blocking probability
5225 5 R e S A
2 2
@200 —¥— DTS-P 10
< —— QTS-P-0.8 Q
8175 —— DRL-P 3 s
%150 ) —¥— DTS-F
= = —&k— QTS-F-0.8
0125 /‘/‘_’/o—f—’—'\f o6 —— DRL-F
] o)
% 1.00 = D I S
® £ 4
5075 // s
2 2
20,50 5,
15 20 25 30 35 40 45 15 20 25 30 35 40 45
Traffic Load (Erlangs) Traffic Load (Erlangs)
(b) Average number of lightpath reroutings per session (b) Average number of lightpath reroutings per session

Fig. 5. Results of dynamic operations (NSFNET, partial neeagement). Fig. 6. Results of dynamic operations (NSFNET, full reagement).

0.190 —e— QTS-P
C. Performance in Dynamic Network Environments 0185 %~ DRLP
Next, we evaluate the performance of our DRL-based ap- go180
proach by putting the graph-aware DRL model, which has éo-”s
passed the offline training in a dynamic network environment ~ £°'"° *
with the NSFNET topology, and compare its performance °2122
with DTS-based and QTS-based algorithms. Figs. 5 and 6 o5

show the simulation results for the cases using partial and 04 06 08 O e send 1618
) ghtpath Reroutings per Session

full rearrangements, respectively. Here,“NR” denotesdase

without multicast session reconfiguration. Note that, igsFi

5(a) and 6(a), when the traffic load is abo8g Erlangs, - ot

(a) Partial rearrangement

the blocking probabilities from the algorithms with muéit 2017

session reconfiguration can actually exceed the pracacagle §

of the blocking probability in a real-world EON. Althougheth E,me

traffic loads exceed what should be considered in a realeworl %ms *

EON, we still simulate them to get a complete picture about
how the algorithms will perform at various traffic loads. The
DTS-based algorithm still provides the lowest overall lkiag 2 Lightpath Reroutings per Session
probability with the largest number of lightpath reroutng
per session. By combining the results in the figures, we
can conclude that to keep the overall blocking probabditiéig. 7. Tradeoff between blocking probability and averagatpath rerout-
comparable to those of DTS-based and QTS-based algorithifi& Per session (NSFNET0 Erlangs).

our DRL model always requires the smallest number of light-

path rgroutmg; dper jgss';(_)n e;f ectglzlyi_'for all the S'mukls the tradeoff more clearly. It can be seen that no mattergiarti
SDCSC%”OS (cj:on5| ere hm |gs.ﬁ a}[_n | ' che’ (t)#rgrap :?‘W&r full rearrangement is used, the data point for the results
-based approach can eflectively reduce the opera 'o%m the DRL model is always below the curve for the results
complexllt_y_of dynamic multicast session reconﬂgura_tlomhw from QTS-based algorithm. This verifies that the DRL model
out sacrificing much performance on request blocking. balances the tradeoff better than QTS, regardless of thieeho

Moreover, we notice that QTS-based algorithm can chang{a | L : -
’ ; . In addition to40 Erlangs, the simulations also check
the value ofQ);;, to balance the tradeoff between blocking prob Qv g

" . . ) other traffic loads, and similar trends can be obtained.
ability and average lightpath reroutings per session. Eewe
change);; to obtain different sets of blocking probability and ] . . ]
average lightpath reroutings per session, and plot thdtsesly- Universality across Different Topologies
in Fig. 7, when the traffic load is set a$ Erlangs. Here, = We then evaluate the universality of our graph-aware DRL-
we take average lightpath reroutings per session and lnigckbased approach across different topologies. The operation
probability as the X-axis and Y-axis, respectively, toslitate principle of our graph-aware DRL model ensures that the

°
-
N

(b) Full rearrangement
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DRL model trained in one EON topology can be directly
applied to solve the problem of dynamic multicast session
reconfiguration in others. Specifically, we only need to iaust

the new topology information of the EON and the provisioning

e I

—8— NR

Blocking Probability

scheme of each multicast session as graph-structured data —¥- DTSP
G(V,V,E,E) and input the data to the trained DRL model, oo
while the DRL model does not need to be redesigned or 15 20 % 45

25 30 35
retrained. To verify this, the simulations apply the DRL rabd Traffic Load (Ertangs)

trained in NSFNET to solve the problem of dynamic multicast

session reconfiguration in the other topologies in Fig. 3. S26
Fig. 8 shows the results for the dynamic operations in USB, B24 v DTSP

(a) Overall blocking probability

when partial rearrangement is considered. We can see that &, T oreree
. . . =) e -
the results follow the similar trends as those in Fig. 5. To £20

further clarify the adaptability of our DRL model, we takesth
case of traffic load a25 Erlangs in USB as an example, and =16 ./‘/‘—"‘\ﬂ/’*\1
plot how the performance metrics change over the simulation 4 /’/——
time in Fig. 9. As we directly apply the DRL model trained 15 2
in NSFNET to the EON with the USB topology, a zero-
shot transfer learningi.é., applying a trained DRL model
to an unseen environment for the same task [35]) is actuaflyy. 10. Results of dynamic operations (EUB, partial rezgeanent).
considered. It can be seen that due to the superior adaptabil
of our DRL model, it achieves relatively good performance
on the performance metrics at the beginning of the onlimaodel can adapt to different topologies without such manual
operation/training, and both the overall blocking proligbi adjustments. Although the results in Figs. 8-11 are all atiwu
and average number of lightpath reroutings per session opbses that use partial rearrangement, we also check thtise wi
changes slightly afterwards. full rearrangement and confirm that our DRL-based approach
Figs. 10 and 11 illustrate the results obtained by directBchieves similar performance in them too. Therefore, weero
applying the DRL model trained in NSFNET to the EONgshe universality of our DRL model across different topokxyi
with EUB and RT topologies, respectively. The results still Table Il lists the average running time per multicast sessio
follow the similar trends as those in Fig. 5. Note that, whereconfiguration of the algorithms. Here, for our DRL model,
the EON topology changes, we might need to change the vathe running time is only for its online operation/training,
of Qy, (i.e., the threshold on Q-value for session selectiomjecause the offline training should be finished before the DRL
for QTS-based algorithms empirically. This is the reasoly whmodel can be put into operation and its running time has
we simulate QTS-P-0.9 in EUB (as shown in Fig. 10). Oalready been summarized in Table I. The results in Table
the other hand, with its graph-aware intelligence, our DRIL suggest that the running time of all the algorithms is

25 30 35 40 45
Traffic Load (Erlangs)

(b) Average number of lightpath reroutings per session
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Fig. 11. Results of dynamic operations (RT, partial reayesment). Fig. 12.  Results of dynamic operations with bursty multicagssions

(NSFNET, partial rearrangement).
TABLE I
AVERAGE RUNNING TIME PER MULTICAST RECONFIGURATIONSECONDY

likely to cause session blockings, the blocking probabibit
each algorithm in Fig. 12 is higher. Nevertheless, our DRL
model still retains its advantage of significantly reducthg
number of reconfiguration operations without sacrificing th
performance on blocking probability. With the bursty traffi
model, we also simulate other EON topologies and test the
algorithms with full rearrangement, while the results ate/a
follow the similar trends as those in Fig. 12.

Secondly, we increase the number of FS’ on each fiber
: link to 200, for simulating the EONs with more spectrum
comparable and short enough to adapt to dynamic operations. . : .

. . . resources. The results of the simulations with NSFNET are

The running time of our DRL model is less than that of the,
QTS-based algorithm in all the simulation scenarios, whi

Topology | NSFNET| USB | EUB | RT

DRL-P 0.1943 | 0.2494 | 0.2383 | 0.2908
QTS-P 0.2964 | 0.3941 | 0.4040 | 0.3986
DTS-P 0.0693 | 0.0900 | 0.1016 | 0.0867
DRL-F 0.2104 | 0.2823 | 0.3022 | 0.3110
QTS-F 0.3620 | 0.4648 | 0.4927 | 0.4448
DTS-F 0.1995 | 0.2723 | 0.2882 | 0.2687

hown in Fig. 13, and by comparing them with those in Fig.

as the DTS-based algorithm only makes decisions accordifi we still see the similar trends. Meanwhile, since theee ar

. . . re spectrum resources in the EON, we need to increase the
to the depth of each logical light-tree, it runs the fastest._ .. : o
. ) . . raffic load to see the same blocking probability. Our DRL
Meanwhile, the running time of each algorithm generall

: . . . "!hodel still exhibits the advantages over the heuristicicivh
increases with the size of the topology, or from using phrtia . ;
rearrangement to using full rearrangement suggests that its performance is not a}ffected by the (_:hange
' of spectrum resources in the EON. With the new setting of
spectrum resources, we also simulate other EON topologies

E. Generalization to Various EON Settings and test the algorithms with full rearrangement, and theltgs
Finally, we consider more simulation settings to verifytthalways follow the similar trends as those in Fig. 13.
our proposed graph-aware DRL model can adapt to variousFinally, considering the fact that in a real-world EON, taer
EON settings. First of all, we notice that the assumptiosre unicast and anycast lightpaths coexisting with mudtica
of Poisson traffic model might not hold in today’s Internetsessions, we design a realistic simulation scenario thatsh
Hence, we design a new simulation scenario, in which the malnd anycast lightpaths are used as the background traffic of
ticast sessions are generated dynamically in a bursty manmeulticast sessions. Specifically, to create a stressfulasoe
i.e, they come in according to the realistic ON/OFF patterior our DRL model, we make the total bandwidth demands
for bursty Internet traffic [36]. Note that, we still quantifthe of unicast, anycast, and multicast account for 25%, 25% and
traffic load of the multicast sessions with Erlangg,., the 50% of the overall bandwidth usage in the EON, respectively.
production of the average number of new sessions per uriitie results of the simulations with NSFNET are shown in Fig.
time and the average lifetime of each session in time-ufiits. 14, and by comparing them with those in Fig. 5, we can see
results of the simulations with NSFNET are shown in Fig. 12hat the blocking probability of multicast sessions becsme
and by comparing them with those in Fig. 5, we can see tl@ver. This is because for the same traffic load, unicast and
similar trends. Meanwhile, as the bursty traffic model is enoanycast lightpaths generally require less spectrum ressur
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VI. CONCLUSION
%10 In this work, we revisited the problem of how to formulate
g and reconfigure multicast sessions in an EON, and proposed
2, a DRL model based on GNNSs that can solve the sub-problem
810 - of multicast session selection in a more universal and adap-
T aTsPos tive way. Specifically, we abstracted the state information
= = =5 5 5 5 of each multicast session as graph-structured data, which
Traffic Load (Erlangs) can be directly analyzed by our graph-aware DRL model.
(a) Overall blocking probability Then, the graph-based reasoning capability of our proposal
8250 made sure that the state information of each multicast@essi
8205 can be analyzed in depth for dynamic reconfiguration, and
» —¥— DTS-P - . . . .
82,00 —+— QTS.P08 facilitated the universality across different topologieence,
g1 T PRP an important takeaway is that our graph-aware design of the
I - * — DRL model made its architect and operation independent of
%1§2 the EON's topology, and thus avoided the hassle of redesigni
2075 its architecture to adapt to different EON topologies.
T S S S Simulation results verified that compared with the exist-
Traffic Load (Erlangs) ing deterministic algorithms based on DTS and QTS, our
(b) Average number of lightpath reroutings per session graph-aware DRL based approach can significantly reduce
Fig. 13. Results of dynamic operations with0 FS’ per fiber link (NSFNET, the average lightpath reroutings per multicast sessiorlewhi
partial rearrangement). maintaining the overall blocking probability approximigte

at the same level. This suggested that our proposal can
balance the tradeoff between the number of reconfiguration
operations and blocking performance much better than the
existing algorithms. Moreover, our simulations also conéd
that the DRL model trained in one EON environment can
easily adapt to solve the problem of dynamic multicast sessi
reconfiguration in EONs with various settings.d, different
topologies, spectrum resources, traffic models and request
types). Therefore, the universality of our proposal helpzd
15 2 2 o Lol Erangsy 40 45 effectively save the tim_e and efforts that are needed tos@dju
the DRL model according to an EON’s setting, and provided
a more realistic solution for network automation.
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