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Abstract—Network function virtualization (NFV) in elastic
optical datacenter interconnections (EO-DCIs) enables figble
and timely deployment of network services. However, as the
service provisioning of virtual network function service chains
(VNF-SCs) in an EO-DCI needs to orchestrate the allocationsf

IT resources in datacenters (DCs) and spectrum resources on

fiber links dynamically, it is a complex and challenging prodem.
In this work, we model the problem as a Markov decision proces
(MDP), and propose a hierarchical deep reinforcement learing
(DRL) model based on graph neural network (GNN), namely,
HRLOrch, to tackle it. To ensure its universality and scalahlity,

we design the policy neural network (NN) in HRLOrch based

on a GNN. As the GNN-based policy NN can operate on the

graph-structured network state of an EO-DCI directly, it can
adapt to an arbitrary EO-DCI topology without any structura |
changes. Then, through analysis, we find that the EO-DCI is a
sparse reward environment if we want to train a DRL model to
minimize the blocking probability of vVNF-SCs in it directly. To
address this issue, we design a hierarchical DRL with lowelevel
and upper-level models to improve the convergence perfornrece
of training. Specifically, we make the lower-level DRL optinize
the provisioning scheme of each vNF-SC to minimize its resoce
usage, while the upper-level one coordinates the provisiang of
all the active vVNF-SCs to minimize the overall blocking protabil-
ity. Hence, the lower-level and upper-level DRL models opeate
cooperatively in the training to optimize the dynamic provisioning
of VNF-SCs. Our simulations demonstrate the universality ad
scalability of HRLOrch, and confirm that it can outperform th e
existing algorithms for vNF-SC provisioning in an EO-DCI.

Index Terms—Network function virtualization (NFV), Service
function chain, Datacenter interconnection (DCI), Elastt optical
network (EON), Graph neural network (GNN), Deep reinforce-
ment learning (DRL), Network automation.

I. INTRODUCTION

OWADAYS, the growth of 5G, high-definition and im-

dynamically and flexibly by forming vNF service chains (VNF-
SCs) [6], VNF trees [7], and generic VNF graphs [8], such that
the tradeoff between the quality-of-service (QoS) and thet ¢
and complexity of service deployment can be better optithize
Due to the abundance of commodity servers, storage and
switches in datacenters (DCs), NFV-based service deployme
is usually considered in the intra-DC and DC interconnerctio
(DCI) networks [9, 10]. The rationale of considering DCIs is
to leverage geographically-distributed DCs for improviigs’
performance on service coverage, latency, and avaikalpllit,
12]. Meanwhile, as the NFV-oriented resource orchestnatio
in a DCI needs to further tackle how to manage the spectrum
resources in an optical network [13, 14], it is intrinsigatiore
complex than its counterpart in an intra-DC network. Despit
the huge bandwidth capacity of fiber links, optical networks
now can achieve fine-grained, adaptive and applicationr@awa
spectrum allocation in the physical layer, with the momentu
gained from flexible-grid elastic optical networking (EON)
[15-18]. Therefore, in an elastic optical DCI (EO-DCI),Hig
paths can be established with a spectrum allocation gratyula
of 12.5 GHz or even narrower, to adapt to the bandwidth re-
quirements of NFV-oriented resource orchestration sessiyle
Note that, NFV-oriented resource orchestration in EO-DCls
is a complex and challenging problem even for the simplest
network service deployment.€, forming vNF-SCs). This is
because, to assemble one vVNF-SC in an EO-DCI, the SP
needs to deploy new or reuse existing VNFs in suitable DCs
(i.e., the VNF deployment problem) and set up lightpaths
in the DCI with routing and spectrum assignment (RSA) to
connect the vNFs in sequencee( the RSA problem) [19].
Hence, even though previous studies have formulated intege
linear programming (ILP) models and designed time-efficien

mersive video applications, and Big Data analytics haeeuristics to address it [19—-22], the resource orchestradt
generated the demands for flexible, timely and cost-effectiprovision vNF-SCs in an EO-DCI still deserves to be revisite
network service deployment [1, 2]. Hence, service prowdeespecially for dynamic and large-scale network envirorisien

(SPs) have to upgrade their service provisioning strategwy f

The online resource orchestration to provision VNF-SCs in

relying on dedicated middleboxes to counting on netwokn EO-DCI can be modeled as a Markov decision process

function virtualization (NFV) [3, 4]. Specifically, NFV dégpys
a network service by instantiating virtual network funatso

(MDP). Specifically, the MDP model considers resource uti-
lization in the EO-DCI {.e., the spectrum utilizations on fiber

(VNFs) on general-purpose servers and storages, and develianks and IT resource usages on DCs) as the network state, and
ing commodity switches to interconnect the vNFs [5]. In othalefines the provisioning/removing of a vNF-SC as an action.
words, with NFV, network services can be realized timelyfherefore, dynamic transactions among the network states c

be captured accurately. Recently, deep reinforcementitegr
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the complex and dynamic optimizations that can be modeled
as MDPs [23], for realizing timely and intelligent decision



making [24]. Specifically, a DRL model leverages one or motéRLOrch are presented in Section IV, while the design of the
agents, each of which contains a deep neural network (DNXKGNN-based policy NN is elaborated in Section V. We evaluate
to interact with time-variant environment and learn thatetyy the performance of HRLOrch with numerical simulations in
to address each environment state with the best decisign [Z3ection VI. Finally, Section VII summarizes the paper.
Motivated by the aforementioned advantages, latest studie
have designed DRL models to solve the subproblems related to
provisioning VNF-SCs in an EO-DCE.g., VNF deployment
[25] and RSA [26]. Promisingly, the DRL models achieved Both NFV [3, 4] and network virtualization [28] are attrac-
better performance than existing heuristics, with comiplara tive virtualization technologies that were proposed toress
time-efficiency. However, these models were not crafted fore ossification of current Internet infrastructure. Poesly,
the whole problem of provisioning vNF-SCs in an EO-DCI.using network virtualization as the background, reseasche
Moreover, the existing DRL models for provisioning vNF-have studied the virtual network embedding (VNE) problem
SCs still have a few drawbacks. First of all, the DNN in #ntensively, in different types of networks and with varsou
DRL agent operates on Euclidean space, while the netwdHatimization objectives [29-32]. Specifically, VNE coneie
state of an EO-DCI is in graph structure. Hence, the DNNow to build multiple virtual networks (VNTs) over a shared
cannot process the graph-structured data of the netwoid siubstrate network (SNT), which, however, is fundamentally
effectively, and certain important features cannot beagxéd. different from NFV-oriented resource orchestration [7hish
Secondly, as the provisioning scheme of a VNF-SC involvésdue to the fact that VNE finalizes the topologies of VNTs
the deployment of required vNFs and the RSA of related ligheefore embedding them in the SNT, but how to route traffic in
paths, it can only be modeled with many decision variable&§e VNTSs is out of its scope since the traffic will be generated
If we directly design the action space of a DRL agent bas@fterwards. On the other hand, NFV-oriented resource srche
on the decision variables (as the studies in [25, 26] did, titration can only obtain the actual topology of each vNF-dase
action space will be extremely large, which can make the DRietwork service after the embedding because multiple vNFs
training difficult to converge. Finally, because the networmight share a same substrate node, while the traffic roufing o
state of an EO-DCI is relatively complicated, a DRL agent cdhe network service is predetermined.
face the challenge of sparse extrinsic reward. Neverthglles Previously, the service provisioning of vNF-SCs has been
existing DRL models only followed the generic principle ofonsidered for packet networks in numerous studigs, in
DRL, but did not incorporate specific designs to deal with tH83—37]. Several ILP or mixed ILP (MILP) models have been
sparse reward environment of an EO-DCI. formulated in [33—35] to get optimal solutions for smalkke
In this work, we propose a hierarchical DRL model baseproblems, and approximation algorithms were also proposed
on graph neural network (GNN), namely, HRLOrch, to tacklto better balance the tradeoff between time-efficiency and
the online resource orchestration for provisioning vNFsSGolution-optimality. A few heuristics were designed andneo
in an EO-DCI. We design the policy neural network (NNpared in [36, 37] to solve VNF-SC provisioning in large-scal
of HRLOrch based on GNN, and thus it can operate directynd dynamic networks. Nevertheless, as these studies did no
on the graph-structured data about the EO-DCI to understadtress the problem of RSA in optical DCls, their proposals
and extract the complex features buried in it effectively][2 cannot be leveraged for vNF-SCs provisioning in EO-DCls.
Then, to address the sparse reward environment of the EO€onsidering an EO-DCI as the SNT, NFV-oriented resource
DCI, we introduce a hierarchical model for DRL. This modedrchestration has been investigated for provisioning \B\G5
optimizes the provisioning of vNF-SCs from both the micr¢l9-22], vNF trees [7], and generic vNF graphs [8]. However,
and marco perspectives, by including the lower-level aritlese studies generally followed the idea of first formuigti
upper-level DRL models. The lower-level DRL model obtaind-P/MILP models to obtain exact solutions and then designin
the provisioning scheme of each VNF-SC request to minimitiene-efficient heuristics to address large-scale problems
its resource usage, while the upper-level one coordinates they did not analyze the state transition of the MDP for provi
provisioning schemes of all the active vNF-SCs such that ts®ning vNF-SCs in an EO-DCI to optimize the provisioning
overall blocking probability can be minimized. Meanwhiile, schemes. This leaves us certain margin to further optinhize t
order to improve training efficiency, we design a hierarahictradeoff between time-efficiency and solution-optimalitith
training scheme to collaborate the training processes ®f tARL. Note that, the two major subproblems of provisioning
lower- and upper-level DRL models. Finally, we carefullwNF-SCs in an EO-DClj.e,, the vNF deployment and RSA
design the action spaces of the upper-/lower-level DRL risodgroblems, have been addressed in [25] and [26], respegtivel
with reduced sizes, and architect a GNN-based policy Nwith DRL models. Nevertheless, the DRL models cannot work
to realize the mapping from network state to action directljointly to solve the two subproblems, and they bear scatgbil
Extensive simulations are performed to evaluate HRLOrch @&nd universality issues, as explained in the previousedin
various network scenarios, and the results confirm thatrit cf88, 39], we leveraged DRL to predict future vNF-SC requests
outperform the existing algorithms. and adjust the duration of service cycles adaptively in an
The rest of the paper is organized as follows. Section HO-DCI, but the developed DRL models did not address the
surveys the related work. We describe the problem of onlimesource orchestration for assembling vNF-SCs.
resource orchestration for provisioning vVNF-SCs in an EO- In this work, we propose a hierarchical DRL model to solve
DCI in Section Ill. The architecture and operation prineipf the provision of vNF-SCs in an EO-DCI, which leverages a

II. RELATED WORK



well-crafted policy NN based on GNN [40]. GNN can directly U WNF2 | Reuse

operate on graph-structured data and has demonstrated good VI
performance in dynamic optimizations related to networks.  Deploy I _
DC-2 DC-4 e
Reuse | VNF-2 DC-6
» 1)

For instance, the authors of [40] leveraged GNN to achieve
accurate prediction of delay and jitter in packet networks,
and they proved that the advantages were achieved because of
GNN modeling the relation among nodes and links better and
having a comprehensive understanding of path information.

Scheme-2

DC-3 DC-5
I1l. PROBLEM FORMULATION AND MODELING & | BV-OXC  VNF Deployed
_ ) . ) 1 b IUNF-T ] : VNF to be Deployed
In this section, we first describe the network model of EEE CYNFE) - NF o be Deploye

provisioning VNF-SCs in an EO-DCI and define the problem
of the resource orchestration for it, and then explain wtey tffrig. 1. Provisioning a VNF-SC request in one EO-DCI with fieis.
problem can be modeled as an MDP.

service provisioning, we normally can only count on time-
A. Network Model efficient heuristics to provision vNF-SC requests in a large

We model the topology of an EO-DCI as a graglV, E) scale EO-DCI. However, the dilemma is that a heuristic ugual
whereV represents the set of DC nodes aEddenotés tr’1e cannot guarantee the performance gap to the optimal solutio

set of fiber links to interconnect the DCs. Each DC nod& other words, a heuristic might operate well in certain
contains a DC and a bandwidth-variable optical cross-canné&iyations but would have difficulties to address the others
(BV-OXC), which are responsible for instantiating vNFs and Fig. }E(g)lvgélan i);arg_?fle ont pr:ows_u:_nlng ?thF—SC r(taqu:est
establishing inter-DC lightpaths, respectively. For thé bn T an ) d \g' " |t_erenDC eurlds ICSIéé: 1e rqugSG as
nodev € V, its IT resource capacity i§,, units, which can be ItS source and destination nodes ias-L1 an g

: . respectively, the required VNF-SC IBC-1—VNF-1—VNF-
used to deploy VNFs. The spectra on each fiberdirk E' can . : .
be allocated according to the flexible-grid scenario [4H, 2-DC-6, and its bandwidth demand ) Gbfs, which can

the fiber link accommodates 12.5-GHz frequent slots (FSY) be accommodated with FS’ (including one guard-band FS).

To bridge the communication between two adjacent vNFs inhlfre’VNF'l means an instance of the first type vNF, and so

VNF-SC, we need to set up a lightpath if the vNFs are deploy%% we Iev?raTghe t\;\_/o twell—klt"npwntheuns_tlc_s o servte the VNF-
on different DCs. The RSA scheme of the lightpath shou request the Tirst one wies fo minimize spectium usage,

. : : d thus it sets up a lightpath fromC-1 to DC-6 with the
comply with the spectrum contiguous, non-overlapping anacl!I T LT
continuous constraints [15, 42]. shortest path routing.€., the green dash line in Fig. 1) and

The DCs in the EO-DCI are assumed to suppdrtypes of deploys newNF-1 andvNF-2 in DC-1. The second one tries

B} . to minimize IT resource usage by reusing the existing VNFs
VNFs, and am-th type VNF (n € [1, M]) consumes;, units infis many as possible. Hence, it reuses the existiigr1 and
of IT resources. Note th_at, a VNF might be shared by multip F-2 in DC-2 andDC-5, respectively, and establishes three
VNF-SCs if they all require the same type of VNF, and one Vnghtpaths (.e, the solid Ii,nes in Fig 15 to form the vNF-SC
of type<m can only process the traffic @f, VNF-SCs at most. o ' '

Each vNF-SC consists of a series of vNFs and can be modeg\?vtg yhggrin;%eclgn\?v;h:arslesr\e/::?hgﬁxgl?or}'rr;%rsﬁggénfi ?Nferrosm gc]:(tara
asSC = {61,0s, - , 6k}, wheredy, is k-th vNF in it. Then, a ’ P

VNF-SC request arrived at tintds R* (o, d', bt, SC*, ¢, 1) and bandwidth-variable transponders (BV-Ts) but more IT
where ot and dt are the source and ées:tin;tion’lﬁlé nc;deresources than the latter, awite versa. Therefore, which of

respectively}t is its bandwidth demand in Gb/SC? is the e heuristics W|I_I provide smaller bIO(_:kmg probabilitgaily

. ' ‘ : .~ _depends on which type of resourcese.( spectrum or IT
required VNF-SC, and} and 7} are the arrival and holding : : .
. . a resources) is scarce in the concerned EO-DCI. Neverthétess
time, respectively. To serve a VNF-SC requ&st we need

to solve the deployment of required VNFs and the RSA afdynam|c network environment, both the resource usages and

related lightpaths. For the vNF deployment, we find suitab ge resource demands of VN.F SC requests change over time,
. . L which suggests that there might not be a constant winner. In
DCs to instantiate new VNFs or reuse the existing ones Q L - -
o other words, a deterministic heuristic could not provisidi-

them, such that all the vNFs ifC* are covered. Then, we

calculate the RSA schemes of the lightpaths to connect t ]g requests adaptlvely_accordmg o the actual networle stat
VNFs in sequence, to satisfy the bandwidth deméind of the EO-DCI. This motlva.tes us tlo propose HRLOrch, which

' ' leverages a GNN-based hierarchical DRL model to solve the
resource orchestration for assembling vNF-SCs in an EO-DCI

B. Assembling VNF-SCs in an EO-DCI

As solving ILP/MILP models is usually time-consuming": Modeling Dynamic vNF-SC Provisioning as an MDP

and thus cannot adapt to the timing requirement of dynamiclIn this work, we consider the dynamic scenario of vVNF-SC
provisioning, where the requests arrive and expire orflthe-
LFor simplicity, we assume that each FS provides a capacit2af Gb/s.  and are served one by one in the order of their arrival time.



The optimization objective is to minimize the overall blawod — DRL Agent
probability. To capture the dynamic transitions among oekw WNF-SC Request;?‘l P T—r— Reward 7,
states during the service provisioning, we leverage an MDP. Trigger Upperovel l TACﬁm
Specifically, we describe the MDP with a tuples, A, R, P>, Treining , '
. . l Lower-level Experience Buffer I

where S and A are the state and action spaces, respectively, Trigger LowerTeve l » Tmon p
R is the immediate reward function, arilis the distribution o (16 b
of state transition probabilities. |—’ Policy NN_[®) Selection _l

The state at time (i.e, s; € S) consists of two elements, ® ® | rovera Acton af | 2
which are a newly-arrived VNF-SC requégt and the current i L —— e
network state&~;. The information of reque$t’ is represented ) teration |3y | _ Calcutation
by a feature vector, and we model the network state as graph ®I VNF-SC Request R/ Network State G,
structured dataz,(V, E) based on the topology of the EO- @ Network Orchestrator
DCI G(V, E). In G¢(V, E), each nodes € V corresponds to  -<22CLlR0
a DC nodev in the EO-DCI. We record the features of node - ares Requess Eoncl_ G — G~ _
v in a vectorz?, which includesM + 1 elements to denote [oc-r{nFt b wr2 [ bce | é / / é
the available IT resources and remaining traffic processing h é_ -é/

capacities of the existing VNFs on nodgrespectively. Each
link e € E in G¢(V, E) denotes a fiber link in the EO-DCI, Fig. 2. Overall architecture and operation principle of HRth.
and its feature vectar® containsF' elements, each of which
tells whether the corresponding FS on liaks used or not.
The action at time (i.e., a; € A) is defined as a feasible address the issues caused by the sparse reward environment.
provisioning scheme of the requeRf. As the objective of

VNF-SC provisioning is to minimize the blocking probalyilit IV. HRLORCH: HIERARCHICAL DRL MODEL FOR
we define the reward as = 1 if R? gets served successfully, VNF-SC RROVISIONING
andr; = —1, otherwise. A state transition of the MDP can

This section presents the overall architecture of our pro-

. L
be denoted assy, a;, 7, s¢+1). This means thak” is served ,,q0q HRI Orch, and explains its operation principle.

with the provisioning scheme in; at states;, which makes
the network state change g9, and obtains a rewarg. _ _ o

Although the MDP above can precisely model the dynamft System Architecture and Operation Principle
service provisioning of VNF-SCs in an EO-DCI, architecting Our proposed GNN-based hierarchical DRL model consists
a DRL model directly based on it will face the followingof an upper-level MDP and a lower-level MDP. The upper-
challenges. Note that, most of practical optical networkevel MDP is used to precisely model the dynamic provi-
operate with the blocking probability less that% even for sioning of vNF-SCs and to minimize the overall blocking
lightpath setup [43], and emerging network paradigms [44i] c probability from the macro perspective, while the lowerdle
have even more stringent requirements on blocking proibabil MDP is designed for tackling the provisioning of each vNF-
Hence, it will be reasonable to assume that most of the vNSEC (.e.,, optimizing vVNF-SC provisioning from the micro
SC requestsif., more than90% of them) can be served perspective). Meanwhile, we build a GNN-based policy NN
successfully. This means that in different states of the[D; and design a hierarchical training scheme for our DRL model
the rewards obtained by applying various actions are thesarto improve the convergence and performance of its training.
Hence, the EO-DCI is a sparse reward environment, whichFig. 2 shows the overall architecture of HRLOrch and
makes it difficult to optimize the policy of action selection explains its operation principle. Specifically, working as
online training. Secondly, in a large-scale EO-DCI, we neeéntelligent assistant to the network orchestrator (NOyrch)
to use many decision variables to describe the provisioniftRLOrch resides in the control plane, and calculates VNF-
scheme of a VNF-SC, and thus the action space will I8C provisioning schemes based on the information that the
extremely large and not universal, if we design the acti@cep NOrch collects from the EO-DCI. Specifically, as illusttte
directly based on the decision variables. Finally, as bb#h tin Fig. 2, the operation of HRLOrch includ@&ssteps.
state and action of the MDP are relatively complicated, It wi When a new vNF-SC reque&t arrives, the NOrch records
be hard to obtain the mapping from the state space to tee current state of the EO-DCI as graph-structured data
action spacei.e., the policy of action selection. G¢(V,E), denotes the information abou®’ as a feature

In the next section, we will propose a GNN-based hierarchiector, and sends them to the vNF-SC iteration mod8teg
cal DRL model to address these challenges. Specificallipgn t1). Here, G (V, E) is graph-structured data, where the features
hierarchical DRL model, the MDP mentioned above become$ each DC nodev € V and each fiber linke € E are
the upper-level MDP, and a lower-level MDP is introducecepresented ag® and x¢, respectively. To make the action
to assist it. The lower-level MDP optimizes the provisianinspace more universal and reduce its size, we redefine each
of each VNF-SC to minimize its blocking probability, andaction as to determine the placement of a vNF in the required
provides a fine-tuned policy to the upper-level MDP aftefeawNF-SC SC* of R!. Therefore, we introduce the VNF-SC
VNF-SC provisioning, to help minimizing the overall blonki iteration module to check each VNF $1C* in sequence and
probability. Hence, the hierarchical DRL model can effesly send it to the GNN-based policy NNs{ep 2.



Then, the GNN-based policy NN takes the network statbe objective of the upper-level one is still to minimize the
(G¢) and the vNF to be deployedi}) as the input, and overall blocking probability. The rationale behind thisim is
generates a probability distribution over all the DC nodes, that reducing the resource usage of each vNF-SC request will
the policy of action selection(V'|Gy, d};.) (Step 3. Next, the generally be beneficial for reducing the blocking probapili
hierarchical DRL agent leverages the node selection mddule Specifically, the hierarchical training runs as follows. We
choose a DC node to be deploy vif-by sampling the policy first trigger the lower-level training to let the DRL agent
m(V|Gy, 6%) (Step 4. After that, the RSA of the lightpath (if learn how to provision each vVNF-SC request with the smallest
there needs one) from VN _, to vVNF 4. is obtained by the resource usage, by updating the parameters of the GNN-
RSA calculation modufe(Step 5. Here, the separate stepdased policy NN. Then, we start the upper-level training to
are just for the convenience of explaining the operation &irther optimize the parameters of the GNN-based policy NN,
HRLOTrch clearly. We actually design HRLOrch to optimizesuch that the overall blocking probability can be minimized
vNF deployment and lightpath setup jointly, because itiact adaptively in a dynamic network environment. The benefits of
considers their schemes together. this design are two-fold: 1) because the lower-level tragni

Based on the status of node selection and lightpath setwfl] not encounter the issue of sparse reward environment
a lower-level rewardr? can be calculated to indicate theand have a relatively small action space, it converges fast,
performance of the current actiafi (Step 6. If both the node and 2) the lower-level training provides a pre-trained GNN-
selection and lightpath setup are successful, the hidcaich based policy NN to the upper-level one, and thus accelerates
DRL agent proceeds to the next VNFSI©?, i.e., repeating the it effectively. The details of the training processes are:
procedure ofSteps 2-6 Otherwise, if the DRL agent cannot 1) Lower-level Training: For each VNF-SC request’,
find a feasible scheme for either of them, the vNF provisignithe DRL agent iteratively uses the GNN-based policy NN
would be considered as failed and the VNF-SC is marked t@sgenerate node selection policy and determines the place-
blocked. After all the vNFs inSC* have been served or anyment @;) of each VNF in the VNF-SCSC'. After pro-
of them cannot be provisioned due to insufficient resounsesgessing the vNF, we get a reward, which indicates the
the EO-DCI, we record the whole process as training sampl@source usage due to placing the vNF accordingftoThen,
in the lower-level experience buffer. The training sampiés  the node selection result is recorded as a training sample
then be used to train the GNN-based policy NN to minimize (Gt 0};), af,rf, (G, 05, ,)> in the lower-level experience
the resource usage of each VNF-SC request. buffer. When all the vNFs ir5C* have been processed, the

Meanwhile, the whole service provisioning process is réotal resource usage of the provisioning schemeRbris
garded as a training sample in the upper-level experience Kt
buffer, which is denoted as (G, RY), ar, 7, (Gir1, RTTL)> Jlower — > ot (1)
(Steps 7-8. The objective of the upper-level training is to min- k=1
imize the overall blocking probability. Here, the upperde As the reward 7(g<t) of the last VNF inSC? (i.e, d%.)
rewardr; indicates whetheR! gets provisioned successfully,considers the spectrum usage of two lightpatis (, — 4.
the actiona; = {af, k € [1, K']} is a vector that contains theand 6., — d'), the lower-level training optimizes the GNN-
selected DC nodes for all the vNFs §#C*?, where K* is the pased policy NN by calculating the gradient .g#f"e'.
number of vNFs inSC*. Note that, to ensure the stability of 2) Upper-level Training: For vNF-SC requesk’, the DRL
the GNN-based policy NN, we trigger the lower-level tragnin agent also obtains the current network stateand uses the
first, while the upper-level training will not be started ittie  GNN-based policy NN to get a provisioning scheme. This
lower-level training has converged. is the action considered in the upper-level training &
{ak k € [1,K*]}). Then, a reward; can be obtained based
. . - on whetherR! can be served with the provisioning scheme.
B. Hierarchical Training of DRL Agent Next, the network state changegie, ;, and we will cr?eckthe

Thg objectiye_ 01_‘ the hierarchical D_RL agent i;_ straightfoext yNF-SC requesR'*+!. The aforementioned operations
ward,i.e., to minimize the overgll_ blocking probability of VNF- generate a training sample(Gy, RY), ay, e, (Geiq, R1H)>,

SC requests. Hence, the training process of the DRL agest peing stored in the upper-level experience buffer. When
needs to achieve this goal by updating the parameters of {jg DRL agent has collected enough number of upper-level
GNN-based policy NN. However, as the EO-DCI is a sparggining samples, which is pre-defined a¢, the upper-

reward environment for vNF-SC provisioning, it would bgeve| training is triggered to minimize the overall blocgin

in Fig. 2, we design a hierarchical training scheme, which M1

introduces two training processeise., the lower-level and jupper _ Z resi. @)
upper-level ones, and makes them collaborate with each. othe i=0

We define the objective of the lower-level training procestoa Then, we can leverage the policy gradient/8PPe" to further
minimize the resource usage of each vNF-SC request, whigtimize the GNN-based policy NN in the upper-level traiin

2Note that, if vNFs&Z_l_and 62 are deployed on the same DC node, weC, Hierarchical DRL Model
do not need to set up a lightpath between them. Meanwhilea foNF-SC . . . .
requestR’ with SC* = {8t, %, --- , &%, }, we can denote its soureé and Finally, we elaborate on the design of the hierarchical

destinationd" as VNFsé} andé’, ., respectively, for simplicity. DRL model. As the upper-level DRL tries to optimize the



provisioning of VNF-SC requests in an EO-DCI from the Encoder Decoder ——
macro perspective, it can leverage the MDP model in Secti ——— 08 e
I11-C, which defines its state, action and reward. On the ioth O O Il Hidden State
hand, the MDP of the lower-level DRL is defined as follows ONN

1) State: For the lower-level DRL, the state at time Curent | 1,/ wWF ||
(s; € S) contains three elements, which are the curre Embedding
network stateG;(V, E), a VNF ¢!) to be deployed for the [ cument i/ Node |
VNF-SC requesR?, and a DC node sét!. Here,G.(V, E) is Embeddhng
the graph-structure data about the concerned EO®R(C], E)
at timet, and V¢ includes all the DC nodes selected for th&9: 3. Structure of our proposed GNN-based policy NN.
vNFs befores] in vNF-SCSC* and the source node @t'.

2) Action: As we have explained before, the task of th
lower-level DRL is to select the DC node for a pending vN
Hence, its action space is defined as all the nod&s(in, £),

= LSTM = Attention -@

uolieusjeduo)

ecause it would be difficult for them to analyze the relation
among the nodes and links in a graph with handcrafted feature
o engineering [27]. This is the reason why we design the encode
and an action is to select a node frgf for analyzingG; based on GNN. The GNN-based encoder

mi::])imRiSNatrr? : ;I'he c;bjectwe of tfh € Iohwevrl—\lltla:ngCDiL r:S o leverages three phases to analyZg i.e, message passing,
. € the resource usage of each VINF-SL. Hence, \%eessage aggregation and feature embedding. In the message
define the immediate reward of each action as

_ passing phase, each nodedn(V, E) collects the information

- { - VNF is blocked (3 about its neighbor nodes. Then, the node aggregates all the

=B Y =7 bk, VNF is provisioned received information to obtain an aggregated feature veato
where 1, indicates the IT resource usage for provisioninthe message aggregation phase. Finally, the feature ermnigedd
VNF 6!, ¢ denotes the hop-count of the lightpath(s) thgthase maps the feature vectors to a hidden state with an NN.
are set up to serve the current VNF, and«, 3, and~ are The aforementioned process can be represented as
positive coeffi_cientg As-a is the_value of the instant reward H, = f(Xv, Ac) = o(Ag - Xv - W), (4)
for the case in which the vNF is blocked, we should make ) ) _
sure that it is properly set to avoid such a case in the futuf¥€reXv is the matrix that contains all the aggregated feature
Meanwhile, since the IT resource usagg and hop count of VEctors of the nodes in network staig, A¢ is the adjacency
the lightpath(s)x use significantly different value ranges, matrix that describes the physwal con_nectlons in the tmpol
and~ are used to normalize their values. Note thatitifcan ©Of the EO-DCIG(V, E), f(-) is the function to map the feature
be served by reusing an existing vNF, we haye= 0, and Vectors of the nodes i to a hidden staté?;, W denotes

if YNFs 6!, ands! are deployed on a same node, we do ndie learnable parameters of the GNN, arfg) is an activation

need to set up a lightpath to connect them. function. Note that, since the spectrum usages on the fitles li
in the EO-DCI should also be considered here, we abstract the
V. GNN-BASED PoLicY NEURAL NETWORK information about them in the adjacency matdx too. The

{,atails about this will be explained in Section V-B.
For the encoder to analyze the context of the provisioning
scheme ofR, it considers the current vNBY) and the node
_ selected for the previous VNRX '), which is the “current”
A. Structure of GNN-based Policy Neural Network node in the VNF-SC provisioning process. The current VNF
In our hierarchical DRL model, the lower-level DRL needand the current node are represented as two vectors, which ar
to determine where to place each vNF in a pending VNF-S@ncatenated into a feature vector. The feature vectoreis th
in sequence, which can be considered as a series of seduephigcessed by a long-short-term memory (LSTM), as shown in
tasks. Meanwhile, we know that the encoder-decoder moa®gg. 3. Here, the LSTM is used to memorize the determined
[45] has relatively good performance on sequential tasksart of the provisioning scheme @, since the placement of
Hence, we design the GNN-based policy NN, which is a kayie vNFs beforé! has a great influence on its node selection.
component in our hierarchical DRL model for provisioningrhe hidden state from the LSTM is a query vecigr which
VNF-SCs in an EO-DCI, based on the encoder-decoder modeglsent to the decoder for selecting the node&}’pr
Fig. 3 shows the structure of the GNN-based policy NN, which 2) Decoder: It selects a node for the current VME based
consists of the encoder and decoder sections. The encasigthe outputs of the encodeiss., H; andg,. We design the
section abstracts the features of the current network atade decoder based on the attention mechanism [46], which can
the context of the pending vNF-SC, while the decoder sectiaddress the problem of long sequence information loss when
decides where to place the current vNF based on the outpghdling sequential tasks. Specifically, it calculatesatbights
of the encoder. The two sections are explained as follows. of all the nodes in the EO-DCI, based &h andg,, and for
1) Encoder: It includes the encoders to extract the grapha nodev € V, its weight is defined as
based features of the network st&ie and the context of the &
provisioning scheme of the current requst, respectively. Uy = Wa - tanh(W 7o + W - 0), ®)
Note that, the traditional DNNs in linear or convolutionaWhere u* is the weight for nodev (k is for the index of
structures cannot operate on the graph-structatedirectly, 4%), W,, W, andW, are the learnable parameters, is the

In this section, we discuss the design and optimization 8
the GNN-based policy NN in our hierarchical DRL model.



reference context vector in the hidden stéfe for nodev. Node Feature Matrix
The function oftanh(-) has the following expression Node T

VNF-1 VNF-2 VvNF-3

Index Resource
tanh(z) = % ©6) 9-9 1 08 05 0 6
e’ e 2 0.7 0 0 5
which can re-scale the real elements of a veatowithin ~ (4) © 5 o0 o o6 7
[—1,1]. Then, the probability of selecting nodefor §¢ is 4 0 0 0 8
plvj = softmax(uﬁ), (7 I : Occupied FS Spectrum Usage on 1 - 2 — 3
wheresoftmax(-) is defined as D +Available FS | EE___ EEEE)
ez[j] I Largest available FS block Adjacency Matrix Element: (Ag), 5 = 4
softmax(z[j]) = — o JE L], 8
> (exlkl) Fig. 4. Example on obtaining matrices for node features aljacancy.
k=1
which can normalize thg-th elementz[j] of a real vectorr J Rounds
|z| A
within [0, 1] such that} " softmax(x[j]) = 1 (Jz| denotes the
i=1 H Featt':lrc;dl\jatrix [XV GRU = ---- GRU H ]
number of elements in), and the normalized value can be
used as the probability of selectingyj] from x. Then, we can
sample the nodes iiv according to{p*} or choose the one HY HI7?
with the largest probability, to find the node fof. QP 6?
Adjacency [A 1
Matrix

B. GNN in Encoder

The GNN learns the high-dimensional representation of tf#: 5. Structure of our proposed GNN.
nodes in the graph-structured network st&tgV, E'), which
can help the decoder to accomplish node selection. In nktwor . _ . . .
stateG,, the feature vector of each node= V is a vectorz? process in _the GNN fo |t(_arat|ons. _In each_ iteration, we
which includesM +1 dimensions. Here, each dimension of thgave. both mformaﬂon pa_lssmg.and information aggregation
feature vector denotes either the remaining process dipabi he information passing is realized by
of the existing typen VNFs (n € [1, M]) or the available IT it = Z relu(W -h?,), VoeV. )
resources, on node. The feature vectors of all the nodes in v’ €adj(v)

V]\;an be comt::i!wed4inrt]o a matrixy, v;/hosehdimensioln ils whereWV still denotes the learnable parameters of the GNN (as
[)(( ;1) 2 |V|].h g. &S ?(WS an e>f<ampEeOo[r)1C|ov'Z‘tohca culatg, Eq. (4)) and it is shared acrodsterations i, is the hidden

v based on the network state of an EQ-DCI. As theredareg, o o nodey at roundj, adj(v) returns all the neighbor
nodes in the EO-DCI and types of vNFs can be supported, 4o« of a node andrelu(-) is defined as
the dimension ofXy is [4 x 4]. We can also see in Fig. 4 that '

if a type of VNFs does not exist on nodethe corresponding relu(z) = max(0, z), (10)

element in the node’s feature vectot is set as0. which has been widely used in DNNs to avoid the gradient

Eq. “) _indicates that in addition td(y, the adjacenc_y vanishing problem. In the information aggregation, we use a
matrix A is also needed to calculate the graph-based hidd ed recurrent unit (GRU) to update the representatioadi e

state H;. Note that, different from the adjacg_ncy matrix of ode. Here, GRU is a variant of LSTM, which combines the
packet networkA¢ should record t.ht.a availability of frequency; arget gate and the input gate of LSTM as an update gate.
slots (FS’) between each node pair in the EO-DCI, because t ence, GRU has fewer parameters than LSTM and thus it
information is essential for calculating the RSA schemes Q nver,ges faster in training. The detailed operations fier t
Ilghtpaths. Therefore, we define the element in the "’}dmcerlﬁformation aggregation in thg-th iteration are as follows.
matrix A¢g for node pairv; andvs ((Ag)v, 0,) @s the size of

the largest available FS block on the fiber links on the sisorte {pg“ = softmax (WJP cal Ul h{,) ,
path between, andw,. For instance, in Fig. 4, the spectrum (11)
usage on the fiber links betweblodes 1 and 3 is shown in the

lower right corner, which suggests that the size of the ktrge
available FS block igl, and thus, we havéAs); 3 = 4.

To processXy and Ag, we design the GNN based on
the gated graph sequence neural network (GGS-NN) [47],
which is known to be effective on extracting features abouthere{W;",u"}, {W7, U7}, and{W}, U]} are the learnable
a long node sequence in graph-structured data. The detajpadlameters of the memory cell, update gate and reset gate
structure and operation principle of the GNN is shown in Figf the GRU. After we repeating the information passing and
5. To model the long sequence information and get staldggregation with Egs. (9)-(13) fof times, the hidden state of
node representation, we repeat the information propagatall the nodes inG; can be obtained a&; = {h/, Yv € V}.

v

@1 = softmax (qu cd +Uj- hfj) ,
R = tanh Wl U (T o ml)] L @2)

WU =0-a™) o + " o, (13)



C. Optimization of GNN-based Policy Neural Network our hierarchical DRL and record the result as a training $amp

All the learnable parameters of the GNN are optimized #f the lower-level experience buffelifes 3-11). Line 12
the hierarchical training discussed in Section IV-B. Speai randomly selects a batch @f vVNF-SCs from the lower-level
ly, for both the lower-level and upper-level training preses, €xperience buffer, which are used to optimize the parameter
the parameters are optimized with the policy gradient nubthd’ the GNN in Lines 13-15. Specifically, we calculate the

With Eq. (1), the policy gradient in the lower-level traigiis objective of the lower-level training and its gradient wilys.
(1) and (14) inLine 14, and update the parameters of the GNN

N Kt . . . .
T, Jioer _1 Z { ( Pl 191) _ with the stochastic gradient descent methodLiine 15.
N
i=1
Kt’

k=1

(4) " Algorithm 2: GNN Optimization in Upper-level Training
[Z Vo, log (w (af’iIGt,é;’;,i))] } , 1 empty the upper-level experience buffer;
k=1 for each newly-arrived vNF-SC request R? do
release the resources used by expired vVNF-SCs;
get current graph-structured stafe of the EO-DCI;
provisionR! with the GNN;
store<(G¢, RY), as, ¢, (Giy1, RPT1)> as a training
I o _sI;ar;:ple inbupp?r-leveil expe;i;ajnc;[btrj]ﬁer;

i ki 1 ki Ak 7 if the number of samples exceeds M then
V= (;” ) + [N ;;(” - ])] o 19 get.JUPPerand v, _JUPPe(4, ) with Egs. (2) and
(16), respectively;
where the rewarch’j is obtained by applying the greedy? updatef,. with stochastic gradient descent;
scheme that chooses the action with the largest probability | end
and the rewardriw is got with the sampling scheme that: end
samples the actions according to their probabilities. ldenc
the second term in the Eq. (15) denotes the gap between th%f he | Jevel training h d :
rewards from the sampling and greedy schemes. Meanwhile, ter the lower-level training has converged, we trigger

. N § L the upper-level training to further optimize the parametefr
the policy gradient in the upper-level training is the GNN, such that it can make smart decisions on vNF-SC

provisioning to reduce the overall blocking probabilityeW
determine that the lower-level training has converged thie
last 100 training steps, the maximum change on its reward is
less thanl%. The procedure is described Aigorithm 2. Line
Algorithm 1: GNN Optimization in Lower-level Training 1 is for the initialization. Then, the for-loop that covédrsies

L initialize parameters,, of the GNN; ;2_—11 prowsmnz?ﬁch \LNllz_SC Wlth our hler;;slrchma:c DRLH TEIIE-
» empty the lower-level experience buffer; ime, we record the whole provisioning scheme of each v

- ) ¢ SC request as a training sample in the upper-level experienc
3 for each newly-arrived vNF-SC request R do buffer (Line 6), and when enough training samples have been

where N is the batch size of training sampled’ is the

reward of actiona)” in the i-th batch," is the baseline for
learning. In order to make the training more stable, thelbese
9¥? is introduced to calculate the benefit of each action as

o g b~ W N

M
Vo, JUPI="ri1 ;- Ve, log [r(a:]Gy)] - (16)

=1

4 release the resources used by expired vNF-SCs; AT :
5 get current graph-structured stat of the EO-DCI: accumulated, an upper-level training is triggerethés 7-10).
6 | for ke[l,K'] do
7 use the GNN to get the node selection policy VI. PERFORMANCEEVALUATION

7(|Gy, 0,) for vNF §,§: _ In this section, we discuss the numerical simulations to
8 sample the nodes iV according tor(|G¢,0;,) to  evaluate the performance of our proposal.

get a proper action;

t k .k t ini

9 store<(Gt,6k),at,rt , (Gt,é,?+1)> as a 'Erammg A Smulation Setup

sample in lower-level experience buffer;
10 end Our simulations consider two EO-DCI topologie%., the
11 end 14-node NSFNET and the 24-node US backbone (USB)
12 select the training samples abahitVNF-SCs from topologies shown in Figs. 6 and 7, respectively. We assume

lower-level experience buffer randomly; that each fiber link can accommodaté = 358 FS’, and

13 calculate the baselingy?, i € [1, N]} with Eq. (15); each DC node possess€s = 100 units of IT resources for

14 get J'%(9 ) and Vy_J°"(9,) with Egs. (1) and (14); VNF deployment. The EO-DClIs can suppdit = 5 types of
15 updated,. with the stochastic gradient descent method; VNFs, and an instance of each type of vNFs consuphgs
units of IT resources. Each deployed vNF can be shared by

3 VNF-SC requests at most. Note that, the traffic pattern in a

The detailed procedure of optimizing the parameters of t . )
GNN in the lower-level training is explained igorithm 1, rIE)eCI usually follows Poisson traffic model [48], and the same

Lin_es 1 and 2 are for the initi_aliz_ation- T_h_env_ for each new_ly' SWe assume that the optical layer of the EO-DCI uses the C;hamg
arrived request?, we determine its provisioning scheme witheach fiber link hasv4.475 THz bandwidth to allocate.
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Fig. 8.  Evolution of blocking probability from HRLOrch andR&Orch
(traffic load at700 Erlangs in NSFNET).

SRLOrch cannot provide a stable blocking probability even
after experiencing.2 x 10* requestsi(e., running for~4, 190
seconds), and its blocking probability is much higher theat t
from HRLOrch. This is because SRLOrch trains the policy NN
to learn how to minimize the blocking probability directly,
which can hardly be effective due to the fact that the EO-
Fig. 7. USB topology. DCl is a sparse reward environment for VNF-SC provisioning.
To this end, the results in Fig. 8 confirm that our proposed

. i . hierarchical training scheme can effectively address plaese
model and its variations have been widely used to descr% d y e

the traff it f : work . 4 Svard environment for VNF-SC provisioning, and obtain
€ traflic patierns of many emerging Network Services [ etter training performance on blocking probability retile.
Hence, our simulations assume that the vNF-SC requests arri

dynamically according to Poisson traffic model. Each of them(;Ne htsze ttofrzon;f'; OIUt ;haé the_ffcrall?ln% IS not cto:npletelly
demands fof2, 4] vNFs and selects the source and destinaticg\gepen ent of traflic foad. specincally, I we want 1o apply

nodes randomly in the EO-DCI, and its bandwidth requireme e HRLOrch that h_as bee_n trgmed for one traffic load to an
is evenly distributed within20, 100] Gbis (e, [3,9] FS). -DCI whose traffic load is different, its parameters need t

As for the coefficients in Eq. (3) for the instant reward Wge fine-tuned with transfer learning [50]. In other words, we
empirically set them as — 10, 3 — 1, andy — 1. The GNl\i— do not need to retrain HRLOrch for each traffic load from the

based policy NN containg28 hidden layers. For the training scratch. We actually conduct simulations with variousficaf

of HRLOrch, we select the batch sizes for the lower-level a 8ads to verify this, anq C°”f."”.“ that HRLOrch can .always
the upper-level trainingy and M) as8 and 20, respectively. outperform SRLOrch with 6.1 S|r.n|lar trend gs that in Fig. 8.
To ensure the statistical accuracy of our results, we canduc ~ N€Xt, we would like to justify our design of the GNN-
independent runs, record the results that are withinggtg P@sed policy NN (GNN-PNN) in HRLOrch. Therefore, we

confidence interval, and average them to get each data poffSign two benchmark policy NNs based on the classical
architecturesi.e., the graph convolution network (GCN) [51]

and deep neural network (DNN) [46] based policy NNs

B. Training Performance (namely, GCN-PNN and DNN-PNN, respectively), which are

We first evaluate the training performance of our proposé#own to have relatively good performance on policy setecti
HRLOrch in an EO-DCI with the NSFNET topology. As[46, 51]. GCN-PNN and DNN-PNN use the same encoder-
mentioned in Section IV-B, its training process containgve-| decoder structure as our proposed GNN-PNN, but their NNs
level training followed by an upper-level training. Hent¢e, for network state extraction are different. Specifical\CIK&
verify the effectiveness of the hierarchical training solee PNN uses a two-layer GCN to extract the graph-structured
we design a benchmark that is based on a DRL agent usigfwork state directly, while DNN-PNN concatenates the
single-level training, namely, SRLOrch. Specifically, SRich  feature vectors of all the nodes and links into a vector and
uses the same policy NN as that of HRLOrch, but its trainingputs it to a DNN to map to a hidden network state.
process is single-level, which means that the trainingttie = The training performance of the three policy NNs in the
minimize the blocking probability of YNF-SC requests ditec lower-level training is plotted in Fig. 9, which shows the

Fig. 8 compares the evolution of the blocking probabilitgvolution of the reward defined in Eq. (3) in the training.
from HRLOrch and SRLOrch in their training processedlMe observe that our proposed GNN-PNN provides the best
We can see that the blocking probability from HRLOrcltonvergence performance among the three policy NNs. As
quickly converges td.1 x 10~2 after experiencing-6 x 10> GNN-PNN has less learnable parameters than DNN-PNN and
VNF-SC requestsi.g., running for ~2,160 seconds), while it can operate on graph-structured data directly, it coye®r
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6.0 TABLE |

RUNNING TIME PER VNF-SCREQUEST
4 —
< 7251 Algorithm . Running Time (msec) '
3 EO-DCI with NSFNET | EO-DCI with USB
§ GP-SPR 12.06 30.81
3 859 MP-SSR 19.47 32.16
S BP-SPR 13.78 33.95
e
§-9_75< —— GNN-PNN HRLOrch 37.74 49.76
e —— GCN-PNN
—— DNN-PNN
1.0¢ 3 s 3 2 5 The procedure of the zero-learning can be seen in Fig. 11,
Training Steps (x103) where we fix the traffic load a$, 000 Erlangs in USB. We
_ _ o _ observe that for this case, the HRLOrch trained in NSFNET
Fig. 9. Evolution of reward from HRLOrch with different poji NNs. provides lower blocking probability than GP-SPR in USB

even without the zero-learning, and its blocking probapili
%uickly goes below that of MRP-SSR and BP-SPR after
eing retrained with onlp00 VNF-SC requests in USB. This
confirms the universality of HRLOrch. Meanwhile, in Fig. 11,
we also plot the training performance of scratch-learnifig o
HRLOTrch, which refers to the training scheme that starts the
training of HRLOrch from the scratch in USB. We observe that
We then evaluate the performance of HRLOrch for th@e zero-learning scheme provides lower blocking proktgbil
dynamic provisioning of vNF-SCs in an EO-DCI. Here, Wng converges faster than the scratch-learning schems. Thi
still assume that the EO-DCI uses the NSFNET topologypnfirms that the GNN-based policy NN in HRLOrch can
Three existing heuristics for vNF-SC provisioning in EOIBC gxtract high-level and universal knowledge about VNF-SC
are considered as benchmarks, which are the greedy platemg#yisioning in an EO-DCI, and the learned knowledge is stil
of vVNFs and shortest-path routing (GP-SPR), maximizing VNIiseful even after the EO-DCI changes its topology.
reuses and spectrum-saving routing (MRP-SSR), and balancerjg. 12 shows the blocking probability from the algorithms
placement of vNFs and shortest-path routing (BP-SPR) [1§}. USB, and with a similar trend as that in Fig. 10(a),
Specifically, the benchmark algorithms work as follows. GR4RLOrch still outperforms all the benchmarks significantly
SPR tries to greedily place VNFs along the shortest path frofRese results verify that HRLOrch can adapt to an arbitrary
the source to the destination of each vVNF-SC. MP-SSR f||§b_DC| topology without Changing its architectuﬁ&_, the
tries to save IT resources by reusing the existing VNFs @NN-PNN in HRLOrch can operate on the graph-structured
the EO-DCI, and then deploys new VNFs in the way thafetwork state of an EO-DCI directly and effectively.
the SpeCtI’um usages on fiber links can be minimized. BP-Secondly, regarding the Sca|abi|ity of HRLOrch, we sum-
SPR places vNFs along the shortest path that can balag¢gize the average running time for the algorithms to serve a
the IT and spectrum resource usages in the EO-DCI. FigNF-SC request in Table I. It can be seen that due to its online
10 shows the performance comparisons of dynamic VNF-8fining, the running time of HRLOrch is longer than that of
provisioning. Fig. 10(a) shows that our proposed HRLOrGfhe benchmarks, but the results are still comparable andionl
provides the lowest blocking probability at all the traf@tls, tens of milliseconds. This confirms that HRLOrch is suitable
which verifies the performance of HRLOrch on dynamic VNFor online and dynamic vNF-SC provisioning. Meanwhile, it
SC provisioning. Moreover, it is interesting to observetthar js interesting to notice that when the size of the EO-DCI
proposed HRLOrch has the highest IT and spectrum resoufgreasesi(e., from 14-node NSENET to 24-node USB), the
usages than the benchmark algorithms in Figs. 10(b) and.10¢ginning time increases fa.55, 1.65 and2.46 times for GP-
This further verifies the effectiveness of HRLOrG:hB,, it can SPR, MP-SSR and BP-SPR, respective|y, but that of HRLOrch
leverage the hierarchical training scheme to achieve tisé bgnly increasesl.32 times. This suggests that HRLOrch has
utilization of the IT and spectrum resources in the EO-DClpetter scalability than the benchmarks, which is because th
structure of the GNN-PNN in HRLOrch does not need to be

much faster. Meanwhile, since GNN-PNN can extract t
graph-structured network state more precisely than GCINLPN
it can achieve a larger reward after convergence.

C. Performance on Dynamic VNF-SCs Provisioning

D. Evaluations on Universality and Scalability changed when the EO-DCI topology changes.
Finally, we investigate the universality and scalability o
HRLOTrch. Firstly, for its universality, we consider a zesbet VII. CONCLUSION
transfer learning scenario (zero-learning) [52], whicferg to In this work, we proposed a GNN-based hierarchial DR-

applying a trained DRL model to an unseen environment far model, namely, HRLOrch, for realizing online vNF-SCs
the same task. We apply the HRLOrch that has been trainediovisioning in an EO-DCI. To ensure the universality and
the EO-DCI with the NSFNET topology to one with the USBscalability of HRLOrch, we designed the policy NN in it based
topology for the vNF-SC provisioning in it. The USB topologyon a GNN, which can operate on the graph-structured network
is shown in Fig. 7, and we keep the settings of the simulatictate of the EO-DCI directly and can adapt to an arbitrary EO-
parameters about IT and spectrum resources as unchangeldCl topology without any structural changes. Then, to aslslre



11

1.000 T T T 0.550
ol : : | S
g : : | b
z S 09551 - T E— A > 0475/
3 8 ! I ' S
38 3 i 3
o @ 7]
a I S > £ 0.4001
é’ —+— GP-SPR - E ' | — GP-SPR 2
3 40 ~#— MRP-SSR _ 50.865 { A4 - i-—%— MRP-SSR_ 0325
@ s —~+— BPSPR - % ! | —# BP-SPR S !
Y A— i CZ —#— HRLOrch - = | | —#— HRLOrch 2 i | —#— HRLOrch
1078 | P 1 0.820 - - - 0.250 + + +
600 650 700 750 800 600 650 700 750 800 600 650 700 750 800
Traffic Load (Erlangs) Traffic Load (Erlangs) Traffic Load (Erlangs)
(a) Blocking probability (b) Average IT resource usage (c) Average spectrum usage
Fig. 10. Performance comparisons of dynamic VNF-SCs paniisg under different traffic loads (NSFNET topology).
10.0 : ' —— vNF-SC provisioning in an EO-DCI. Finally, the simulations
! —— HRLOTrch (zero-learning) . . . -
e : —— HRLOrch (scratch-learning) also confirmed the universality and scalability of HRLOrch,
S 75l R —— GP-SPR because the HRLOTrch trained in one EO-DCI topology could
E | — MRP-SSR adapt to a new EO-DCI topology quickly in zero-shot transfer
= | - BPSPRO learning, still provide lower blocking probability thaneth
§ SO/ R Amommmmes frommmmooos existing heuristics, and its running time increased slativan
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the issue that the EO-DCI is a sparse reward environmehgﬂ
for vNF-SC provisioning, we introduced a hierarchical DRL
model, which divides the traditional DRL into lower-leveidh
upper-level models, assigns different optimization otijes

to them, and makes them operate cooperatively in the tiginipo]
to minimize the blocking probability of vVNF-SC requests.

Our simulation results demonstrated that the proposed hiI]
erarchical DRL model achieved better convergence perfor-
mance than the traditional single-level DRL model in train-
ing. Moreover, due to its intelligence, HRLOrch provide&lz]
lower blocking probability than the existing heuristicsr fo

Bl
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