
1

On the Upgrade of Service Function Chains with
Heterogeneous NFV Platforms

Yuhan Xue and Zuqing Zhu,Senior Member, IEEE

Abstract—The fast development of high-performance and flex-
ible SmartNICs and programmable data plane switches (PDP-
SWs) has motivated people to consider the deployment of virtual
network functions (vNFs) on them. Hence, together with tradi-
tional virtual machines (VMs), SmartNICs and PDP-SWs form
heterogeneous network function virtualization (NFV) platforms
for realizing vNF service chains (vNF-SCs). In this work, we
consider the transition from software-based homogeneous NFV
platforms to the heterogeneous ones, and study how to optimize
the service upgrade of vNF-SCs. Specifically, the service upgrade
is divided into two steps, which are 1) selecting servers/switches in
the substrate network (SNT) to upgrade, which is done by adding
SmartNICs to servers and replacing traditional switches with
PDP-SWs, under a fixed budget, and 2) redeploying the existing
vNF-SCs in the updated SNT to maximize the quality-of-service
(QoS) improvement on latency reductions. We first formulatean
integer linear programming (ILP) model to optimize the overall
service upgrade, then design two correlated optimizationsfor its
two steps, and finally propose polynomial-time approximation
algorithms to solve the optimizations. The results of extensive
simulations confirm that our proposed algorithm outperforms the
existing benchmarks in various network scenarios, and achieves
better tradeoff between performance and time-efficiency.

Index Terms—Network function virtualization (NFV), Hetero-
geneous NFV platforms, Service function chain (SFC), Approx-
imation algorithm, Facility location, Multiple knapsack, Linear
programming (LP) relaxation and randomized rounding.

I. I NTRODUCTION

NOWADAYS, the Internet is undergoing dramatic changes
to adapt to the unprecedented and ever-growing amounts

of data traffic, end users, and network services [1–3]. Hence,
network infrastructures have been reshaped by advanced
physical-layer technologies [4–9] to be better prepared for
tremendous volumes of highly-dynamic traffic. Although this
has made network pipes wider and more flexible, the packet
processing on nodes should be more powerful and agile to bet-
ter serve heterogeneous network services with various quality-
of-service (QoS) demands. To this end, novel programmable
packet processing hardware (e.g., smart network interface
cards (SmartNICs) [10] and programmable data plane switches
(PDP-SWs) [11]) have been developed and attracted intensive
interests recently. The aforementioned advances on network
pipes and nodes have promoted the idea of in-network com-
puting [12], i.e., computing tasks are handled simultaneously
with packet switching on forwarding devices such that both
the latencies of packet processing and transmission and the
volume of traffic can be effectively reduced.

Y. Xue and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China,Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on May 21, 2021.

As in-network computing deploys virtual network functions
(vNFs) on forwarding devices to handle computing tasks [13,
14], it belongs to the regime of network function virtualization
(NFV) [15, 16]. Specifically, the hardware-based forwarding
devices (e.g., SmartNICs and PDP-SWs) can be considered
together with their software-based counterparts (e.g., virtual
machines (VMs) on servers) to come up with a network
environment with heterogeneous NFV platforms [17–20]. Due
to their programmability, SmartNICs and PDP-SWs are all
general-purpose hardware, and thus realizing vNFs over them
will not violate the principle of NFV. On the contrary, they
actually further extend the success of NFV, because hetero-
geneous NFV platforms can unify the benefits of hardware-
and software-based systems, and provide service providers
(SPs) more flexibility and programmability to support various
QoS requirements cost-efficiently [20]. For instance, the hard-
ware platforms have superior packet processing capacity and
only induce very short latency when supporting bandwidth-
intensive vNFs [19], while the software ones are runtime pro-
grammable and can provide enough computing and memory
resources for computing-intensive vNFs [16].

Previously, people studied the provisioning of vNF service
chains (vNF-SCs) over heterogeneous NFV platforms [17–
20], to explore the flexibility and programmability mentioned
above. However, these studies were all based on a fixed
substrate network (SNT), which means that the deployment
of heterogeneous NFV platforms (e.g., servers, SmartNICs
and PDP-SWs) in the SNT was assumed to be unchanged.
Note that, in addition to the network services whose lifetime
is relatively short, there are also a fairly amount of long-
term ones in today’s Internet, which can even run semi-
permanently to handle the business of SPs [21–23]. For
instance, the network services for online booking/shopping in
e-commerce need to steer traffic through a series of network
functions (e.g., firewall, load-balancer, and request handler),
whose configuration is normally for long-term [23].

Similar to the short-term ones, it is cost-effective for SPs
to build these long-term network services with vNF-SCs. This
is because they need to address dynamic service requests and
the population change and mobility of end-users, even though
the configuration of the network functions is relatively static.
Moreover, to adapt to the spatial and temporal increases of
service demands, it will be inevitable for the SPs to upgrade
the substrate network elements on which to deploy the vNF-
SCs regularly. In other words, to ensure the QoS of long-term
vNF-SCs, we need to jointly optimize the service upgrade of
an SNT with heterogeneous NFV platforms and the reconfig-
uration of active vNF-SCs in the upgraded SNT, under a fixed

2

equipment budget. Note that, this optimization is intrinsically
more complex than the provisioning or reconfiguration of vNF-
SCs in a fixed SNT [24], because the upgrade of the SNT and
the reconfiguration of active vNF-SCs are correlated with each
other and thus cannot be tackled independently. To the best of
our knowledge, this problem has not been fully explored yet.

Previously, in [24], we conducted an initial study on the
problem. Specifically, we considered one of the most relevant
network environments for vNF-SC provisioning,i.e., a data-
center network (DCN), as the SNT, and optimized the service
upgrade of vNF-SCs in it by leveraging heterogeneous NFV
platforms (i.e., SmartNICs, PDP-SWs and VMs). The service
upgrade includes two steps, 1) selecting servers/switchesin
the DCN to upgrade, which is done by adding SmartNICs
to servers and replacing traditional switches with PDP-SWs,
under a fixed budget, and 2) redeploying active vNF-SCs in the
updated DCN to maximize the QoS improvement on latency
reductions. To solve the correlated optimizations of the two
steps, we designed a time-efficient heuristic in [24].

However, the algorithm design in [24] was still preliminary,
because the heuristic can hardly obtain near-optimal solutions
whose performance gaps to the optimal ones are bounded.
More importantly, the algorithms were designed based on the
assumption that the SNT is a DCN, and thus it is not generic.
This motivates us to extend the study in this work. Specif-
ically, by revisiting the two steps of the budget-constrained
service upgrade, we first formulate an overall integer linear
programming (ILP) model to optimize them jointly for the
exact solution, then obtain two correlated optimizations for
the steps, respectively, and finally propose polynomial-time
approximation algorithms to solve both optimizations.

For the first step, we design the optimization as to select
servers/switches (i.e., substrate nodes (SNs)) in a generic
SNT to upgrade such that the number of existing vNFs,
which can be redeployed on the upgraded SNs, is maximized.
To design an approximation algorithm for it, we divide the
problem-solving into two phases. InPhase I, we relax the
budget constraint, transform the SN selection problem intoa
capacitated facility location problem (CFLP) [25], and solve it
with linear programming (LP) rounding. Next, inPhase II, we
remove the SNs to be upgraded in iterations until the budget
constraint is satisfied. In each iteration, we first recalculate
the mapping between the existing vNFs and the SNs for
upgrading, and then remove the SN on which the smallest
number of existing vNFs will be redeployed. More specifically,
the recalculation of the mapping is first transformed into
the multiple knapsack problem with assignment restrictions
and capacity constraints (MK-AR-CC), and is then solved by
leveraging the approximation algorithm developed in [26].

After tackling the first step with the two-phase approach,
we move to the second step, and propose an approximation
algorithm based on LP relaxation and randomized rounding
[27] to determine how to redeploy the existing vNF-SCs in
the updated SNT. Finally, we perform extensive simulations
to demonstrate that the algorithm proposed in this work
outperforms the heuristic in [24], and achieves better tradeoff
between performance and time-efficiency.

The rest of the paper is organized as follows. We survey the

related work in Section II. Section III explains our network
model and shows the ILP for the overall optimization. We
formulate two ILPs for the steps of the budget-constrained
service upgrade and propose polynomial-time approximation
algorithms to solve them, in Sections IV and V, respectively.
Numerical simulations are discussed in Section VI for perfor-
mance evaluation. Finally, Section VII summarizes the paper.

II. RELATED WORK

The basic idea of NFV is to deploy network services with
vNFs running on general-purpose software/hardware platforms
instead of relying on proprietary hardware systems [15].
Depending on how the vNFs are organized and how the
application traffic is steered through them, an SP can leverage
NFV to realize network services with vNF-SCs [28, 29], vNF
multicast trees [30], and generic vNF forwarding graphs [31].
To provision these network services in an SNT, the SP needs to
embed vNFs on SNs (i.e., instantiating vNFs with the memory
resources in SNs) and route the traffic among vNFs over
substrate paths. Although this looks similar to the procedure
of the well-known virtual network embedding (VNE) [32–
34], they are different because an SP can embed multiple
vNFs, which are in the same network service, on one SN
(i.e., violating the one-to-one mapping in VNE [30]). For a
comprehensive survey on NFV, one can refer to [35].

For vNF-SCs specifically, many previous studies have been
devoted to optimizing their service provisioning schemes
[36], and the technical specifications of vNF-SC have been
published in [37]. However, these studies assumed that the
SNT for vNF-SC provisioning has fixed configuration, and
did not address the service upgrade that involves incremental
deployment and adjustment of substrate network elements.
Meanwhile, still based on the assumption that the hardware
configuration of the SNT is unchanged, people have investigat-
ed the reconfiguration of vNF-SCs in [38–42], where the stud-
ies in [38–41] were based on an SNT with homogeneous NFV
platforms, and the SNT that consists of heterogeneous NFV
platforms was considered in [42]. The study in [38] addressed
how to reconfigure vNF-SCs to adapt to the movement of end
users. Eramoet al. [39] proposed algorithms to migrate vNFs
such that the dynamics of vNF-SC requests in terms of volume
and spatial distribution can be handled well. In [40], the
authors tried to optimize the reconfiguration of vNF-SCs under
time-varying service demands, for minimizing the total cost
of vNF deployment and vNF-SC reconfiguration. The study
in [41] designed an online scaling algorithm to readjust vNFs
according to dynamic demands and minimize the operational
cost of vNF-SCs. Huet al. [42] reduced the overheads of
VM-based vNF-SC provisioning by reconfiguring vNF-SCs
to use the existing heterogeneous NFV platforms in an SNT.
Nevertheless, all of these studies did not address how to
upgrade the hardware of an SNT with heterogeneous NFV
platforms to better serve the long-term vNF-SCs in it.

Previously, there also have been some studies on the net-
work upgrade related to NFV [43–45]. Poularakiset al. [43]
tackled the problem of how to gradually upgrade a traditional
network to the one that enables software-defined networking

3

(SDN) (i.e., hardware upgrade). The studies in [44, 45] jointly
considered SDN and NFV and devoted themselves to support-
ing fast and consistent network policy updates under different
constraints (i.e., software upgrade). As these investigations did
not jointly optimize the hardware upgrade of an SNT and the
reconfiguration of active vNF-SCs in the upgraded SNT, our
work is different from them.

Inspired by the principle of in-network computing [12],
i.e., extending the functionalities of forwarding devices be-
yond packet switching, people recently started to consider
the deployment of vNFs on hardware-based programmable
forwarding devices, such as SmartNICs and PDP-SWs. For
instance, in [46, 47], the authors offloaded key-value stores to
PDP-SWs and SmartNICs, respectively, while NetHCF [48]
realized the vNF for filtering spoofed traffic on PDP-SWs.
Previously, the studies in [17–20, 42] have addressed the
provisioning of vNF-SCs in an SNT that includes heteroge-
neous NFV platforms. Nevertheless, they did not consider the
service upgrade that can change the hardware configuration
of the SNT. Note that, in addition to the upgrade schemes
involving SmartNICs and PDP-SWs, the service upgrade of
vNF-SCs can also be realized by leveraging software-enabled
acceleration (e.g., the data plane development kit (DPDK))
[49]. However, such an upgrade is software-based, which does
not change the hardware configuration of an SNT. Hence, its
optimization is equivalent to that for reconfiguring activevNF-
SCs in a fixed SNT, which has already been studied in [38–42]
and thus does not need to be revisited. Moreover, SmartNICs
and PDP-SWs provide better traffic processing performance
than the software-enabled acceleration schemes [50, 51].

To the best of our knowledge, our previous work in [24] was
the only one that investigated how to upgrade an SNT with
heterogeneous NFV platforms (i.e., SmartNICs, PDP-SWs and
VMs) to serve the vNF-SCs in it better. However, the algorithm
design in [24] was still preliminary, especially for the time-
efficient heuristic, as it is not generic and should be improved.

III. N ETWORK MODEL

We model the SNT as an undirected graphG(V,E), where
V andE are the sets of SNs and substrate links (SLs), respec-
tively. The SNT consists of two types of SNs,i.e., switches and
servers, for vNF-SC deployment. Before the service upgrade,
the SNT only includes traditional switches/servers, which
means that there is no SmartNIC on the servers and vNFs
can only be instantiated on servers with VMs. In other words,
the SNT only consists of homogeneous software-based NFV
platforms before the upgrade. The upgrade equips SmartNICs
on servers and replaces switches with PDP-SWs under a preset
budget on equipment cost. Therefore, after the upgrade, the
SNT includes heterogeneous NFV platforms (i.e., SmartNICs,
PDP-SWs and VMs), and the SP can redeploy the existing
vNFs on SmartNICs and PDP-SWs to improve their traffic
processing capacities and reduce their latencies.

Note that, the differences between PDP-SWs and Smart-
NICs lay in 1) PDP-SWs are stand-alone forwarding devices,
which can completely replace traditional switches in network
upgrades, while SmartNICs are usually equipped on commod-
ity servers and thus cannot work by themselves, 2) the packet

Fig. 1. Example on service upgrade with heterogeneous NFV platforms.

processing in a PDP-SW is normally much more powerful
than that in a SmartNIC, and thus when carrying the same
vNF, the processing latency of the PDP-SW will be shorter, 3)
SmartNICs have more memory for instantiating vNFs, because
they are equipped on servers and thus do not need to use as
much memory as PDP-SWs on normal packet switching, and
4) the cost of PDP-SW is higher than that of a SmartNIC.

We define a setM to include all the vNF types that can
be supported in the SNT. Then, considering the heterogeneity
among the NFV platforms, we assume that if a type-m vNF
(m ∈ M) gets instantiated on a PDP-SW/SmartNIC/VM, it
consumeŝcSm/ĉ

N
m/ĉ

V
m units of memory, respectively, and has

a traffic processing capacity ofbSm/b
N
m/b

V
m in bandwidth units,

respectively. Meanwhile, if the service upgrade migrates a
type-m vNF from a VM to a PDP-SW/SmartNIC, a latency
reduction ofδSm/δNm in time units can be achieved, respectively.

For the service upgrade, latency reductions can be achieved
not only by migrating vNFs from VMs to PDP-SWs/Smart-
NICs but also by rerouting their application traffic. Fig. 1
gives an illustrative example on this. The vNF-SC before the
upgrade is marked in red, and it has to take a detour to reach
the vNFs onServers a and b. The upgrade replacesSwitch
2 with a PDP-SW and migratesvNF 2 to it from Server b,
and equips a SmartNIC onServer a to carry vNF 1. Hence,
the vNF-SC’s routing path gets shortened by8 hops (the one
marked in gray), and moreover, as the traffic processing in a
PDP-SW/SmartNIC is much faster than that in a VM, the end-
to-end (E2E) latency of the vNF-SC is further reduced. Note
that, when calculates the E2E latency of a vNF-SC, this work
considers two types of latencies,i.e., the processing latencies
on all the vNFs in the vNF-SC, and the propagation latencies
on all the SLs that the traffic of the vNF-SC goes through.

A. Overall ILP Model

With the aforementioned network model, we formulate the
problem of the service upgrade as to 1) select servers/switches
in the SNT to upgrade under a fixed budget, and 2) redeploy
the existing vNF-SCs in the upgraded SNT to maximize the
QoS improvement on latency reduction. As the output of the
first step affects the performance of the second one, we first
formulate an ILP model to cover the overall optimization. The
ILP takes the provisioning schemes of active vNF-SCs before

4

the upgrade as the input, and aims to maximize the QoS im-
provement on the E2E latencies of these vNF-SCs with the up-
grade and subsequent vNF-SC reconfiguration. Hence, in the
following, we define the parameters{ϕin,i

v,l , ψ
in,i
p,n , τ

in
i , ̟in

i } to
represent the state of active vNF-SCs before the upgrade, while
the variables{ϑvi,l, ϕ

out,i
v,l , ψout,i

p,n , τouti , ̟out
i } are introduced to

denote the state of active vNF-SCs in the upgraded SNT.
Parameters:

• G(V,E): the topology of the SNT.
• B(u,v): the bandwidth capacity of SL(u, v) ∈ E.
• M : the set of all the vNF types supported in the SNT.
• P : the set of precalculated substrate paths in the SNT.
• SCi = {si, di, {fi,1, · · · , fi,l, · · · , fi,Ni

}, bi, ti}: the i-th
vNF-SC, wheresi anddi are the source and destination
SNs, respectively,bi is its bandwidth demand,ti is its
QoS demand on E2E latency, andNi is the number of
vNFs in its vNF-SC. We haveR = {SCi, ∀i}.

• fm
i,l : the boolean that equals 1 if thel-th vNF (fi,l) in
SCi is a type-m vNF (m ∈M), and 0 otherwise.

• ϕin,i
v,l : the boolean that equals 1 if thel-th vNF in SCi is

embedded on SNv before the upgrade.
• ψin,i

p,n : the boolean that equals 1 if then-th virtual link in
SCi is embedded on substrate pathp before the upgrade.

• τ ini : the E2E latency ofSCi before the upgrade.
• ̟in

i : the boolean that equals1 if SCi satisfies the demand
on E2E latency before the upgrade, and 0 otherwise.

• ζin,iv : the boolean that equals1 if SCi passes through SN
v before the upgrade.

• µv: the boolean that equals1 if SN v is a switch, and0
if it is a server.

• δSm: the latency reduction achieved after migrating a type-
m vNF from a VM to a PDP-SW.

• δNm : the latency reduction achieved after migrating a type-
m vNF from a VM to a SmartNIC.

• spp(u,v): the boolean that equals 1 if SL(u, v) is on p.
• Dp: the E2E delay of substrate pathp, which is propor-

tional to the hop-count ofp.
• CS

v /C
N
v /C

V
v : the memory space of an NFV platform on

SN v, if it is a PDP-SW/SmartNIC/server.
• bSm/b

N
m/b

V
m: the bandwidth capacity of a type-m vNF, if

it is deployed on a PDP-SW/SmartNIC/VM.
• ĉSm/ĉ

N
m/ĉ

V
m: the memory space consumed by a type-m

vNF, if it is deployed on a PDP-SW/SmartNIC/VM.
• Ω: the total budget on the equipment cost of new PDP-

SWs and SmartNICs used in the upgrade.
• φS/φN : the cost of a PDP-SW/SmartNIC.

Variables:

• ϑvi,l: the boolean variable that equals1 if SN v is selected
for being updated and thel-th vNF in SCi is deployed
on the upgraded part of SNv, and0 otherwise.

• ϕout,i
v,l : the boolean variable that equals1 if the l-th vNF

in SCi is deployed on SNv, and0 otherwise.
• ψout,i

p,n : the boolean variable that equals1 if n-th virtual
link (VL) in SCi uses pathp, and0 otherwise.

• τouti : the E2E latency ofSCi after the upgrade.
• ̟out

i : the boolean variable that equals1 if SCi satisfies
its E2E latency demand after the update, and0 otherwise.

• ιv: the boolean variable that equals1 if SN v is selected
for being updated, and0 otherwise.

• xvi,l, y
v
i,l, z

p
i,n: the boolean auxiliary variables that are

introduced for linearization.
Objective:
The overall optimization tries to maximize the additional

QoS satisfaction due to E2E latency reductions, which are
achieved by the upgrade. Therefore, the objective should be

Maximize
∑

i

(̟out
i −̟in

i). (1)

Constraints:










x
v
i,l = ϑ

v
i,l · ϕ

out,i

v,l , ∀i, l, v,

y
v
i,l = ̟

out
i · x

v
i,l, ∀i, l, v,

z
p

i,n = ̟
out
i · ψ

out,i
p,n , ∀i, n, p.

(2)

Eq. (2) explains the definitions of the boolean auxiliary
variables for linearization, each of which represents the mul-
tiplication of two boolean variables.











x
v
i,l ≤ ϑ

v
i,l

x
v
i,l ≤ ϕ

out,i

v,l

x
v
i,l ≥ ϕ

out,i

v,l + ϑ
v
i,l − 1

, ∀i, l, v, (3)











y
v
i,l ≤ ̟

out
i

y
v
i,l ≤ x

v
i,l

y
v
i,l ≥ x

v
i,l +̟

out
i − 1

, ∀i, l, v, (4)











z
p

i,n ≤ ̟
out
i

z
p
i,n ≤ ψ

out,i
p,n

z
p
i,n ≥ ψ

out,i
p,n +̟

out
i − 1

, ∀i, n, p. (5)

Eqs. (3)-(5) are the constraints for linearization.

(ti − τ
in
i) ·̟out

i +
∑

n,p

z
p
i,n ·Dp −

∑

n,p

ψ
in,i
p,n ·Dp ·̟

out
i

+
∑

l,m

f
m
i,l ·

∑

v

y
v
i,l · δ

N
m · (1− µv)

+
∑

l,m

f
m
i,l ·

∑

v

y
v
i,l · δ

S
m · µv ≥ 0, ∀i.

(6)

Eq. (6) ensures that the value of̟outi can be derived correctly.
∑

v

ιv · [φS
· µv + φ

N
· (1− µv)] ≤ Ω, ∀i, l. (7)

Eq. (7) ensures that the upgrade’s cost is within the budget.


































∑

i,l,m

ĉ
S
m · f

m
i,l · x

v
i,l · µv ≤ C

S
v

∑

i,l,m

ĉ
N
m · f

m
i,l · x

v
i,l · (1− µv) ≤ C

N
v

∑

i,l,m

ĉ
V
m · f

m
i,l · (ϕ

out,i

v,l − x
v
i,l) · (1− µv) ≤ C

V
v

, ∀v. (8)

Eq. (8) ensures that the vNF deployment on each SN will not
use more memory than the corresponding memory space.






























∑

i

bi ·
∑

l

f
m
i,l · x

v
i,l · µv ≤ b

S
m

∑

i

bi ·
∑

l

f
m
i,l · x

v
i,l · (1− µv) ≤ b

N
m

∑

i

bi ·
∑

l

f
m
i,l · (ϕ

out,i

v,l − x
v
i,l) · (1− µv) ≤ b

V
m

, ∀m, v. (9)

5

Eq. (9) ensures that the vNF deployment on each SN will not
use more bandwidth than the corresponding capacities.

∑

i,n

ψ
out,i
p,n · sp

p

(u,v) · bi ≤ B(u,v), ∀(u, v) ∈ E. (10)

Eq. (10) ensures that the bandwidth capacity of each SL will
not be exceeded.

∑

v

ϕ
out,i

v,l · ϑ
v
i,l · µv +

∑

v

ϕ
out,i

v,l · ϑ
v
i,l · (1− µv)

+
∑

v

ϕ
out,i

v,l · (1− ϑ
v
i,l) · (1− µv) = 1, ∀i, l.

(11)

Eq. (11) ensures that each vNF in a vNF-SC is deployed on
one and only one NFV platform.

ϕ
out,i

v,l ≤ ζ
in,i
v , ∀i, l, v. (12)

Eq. (12) ensures that the changes of vNF deployments caused
by an SN upgrade happen at the right locations.

∑

n,p,(u,v)∈E

ψ
out,i
p,n · sp

p

(u,v) −
∑

n,p,(v,u)∈E

ψ
out,i
p,n · sp

p

(v,u)

=











1, u = si

− 1, u = di

0, otherwise

, ∀i.

(13)

Eq. (13) ensures that the flow conservation conditions.
∑

p

ψ
out,i
p,n = 1, ∀i, n. (14)

Eq. (14) ensures that each VL in a vNF-SC is mapped onto
one and only one substrate path.



































∑

{p:si→v,p∈P}

ψ
out,i
p,1 ≥ ϕ

out,i
v,1 , ∀i, v,

∑

{p:u→v,p∈P}

ψ
out,i

p,l ≥ ϕ
out,i

u,l−1 + ϕ
out,i

v,l − 1,∀i, u, v, l,

∑

{p:v→di,p∈P}

ψ
out,i

p,Ni+1 ≥ ϕ
out,i

v,Ni
, ∀i, v.

(15)

Eq. (15) ensures that for each vNF-SC, its vNFs are connected
in the right sequence.

∑

i,l

ϑ
v
i,l = ιv, ∀v. (16)

Eq. (16) ensures that relation betweenϑvi,l and ιv is correct,
i.e., for any v, if we haveϑvi,l = 1, the value ofιv will be 1.

Note that, Eq. (6) derives the value of̟outi based on the
E2E latencies ofSCi before and after the upgrade (i.e., τ ini and
τouti , respectively), whereτouti can be expressed withτ ini and
the latency reduction brought by the upgrade. The formulation
of the ILP above suggests that the overall optimization is
relatively complex. Meanwhile, since the optimization involves
many variables and constraints, it would be difficult to design
a polynomial-time approximation algorithm for it too. Hence,
we decide to tackle its two steps separately. Specifically, we
formulate an optimization for each step, and solve it with a
polynomial-time approximation algorithm. Note that, dividing
a complex optimization into sequential steps can cause an
uncertain loss to the approximation ratio of the final solution.
Therefore, we design the objective of the first step such that
the optimization toward it can assist the second step to achieve
good performance. The simulation results in Section VI will
verify the performance of our two-step algorithm.

IV. F IRST STEP OFTWO-STEP ALGORITHM:
DETERMINING THE UPGRADE SCHEME

According to the discussions in Section III-A, the first
step of the service update is to select servers/switches in the
SNT to upgrade under a fixed budget. Note that, as this step
determines the configuration of the upgraded SNT, its output
will affect the performance of the second step. Hence, we
should design the objective of the first step to be beneficial for
the optimization in the second one. Intuitively, the upgrading
of a server/switch will be more beneficial to the vNF-SC
redeployment in the second step, if more vNFs can be migrated
onto it to achieve latency reductions on their vNF-SCs. To this
end, we define the objective of the first step as to maximize
the number of vNFs that can be migrated to the upgraded SNs
(i.e., servers and switches), and formulate its optimization as

Variables:
• ϕout,i

v,l , ιv and ϑvi,l: the boolean variables whose defini-
tions are the same as those the overall ILP in Section
III-A.

• γvi,l: the boolean auxiliary variable for linearization.
Objective:
The optimization objective is designed as follows.

Maximum
∑

i,l,v

ϕ
out,i

v,l · ϑ
v
i,l, (17)

which means that we would like to maximize the number of
vNFs that can be embedded on upgraded SNs. As the objective
in Eq. (17) is nonlinear, we introduceγvi,l to linearize it

γ
v
i,l = ϕ

out,i

v,l · ϑ
v
i,l, ∀i, l, v, (18)

where the detailed linearization will be explained in Eq. (20)
below. Then, the objective in Eq. (17) is linearized as

Maximum
∑

i,l,v

γ
v
i,l. (19)

Constraints:
The constraints in Eqs. (7), (12) and (14) are adapted from

the overall ILP in Section III-A.










γ
v
i,l ≤ ϑ

v
i,l

γ
v
i,l ≤ ϕ

out,i

v,l

γ
v
i,l ≥ ϕ

out,i

v,l + ϑ
v
i,l − 1

, ∀i, l, v. (20)

Eq. (20) is the constraint for linearization.


































∑

i,l,m

ĉ
S
m · f

m
i,l · γ

v
i,l · µv ≤ C

S
v

∑

i,l,m

ĉ
N
m · f

m
i,l · γ

v
i,l · (1− µv) ≤ C

N
v

∑

i,l,m

ĉ
V
m · f

m
i,l · (ϕ

out,i

v,l − γ
v
i,l) · (1− µv) ≤ C

V
v

, ∀v. (21)

Eq. (21) ensures that the vNF deployment on each SN will
not use more memory than the corresponding memory space.































∑

i

bi ·
∑

l

f
m
i,l · γ

v
i,l · µv ≤ b

S
m

∑

i

bi ·
∑

l

f
m
i,l · γ

v
i,l · (1− µv) ≤ b

N
m

∑

i

bi ·
∑

l

f
m
i,l · (ϕ

out,i

v,l − γ
v
i,l) · (1− µv) ≤ b

V
m

, ∀m,v.

(22)

6

Eq. (22) ensures that the vNF deployment on each SN will
not use more bandwidth than the corresponding capacities.

A. Phase I

To design an algorithm for the optimization mentioned
above, we divide the problem-solving into two phases. In
Phase I, we relax the budget constraint, and transform the
optimization into the one that tries to minimize the budget used
for the upgrade in which all the existing vNFs can be migrated
onto an upgraded SN. Hence, we remove the constraint of Eq.
(7), put it in the objective, and add a new constraint

∑

v

γ
v
i,l = 1, ∀i, l, (23)

to ensure that all the existing vNFs can be migrated onto one
upgraded SN. Then, the new optimization is

Minimize
∑

v

ιv · [φS
· µv + φ

N
· (1− µv)],

s.t. Eqs. (11), (12), (16), (20)-(22), and (23).

(24)

By observing the optimization in Eq. (24), we find that it
can be further transformed into a capacitated facility location
problem (CFLP) with additional constraints [25], if we treat
the existing vNFs as customers and all the servers/switchesin
the SNT as facilities. As the problem isNP-hard [52], we
leverage the idea introduced in [53] to design a polynomial-
time approximation algorithm for it based on LP rounding.

Algorithm 1: Algorithm for optimization in Eq. (24)

Input : existing vNF-SCs{SCi}, SNTG(V,E).
Output : set of SNs to upgradeV ′, upgrade costΩ′.

1 solve LP relaxation of Eq. (24) to get a solutionX∗;
2 for each SCi ∈ R do
3 for the l-th vNF in SCi do
4 include all the SNs on which the vNF can be

embedded in setVi,l;
5 select an SN inVi,l to upgrade for the vNF

according to probabilities{ϑvi,l, v ∈ Vi,l};
6 insert the SN inV ′ if it is not already in;
7 update upgrade costΩ′ and resource usages

in the SNT;
8 end
9 end

Algorithm 1 shows the detailed procedure. InLine 1, we
relax the ILP in Eq. (24) to obtain an LP, and solve it to get
a solutionX∗. Here, all the boolean variables are relaxed to
real ones within[0, 1]. Then, the two for-loops that coverLines
2-9 select an SN to upgrade and redeploy an existing vNF on
it1. Specifically, for thel-th vNF in an existing vNF-SCSCi,
the SN selection works as follows. We first check the current
routing path ofSCi, find all the SNs that are on it2 and can

1Note that, all the vNF redeployment schemes obtained in the first step are
only used for selecting the SNs to upgrade, and thus they are hypothetical.
The actual vNF redeployment schemes will be determined in the second step.

2Note that, if a server connects directly to a switch on the routing path, we
also consider it as an SN on the path.

carry the vNF, and include the SNs in setVi,l (Line 4). Here, if
an SN has already been selected to upgrade, we check whether
the upgraded SN has sufficient resources (i.e., memory space
and bandwidth capacity) to carry the vNF. If yes, the SN is
included inVi,l, and it is excluded, otherwise. On the other
hand, if an SN on the routing path has not been selected to
upgrade yet, we just include it inVi,l.

Line 5 randomly selects an SN inVi,l to upgrade for the
l-th vNF inSCi, according to the probabilities{ϑvi,l, v ∈ Vi,l}
in the solutionX∗. After the SN has been selected, we update
the values of{ϑvi,l, v ∈ Vi,l} accordingly,i.e., rounding the
real values within[0, 1] to boolean ones. Then, we insert the
selected SN in the set of SNs to upgradeV ′, if it is not already
in (Line 6). Line 7 updates the upgrade costΩ′ to include
the equipment cost of upgrading the selected SN, and it also
updates the resource usages in the SNT by assuming that the
vNF is redeployed on the selected SN. An LP can be solved
in polynomial-time, and the time complexity ofLines 2-9 in
Algorithm 1 is O(|R|2 · max

i
(Ni)

2), where |R| denotes the

number of existing vNF-SCs andNi is the number of vNFs in
SCi. Therefore,Algorithm 1 is a polynomial-time algorithm.
Meanwhile, according to [53], the approximation ratio of the
LP-rounding approach inAlgorithm 1 is upper-bounded by
3.25. To this end, we can see thatAlgorithm 1 is a polynomial-
time approximation algorithm for the optimization in Eq. (24).

B. Phase II

Next, inPhase II, we remove the SNs in the setV ′ obtained
by Algorithm 1 in iterations, until the budget constraint is
satisfied. In each iteration, we first recalculate the mapping
between the existing vNFs and the SNs inV ′, and then remove
the SN on which the smallest number of existing vNFs will be
redeployed. Specifically, the optimization can be formulated as

Maximum
∑

v∈V ′

∑

i,l

γ
v
i,l,

s.t. Eqs. (11), (12), and (20)-(22),
(25)

where all the constraints only consider SNs inV ′, and the
value ofγvi,l satisfies the assumption used inAlgorithm 1 (i.e.,
for an existing vNF, we will only consider the SNs on the
current routing path of its vNF-SC). Then, if we treat each
existing vNF as an item and each SN inV ′ as a knapsack, the
optimization in Eq. (25) can be transformed into the multiple
knapsack problem with assignment restrictions and capacity
constraints (MK-AR-CC), where the assignment restrictions
are due to the fact that each vNF can only select its SN from
a subset of SNs inV ′. According to [26], MK-AR-CC can also
be solved with a polynomial-time approximation algorithm.

Algorithm 2 shows how to solve the MK-AR-CC inPhase
II by leveraging the procedure developed in [26].Lines 1-2 are
for the initialization, where we first relax the optimization in
Eq. (25) to an LP, then solve it to get a solutionY ∗, and finally
build a feasible solutionY to the LP relaxation withY ∗. Here,
Y has the property that the number of variables{γiv,l}, which
equal1, is maximized. Then, for each upgraded SNv ∈ V ′,
we finalize the existing vNFs that should be embedded onto it
(Lines 3-8). Specifically, this is done by building and solving

7

Algorithm 2: Algorithm for optimization in Eq. (25)

Input : existing vNF-SCs{SCi}, set of SNs to
upgradeV ′.

Output : mapping schemes between vNFs and SNs.

1 solve LP relaxation of Eq. (25) to get a solutionY ∗;
2 build a feasible solutionY to the LP relaxation with
Y ∗ so that the number ofγvi,l = 1 is maximized;

3 for each SN v ∈ V ′ do
4 put all the existing vNFs, which haveγvi,l = 1

according toY , in the item setFv;
5 select an existing vNF whoseγvi,l is fractional

according toY with the Hungarian method, and
include it in the item setFv;

6 treat the vNFs inFv as items and SNv as the
knapsack to construct a single knapsack problem;

7 solve the single knapsack problem with an
FPTAS to finalize the vNFs whoseγvi,l = 1;

8 end
9 output the finalized{γiv,l, ∀v ∈ V ′, i, l} as an

approximation solution of the original problem;

a single knapsack problem as follows.Line 4 first puts all
the existing vNFs that haveγvi,l = 1 according toY in the
item setFv. Then, we leverage the Hungarian method [54]
to select an existing vNF whoseγvi,l is fractional according
to Y , and include the vNF inFv (Line 5). Next, the single
knapsack problem is obtained by treating the vNFs inFv as
items and the upgraded SNv as the knapsack (Line 6). In Line
7, the knapsack problem is solved with a fully polynomial-time
approximation scheme (FPTAS) [55]. Finally,Line 9 outputs
the finalized{γiv,l, ∀v ∈ V ′, i, l} as an approximation solution
of the optimization in Eq. (25).

According to [26], the approximation ratio ofAlgorithm 2 is
1 + 2

K+1 + ǫ, whereK means that the size of each knapsack
(i.e., each upgraded SN) is at leastK times larger than the
largest item (i.e., an existing vNF), which is assignable to the
SN, andǫ is an arbitrarily-small positive constant.

For Phase II, we run Algorithm 2 in each iteration to
optimize the mapping between the existing vNFs and the
SNs in V ′, remove the SN on which the least number of
existing vNFs will be redeployed fromV ′, and then move
to the next iteration until the budget constraint is satisfied.
The approximation ratio ofAlgorithm 2 in each iteration is
1 + 2

K+1 + ǫ, and there will be at most

N =
Ω′ − Ω

min(φS, φN)
, (26)

iterations, whereΩ′ is the upgrade cost obtained byAlgorithm
1, andφS andφN are the costs of a PDP-SW and a Smart-
NIC, respectively. Therefore, the approximation ratio of the
problem-solving inPhase II will be

η ≤

(

1 +
2

K + 1
+ ǫ

)N

. (27)

C. Overall Procedure

The overall procedure to solve the optimization in the first
step is shown inAlgorithm 3. In Line 1, we relax the budget
constraint and solve the SN selection problem withAlgorithm
1 to get an intermediate set of SNs to upgrade (V ′). Then, we
useAlgorithm 2 to determine the mapping between the existing
vNFs and the SNs to upgrade and remove SNs fromV ′ in
iterations, until the budget constraint is satisfied (Lines 2-6).
As both ofAlgorithms 1 and 2 are polynomial-time algorithms,
Algorithm 3 runs in polynomial-time too.

Algorithm 3: Overall procedure for the first step

Input : existing vNF-SCs{SCi}, SNTG(V,E),
budget of service upgradeΩ.

Output : set of SNs to updateV ′.

1 apply Algorithm 1 to getV ′ andΩ′;
2 while Ω′ > Ω do
3 delete the SNv on which the least number of

existing vNFs will be redeployed fromV ′;
4 updateΩ′ to remove the upgrade cost of SNv;
5 apply Algorithm 2 to update the mapping between

existing vNFs and SNs inV ′;
6 end

V. SECOND-STEP OFTWO-STEP ALGORITHM:
REDEPLOYING VNF-SCS IN UPGRADEDSNT

After determining the SNs to upgrade in the first step,
the second step optimizes the redeployment schemes of the
existing vNF-SCs in the upgraded SNT. Specifically, for the
second step, the variables{ιv} in the overall ILP in Section
III-A become pre-known parameters (i.e., according toV ′),
and then the optimization can be formulated as

Maximize
∑

i

(̟out
i −̟

in
i),

s.t. Eqs. (2), (4)-(6), and (8)-(16).
(28)

In the following, we leverage LP relaxation and randomized
rounding [27] to design a polynomial-time approximation
algorithm for the optimization in Eq. (28).

The procedure of the approximation algorithm is shown in
Algorithm 4. We first relax all the boolean variables in the
optimization in Eq. (28) to real ones within[0, 1] to get an
LP, and tighten the constraints in Eqs. (8) and (9) (Line 1).
Here, the constraints are tightened to expedite the runningof
Algorithm 4. Specifically, it makes the resource constraints in
Eqs. (8) and (9) tighter with preset ratios. For instance, the
memory resource constraint in Eq. (8) is tighten withκ as











Ĉ
S
v = C

S
v · (1− κ)

Ĉ
N
v = C

N
v · (1− κ)

Ĉ
V
v = C

V
v · (1− κ)

, ∀v, (29)

whereĈS
v , ĈN

v , andĈV
v are the corresponding memory spaces

considered in the LP. Similarly, by replacingCS
v , CN

v , CV
v

and κ in Eq. (29) with bSm, bNm, bVm and λ, respectively, we
can tighten the constraint in Eq. (9) withλ. The LP is then

8

solved inLine 2 to obtain an objectiveTLP, which provides an
upper-bound on the objective of the original ILP in Eq. (28).

Algorithm 4: Algorithm for the second step

Input : G(V,E), {SCi}, set of upgraded SNsV ′.

1 relax ILP in Eq. (28) to an LP, and tighten constraints
in Eqs. (8) and (9) with ratiosκ andλ, respectively;

2 solve the LP and get an objectiveTLP;
3 for each j ∈ [1,Q] do
4 S = ∅, and initializep, q ∈ (0, 1) randomly;
5 for each SCi ∈ R do
6 for the l-th vNF in SCi do
7 F = 0;
8 while F = 0 do
9 pv,l1 = 0, pv,l2 = 0;

10 for each SN v ∈ V do
11 pv,l2 = pv,l2 + ϕout,i

v,l ;

12 if pv,l1 < p ≤ pv,l2 then
13 qp,n1 = 0, qp,n2 = 0;
14 for each ψout,i

p,n related to v do
15 qp,n2 = qp,n2 + ψout,i

p,n ;
16 if qp,n1 < q ≤ qp,n2 then
17 ϕout,i

v,l = 1, ψout,i
p,n = 1;

18 {ϕout,i
v,l , ψout,i

p,n } → S;
19 F = 1, break;
20 end
21 qp,n1 = qp,n2 ;
22 end
23 if F = 1 then
24 break;
25 end
26 pv,l1 = pv,l2 ;
27 end
28 end
29 end
30 end
31 end
32 get {ϑvi,l, τ

out
i , ̟out

i , yvi,l, z
p
i,n} with

{ϕout,i
v,l , ψout,i

p,n } in S;
33 put all variables inS and objective inT ;
34 if S is a feasible solution of Eq. (28) then
35 if T ≥ ξ · TLP then
36 break;
37 end
38 end
39 end

Next, the for-loop that coversLines 3-39 accomplishes the
randomized rounding, where the largest number of iterations
(Q) is preset empirically [27]. In each iteration,Line 4
initializes the solutionS and the random numbersp and q
that will be used in the randomized rounding. Then, the two
for-loops determine the integer values of all the variables
{ϕout,i

v,l , ψout,i
p,n } that are related to each existing vNF (Lines

5-31), with the standard procedure of randomized rounding.

Fig. 2. Topologies used in simulations.

Finally, when all the values ofϕout,i
v,l , ψout,i

p,n have been ob-
tained, we calculate the values of the remaining variables with
them, obtain an objectiveT with the variables, and insert all
the variables inS (Lines 32-33). Here, for an SNv that is
a server and has been equipped a SmartNIC in the upgrade,
we deploy vNFs on the SmartNIC greedily. Specifically, if we
can determine that thel-th vNF in SCi is deployed on such
an SN v after the upgrade, the vNF will be embedded on
the SmartNIC there (i.e., ϑvi,l = 1), as long as it has enough
resources.Line 34 validates all the constraints in Eq. (28) with
S to determine whetherS represents a feasible solution. If yes,
we check whether it satisfies the preset ratioξ in Line 35. If
yes, we get a qualified solution to the ILP in Eq. (28), and the
iterations can be ended. Otherwise, the algorithm proceedsto
the next iteration. Similar asQ, the ratioξ is preset empirically
[27]. We useQ and ξ to adjust the tradeoff between the
algorithm’s time complexity and approximation ratio.

We can easily verify that for the maximization in Eq.
(28), the approximation ratio ofAlgorithm 4 is at leastξ.
Specifically, the objective obtained by solving the LP inLine
2 provides an upper-bound on the optimal objective of the
original problem (TILP), and asT is the objective of a feasible
solution to the original problem, it provides a lower-bound.
Then, the approximation ratio ofAlgorithm 4 is obtained as

η =
T

TILP
≥

T

TLP
≥ ξ, (30)

Meanwhile, we would like to point out that according to the
principle of LP relaxation and randomized rounding and the
well-known Chernoff-Bound [56], the probability ofAlgorithm
4 finding a qualified feasible solution approaches to1, as long
asQ and ξ are properly set (e.g., the simulations in Section
VI haveQ = 10 andξ = 0.75). Because the time complexity
of Lines 3-39 isO(Q·|R|2 ·max

i
(Ni) ·max

i
(Ni+1) · |V | · |P |),

Algorithm 4 is a polynomial-time approximation algorithm.

VI. PERFORMANCEEVALUATIONS

In this section, we conduct numerical simulations to evalu-
ate the performance of our proposed algorithm.

9

A. Simulation Setup

In order to verify that our proposed algorithm is generic
enough to work well with various SNTs, the simulations
consider six different SNT topologies. Each topology contains
two types of SNs, which are switches and servers, respec-
tively. Four of the topologies are shown in Fig. 2, where the
topologies in Figs. 2(a) and 2(b) are tree-type ones in different
sizes for DCNs, and those in Figs. 2(c) and 2(d) are mesh
topologies. The remaining two are large random topologies
(RTs) with 30 and45 switches, respectively. To generate each
RT, we first connect the switches randomly with the GT-ITM
tool in [57] using a connectivity of0.2, and then attach servers
to each switch randomly. Table I explains the setting of each
SNT topology. Note that, we refer to the tree-type topologies
in Figs. 2(a) and 2(b) as fat-trees (FTs), and S-FT and L-FT are
the abbreviations for “small FT” and “large FT”, respectively.

TABLE I
SETTINGS OFSNT TOPOLOGIES INSIMULATIONS

Topology S-FT L-FT S-Mesh L-Mesh RT-1 RT-2

of Switches 5 10 6 14 45 30

of Servers 10 60 10 60 45 60

Total SNs 15 70 16 74 90 90

The simulations consider|M | = 4 types of vNFs. To ensure
that our simulations can represent the practical cases, we select
the following parameters either according to the analysis of
real-world network systems [58] or based on the observation
in our own experiments [19]. The memory usage of a vNF is
within [20, 40] units [59–61], and its processing latency ranges
within [150, 300] µs before the service upgrade (i.e., when
the vNF runs on a VM). Each vNF-SC has its number of
vNFs randomly selected from[2, 4], its bandwidth demand is
uniformly distributed within[25, 50] Mbps, and its requirement
on E2E latency is randomly selected from{200, 600, 1000} µs
with the probabilities of{0.3, 0.4, 0.3}, respectively.

We set the processing capacity of a vNF asbSm = 100 Gbps,
bNm = 10 Gbps, andbVm = 1 Gbps, when it is deployed on
a PDP-SW/SmartNIC/VM, respectively. We set the reduction
on processing latency brought by a service upgrade asδSm ∈
[75, 150] µs (migrating a vNF from a VM to a PDP-SW) and
δNm ∈ [40, 75] µs (migrating a vNF from a VM to a SmartNIC).
The propagation delay of each SL is assumed to be1 µs, and
the memory space on an SN is set asCS

v = 200, CN
v =

500, andCV
v = 800 units, for a PDP-SW/SmartNIC/server,

respectively. The unit-costs of PDP-SWs and SmartNICs are
initially set asφS = 30 andφN = 10 units, respectively, and
we will change the ratio between them in Section VI-C to
check their effects on the performance of our algorithm.

In addition to the overall ILP and the proposed two-step
algorithm (TSA) that integratesAlgorithms 3 and 4, the simu-
lations also consider the two heuristic algorithms discussed in
[24]. The first one is forwarding tree based algorithm (FTA),
which tackles the service upgrade by first merging existing
vNF-SCs to build vNF forwarding trees (vNF-FTs), then
expanding each vNF-FT to a mapping tree (MT) according to
the SNT’s topology, and finally determining how to upgrade

SNs and redeploy vNF-SCs based on the MTs. The second
one is a simple greedy-based algorithm (NFTA), which first
upgrades SNs in descending order of their resource usages,
and then tries to redeploy the vNFs in each vNF-SC on the
first upgraded SN that is available on the routing path of the
vNF-SC. The simulations are carried out on a Ubuntu server
with 4.0 GHz Intel Core i7-7400K CPU and16 GB memory,
and the software environment is MATLAB 2017b with GLPK
toolbox and Gurobi v9.1.0. To ensure sufficient statistical
accuracy, we average the results from20 independent runs
to get each data point in the simulations.

B. Small-Scale Simulations

We first use the two small-scale SNT topologies in Figs.
2(a) and 2(c) to compare the performance of all the algorithms
(including the overall ILP). The service upgrade is allocated
with different budgets (Ω = {150, 300} units). We use the
QoS improvement in Eq. (1) and the total latency reduction
(
∑

i

(

τ ini − τouti

)

) to quantify the performance improvement

brought by the service upgrade.
Tables II and III show the simulation results. As expected,

the overall ILP always provides the best service upgrade
schemes to achieve the largest QoS improvement and longest
latency reduction among the algorithms. Meanwhile, our pro-
posed TSA can approximate the optimal solutions from the
overall ILP well, and its performance is always much better
than the two heuristics in [24] (FTA and NFTA). The good
approximation achieved by TSA can be further verified by
the results in Table III, which lists the SNs chosen by the
algorithms to upgrade in randomly-selected simulation runs.
It can be seen that the overall ILP and TSA select similar
SNs to upgrade in different simulation scenarios. Meanwhile,
we can see that even though the overall ILP and TSA can
select exactly the same SNs to upgrade in Table III, their
corresponding performance on QoS improvement and latency
reduction in Table II is still different. This is because thetwo
algorithms reconfigure active vNF-SCs with the SmartNICs
and PDP-SWs on the upgraded SNs differently.

In the meantime, the results in Tables II and III also confirm
the universality of TSA. Specifically, the performance gaps
between TSA and the overall ILP are generally constant when
different SNT topologies are used, while when the S-Mesh
in Fig. 2(c) is used, the performance degradations of FTA
and NFTA related to the overall ILP and TSA are generally
larger. This is because FTA and NFTA were designed based
on the assumption that the SNT is a DCN and uses a tree-type
topology, which is not the case for our TSA.

C. Large-Scale Simulations

We then further evaluate the performance of TSA, FTA and
NFTA with large-scale SNT topologies (i.e., L-FT, L-Mesh,
RT-1, and RT-2). Note that, due to its complexity, solving the
overall ILP directly has become intractable for these cases,
which means that it cannot finish running within tens of hours
and can easily use up the memory on our server for the
problem-solving. The results in Fig. 3 compare the algorithms’

10

TABLE II
PERFORMANCECOMPARISON OFALGORITHMS IN SMALL -SCALE SIMULATIONS

Number Budget QoS Improvement Latency Reduction Running Time

of for Network Topology
∑

i

(̟out
i −̟in

i)
∑

i

(

τ ini − τouti

)

(Seconds)

vNF-SCs UpgradeΩ ILP TSA FTA NFTA ILP TSA FTA NFTA ILP TSA FTA NFTA

50 150 S-FT 16 13 9 8 6,818 6,510 4,116 3,840 223.89 19.16 0.15 0.01

50 300 S-FT 17 16 13 11 6,932 6,864 6,494 6,046 231.59 6.01 0.13 0.01

100 150 S-FT 32 27 18 17 13,064 11,066 7,930 7,240 555.23 47.18 0.22 0.02

100 300 S-FT 36 33 23 21 13,142 12,044 9,554 8,478 460.03 12.75 0.21 0.02

50 150 S-Mesh 15 13 8 7 6,620 6,048 3,830 3,396 232.93 17.01 2.16 0.01

50 300 S-Mesh 17 17 12 9 7,358 7,208 5,802 4,244 229.76 6.91 2.29 0.01

100 150 S-Mesh 30 26 14 12 12,824 11,018 6,826 6,256 599.49 53.98 4.47 0.02

100 300 S-Mesh 37 34 18 15 13,712 12,828 8,722 7,484 494.99 13.79 4.43 0.02

TABLE III
CHOICES OFSNS TO UPGRADE IN SMALL -SCALE SIMULATIONS

Number Budget Set of

of for Network Topology Upgraded SNs

vNF-SCs UpgradeΩ ILP TSA FTA NFTA

50 150 S-FT [1, 2, 6, 8− 12, 14] [1, 5, 7− 10, 12− 14] [1, 5− 10, 13, 14] [5− 12]

50 300 S-FT [1− 11, 13, 15] [1− 15] [1, 5− 14] [5− 14]

100 150 S-FT [3, 6− 15] [1, 2, 5, 8− 10, 12− 14] [5− 7, 9, 11− 15] [5− 8, 10− 15]

100 300 S-FT [1− 15] [1− 15] [3− 10, 12− 14] [5− 15]

50 150 S-Mesh [2, 6− 8, 10, 11, 14, 16] [2, 5, 6, 8, 10, 11, 14] [4, 6, 8− 14] [2− 4, 8− 12]

50 300 S-Mesh [1− 14, 16] [1− 12, 14− 16] [1− 4, 8− 14, 16] [2− 4, 8− 14]

100 150 S-Mesh [2, 4, 8− 16] [2, 5, 6, 8, 10, 12, 16] [1, 2, 7, 9− 14] [2− 5, 8, 10, 14]

100 300 S-Mesh [1− 16] [1− 16] [1− 7, 9− 15] [2− 5, 7− 16]

200 300 400 500 600

Number of vNF-SCs

0

50

100

150

200

250

A
v
e
ra

g
e
 Q

o
S

 I
m

p
ro

v
e
m

e
n
t NFTA (L-FT)

FTA (L-FT)
TSA (L-FT)
NFTA (L-Mesh)
FTA (L-Mesh)
TSA (L-Mesh)

(a) Average QoS improvement

200 300 400 500 600

Number of vNF-SCs

0

0.5

1

1.5

2

2.5

3

3.5

A
v
e
ra

g
e
 L

a
te

n
c
y
 R

e
d
u
c
ti
o
n

(
 s

)

10
5

NFTA (L-FT)
FTA (L-FT)
TSA (L-FT)
NFTA (L-Mesh)
FTA (L-Mesh)
TSA (L-Mesh)

(b) Average latency reduction

Fig. 3. Results of large-scale simulations with a fixed budget (Ω = 800).

performance when the budget of the service upgrade is fixed
asΩ = 800 units. We observe that TSA always provides the
highest QoS improvement and the largest latency reduction
among the algorithms, and its performance improvements over

FTA and NFTA are more significant when the L-Mesh in Fig.
2(d) is used. This verifies the superiority and university of
TSA for large-scale SNT topologies. Then, we check how
the algorithms’ performance changes, when the budgetΩ
increases but the number of existing vNF-SCs is fixed as
|R| = 400. Fig. 4 indicates that TSA still outperforms FTA and
NFTA significantly, and the performance gaps between TSA
and FTA/NFTA actually increase when the budget increases.

Next, we evaluate the algorithms with different unit-costsof
PDP-SWs and SmartNICs. Specifically, we fix the unit-cost of
SmartNICs asφN = 10 units, but change the ratio ofφ

S

φN to be
5 : 1 and7 : 1. Here, we use the L-Mesh in Fig. 2(d) and fix
the number of existing vNF-SCs as|R| = 400. The results in
Fig. 5 suggest that TSA still performs significantly better than
the benchmarks, but its performance gaps over them become
smaller when the unit-cost of PDP-SWs increases. This is
because when the PDP-SWs become more expensive, TSA
will have to use less of them in the service upgrade, while the
latency reduction achieved by upgrading with a SmartNIC is
shorter than that achieved by upgrading with a PDP-SW.

Finally, we test the algorithms with large RTs to confirm
the effectiveness of TSA. The simulations fix the budget as
Ω = 800 units and increase the number of existing vNF-SCs.
The results in Fig. 6 indicate that TSA still always performs
the best. Meanwhile, when the budget is relatively large, the
more switches that we have in the SNT, the larger performance
improvement that the service upgrade can achieve. This is still
due to the fact that upgrading a vNF from using a VM to using

11

200 300 400 500 600 700 900 1000

get grade

20

100

120

1

1

1

A
v
e
ra

g
e

NF
F

NF
F

(a) Average QoS improvement

200 300 400 500 600 700 900 1000

get grade

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 L

a
te

n
c
y
 R

e
d
u
c
ti
o
n

(
 s

)

10
5

NF
F

NF
F

(b) Average latency reduction

Fig. 4. Results of large-scale simulations with|R| = 400 existing vNF-SCs.

400 600

get grade

0

10

20

30

40

50

70

A
v
e
ra

g
e
 Q

o

4

5
10

NFTA (5:1)
FTA (5:1)
TSA (5:1)

NFTA (7:1)
FTA (7:1)
TSA (7:1)

NFTA (Fig. 2(b))
FTA (Fig. 2(b))
TSA (Fig. 2(b))
NFTA (Fig. 2(d))

(a) Average QoS improvement

400 600

get for Network Upgrade

0

2

4

6

8

10

12

14

16

18

A
v
e
ra

g
e
 L

a
te

n
c
y
 R

e
d
u
c
ti
o
n

(
 s

)

10
4

4

5
10

NFTA (5:1)
FTA (5:1)
TSA (5:1)

NFTA (7:1)
FTA (7:1)
TSA (7:1)

NFTA (Fig. 2(b))
FTA (Fig. 2(b))
TSA (Fig. 2(b))
NFTA (Fig. 2(d))

(b) Average latency reduction

Fig. 5. Results of large-scale simulations for different unit-costs of PDP-SWs
and SmartNICs (|R| = 400 and using L-Mesh).

a PDP-SW brings in a larger latency reduction.

VII. C ONCLUSION

In this paper, we studied how to optimize the service
upgrade of vNF-SCs by leveraging the heterogeneous NFV
platforms that include PDP-SWs and SmartNICs. The service
upgrade was divided into two steps,i.e., selecting server-
s/switches in the SNT to upgrade under a fixed budget, and
redeploying the existing vNF-SCs in the updated SNT to

200 400 600

Number of vNF-SCs

0

50

100

150

200

250

A
v
e
ra

g
e
 Q

o
S

 I
m

p
ro

v
e
m

e
n
t

4
10

NFTA (
FTA (
TSA (

NFTA (
FTA (
TSA (

(a) Average QoS improvement

200 400 600

Number of vNF-SCs

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 L

a
te

n
c
y
 R

e
d
u
c
ti
o
n

(
 s

)

10
5

4
10

NFTA (
FTA (
TSA (

NFTA (
FTA (
TSA (

(b) Average latency reduction

Fig. 6. Results of large-scale simulations with large RTs (Ω = 800).

maximize the QoS improvement on latency reductions. We
first formulated two correlated optimizations for the steps,
and then proposed polynomial-time approximation algorithms
to solve the optimizations. Extensive simulations verifiedthat
our proposed algorithm outperforms the existing benchmarks
in various network scenarios, and achieves better tradeoff
between performance and time-efficiency.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC project
61871357, SPR Program of CAS (XDC02070300), and Fun-
damental Funds for Central Universities (WK3500000006).

REFERENCES

[1] Cisco Visual Networking Index, 2017-2022. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html.

[2] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] H. Lu, M. Zhang, Y. Gui, and J. Liu, “QoE-driven multi-user video
transmission over SM-NOMA integrated systems,”IEEE J. Sel. Areas
Commun., vol. 37, pp. 2102–2116, Sept. 2019.

[4] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[5] H. Wu and H. Lu, “Delay and power tradeoff with consideration of
caching capabilities in dense wireless networks,”IEEE Trans. Wireless
Commun., vol. 18, pp. 5011–5025, Oct. 2019.

[6] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[7] Y. Gui, H. Lu, F. Wu, and C. Chen, “Robust video broadcast for users
with heterogeneous resolution in mobile networks,”IEEE Trans. Mobile
Comput., in Press, 2020.

[8] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

12

[9] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” IEEE J.
Opt. Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[10] SmartNICs from Intel. [Online]. Available: https://www.intel.com/
content/www/us/en/products/network-io/smartnic.html.

[11] Tofino switch. [Online]. Available: https://www.barefootnetworks.com/
products/brief-tofino/.

[12] N. Zilberman, “In-network computing,” Apr. 2019. [Online]. Available:
https://www.sigarch.org/in-network-computing-draft/.

[13] S. Grant, A. Yelam, M. Bland, and A. Snoeren, “SmartNIC performance
isolation with FairNIC: Programmable networking for the cloud,” in
Proc. of ACM SIGCOMM 2020, pp. 681–693, Jul. 2020.

[14] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated
software middlebox offloading to programmable switches,” in Proc. of
ACM SIGCOMM 2020, pp. 283–295, Jul. 2020.

[15] “Network functions virtualization (NFV),” Tech. Rep., Oct. 2014.
[Online]. Available: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/
NFV White Paper3.pdf.

[16] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[17] C. Sun, J. Bi, Z. Zheng, and H. Hu, “HYPER: A hybrid high-
performance framework for network function virtualization,” IEEE J.
Sel. Areas Commun., vol. 35, pp. 2490–2500, Nov. 2017.

[18] L. Cui et al., “Enabling heterogeneous network function chaining,”IEEE
Trans. Parallel Distrib. Syst., vol. 30, pp. 842–854, Sept. 2019.

[19] L. Dong et al., “On application-aware and on-demand service compo-
sition in heterogenous NFV environments,” inProc. of GLOBECOM
2019, pp. 1–6, Dec. 2019.

[20] L. Dong, N. L. S. da Fonseca, and Z. Zhu, “Application-driven provi-
sioning of service function chains over heterogeneous NFV platforms,”
IEEE Trans. Netw. Serv. Manag., in Press, 2020.

[21] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes, “Long-term SLOs
for reclaimed cloud computing resources,” inProc. of SOCC 2014, pp.
1–13, Nov. 2014.

[22] C. Reisset al., “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” inProc. of SOCC 2012, pp. 1–13, Oct. 2012.

[23] N. Poggiet al., “Characterization of workload and resource consumption
for an online travel and booking site,” inProc. of IISWC 2010, pp. 1–10,
Dec. 2010.

[24] Y. Xue and Z. Zhu, “Leveraging heterogeneous NFV platforms to
upgrade service function chains in DCNs,” inProc. of NetSoft 2021,
pp. 1–5, Jun. 2021.

[25] Facility location problem. [Online]. Available: https://en.wikipedia.org/
wiki/Facility location problem.

[26] S. Miyazaki, N. Morimot, and Y. Okabe, “Approximability of two
variants of multiple knapsack problems,” inProc. of CIAC 2015, pp.
365–376, May 2015.

[27] P. Raghavan and C. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,”Combinatorica,
vol. 7, pp. 365–374, Dec. 1987.

[28] W. Fanget al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[29] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service
chain deployment based on affiliation-aware vNF placement,” in Proc.
of GLOBECOM 2016, pp. 1–6, Dec. 2016.

[30] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[31] Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualnetwork
function graph (vNFG) provisioning in multidomain elasticoptical
networks,”J. Lightw. Technol., vol. 35, pp. 2712–2723, Jul. 2017.

[32] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[33] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[34] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[35] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,”IEEE Commun. Surveys Tuts., vol. 18, pp. 236–
262, First Quarter 2016.

[36] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey onservice
function chaining,”J. Netw. Comput. Appl., vol. 75, pp. 138–155, Nov.
2016.

[37] “IETF service function chaining (SFC),” Tech. Rep., Apr. 2014.
[Online]. Available: https://datatracker.ietf.org/wg/sfc/charter.

[38] J. Liu et al., “On dynamic service function chain deployment and
readjustment,”IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[39] V. Eramo, E. Miucci, M. Ammar, and F. Lavacca, “An approach for
service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Trans. Netw., vol. 25, pp. 2008–2025, Mar. 2017.

[40] K. Noghani, A. Kassler, and J. Taheri, “On the cost-optimality trade-off
for service function chain reconfiguration,” inProc. of CloudNet 2019,
pp. 1–6, Nov. 2019.

[41] Z. Luo and C. Wu, “An online algorithm for VNF service chain scaling
in datacenters,”IEEE/ACM Trans. Netw., vol. 28, pp. 1061–1073, Mar.
2020.

[42] Y. Hu and T. Li, “Enabling efficient network service function chain
deployment on heterogeneous server platform,” inProc. of HPCA 2018,
pp. 27–39, Feb. 2018.

[43] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “Optimiz-
ing gradual SDN upgrades in ISP networks,”IEEE/ACM Trans. Netw.,
vol. 27, pp. 288–301, Jan. 2019.

[44] L. Wanget al., “Simplifying network updates in SDN and NFV networks
using GUM,” in Proc. of ICCCN 2018, pp. 1–9, Jul. 2018.

[45] T. Hsieh, C. Chuang, S. Chou, and A. Pang, “Traffic-awarenetwork
update in software-defined NFV networks,” inProc. of WPMC 2020,
pp. 1–6, Oct. 2020.

[46] X. Jin et al., “NetCache: Balancing key-value stores with fast in-network
caching,” inProc. of SOSP 2017, pp. 121–136, Oct. 2017.

[47] B. Li et al., “KV-Direct: High-performance in-memory key-value store
with programmable NIC,” inProc. of SOSP 2017, pp. 137–152, Oct.
2017.

[48] G. Li et al., “NETHCF: Enabling line-rate and adaptive spoofed IP traffic
filtering,” in Proc. of ICNP 2019, pp. 1–12, Oct. 2019.

[49] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris,“Characterizing
the performance of concurrent virtualized network functions with OVS-
DPDK, FD.IO VPP and SR-IOV,” inProc. of ICPE 2018, pp. 285–292,
Mar. 2018.

[50] M. Liu et al., “Offloading distributed applications onto SmartNICs using
iPipe,” in Proc. of ACM SIGCOMM 2019, pp. 318–333, Aug. 2019.

[51] D. Kim et al., “TEA: Enabling state-intensive network functions on
programmable switches,” inProc. of ACM SIGCOMM 2020, pp. 90–
106, Jul. 2020.

[52] Y. Bejerano, “Efficient integration of multihop wireless and wired
networks with QoS constraints,”IEEE/ACM Trans. Netw., vol. 12, pp.
1064–1078, Dec. 2004.

[53] M. Charikar and S. Li, “A dependent LP-rounding approach for the
k-median problem,” inProc. of ICALP 2012, pp. 194–205, Jul. 2012.

[54] H. Kuhn, “The Hungarian method for the assignment problem,” Nav.
Res. Logist. Q., vol. 2, pp. 83–97, Mar. 1955.

[55] O. Ibarra and C. Kim, “Fast approximation algorithms for the knapsack
and sum of subset problems,”J. ACM, vol. 22, pp. 463–468, Oct. 1975.

[56] D. Dubhashi and A. Panconesi, “Concentration of measure for the
analysis of randomized algorithms,” inCambridge University Press,
2009.

[57] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. INFOCOM 1996, pp. 594–602, Mar. 1996.

[58] J. Sonchack, J. Aviv, E. Keller, and M. Smith, “Turboflow: Information
rich flow record generation on commodity switches,” inProc. of EuroSys
2018, pp. 1–16, Apr. 2018.

[59] L. Jersak and T. Ferreto, “Performance-aware server consolidation with
adjustable interference levels,” inProc. of SAC 2016, pp. 420–425, Apr.
2016.

[60] I. Pietri and R. Sakellariou, “Mapping virtual machines onto physical
machines in cloud computing: A survey,”ACM Comput. Surv., vol. 49,
pp. 1–30, Oct. 2016.

[61] M. Liu and T. Li, “Optimizing virtual machine consolidation perfor-
mance on NUMA server architecture for cloud workloads,” inProc. of
ISCA 2014, pp. 325–336, Jun. 2014.

