
1

DeepMDR: A Deep-Learning-assisted Control Plane
System for Scalable, Protocol-independent, and

Multi-domain Network Automation
Deyun Li, Hongqiang Fang, Xu Zhang, Jin Qi, and Zuqing Zhu,Senior Member, IEEE

Abstract—This article discusses DeepMDR, which is a deep
learning (DL) assisted control plane (CP) system to realize
scalable and protocol-independent path computation in multi-
domain packet networks. We develop DeepMDR based on ONOS,
make it support protocol-oblivious forwarding (POF) in the data
plane (DP) and facilitate a hierarchical CP architecture for multi-
domain operations, and propose a DL model to achieve fast and
high-quality path computation in each domain. Simulation results
verify that our DL-assisted routing module achieves bettertrade-
off between path computation time and routing performance than
existing approaches. The effectiveness of our proposed DeepMDR
is also demonstrated with experiments, which show that it serves
inter-domain flow requests quickly with a processing capacity of
∼166, 000 messages/sec or higher.

Index Terms—Deep learning (DL), Software-defined network-
ing (SDN), Multi-domain networks, Network automation.

I. I NTRODUCTION

OVER past decades, both the number of network devices
and the volume of traffic in the Internet have been

increasing dramatically. This complicates the tasks of network
control and management (NC&M) in at least two aspects,i.e.,
they need to manage more and more connected devices, and
satisfy more sophisticated quality-of-service (QoS) demands in
a timely manner [1, 2]. Hence, people are seeking for scalable,
efficient, and intelligent NC&M techniques. Following this
trend, software-defined networking (SDN) was proposed [3],
which decouples the control plane (CP) and data plane (DP)
of a network to enhance network programmability. Although
the initial success of SDN has confirmed its great potential,
further studies are still necessary to address the requirements
from practical implementations. For instance, the design of CP
needs to be improved to adapt to the multi-domain scenario
that divides the DP into multiple administrative domains.

The rationale behind considering the multi-domain scenario
is multi-fold. Specifically, it handles the situation wherethe
DP elements are operated by multiple operators, ensures
the scalability of NC&M when the DP consists of many
network elements or/and covers a relatively large geographical
area, and resolves the inter-operability issues when deploying
network elements from different vendors. Previously, various
CP systems have been developed to support the multi-domain

D. Li, H. Fang, X. Zhang, and Z. Zhu are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, P. R. China (email: zqzhu@ieee.org).

J. Qi is with the Zhongxing Telecommunication Equipment (ZTE) Corpo-
ration, Nanjing, Jiangsu 518057, P. R. China.

Manuscript received on August 10, 2020.

scenario. They allocated at least one controller to each domain
(i.e., the domain controller), and organized the controllers
in either the peer-to-peer (P2P) or hierarchical manners [4,
5]. The P2P architecture lets domain controllers collaborate
distributedly to calculate and set up cross-domain paths [4].
Although the P2P architecture can guarantee the autonomy of
each domain, the efficiency of NC&M can be improved if we
adopt the hierarchical architecture [5], which places a global
controller to supervise the domain controllers.

However, most of the existing multi-domain-capable CP
systems were developed based on OpenFlow, which is known
to be protocol-dependent. Specifically, as OpenFlow defines
the match fields and actions based on existing network proto-
cols, the CP systems based on it have difficulty to be future-
proof (i.e., new protocols cannot be introduced on-demand).
This issue can be resolved by considering the programmable
data plane (PDP), which enables an operator to customize the
packet processing pipelines in switches. PDP can be realized
with the programming protocol-independent packet processors
(P4) [6] or protocol-oblivious forwarding (POF) [7]. Here,
P4 defines the methods for writing and compiling packet
processing programs, and with POF, one can program a PDP
switch in runtime by installing protocol-oblivious flow tables
and constructing packet processing pipelines with them.

In addition to supporting PDP, another important NC&M
task for a multi-domain-capable CP system to address is path
computation. Note that, path computation can be challenging
in large-scale networks. For instance, the path computation in
an optical network needs to solve the well-known routing and
spectrum assignment (RSA) problem [8–10], which is known
to be intractable for large-scale problems. Meanwhile, thepath
computation in a packet network can also be complex, when a
batch of flows need to be served simultaneously in a relatively
large topology, or/and sophisticated end-to-end QoS demands
have to be satisfied [11, 12]. Hence, we need to consider
methods other than conventional optimization techniques to
solve the path computation in a large multi-domain network.
Recently, deep learning (DL) has demonstrated its powerful
capability on making timely and smart decisions to tackle com-
plex optimizations in dynamic environments, which motivated
researchers to leverage DL to solve path computation [13].

Inspired by the aforementioned advances on PDP and DL-
based network automation, we, in this article, discuss the de-
sign and experimentally demonstrations of DeepMDR, which
is a DL-assisted CP system that can achieve scalable and
protocol-independent path computation in large multi-domain



2

Domain

Controllers

Global

Controller

IDP Channels

POF Protocol

Data Plane

Inter-domain Topology Module

Host

Management

Inter-domain 

Link Status

Domain 

Abstraction

Routing

Module

IDP Module

Domain-1

DL-assisted 

Routing 

Module

Intra-domain Topology Module

Host 

Management

Link

Status
Switch

Management

IDP Module

POF Protocol Stack

DL-assisted 

Routing 

Module

Intra-domain Topology Module

Host 

Management

Link

Status
Switch

Management

IDP Module

POF Protocol Stack

Host POF Switch

Domain-2

Fig. 1. Overall system architecture of a multi-domain network with DeepMDR.

packet networks. Our DeepMDR is developed based on the
well-known ONOS platform. It has the following derived
benefits for service providers. Firstly, DeepMDR leverages
a hierarchical CP architecture to not only manage a multi-
domain network efficiently but also preserve the privacy of
each domain. Secondly, DeepMDR uses a DL-assisted routing
modules that can achieve better tradeoff between path compu-
tation time and routing performance than existing approaches.
Finally, our proposal supports POF [7] in DP, and thus it
enables service providers to customize their packet processing
to adapt to various or even time-varying service demands (i.e.,
enhanced flexibility and application-awareness).

The rest of the article is organized as follows. Section
II describes the overall design of DeepMDR, while the DL
model is presented in Section III. We discuss the performance
evaluations with simulations and experiments in Section IV.
Finally, Section V summarizes the paper.

II. SYSTEM DESIGN

Fig. 1 shows the overall system architecture of a multi-
domain packet network that is supervised by DeepMDR. The
DP consists of multiple autonomous domains built with POF
switches. We allocate at least one domain controller (DCtrl) to
manage each domain, and place a global controller (GCtrl) on
top of all the DCtrls to coordinate their operations. Both the
DCtrl and GCtrl are developed based on ONOS. Specifically,
we add the POF protocol stack in ONOS as a new SDN
southbound protocol, with which DCtrls can manage POF
switches, while for the control channels between DCtrls and
the GCtrl, we design an inter-domain protocol (IDP). Note
that, as the major components of DeepMDR are realized based
on ONOS, its deployability is similar as that of ONOS.

A. Data plane

We consider the data plane as a multi-domain packet net-
work that consists of end hosts and POF switches. Similar to
the well-known P4-based PDP switches [6], POF switches also
do not restrict network protocols as known ones. Specifically,

POF represents each packet field with a tuple{offset, length},
where offset denotes the start bit-position of the field in a
packet andlength tells the length of the field in bits [7], and
it also defines a forwarding instruction set (POF-FIS) based
on this type of representation to operate on packet fields.
Hence, with POF, flow tables can be composed to process
arbitrary packet fields and build protocol-independent packet
processing pipelines. Meanwhile, this process is runtime-
programmable [7], because an SDN controller can modify the
packet processing pipelines in POF switches in runtime by
updating the corresponding flow tables dynamically.

B. Domain Controller

When the first packet of a flow arrives at a POF switch, it
encodes aPacketIn message to send to the DCtrl in its domain.
Then, the DCtrl first determines whether the flow is an intra-
domain one or not. If yes, it calculates and sets up a routing
path for the flow directly. Otherwise, it escalates thePacketIn
message to the GCtrl for inter-domain path computation. To
realize these operations, we implement two key modules in
each DCtrl. Specifically, as shown in Fig. 1, the intra-domain
topology module maintains the status about the domain, based
on which the DL-assisted routing module realizes fast and
adaptive path computation. We will discuss the design of the
DL-assisted routing module in Section III.

The intra-domain topology module includes the host man-
agement, switch management, and link status submodules. The
host management records the addresses of hosts and handles
address resolution. For instance, if the network uses TCP/IP
protocol stack, it deals with the address resolution protocol
(ARP). Specifically, it records the IP and Ethernet addresses
of a host, as well as the ID and port of the switch to which
the host is attached, as an ARP information entry. If it finds
out that the IP address in an ARP request is not in its own
domain, it will forward the request to the GCtrl using IDP.
The switch management controls the switches in the domain.
In system initialization, it discovers each switch in the domain
and assigns an ID to it. After that, it monitors the switches’
status, and installs, updates, and deletes flow tables in them.



3

The link status submodule utilizes the link layer discovery
protocol (LLDP) to detect all the links that are related to the
domain. Note that, although ONOS supports LLDP, it does not
distinguish between inter- and intra-domain links. Hence,we
extend the LLDP packet to include a field about the domain ID.
Then, for link status collection, a DCtrl encapsulates the LLDP
packet in aPacketOut message, and sends it to each switch in
the domain, which in turn forwards the message to all of its
neighbors. Upon receiving the LLDP packet, a neighbor switch
encodes the information regarding the packet’s incoming link
(including the ID and domain ID of the neighbor switch, and
port ID of the link) in a PacketIn message to the DCtrl in
its domain. Then, by parsing thePacketIn message, the DCtrl
gets the information of the link, and it determines whether the
link is an inter-domain one or not by checking the domain ID.
If yes, it will report the information to the GCtrl. Meanwhile,
the link status submodule also collects link usages.

C. Global Controller

As illustrated in Fig. 1, the GCtrl also includes two key
modules. The inter-domain topology module collects the glob-
al topology about the whole multi-domain network. In this
module, the host management receives host information from
the host management in each DCtrl, and builds a global ARP
table that records the IP and Ethernet addresses and domain
ID of a host as an entry. Here, each entry is created in the on-
demand way and associates with a life time, to maintain the
scalability of the global ARP table. The inter-domain link sta-
tus stores the information regarding all the inter-domain links.
The domain abstraction collects the abstracted topologiesfrom
all the DCtrls, and combines them with inter-domain links to
build the global topology of the multi-domain network. With
the global topology, the routing module calculates the domain-
level path of each inter-domain flow with an existing routing
algorithm,e.g., the weighted Dijkstra algorithm.

To reduce the information exchange between the GCtrl and
DCtrls and protect the privacy of each domain, we design
each DCtrl to aggregate the links and nodes in its domain to
come up with an abstracted topology, and report the abstract
topology to the GCtrl. In the abstract topology, each node
represents a border switch in a domain (i.e., switches on the
source and destination nodes are also considered as border
ones), while each link denotes a feasible path between a pair
of border switches. To assist inter-domain path computation,
the attributes of each link record the hop-count and available
bandwidth of the feasible path represented by the link.

D. Inter-Domain Protocol

To coordinate the DCtrls and GCtrl for inter-domain path
computation and setup, we design an IDP that includes several
types of control messages. When a host needs to transmit
packets to another one that is not in its domain, it sends an
ARP request to the switch that it is attached to. The switch
encapsulates the ARP request in aPacketIn message to its
DCtrl, which in turn forwards the ARP request to the GCtrl
with an IDP message. The GCtrl searches the global ARP
table built by its host management submodule, and returns

Layer0

Layer1 Layer 4

Layer N+1

Input

Layer

Hidden Layers

Output

Layer

Domain

Topology

Flow 

Information

Residual

Topology

Fig. 2. DNN in our DL-assisted routing module.

the result to the DCtrl, which encodes the ARP reply in a
PacketOut message to the source switch. Then, the source
switch sends thePacketIn message for path setup to the
DCtrl, which escalates it to the GCtrl using an IDP request.
Upon receiving the IDP request, the GCtrl calculates the inter-
domain path (i.e., the domain sequence and the input/output
link of each related domain), and instructs the DCtrl of each
related domain to compute the corresponding intra-domain
path segment. Finally, each related DCtrl calculates a path
segment with its DL-assisted routing module, encodes the
obtained path segment inFlowMod messages, and sends them
to the corresponding switches to setup the inter-domain path.

III. DL- ASSISTEDPATH COMPUTATION

A. Network Model for Intra-Domain Path Computation

The DL-assisted routing module in each DCtrl calculates
paths and path segments within its domain for intra- and inter-
domain flows, respectively. For a DCtrl, the topology of its
domain can be modeled as a graph, where the nodes and edges
represent the switches and links in the domain, respectively.
The graph also records the available bandwidth on each link
as a link attribute. Then, the path computation of the DCtrl is
to find a proper routing path in the graph, which can connect
the source and destination of a flow with sufficient bandwidth.
Note that, if the flow is an intra-domain one, the source and
destination are just the real ones. Otherwise, the source and
destination are the border switches determined by the GCtrl.

Theoretically speaking, the aforementioned path computa-
tion can be solved exactly and time-efficiently with the well-
known Dijkstra algorithm. Nevertheless, at least two additional
considerations should be addressed in practical implementa-
tions. Firstly, in a real-world network, flow requests can come
in batches, and thus the DCtrl needs to find the routing paths
of multiple flows simultaneously. In this situation, the order
of the path computations can affect the overall performanceof
the results, especially when the bandwidth usages on links are
relatively high or unbalanced. However, the best order cannot
be determined in polynomial-time, because forn requests,
the number of orders to check in an exhaustive search is
the factorial ofn. Secondly, the time complexity of Dijkstra
algorithm increases with the size of a topology, while a
practical domain can contain many switches and links.



4

B. Design of DL Model

Hence, we design a DL-assisted routing module to address
these practical issues,i.e., not only obtaining a proper order
of path computations but also limiting the complexity of each
path computation. Specifically, the routing module uses the
deep neural network (DNN) in Fig. 2 to analyze the domain
topology and information about the flows, and lets it cut certain
links to generate a residual topology for each flow. As the time
complexity of Dijkstra algorithm is proportional to the total
number of links and nodes in a topology, it will run faster
in the residual topology. Meanwhile, as the flows are handled
one by one with link usage updates in between, the residual
topologies are different for different flows. Hence, the DNN
actually reserves bandwidth for subsequent path computations
to minimize contentions. In this sense, the residual topologies
also optimize the order of path computations implicitly.

In Fig. 2, the DNN consists of an input layer, four hidden
layers, and an output layer, where the neurons are all fully-
connected in between layers. Each neuron in the output layer
is binary and corresponds to the status of a link in the residual
topology,i.e., if the neuron outputs 1, the corresponding link
is kept, and the link is cut, otherwise. The first three hidden
layers are residual neural networks [14], which are introduced
to expedite the training process and relieve the vanishing
gradient and exploding gradient problems, especially for the
cases where the size of domain topology is relatively large.
The fourth hidden layer is a fully-connected one. Note that,
the DNN needs to be trained and verified with realistic data.
Specifically, before deploying the DL-assisted routing module
in a domain, we need to give it the right domain topology, and
train and verify its DNN with the realistic flow information
extracted from traces taken in the domain.

C. Training and Operation of DL Model

We obtain the training and testing sets for the DL model in
each DCtrl by emulating the path computations of dynamic
flows in various network states. Specifically, it is done by
leveraging a discrete-time simulation that runs in iterations.
In each iteration, we first free the bandwidth occupied by
expired flows, and then randomly generate a batch of flow
requests. Next, we utilize a simple genetic algorithm (GA) to
optimize the path computation order of the requests, and get
the routing path of each request under the optimized order.
Here, the fitness function of the GA is defined to evaluate
both the total bandwidth usage and blocking probability of
the requests. Then, the requests are served with the paths
obtained by the GA, and if a request can be served, we record
its path and other information about it and the domain as a
sample. The aforementioned procedure is repeated until we
have accumulated enough samples (e.g., ≥ 50, 000 samples).

We put 80% and 20% of the obtained samples in the
training and testing sets, respectively. Similar to the residual
topology from the DNN, the routing path of each flow can
also be represented by a set of binary variables, each of which
corresponds to a link in the domain. Hence, the accuracy of the
DNN can be obtained by comparing the binary representations
of the paths got with it to those of the paths in the samples.

Specifically, we define the accuracy as the ratio of the number
of matched bits to that of total bits. We train the DNN until its
average accuracies over the training and testing sets converge.
Then, the trained DNN is put in the DCtrl for online operation.
Specifically, for each flow request, the DNN generates a
residual topology, which is close to the proper routing path,
based on the current network status, and thus it effectively
speeds up the path computation with Dijkstra algorithm.

IV. PERFORMANCEEVALUATIONS

The performance evaluations use both numerical simulation-
s and experimental demonstrations to verify the effectiveness
and benefits of our proposal.

A. Numerical Simulations

Our simulations consider4 domain topologies, which in-
clude {50, 100, 150, 200} nodes and have their average node
degrees as{2.95, 3.06, 3.11, 3.12}, respectively. In each sim-
ulation, we select one domain topology to generate a multi-
domain network that consists of5 identical domains. When the
domain topologies with{50, 100, 150, 200} nodes are chosen,
the obtained multi-domain networks include{12, 18, 26, 26}
inter-domain links, respectively. The bandwidth capacities of
intra- and inter-domain links are set as100 and1, 000 units,
respectively. Note that, the simulation setup mentioned above
is based on the realistic topology data from a major telecom-
munication equipment vendor in China (i.e., the Zhongxing
Telecommunication Equipment (ZTE) Corporation).

The ratio between intra- and inter-domain flow requests is
set as1:4, and the source and destination of each request is
selected according to the realistic traffic data provided byZTE.
Also based on the realistic data, we make sure that90% of the
requests have bandwidth demands within[2, 6] units, while the
demands of the remaining ones are within[70, 80] units. For
the multi-domain networks that have domain topologies with
{50, 100, 150, 200} nodes, each of their simulations serves
{480, 925, 1530, 1700} requests, respectively. In addition to
our DeepMDR, we consider two benchmarks. The first one
replaces the DL-assisted routing module in each DCtrl with
Dijkstra algorithm, and is referred to as MD-Dijkstra. The
second one (i.e., G-Dijkstra) addresses each multi-domain
network as a single-domain one, and uses Dijkstra algorithm
to calculate routing paths based on the global information.To
ensure sufficient statistical accuracy, we run100 independent
simulations and average the results to get each data point. We
perform the simulations in Python 3.6 on a computer with
Intel Core i5-7400 CPU and 16 GB memory.

For the DL-assisted routing module in each DCtrl, we train
and test it with40, 000 and10, 000 samples, respectively. Note
that, its accuracy converges fast in the training. For instance,
for the largest domain topology considered in the simulations
(i.e., the one includes200 nodes), the training converges
within 100 iterations and only takes∼1000 seconds, when the
average accuracies of the DL-assisted routing module on the
training and testing sets are99.96% and99.67%, respectively.

Fig. 3 shows the results on the blocking probability of flow
requests, which indicate that G-Dijkstra always provides the



5

50 100 150 200
Nodes in Each Domain

5

6

7

8

9

10

11

12

B
lo

ck
in

g 
P

ro
ba

bi
lit

y 
of

 F
lo

w
 R

eq
ue

st
s 

(%
)

G-Dijkstra
DeepMDR
MD-Dijkstra

Fig. 3. Simulation results on blocking probability.

50 100 150 200

Nodes in Each Domain

10
-1

10
0

10
1

10
2

P
a
th

 C
o
m

p
u
ta

ti
o
n
 T

im
e
 p

e
r 

R
e
q
u
e
s
t 

(m
s
)

G-Dijkstra

MD-Dijkstra

DeepMDR

Fig. 4. Simulation results on path computation time.

lowest blocking probability, followed by DeepMDR, while
MD-Dijkstra performs the worst. This is because G-Dijkstra
has global information for path computation. As for DeepMDR
and MD-Dijkstra, each DCtrl only computes the path segment
in its own domain while the GCtrl only optimizes the inter-
domain routing scheme. Hence, it is difficult for them to
achieve the global optimum. However, although G-Dijkstra
achieves the lowest blocking probability, it calculates routing
paths in large global topologies, which leads to the longestpath
computation time (as shown in Fig. 4). The results in Figs. 3
and 4 suggest that DeepMDR performs slightly worse than
G-Dijkstra in terms of blocking probability, but it runs much
faster than G-Dijkstra. Meanwhile, we also confirm that the
average path segment lengths in each domain from DeepMDR
and G-Dijkstra are almost the same. Therefore, the simulations
verify the effectiveness and scalability of our proposal.

B. Experimental Demonstrations

To further verify the performance of DeepMDR, we imple-
ment it in a CP system that consists of5 DCtrls and a GCtrl,
each of which is deployed on an independent commodity
server. Here, each server equips a2.10 GHz Intel Xeon Silver
4110 CPU and16 GB memory, and runs Linux Ubuntu 16.04.
The common hardware and software configurations of the
commodity servers confirm the deployability of our DeepM-
DR. Meanwhile, to emulate a practical multi-domain DP, we
run Mininet on another server, and use it to generate a multi-
domain network that consists of5 domains. Here, the domains

include {12, 15, 15, 17, 18} POF switches, respectively, and
the average node degree in the multi-domain network is5.2.
Each domain is managed by a DCtrl, and all the DCtrls report
to the GCtrl. We first conduct an experiment to show the
procedure of setting up an inter-domain flow in the CP system
with DeepMDR. Fig. 5 shows the messages related to the
procedure, where the first capture is collected on the GCtrl
while the others are collected on the DCtrls of the source, an
intermediate and destination domains of the flow, respectively.

The first capture in Fig. 5 shows that upon receiving the
IDP request, the GCtrl only takes∼12 msec to finish the inter-
domain path computation. Then, it sends an IDP message to
the DCtrl of each related domain and instructs it to calculate
the corresponding intra-domain path segment. Next, the DCtrls
leverage their DL-assisted routing modules for intra-domain
path computation, and set the whole inter-domain path up by
sendingFlowMod messages to related switches. This is done
in parallel by the DCtrls. According to the Wireshark captures
in Fig. 5, the DCtrls accomplish the path setup within76 msec.

We then conduct a few stress tests to measure the message
processing capacity of the CP system with DeepMDR. Specif-
ically, we leverage a Cbench tool that supports POF [15] to
generate and flood a large number ofPacketIn messages to
the CP system, and see how many of them can be processed
successfully. In the experiments, the sending rate from the
Cbench tool to all the DCtrls is fixed at800, 000 messages
per second, and we change the ratio of inter-domain requests
in them from 0 to 100%. Fig. 6 shows that the message
processing capacity decreases with the ratio of inter-domain
requests. This is because the CP system needs to use more
operations to process it if a request is for an inter-domain flow,
and resulting communications between the GCtrl and DCtrls
also restrict the message processing capacity. However, even
for the worst case scenario where all thePacketIn messages are
for inter-domain requests, the processing capacity is still above
∼166, 000 messages per second. Hence, our implementation
of DeepMDR has satisfactory performance on control message
processing, which suggests that it can fit into the requirements
on the CP system of a real multi-domain network.

V. D ISCUSSIONAND CONCLUSION

In this paper, we designed and experimentally demonstrated
DeepMDR, which is a DL-assisted CP system for scalable path
computation in multi-domain packet networks. We discussed
the design of overall system architecture and functional mod-
ules in detail, and elaborated on our proposals for inter- and
intra-domain path computations. Our work made contributions
in both systemic and algorithmic aspects. On the system
side, we developed DeepMDR based on ONOS, extended it
to support POF in the DP, and facilitated the hierarchical
architecture for multi-domain CP operations. On the algorithm
side, we designed and optimized a DL model to achieve fast
and high-quality path computation in each domain.

Meanwhile, we hope to point out that DeepMDR can still
be improved from the following three perspectives. Firstly, its
current path computation only considers bandwidth as the QoS
demand, while in a practical network, there could be more



6

Message collected on GCtrl

Message collected on DCtrl of an intermediate domain

Message collected on DCtrl of source domain

Message collected on DCtrl of destination domain

Fig. 5. Wireshark captures of messages about setting up an inter-domain flow.

0% 20% 40% 60% 80% 100%

Ratio of Inter-domain Requests

1

2

3

4

5

6

7

8

9

M
e
s
s
a
g
e
 P

ro
c
e
s
s
in

g
 C

a
p
a
c
it
y
 (

1
0

5
/s

e
c
)

Fig. 6. Message processing capacity of DeepMDR (with five domains).

types of QoS demands (e.g., delay and jitter). Hence, the path
computation can be improved to consider various QoS de-
mands jointly. Secondly, the DL-assisted routing module uses
offline training, which means that it needs to adopt transfer
learning when the network environment changes dramatically.
However, if we upgrade the DL model to a deep reinforcement
learning (DRL) model whose adaptivity is guaranteed with
online training, the hassle of transfer learning can be avoided.
Last but not the least, we can integrate network telemetry and
related data analytics in DeepMDR to make its functionalities
more comprehensive for network automation.

ACKNOWLEDGMENTS

This work was supported in part by the ZTE Research
Fund PA-HQ-20190925001J-1, NSFC projects 61871357, SPR
Program of CAS (XDC02070300), and Fundamental Funds for
Central Universities (WK3500000006).

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[3] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74,
Mar. 2008.

[4] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[5] X. Chenet al., “Incentive-driven bidding strategy for brokers to compete
for service provisioning tasks in multi-domain SD-EONs,”J. Lightw.
Technol., vol. 34, pp. 3867–3876, Aug. 2016.

[6] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[7] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[8] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[9] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[10] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[11] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[12] K. Joshi and K. Kataoka, “PRIME-Q: Privacy aware end-to-end QoS
framework in multi-domain SDN,” inProc. of NetSoft 2019, pp. 169–
177, Jun. 2019.

[13] X. Chenet al., “DeepRMSA: A deep reinforcement learning framework
for routing, modulation and spectrum assignment in elasticoptical
networks,”J. Lightw. Technol., vol. 37, pp. 4155–4163, Aug. 2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” inProc. of CVPR 2016, pp. 770–778, Jun. 2016.

[15] POF Cbench Tool. [Online]. Available: https://github.com/
USTC-INFINITELAB/POFSwitch.


