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Abstract—Network function virtualization (NFV) in elastic
optical datacenter interconnections (EO-DCIs) enables flexible
and timely deployment of network services. However, as the
service provisioning of virtual network function service chains
(vNF-SCs) in an EO-DCI needs to orchestrate the allocationsof
IT resources in datacenters (DCs) and spectrum resources on
fiber links dynamically, it is a complex and challenging problem.
In this work, we model the problem as a Markov decision process
(MDP), and propose a hierarchical deep reinforcement learning
(DRL) model based on graph neural network (GNN), namely,
HRLOrch, to tackle it. To ensure its universality and scalability,
we design the policy neural network (NN) in HRLOrch based
on a GNN. As the GNN-based policy NN can operate on the
graph-structured network state of an EO-DCI directly, it can
adapt to an arbitrary EO-DCI topology without any structura l
changes. Then, through analysis, we find that the EO-DCI is a
sparse reward environment if we want to train a DRL model to
minimize the blocking probability of vNF-SCs in it directly . To
address this issue, we design a hierarchical DRL with lower-level
and upper-level models to improve the convergence performance
of training. Specifically, we make the lower-level DRL optimize
the provisioning scheme of each vNF-SC to minimize its resource
usage, while the upper-level one coordinates the provisioning of
all the active vNF-SCs to minimize the overall blocking probabil-
ity. Hence, the lower-level and upper-level DRL models operate
cooperatively in the training to optimize the dynamic provisioning
of vNF-SCs. Our simulations demonstrate the universality and
scalability of HRLOrch, and confirm that it can outperform th e
existing algorithms for vNF-SC provisioning in an EO-DCI.

Index Terms—Network function virtualization (NFV), Service
function chain, Datacenter interconnection (DCI), Elastic optical
network (EON), Graph neural network (GNN), Deep reinforce-
ment learning (DRL), Network automation.

I. I NTRODUCTION

NOWADAYS, the growth of 5G, high-definition and im-
mersive video applications, and Big Data analytics has

generated the demands for flexible, timely and cost-effective
network service deployment [1, 2]. Hence, service providers
(SPs) have to upgrade their service provisioning strategy from
relying on dedicated middleboxes to counting on network
function virtualization (NFV) [3, 4]. Specifically, NFV deploys
a network service by instantiating virtual network functions
(vNFs) on general-purpose servers and storages, and leverag-
ing commodity switches to interconnect the vNFs [5]. In other
words, with NFV, network services can be realized timely,
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dynamically and flexibly by forming vNF service chains (vNF-
SCs) [6], vNF trees [7], and generic vNF graphs [8], such that
the tradeoff between the quality-of-service (QoS) and the cost
and complexity of service deployment can be better optimized.

Due to the abundance of commodity servers, storage and
switches in datacenters (DCs), NFV-based service deployment
is usually considered in the intra-DC and DC interconnection
(DCI) networks [9, 10]. The rationale of considering DCIs is
to leverage geographically-distributed DCs for improvingSPs’
performance on service coverage, latency, and availability [11,
12]. Meanwhile, as the NFV-oriented resource orchestration
in a DCI needs to further tackle how to manage the spectrum
resources in an optical network [13, 14], it is intrinsically more
complex than its counterpart in an intra-DC network. Despite
the huge bandwidth capacity of fiber links, optical networks
now can achieve fine-grained, adaptive and application-aware
spectrum allocation in the physical layer, with the momentum
gained from flexible-grid elastic optical networking (EON)
[15–18]. Therefore, in an elastic optical DCI (EO-DCI), light-
paths can be established with a spectrum allocation granularity
of 12.5 GHz or even narrower, to adapt to the bandwidth re-
quirements of NFV-oriented resource orchestration seamlessly.

Note that, NFV-oriented resource orchestration in EO-DCIs
is a complex and challenging problem even for the simplest
network service deployment (i.e., forming vNF-SCs). This is
because, to assemble one vNF-SC in an EO-DCI, the SP
needs to deploy new or reuse existing vNFs in suitable DCs
(i.e., the vNF deployment problem) and set up lightpaths
in the DCI with routing and spectrum assignment (RSA) to
connect the vNFs in sequence (i.e., the RSA problem) [19].
Hence, even though previous studies have formulated integer
linear programming (ILP) models and designed time-efficient
heuristics to address it [19–22], the resource orchestration to
provision vNF-SCs in an EO-DCI still deserves to be revisited,
especially for dynamic and large-scale network environments.

The online resource orchestration to provision vNF-SCs in
an EO-DCI can be modeled as a Markov decision process
(MDP). Specifically, the MDP model considers resource uti-
lization in the EO-DCI (i.e., the spectrum utilizations on fiber
links and IT resource usages on DCs) as the network state, and
defines the provisioning/removing of a vNF-SC as an action.
Therefore, dynamic transactions among the network states can
be captured accurately. Recently, deep reinforcement learning
(DRL) has been regarded as a promising technique to tackle
the complex and dynamic optimizations that can be modeled
as MDPs [23], for realizing timely and intelligent decision
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making [24]. Specifically, a DRL model leverages one or more
agents, each of which contains a deep neural network (DNN),
to interact with time-variant environment and learn the strategy
to address each environment state with the best decision [23].

Motivated by the aforementioned advantages, latest studies
have designed DRL models to solve the subproblems related to
provisioning vNF-SCs in an EO-DCI,e.g., vNF deployment
[25] and RSA [26]. Promisingly, the DRL models achieved
better performance than existing heuristics, with comparable
time-efficiency. However, these models were not crafted for
the whole problem of provisioning vNF-SCs in an EO-DCI.

Moreover, the existing DRL models for provisioning vNF-
SCs still have a few drawbacks. First of all, the DNN in a
DRL agent operates on Euclidean space, while the network
state of an EO-DCI is in graph structure. Hence, the DNN
cannot process the graph-structured data of the network state
effectively, and certain important features cannot be extracted.
Secondly, as the provisioning scheme of a vNF-SC involves
the deployment of required vNFs and the RSA of related light-
paths, it can only be modeled with many decision variables.
If we directly design the action space of a DRL agent based
on the decision variables (as the studies in [25, 26] did), the
action space will be extremely large, which can make the DRL
training difficult to converge. Finally, because the network
state of an EO-DCI is relatively complicated, a DRL agent can
face the challenge of sparse extrinsic reward. Nevertheless, the
existing DRL models only followed the generic principle of
DRL, but did not incorporate specific designs to deal with the
sparse reward environment of an EO-DCI.

In this work, we propose a hierarchical DRL model based
on graph neural network (GNN), namely, HRLOrch, to tackle
the online resource orchestration for provisioning vNF-SCs
in an EO-DCI. We design the policy neural network (NN)
of HRLOrch based on GNN, and thus it can operate directly
on the graph-structured data about the EO-DCI to understand
and extract the complex features buried in it effectively [27].
Then, to address the sparse reward environment of the EO-
DCI, we introduce a hierarchical model for DRL. This model
optimizes the provisioning of vNF-SCs from both the micro
and marco perspectives, by including the lower-level and
upper-level DRL models. The lower-level DRL model obtains
the provisioning scheme of each vNF-SC request to minimize
its resource usage, while the upper-level one coordinates the
provisioning schemes of all the active vNF-SCs such that the
overall blocking probability can be minimized. Meanwhile,in
order to improve training efficiency, we design a hierarchical
training scheme to collaborate the training processes of the
lower- and upper-level DRL models. Finally, we carefully
design the action spaces of the upper-/lower-level DRL models
with reduced sizes, and architect a GNN-based policy NN
to realize the mapping from network state to action directly.
Extensive simulations are performed to evaluate HRLOrch in
various network scenarios, and the results confirm that it can
outperform the existing algorithms.

The rest of the paper is organized as follows. Section II
surveys the related work. We describe the problem of online
resource orchestration for provisioning vNF-SCs in an EO-
DCI in Section III. The architecture and operation principle of

HRLOrch are presented in Section IV, while the design of the
GNN-based policy NN is elaborated in Section V. We evaluate
the performance of HRLOrch with numerical simulations in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Both NFV [3, 4] and network virtualization [28] are attrac-
tive virtualization technologies that were proposed to address
the ossification of current Internet infrastructure. Previously,
using network virtualization as the background, researchers
have studied the virtual network embedding (VNE) problem
intensively, in different types of networks and with various
optimization objectives [29–32]. Specifically, VNE considers
how to build multiple virtual networks (VNTs) over a shared
substrate network (SNT), which, however, is fundamentally
different from NFV-oriented resource orchestration [7]. This
is due to the fact that VNE finalizes the topologies of VNTs
before embedding them in the SNT, but how to route traffic in
the VNTs is out of its scope since the traffic will be generated
afterwards. On the other hand, NFV-oriented resource orches-
tration can only obtain the actual topology of each vNF-based
network service after the embedding because multiple vNFs
might share a same substrate node, while the traffic routing of
the network service is predetermined.

Previously, the service provisioning of vNF-SCs has been
considered for packet networks in numerous studies,e.g., in
[33–37]. Several ILP or mixed ILP (MILP) models have been
formulated in [33–35] to get optimal solutions for small-scale
problems, and approximation algorithms were also proposed
to better balance the tradeoff between time-efficiency and
solution-optimality. A few heuristics were designed and com-
pared in [36, 37] to solve vNF-SC provisioning in large-scale
and dynamic networks. Nevertheless, as these studies did not
address the problem of RSA in optical DCIs, their proposals
cannot be leveraged for vNF-SCs provisioning in EO-DCIs.

Considering an EO-DCI as the SNT, NFV-oriented resource
orchestration has been investigated for provisioning vNF-SCs
[19–22], vNF trees [7], and generic vNF graphs [8]. However,
these studies generally followed the idea of first formulating
ILP/MILP models to obtain exact solutions and then designing
time-efficient heuristics to address large-scale problems, but
they did not analyze the state transition of the MDP for provi-
sioning vNF-SCs in an EO-DCI to optimize the provisioning
schemes. This leaves us certain margin to further optimize the
tradeoff between time-efficiency and solution-optimalitywith
DRL. Note that, the two major subproblems of provisioning
vNF-SCs in an EO-DCI,i.e., the vNF deployment and RSA
problems, have been addressed in [25] and [26], respectively,
with DRL models. Nevertheless, the DRL models cannot work
jointly to solve the two subproblems, and they bear scalability
and universality issues, as explained in the previous section. In
[38, 39], we leveraged DRL to predict future vNF-SC requests
and adjust the duration of service cycles adaptively in an
EO-DCI, but the developed DRL models did not address the
resource orchestration for assembling vNF-SCs.

In this work, we propose a hierarchical DRL model to solve
the provision of vNF-SCs in an EO-DCI, which leverages a
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well-crafted policy NN based on GNN [40]. GNN can directly
operate on graph-structured data and has demonstrated good
performance in dynamic optimizations related to networks.
For instance, the authors of [40] leveraged GNN to achieve
accurate prediction of delay and jitter in packet networks,
and they proved that the advantages were achieved because of
GNN modeling the relation among nodes and links better and
having a comprehensive understanding of path information.

III. PROBLEM FORMULATION AND MODELING

In this section, we first describe the network model of
provisioning vNF-SCs in an EO-DCI and define the problem
of the resource orchestration for it, and then explain why the
problem can be modeled as an MDP.

A. Network Model

We model the topology of an EO-DCI as a graphG(V,E),
whereV represents the set of DC nodes andE denotes the
set of fiber links to interconnect the DCs. Each DC node
contains a DC and a bandwidth-variable optical cross-connect
(BV-OXC), which are responsible for instantiating vNFs and
establishing inter-DC lightpaths, respectively. For the DC on
nodev ∈ V , its IT resource capacity isCv units, which can be
used to deploy vNFs. The spectra on each fiber linke ∈ E can
be allocated according to the flexible-grid scenario [41],i.e.,
the fiber link accommodatesF 12.5-GHz frequent slots (FS’)1.
To bridge the communication between two adjacent vNFs in a
vNF-SC, we need to set up a lightpath if the vNFs are deployed
on different DCs. The RSA scheme of the lightpath should
comply with the spectrum contiguous, non-overlapping and
continuous constraints [15, 42].

The DCs in the EO-DCI are assumed to supportM types of
vNFs, and anm-th type vNF (m ∈ [1,M ]) consumescm units
of IT resources. Note that, a vNF might be shared by multiple
vNF-SCs if they all require the same type of vNF, and one vNF
of type-m can only process the traffic ofηm vNF-SCs at most.
Each vNF-SC consists of a series of vNFs and can be modeled
asSC = {δ1, δ2, · · · , δK}, whereδk is k-th vNF in it. Then, a
vNF-SC request arrived at timet is Rt(ot, dt, bt, SCt, τ ta, τ

t
h),

where ot and dt are the source and destination DC nodes,
respectively,bt is its bandwidth demand in Gb/s,SCt is the
required vNF-SC, andτ ta and τ th are the arrival and holding
time, respectively. To serve a vNF-SC requestRt, we need
to solve the deployment of required vNFs and the RSA of
related lightpaths. For the vNF deployment, we find suitable
DCs to instantiate new vNFs or reuse the existing ones on
them, such that all the vNFs inSCt are covered. Then, we
calculate the RSA schemes of the lightpaths to connect the
vNFs in sequence, to satisfy the bandwidth demandbt.

B. Assembling vNF-SCs in an EO-DCI

As solving ILP/MILP models is usually time-consuming
and thus cannot adapt to the timing requirement of dynamic

1For simplicity, we assume that each FS provides a capacity of12.5 Gb/s.

Fig. 1. Provisioning a vNF-SC request in one EO-DCI with heuristics.

service provisioning, we normally can only count on time-
efficient heuristics to provision vNF-SC requests in a large-
scale EO-DCI. However, the dilemma is that a heuristic usually
cannot guarantee the performance gap to the optimal solution.
In other words, a heuristic might operate well in certain
situations but would have difficulties to address the others.

Fig. 1 gives an example on provisioning a vNF-SC request
in an EO-DCI with different heuristics. The request has
its source and destination DC nodes asDC-1 and DC-6,
respectively, the required vNF-SC isDC-1→vNF-1→vNF-
2→DC-6, and its bandwidth demand is20 Gb/s, which can
be accommodated with3 FS’ (including one guard-band FS).
Here,vNF-1 means an instance of the first type vNF, and so
on. We leverage two well-known heuristics to serve the vNF-
SC request. The first one tries to minimize spectrum usage,
and thus it sets up a lightpath fromDC-1 to DC-6 with the
shortest path routing (i.e., the green dash line in Fig. 1) and
deploys newvNF-1 andvNF-2 in DC-1. The second one tries
to minimize IT resource usage by reusing the existing vNFs
as many as possible. Hence, it reuses the existingvNF-1 and
vNF-2 in DC-2 andDC-5, respectively, and establishes three
lightpaths (i.e., the solid lines in Fig. 1) to form the vNF-SC.

By comparing the service provisioning schemes from the
two heuristics, we can see that the former uses fewer spectra
and bandwidth-variable transponders (BV-Ts) but more IT
resources than the latter, andvice versa. Therefore, which of
the heuristics will provide smaller blocking probability really
depends on which type of resources (i.e., spectrum or IT
resources) is scarce in the concerned EO-DCI. Nevertheless, in
a dynamic network environment, both the resource usages and
the resource demands of vNF-SC requests change over time,
which suggests that there might not be a constant winner. In
other words, a deterministic heuristic could not provisionvNF-
SC requests adaptively according to the actual network state
of the EO-DCI. This motivates us to propose HRLOrch, which
leverages a GNN-based hierarchical DRL model to solve the
resource orchestration for assembling vNF-SCs in an EO-DCI.

C. Modeling Dynamic vNF-SC Provisioning as an MDP

In this work, we consider the dynamic scenario of vNF-SC
provisioning, where the requests arrive and expire on-the-fly
and are served one by one in the order of their arrival time.
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The optimization objective is to minimize the overall blocking
probability. To capture the dynamic transitions among network
states during the service provisioning, we leverage an MDP.
Specifically, we describe the MDP with a tuple<S,A,R, P>,
whereS andA are the state and action spaces, respectively,
R is the immediate reward function, andP is the distribution
of state transition probabilities.

The state at timet (i.e., st ∈ S) consists of two elements,
which are a newly-arrived vNF-SC requestRt and the current
network stateGt. The information of requestRt is represented
by a feature vector, and we model the network state as graph-
structured dataGt(V,E) based on the topology of the EO-
DCI G(V,E). In Gt(V,E), each nodev ∈ V corresponds to
a DC nodev in the EO-DCI. We record the features of node
v in a vectorxv, which includesM + 1 elements to denote
the available IT resources and remaining traffic processing
capacities of the existing vNFs on nodev, respectively. Each
link e ∈ E in Gt(V,E) denotes a fiber link in the EO-DCI,
and its feature vectorxe containsF elements, each of which
tells whether the corresponding FS on linke is used or not.

The action at timet (i.e., at ∈ A) is defined as a feasible
provisioning scheme of the requestRt. As the objective of
vNF-SC provisioning is to minimize the blocking probability,
we define the reward asrt = 1 if Rt gets served successfully,
and rt = −1, otherwise. A state transition of the MDP can
be denoted as(st, at, rt, st+1). This means thatRt is served
with the provisioning scheme inat at statest, which makes
the network state change tost+1 and obtains a rewardrt.

Although the MDP above can precisely model the dynamic
service provisioning of vNF-SCs in an EO-DCI, architecting
a DRL model directly based on it will face the following
challenges. Note that, most of practical optical networks
operate with the blocking probability less than10% even for
lightpath setup [43], and emerging network paradigms [44] can
have even more stringent requirements on blocking probability.
Hence, it will be reasonable to assume that most of the vNF-
SC requests (i.e., more than90% of them) can be served
successfully. This means that in different states of the EO-DCI,
the rewards obtained by applying various actions are the same.
Hence, the EO-DCI is a sparse reward environment, which
makes it difficult to optimize the policy of action selectionin
online training. Secondly, in a large-scale EO-DCI, we need
to use many decision variables to describe the provisioning
scheme of a vNF-SC, and thus the action space will be
extremely large and not universal, if we design the action space
directly based on the decision variables. Finally, as both the
state and action of the MDP are relatively complicated, it will
be hard to obtain the mapping from the state space to the
action space,i.e., the policy of action selection.

In the next section, we will propose a GNN-based hierarchi-
cal DRL model to address these challenges. Specifically, in the
hierarchical DRL model, the MDP mentioned above becomes
the upper-level MDP, and a lower-level MDP is introduced
to assist it. The lower-level MDP optimizes the provisioning
of each vNF-SC to minimize its blocking probability, and
provides a fine-tuned policy to the upper-level MDP after each
vNF-SC provisioning, to help minimizing the overall blocking
probability. Hence, the hierarchical DRL model can effectively
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Fig. 2. Overall architecture and operation principle of HRLOrch.

address the issues caused by the sparse reward environment.

IV. HRLORCH: HIERARCHICAL DRL MODEL FOR

VNF-SC PROVISIONING

This section presents the overall architecture of our pro-
posed HRLOrch, and explains its operation principle.

A. System Architecture and Operation Principle

Our proposed GNN-based hierarchical DRL model consists
of an upper-level MDP and a lower-level MDP. The upper-
level MDP is used to precisely model the dynamic provi-
sioning of vNF-SCs and to minimize the overall blocking
probability from the macro perspective, while the lower-level
MDP is designed for tackling the provisioning of each vNF-
SC (i.e., optimizing vNF-SC provisioning from the micro
perspective). Meanwhile, we build a GNN-based policy NN
and design a hierarchical training scheme for our DRL model
to improve the convergence and performance of its training.

Fig. 2 shows the overall architecture of HRLOrch and
explains its operation principle. Specifically, working asan
intelligent assistant to the network orchestrator (NOrch),
HRLOrch resides in the control plane, and calculates vNF-
SC provisioning schemes based on the information that the
NOrch collects from the EO-DCI. Specifically, as illustrated
in Fig. 2, the operation of HRLOrch includes8 steps.

When a new vNF-SC requestRt arrives, the NOrch records
the current state of the EO-DCI as graph-structured data
Gt(V,E), denotes the information aboutRt as a feature
vector, and sends them to the vNF-SC iteration module (Step
1). Here,Gt(V,E) is graph-structured data, where the features
of each DC nodev ∈ V and each fiber linke ∈ E are
represented asxv and xe, respectively. To make the action
space more universal and reduce its size, we redefine each
action as to determine the placement of a vNF in the required
vNF-SC SCt of Rt. Therefore, we introduce the vNF-SC
iteration module to check each vNF inSCt in sequence and
send it to the GNN-based policy NN (Step 2).
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Then, the GNN-based policy NN takes the network state
(Gt) and the vNF to be deployed (δtk) as the input, and
generates a probability distribution over all the DC nodes,i.e.,
the policy of action selectionπ(V |Gt, δ

t
k) (Step 3). Next, the

hierarchical DRL agent leverages the node selection moduleto
choose a DC node to be deploy vNFδtk by sampling the policy
π(V |Gt, δ

t
k) (Step 4). After that, the RSA of the lightpath (if

there needs one) from vNFδtk−1 to vNF δtk is obtained by the
RSA calculation module2 (Step 5). Here, the separate steps
are just for the convenience of explaining the operation of
HRLOrch clearly. We actually design HRLOrch to optimize
vNF deployment and lightpath setup jointly, because its action
considers their schemes together.

Based on the status of node selection and lightpath setup,
a lower-level rewardrkt can be calculated to indicate the
performance of the current actionakt (Step 6). If both the node
selection and lightpath setup are successful, the hierarchical
DRL agent proceeds to the next vNF inSCt, i.e., repeating the
procedure ofSteps 2-6. Otherwise, if the DRL agent cannot
find a feasible scheme for either of them, the vNF provisioning
would be considered as failed and the vNF-SC is marked as
blocked. After all the vNFs inSCt have been served or any
of them cannot be provisioned due to insufficient resources in
the EO-DCI, we record the whole process as training samples
in the lower-level experience buffer. The training sampleswill
then be used to train the GNN-based policy NN to minimize
the resource usage of each vNF-SC request.

Meanwhile, the whole service provisioning process is re-
garded as a training sample in the upper-level experience
buffer, which is denoted as<(Gt,R

t), at, rt, (Gt+1,R
t+1)>

(Steps 7-8). The objective of the upper-level training is to min-
imize the overall blocking probability. Here, the upper-level
rewardrt indicates whetherRt gets provisioned successfully,
the actionat = {akt , k ∈ [1,Kt]} is a vector that contains the
selected DC nodes for all the vNFs inSCt, whereKt is the
number of vNFs inSCt. Note that, to ensure the stability of
the GNN-based policy NN, we trigger the lower-level training
first, while the upper-level training will not be started until the
lower-level training has converged.

B. Hierarchical Training of DRL Agent

The objective of the hierarchical DRL agent is straightfor-
ward,i.e., to minimize the overall blocking probability of vNF-
SC requests. Hence, the training process of the DRL agent
needs to achieve this goal by updating the parameters of the
GNN-based policy NN. However, as the EO-DCI is a sparse
reward environment for vNF-SC provisioning, it would be
difficult to train the DRL agent directly. Therefore, as shown
in Fig. 2, we design a hierarchical training scheme, which
introduces two training processes,i.e., the lower-level and
upper-level ones, and makes them collaborate with each other.
We define the objective of the lower-level training process as to
minimize the resource usage of each vNF-SC request, while

2Note that, if vNFsδt
k−1 and δt

k
are deployed on the same DC node, we

do not need to set up a lightpath between them. Meanwhile, fora vNF-SC
requestRt with SCt

= {δt1, δ
t
2, · · · , δ

t
Kt

}, we can denote its sourceot and
destinationdt as vNFsδt0 andδt

Kt+1
, respectively, for simplicity.

the objective of the upper-level one is still to minimize the
overall blocking probability. The rationale behind this design is
that reducing the resource usage of each vNF-SC request will
generally be beneficial for reducing the blocking probability.

Specifically, the hierarchical training runs as follows. We
first trigger the lower-level training to let the DRL agent
learn how to provision each vNF-SC request with the smallest
resource usage, by updating the parameters of the GNN-
based policy NN. Then, we start the upper-level training to
further optimize the parameters of the GNN-based policy NN,
such that the overall blocking probability can be minimized
adaptively in a dynamic network environment. The benefits of
this design are two-fold: 1) because the lower-level training
will not encounter the issue of sparse reward environment
and have a relatively small action space, it converges fast,
and 2) the lower-level training provides a pre-trained GNN-
based policy NN to the upper-level one, and thus accelerates
it effectively. The details of the training processes are:

1) Lower-level Training: For each vNF-SC requestRt,
the DRL agent iteratively uses the GNN-based policy NN
to generate node selection policy and determines the place-
ment (akt ) of each vNF in the vNF-SCSCt. After pro-
cessing the vNF, we get a rewardrkt , which indicates the
resource usage due to placing the vNF according toakt . Then,
the node selection result is recorded as a training sample
<(Gt, δ

t
k), a

k
t , r

k
t , (Gt, δ

t
k+1

)> in the lower-level experience
buffer. When all the vNFs inSCt have been processed, the
total resource usage of the provisioning scheme forRt is

J
lower =

Kt

∑

k=1

r
k
t . (1)

As the reward (rK
t

t ) of the last vNF inSCt (i.e., δtKt)
considers the spectrum usage of two lightpaths (δtKt−1

→ δtKt

andδtKt → dt), the lower-level training optimizes the GNN-
based policy NN by calculating the gradient ofJ lower.

2) Upper-level Training: For vNF-SC requestRt, the DRL
agent also obtains the current network stateGt and uses the
GNN-based policy NN to get a provisioning scheme. This
is the action considered in the upper-level training (at =
{akt , k ∈ [1,Kt]}). Then, a rewardrt can be obtained based
on whetherRt can be served with the provisioning scheme.
Next, the network state changes toGt+1, and we will check the
next vNF-SC requestRt+1. The aforementioned operations
generate a training sample<(Gt,R

t), at, rt, (Gt+1,R
t+1)>,

for being stored in the upper-level experience buffer. When
the DRL agent has collected enough number of upper-level
training samples, which is pre-defined asM , the upper-
level training is triggered to minimize the overall blocking
probability, which can be equivalently quantified as

J
upper=

M−1
∑

i=0

rt+i. (2)

Then, we can leverage the policy gradient ofJupper to further
optimize the GNN-based policy NN in the upper-level training.

C. Hierarchical DRL Model

Finally, we elaborate on the design of the hierarchical
DRL model. As the upper-level DRL tries to optimize the
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provisioning of vNF-SC requests in an EO-DCI from the
macro perspective, it can leverage the MDP model in Section
III-C, which defines its state, action and reward. On the other
hand, the MDP of the lower-level DRL is defined as follows.

1) State: For the lower-level DRL, the state at timet
(st ∈ S) contains three elements, which are the current
network stateGt(V,E), a vNF (δtk) to be deployed for the
vNF-SC requestRt, and a DC node set̃V t

k . Here,Gt(V,E) is
the graph-structure data about the concerned EO-DCIG(V,E)
at time t, and Ṽ t

k includes all the DC nodes selected for the
vNFs beforeδtk in vNF-SCSCt and the source node ofRt.

2) Action: As we have explained before, the task of the
lower-level DRL is to select the DC node for a pending vNF.
Hence, its action space is defined as all the nodes inG(V,E),
and an action is to select a node fromV .

3) Reward: The objective of the lower-level DRL is to
minimize the resource usage of each vNF-SC. Hence, we
define the immediate reward of each action as

r
k
t =

{

− α, vNF is blocked,

− β · ψk − γ · φk, vNF is provisioned,
(3)

where ψk indicates the IT resource usage for provisioning
vNF δtk, φk denotes the hop-count of the lightpath(s) that
are set up to serve the current vNFδtk, andα, β, andγ are
positive coefficients. As−α is the value of the instant reward
for the case in which the vNF is blocked, we should make
sure that it is properly set to avoid such a case in the future.
Meanwhile, since the IT resource usageψk and hop count of
the lightpath(s)φk use significantly different value ranges,β
andγ are used to normalize their values. Note that, ifδtk can
be served by reusing an existing vNF, we haveψk = 0, and
if vNFs δtk−1

andδtk are deployed on a same node, we do not
need to set up a lightpath to connect them.

V. GNN-BASED POLICY NEURAL NETWORK

In this section, we discuss the design and optimization of
the GNN-based policy NN in our hierarchical DRL model.

A. Structure of GNN-based Policy Neural Network

In our hierarchical DRL model, the lower-level DRL needs
to determine where to place each vNF in a pending vNF-SC
in sequence, which can be considered as a series of sequential
tasks. Meanwhile, we know that the encoder-decoder model
[45] has relatively good performance on sequential tasks.
Hence, we design the GNN-based policy NN, which is a key
component in our hierarchical DRL model for provisioning
vNF-SCs in an EO-DCI, based on the encoder-decoder model.
Fig. 3 shows the structure of the GNN-based policy NN, which
consists of the encoder and decoder sections. The encoder
section abstracts the features of the current network stateand
the context of the pending vNF-SC, while the decoder section
decides where to place the current vNF based on the output
of the encoder. The two sections are explained as follows.

1) Encoder: It includes the encoders to extract the graph-
based features of the network stateGt and the context of the
provisioning scheme of the current requestRt, respectively.

Note that, the traditional DNNs in linear or convolutional
structures cannot operate on the graph-structuredGt directly,

LSTM
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Fig. 3. Structure of our proposed GNN-based policy NN.

because it would be difficult for them to analyze the relations
among the nodes and links in a graph with handcrafted feature
engineering [27]. This is the reason why we design the encoder
for analyzingGt based on GNN. The GNN-based encoder
leverages three phases to analyzeGt, i.e., message passing,
message aggregation and feature embedding. In the message
passing phase, each node inGt(V,E) collects the information
about its neighbor nodes. Then, the node aggregates all the
received information to obtain an aggregated feature vector in
the message aggregation phase. Finally, the feature embedding
phase maps the feature vectors to a hidden state with an NN.

The aforementioned process can be represented as

Ht = f(XV ,AG) = σ(AG ·XV ·W ), (4)

whereXV is the matrix that contains all the aggregated feature
vectors of the nodes in network stateGt, AG is the adjacency
matrix that describes the physical connections in the topology
of the EO-DCIG(V,E), f(·) is the function to map the feature
vectors of the nodes inGt to a hidden stateHt, W denotes
the learnable parameters of the GNN, andσ(·) is an activation
function. Note that, since the spectrum usages on the fiber links
in the EO-DCI should also be considered here, we abstract the
information about them in the adjacency matrixAG too. The
details about this will be explained in Section V-B.

For the encoder to analyze the context of the provisioning
scheme ofRt, it considers the current vNF (δtk) and the node
selected for the previous vNF (ak−1

t ), which is the “current”
node in the vNF-SC provisioning process. The current vNF
and the current node are represented as two vectors, which are
concatenated into a feature vector. The feature vector is then
processed by a long-short-term memory (LSTM), as shown in
Fig. 3. Here, the LSTM is used to memorize the determined
part of the provisioning scheme ofRt, since the placement of
the vNFs beforeδtk has a great influence on its node selection.
The hidden state from the LSTM is a query vectorqt, which
is sent to the decoder for selecting the node forδtk.

2) Decoder: It selects a node for the current vNFδtk based
on the outputs of the encoders,i.e., Ht andqt. We design the
decoder based on the attention mechanism [46], which can
address the problem of long sequence information loss when
handling sequential tasks. Specifically, it calculates theweights
of all the nodes in the EO-DCI, based onHt andqt, and for
a nodev ∈ V , its weight is defined as

u
k
v =Wa · tanh(Wr · rv +Wq · qt), (5)

where ukv is the weight for nodev (k is for the index of
δtk), Wa, Wr andWq are the learnable parameters,rv is the
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reference context vector in the hidden stateHt for nodev.
The function oftanh(·) has the following expression

tanh(x) =
ex − e−x

ex + e−x
, (6)

which can re-scale the real elements of a vectorx within
[−1, 1]. Then, the probability of selecting nodev for δtk is

p
k
v = softmax(uk

v), (7)

wheresoftmax(·) is defined as

softmax(x[j]) =
ex[j]

|x|
∑

k=1

(ex[k])

, j ∈ [1, |x|], (8)

which can normalize thej-th elementx[j] of a real vectorx

within [0, 1] such that
|x|∑

j=1

softmax(x[j]) = 1 (|x| denotes the

number of elements inx), and the normalized value can be
used as the probability of selectingx[j] from x. Then, we can
sample the nodes inV according to{pkv} or choose the one
with the largest probability, to find the node forδtk.

B. GNN in Encoder

The GNN learns the high-dimensional representation of the
nodes in the graph-structured network stateGt(V,E), which
can help the decoder to accomplish node selection. In network
stateGt, the feature vector of each nodev ∈ V is a vectorxv,
which includesM+1 dimensions. Here, each dimension of the
feature vector denotes either the remaining process capability
of the existing type-m vNFs (m ∈ [1,M ]) or the available IT
resources, on nodev. The feature vectors of all the nodes in
V can be combined into a matrixXV , whose dimension is
[(M +1)×|V |]. Fig. 4 shows an example on how to calculate
XV based on the network state of an EO-DCI. As there are4
nodes in the EO-DCI and3 types of vNFs can be supported,
the dimension ofXV is [4× 4]. We can also see in Fig. 4 that
if a type of vNFs does not exist on nodev, the corresponding
element in the node’s feature vectorxv is set as0.

Eq. (4) indicates that in addition toXV , the adjacency
matrix AG is also needed to calculate the graph-based hidden
stateHt. Note that, different from the adjacency matrix of a
packet network,AG should record the availability of frequency
slots (FS’) between each node pair in the EO-DCI, because this
information is essential for calculating the RSA schemes of
lightpaths. Therefore, we define the element in the adjacency
matrix AG for node pairv1 andv2 ((AG)v1,v2) as the size of
the largest available FS block on the fiber links on the shortest
path betweenv1 andv2. For instance, in Fig. 4, the spectrum
usage on the fiber links betweenNodes 1 and 3 is shown in the
lower right corner, which suggests that the size of the largest
available FS block is4, and thus, we have(AG)1,3 = 4.

To processXV and AG, we design the GNN based on
the gated graph sequence neural network (GGS-NN) [47],
which is known to be effective on extracting features about
a long node sequence in graph-structured data. The detailed
structure and operation principle of the GNN is shown in Fig.
5. To model the long sequence information and get stable
node representation, we repeat the information propagation
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Fig. 5. Structure of our proposed GNN.

process in the GNN forJ iterations. In each iteration, we
have both information passing and information aggregation.
The information passing is realized by

̟
j+1
v =

∑

v′∈adj(v)

relu(W · hj

v′), ∀v ∈ V. (9)

whereW still denotes the learnable parameters of the GNN (as
in Eq. (4)) and it is shared acrossJ iterations,hjv′ is the hidden
state of nodev′ at roundj, adj(v) returns all the neighbor
nodes of a nodev, andrelu(·) is defined as

relu(x) = max(0, x), (10)

which has been widely used in DNNs to avoid the gradient
vanishing problem. In the information aggregation, we use a
gated recurrent unit (GRU) to update the representation of each
node. Here, GRU is a variant of LSTM, which combines the
forget gate and the input gate of LSTM as an update gate.
Hence, GRU has fewer parameters than LSTM and thus it
converges faster in training. The detailed operations for the
information aggregation in thej-th iteration are as follows.







p
j+1
v = softmax

(

Wp
j ·̟j+1

v + Up
j · hj

v

)

,

q
j+1
v = softmax

(

Wq
j ·̟j+1

v + Uq
j · hj

v

)

,
(11)

h̃
j+1
v = tanh

[

Wm
j ·̟j+1

v + Um
j ·

(

p
j+1
v ⊙ h

j
v

)]

, (12)

h
j+1
v = (1− q

j+1
v )⊙ h̃

j+1
v + q

j+1
v ⊙ h

j
v, (13)

where{Wm
j ,U

m
j }, {Wp

j ,U
p
j }, and{Wq

j ,U
q
j } are the learnable

parameters of the memory cell, update gate and reset gate
of the GRU. After we repeating the information passing and
aggregation with Eqs. (9)-(13) forJ times, the hidden state of
all the nodes inGt can be obtained asHt = {hJv , ∀v ∈ V }.
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C. Optimization of GNN-based Policy Neural Network

All the learnable parameters of the GNN are optimized in
the hierarchical training discussed in Section IV-B. Specifical-
ly, for both the lower-level and upper-level training processes,
the parameters are optimized with the policy gradient method.
With Eq. (1), the policy gradient in the lower-level training is

∇θπJ
lower =

1

N

N
∑

i=1











Kt

∑

k=1

r
k,i
t − ϑ

i



 ·





Kt

∑

k=1

∇θπ log
(

π
(

a
k,i
t |Gt, δ

t
k,i

))











,

(14)

whereN is the batch size of training samples,rk,it is the
reward of actionak,it in the i-th batch,ϑi is the baseline for
learning. In order to make the training more stable, the baseline
ϑi is introduced to calculate the benefit of each action as

ϑ
i =





Kt

∑

k=1

r̂
k,i
t



+





1

N

Kt

∑

k=1

N
∑

j=1

(rk,jt − r̂
k,j
t )



 , (15)

where the reward̂rk,jt is obtained by applying the greedy
scheme that chooses the action with the largest probability,
and the rewardrk,jt is got with the sampling scheme that
samples the actions according to their probabilities. Hence,
the second term in the Eq. (15) denotes the gap between the
rewards from the sampling and greedy schemes. Meanwhile,
the policy gradient in the upper-level training is

∇θπJ
upper=

M
∑

j=1

rt+j · ∇θπ log [π(at|Gt)] . (16)

Algorithm 1: GNN Optimization in Lower-level Training

1 initialize parametersθπ of the GNN;
2 empty the lower-level experience buffer;
3 for each newly-arrived vNF-SC request Rt do
4 release the resources used by expired vNF-SCs;
5 get current graph-structured stateGt of the EO-DCI;
6 for k ∈ [1,Kt] do
7 use the GNN to get the node selection policy

π(|Gt, δ
t
k) for vNF δtk;

8 sample the nodes inV according toπ(|Gt, δ
t
k) to

get a proper actionakt ;
9 store<(Gt, δ

t
k), a

k
t , r

k
t , (Gt, δ

t
k+1)> as a training

sample in lower-level experience buffer;
10 end
11 end
12 select the training samples aboutN vNF-SCs from

lower-level experience buffer randomly;
13 calculate the baseline{ϑi, i ∈ [1, N ]} with Eq. (15);
14 get J lower(θπ) and∇θπJ

lower(θπ) with Eqs. (1) and (14);
15 updateθπ with the stochastic gradient descent method;

The detailed procedure of optimizing the parameters of the
GNN in the lower-level training is explained inAlgorithm 1.
Lines 1 and 2 are for the initialization. Then, for each newly-
arrived requestRt, we determine its provisioning scheme with

our hierarchical DRL and record the result as a training sample
in the lower-level experience buffer (Lines 3-11). Line 12
randomly selects a batch ofN vNF-SCs from the lower-level
experience buffer, which are used to optimize the parameters
of the GNN in Lines 13-15. Specifically, we calculate the
objective of the lower-level training and its gradient withEqs.
(1) and (14) inLine 14, and update the parameters of the GNN
with the stochastic gradient descent method inLine 15.

Algorithm 2: GNN Optimization in Upper-level Training

1 empty the upper-level experience buffer;
2 for each newly-arrived vNF-SC request Rt do
3 release the resources used by expired vNF-SCs;
4 get current graph-structured stateGt of the EO-DCI;
5 provisionRt with the GNN;
6 store<(Gt,R

t), at, rt, (Gt+1,R
t+1)> as a training

sample in upper-level experience buffer;
7 if the number of samples exceeds M then
8 get Jupper and∇θπJ

upper(θπ) with Eqs. (2) and
(16), respectively;

9 updateθπ with stochastic gradient descent;
10 end
11 end

After the lower-level training has converged, we trigger
the upper-level training to further optimize the parameters of
the GNN, such that it can make smart decisions on vNF-SC
provisioning to reduce the overall blocking probability. We
determine that the lower-level training has converged if inthe
last 100 training steps, the maximum change on its reward is
less than1%. The procedure is described inAlgorithm 2. Line
1 is for the initialization. Then, the for-loop that coversLines
2-11 provisions each vNF-SC with our hierarchical DRL. This
time, we record the whole provisioning scheme of each vNF-
SC request as a training sample in the upper-level experience
buffer (Line 6), and when enough training samples have been
accumulated, an upper-level training is triggered (Lines 7-10).

VI. PERFORMANCEEVALUATION

In this section, we discuss the numerical simulations to
evaluate the performance of our proposal.

A. Simulation Setup

Our simulations consider two EO-DCI topologies,i.e., the
14-node NSFNET and the 24-node US backbone (USB)
topologies shown in Figs. 6 and 7, respectively. We assume
that each fiber link3 can accommodateF = 358 FS’, and
each DC node possessesCv = 100 units of IT resources for
vNF deployment. The EO-DCIs can supportM = 5 types of
vNFs, and an instance of each type of vNFs consumes[4, 8]
units of IT resources. Each deployed vNF can be shared by
3 vNF-SC requests at most. Note that, the traffic pattern in a
DCI usually follows Poisson traffic model [48], and the same

3We assume that the optical layer of the EO-DCI uses the C-band, i.e.,
each fiber link has∼4.475 THz bandwidth to allocate.
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model and its variations have been widely used to describe
the traffic patterns of many emerging network services [49].
Hence, our simulations assume that the vNF-SC requests arrive
dynamically according to Poisson traffic model. Each of them
demands for[2, 4] vNFs and selects the source and destination
nodes randomly in the EO-DCI, and its bandwidth requirement
is evenly distributed within[20, 100] Gb/s (i.e., [3, 9] FS’).
As for the coefficients in Eq. (3) for the instant reward, we
empirically set them asα = 10, β = 1, andγ = 1. The GNN-
based policy NN contains128 hidden layers. For the training
of HRLOrch, we select the batch sizes for the lower-level and
the upper-level training (N andM ) as8 and20, respectively.
To ensure the statistical accuracy of our results, we conduct 10
independent runs, record the results that are within the95%
confidence interval, and average them to get each data point.

B. Training Performance

We first evaluate the training performance of our proposed
HRLOrch in an EO-DCI with the NSFNET topology. As
mentioned in Section IV-B, its training process contains a low-
level training followed by an upper-level training. Hence,to
verify the effectiveness of the hierarchical training scheme,
we design a benchmark that is based on a DRL agent using
single-level training, namely, SRLOrch. Specifically, SRLOrch
uses the same policy NN as that of HRLOrch, but its training
process is single-level, which means that the training tries to
minimize the blocking probability of vNF-SC requests directly.

Fig. 8 compares the evolution of the blocking probability
from HRLOrch and SRLOrch in their training processes.
We can see that the blocking probability from HRLOrch
quickly converges to1.1× 10−3 after experiencing∼6× 103

vNF-SC requests (i.e., running for ∼2, 160 seconds), while

Fig. 8. Evolution of blocking probability from HRLOrch and SRLOrch
(traffic load at700 Erlangs in NSFNET).

SRLOrch cannot provide a stable blocking probability even
after experiencing1.2×104 requests (i.e., running for∼4, 190
seconds), and its blocking probability is much higher than that
from HRLOrch. This is because SRLOrch trains the policy NN
to learn how to minimize the blocking probability directly,
which can hardly be effective due to the fact that the EO-
DCI is a sparse reward environment for vNF-SC provisioning.
To this end, the results in Fig. 8 confirm that our proposed
hierarchical training scheme can effectively address the sparse
reward environment for vNF-SC provisioning, and obtain
better training performance on blocking probability reduction.

We hope to point out that the training is not completely
independent of traffic load. Specifically, if we want to apply
the HRLOrch that has been trained for one traffic load to an
EO-DCI whose traffic load is different, its parameters need to
be fine-tuned with transfer learning [50]. In other words, we
do not need to retrain HRLOrch for each traffic load from the
scratch. We actually conduct simulations with various traffic
loads to verify this, and confirm that HRLOrch can always
outperform SRLOrch with a similar trend as that in Fig. 8.

Next, we would like to justify our design of the GNN-
based policy NN (GNN-PNN) in HRLOrch. Therefore, we
design two benchmark policy NNs based on the classical
architectures,i.e., the graph convolution network (GCN) [51]
and deep neural network (DNN) [46] based policy NNs
(namely, GCN-PNN and DNN-PNN, respectively), which are
known to have relatively good performance on policy selection
[46, 51]. GCN-PNN and DNN-PNN use the same encoder-
decoder structure as our proposed GNN-PNN, but their NNs
for network state extraction are different. Specifically, GCN-
PNN uses a two-layer GCN to extract the graph-structured
network state directly, while DNN-PNN concatenates the
feature vectors of all the nodes and links into a vector and
inputs it to a DNN to map to a hidden network state.

The training performance of the three policy NNs in the
lower-level training is plotted in Fig. 9, which shows the
evolution of the reward defined in Eq. (3) in the training.
We observe that our proposed GNN-PNN provides the best
convergence performance among the three policy NNs. As
GNN-PNN has less learnable parameters than DNN-PNN and
it can operate on graph-structured data directly, it converges
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Fig. 9. Evolution of reward from HRLOrch with different policy NNs.

much faster. Meanwhile, since GNN-PNN can extract the
graph-structured network state more precisely than GCN-PNN,
it can achieve a larger reward after convergence.

C. Performance on Dynamic vNF-SCs Provisioning

We then evaluate the performance of HRLOrch for the
dynamic provisioning of vNF-SCs in an EO-DCI. Here, we
still assume that the EO-DCI uses the NSFNET topology.
Three existing heuristics for vNF-SC provisioning in EO-DCIs
are considered as benchmarks, which are the greedy placement
of vNFs and shortest-path routing (GP-SPR), maximizing vNF
reuses and spectrum-saving routing (MRP-SSR), and balanced
placement of vNFs and shortest-path routing (BP-SPR) [19].
Specifically, the benchmark algorithms work as follows. GP-
SPR tries to greedily place vNFs along the shortest path from
the source to the destination of each vNF-SC. MP-SSR first
tries to save IT resources by reusing the existing vNFs in
the EO-DCI, and then deploys new vNFs in the way that
the spectrum usages on fiber links can be minimized. BP-
SPR places vNFs along the shortest path that can balance
the IT and spectrum resource usages in the EO-DCI. Fig.
10 shows the performance comparisons of dynamic vNF-SC
provisioning. Fig. 10(a) shows that our proposed HRLOrch
provides the lowest blocking probability at all the traffic loads,
which verifies the performance of HRLOrch on dynamic vNF-
SC provisioning. Moreover, it is interesting to observe that our
proposed HRLOrch has the highest IT and spectrum resource
usages than the benchmark algorithms in Figs. 10(b) and 10(c).
This further verifies the effectiveness of HRLOrch,i.e., it can
leverage the hierarchical training scheme to achieve the best
utilization of the IT and spectrum resources in the EO-DCI.

D. Evaluations on Universality and Scalability

Finally, we investigate the universality and scalability of
HRLOrch. Firstly, for its universality, we consider a zero-shot
transfer learning scenario (zero-learning) [52], which refers to
applying a trained DRL model to an unseen environment for
the same task. We apply the HRLOrch that has been trained in
the EO-DCI with the NSFNET topology to one with the USB
topology for the vNF-SC provisioning in it. The USB topology
is shown in Fig. 7, and we keep the settings of the simulation
parameters about IT and spectrum resources as unchanged.

TABLE I
RUNNING TIME PER VNF-SCREQUEST

Algorithm
Running Time (msec)

EO-DCI with NSFNET EO-DCI with USB

GP-SPR 12.06 30.81

MP-SSR 19.47 32.16

BP-SPR 13.78 33.95

HRLOrch 37.74 49.76

The procedure of the zero-learning can be seen in Fig. 11,
where we fix the traffic load as1, 000 Erlangs in USB. We
observe that for this case, the HRLOrch trained in NSFNET
provides lower blocking probability than GP-SPR in USB
even without the zero-learning, and its blocking probability
quickly goes below that of MRP-SSR and BP-SPR after
being retrained with only500 vNF-SC requests in USB. This
confirms the universality of HRLOrch. Meanwhile, in Fig. 11,
we also plot the training performance of scratch-learning of
HRLOrch, which refers to the training scheme that starts the
training of HRLOrch from the scratch in USB. We observe that
the zero-learning scheme provides lower blocking probability
and converges faster than the scratch-learning scheme. This
confirms that the GNN-based policy NN in HRLOrch can
extract high-level and universal knowledge about vNF-SC
provisioning in an EO-DCI, and the learned knowledge is still
useful even after the EO-DCI changes its topology.

Fig. 12 shows the blocking probability from the algorithms
in USB, and with a similar trend as that in Fig. 10(a),
HRLOrch still outperforms all the benchmarks significantly.
These results verify that HRLOrch can adapt to an arbitrary
EO-DCI topology without changing its architecture,i.e., the
GNN-PNN in HRLOrch can operate on the graph-structured
network state of an EO-DCI directly and effectively.

Secondly, regarding the scalability of HRLOrch, we sum-
marize the average running time for the algorithms to serve a
vNF-SC request in Table I. It can be seen that due to its online
training, the running time of HRLOrch is longer than that of
the benchmarks, but the results are still comparable and only in
tens of milliseconds. This confirms that HRLOrch is suitable
for online and dynamic vNF-SC provisioning. Meanwhile, it
is interesting to notice that when the size of the EO-DCI
increases (i.e., from 14-node NSFNET to 24-node USB), the
running time increases for2.55, 1.65 and2.46 times for GP-
SPR, MP-SSR and BP-SPR, respectively, but that of HRLOrch
only increases1.32 times. This suggests that HRLOrch has
better scalability than the benchmarks, which is because the
structure of the GNN-PNN in HRLOrch does not need to be
changed when the EO-DCI topology changes.

VII. C ONCLUSION

In this work, we proposed a GNN-based hierarchial DR-
L model, namely, HRLOrch, for realizing online vNF-SCs
provisioning in an EO-DCI. To ensure the universality and
scalability of HRLOrch, we designed the policy NN in it based
on a GNN, which can operate on the graph-structured network
state of the EO-DCI directly and can adapt to an arbitrary EO-
DCI topology without any structural changes. Then, to address
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(a) Blocking probability (b) Average IT resource usage (c) Average spectrum usage

Fig. 10. Performance comparisons of dynamic vNF-SCs provisioning under different traffic loads (NSFNET topology).

Fig. 11. Evolution of blocking probability from HRLOrch (traffic load at
1, 000 Erlangs in USB).

Fig. 12. Results on blocking probability in USB.

the issue that the EO-DCI is a sparse reward environment
for vNF-SC provisioning, we introduced a hierarchical DRL
model, which divides the traditional DRL into lower-level and
upper-level models, assigns different optimization objectives
to them, and makes them operate cooperatively in the training
to minimize the blocking probability of vNF-SC requests.

Our simulation results demonstrated that the proposed hi-
erarchical DRL model achieved better convergence perfor-
mance than the traditional single-level DRL model in train-
ing. Moreover, due to its intelligence, HRLOrch provided
lower blocking probability than the existing heuristics for

vNF-SC provisioning in an EO-DCI. Finally, the simulations
also confirmed the universality and scalability of HRLOrch,
because the HRLOrch trained in one EO-DCI topology could
adapt to a new EO-DCI topology quickly in zero-shot transfer
learning, still provide lower blocking probability than the
existing heuristics, and its running time increased slowerthan
the heuristics when the size of the EO-DCI became larger.
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