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Abstract—We proposed a deep reinforcement learning (DRL) Q-value, respectively. They also developed algorithm®tees
based approach to reconfigure the multicast sessions in anthe second sub-problem with full and partial rearrangesent
elastic optical network (EON) adaptively. Simulation reslts e harformance of light-tree reconfiguration can be evatlia
demonstrate that our proposal maintains the optimality of ight- . - . .
trees with less reconfigurations and reduces blocking prolaility. In two aSpertS"'e" the .r.lumber Of reconflgura.tlo.ns and_ the

overall blocking probability. Specifically, to maximizeetleffi-

Index Terms—Elastic optical networks (EONs), Multicast, ciency, we need to invoke the least number of reconfiguration
Deep reinforcement learning (DRL), Reconfiguration. to get the lowest blocking probability. Nevertheless, ® bliest
of our knowledge, how to optimize this tradeoff has not been
fully explored yet. This is because in a dynamic EON, it is

Nowadays, the volume of multicast services has been idifficult to use a deterministic algorithm to optimize the se
creasing dramatically in the Internet, due to the rise ofidlo lection ratio of light-trees for the D-value-based treeestbn
services, video-related applications and distributedmaing (DTS) and Q-value-based tree selection (QTS) schemes [12].
[1, 2]. Since 2020, the increasing trend becomes even moren this work, we solve this problem by proposing a novel
remarkable due to the surge in the demands for video caipproach based on the deep reinforcement learning (DRL)
ferencing and online classroom services during the epiclenti13], which can obtain the statistically optimal ratio ofHit-
This has put great pressure on the infrastructure and serviees to reconfigure based on network status. Our resultg sho
provisioning of the Internet, and thus promoted the redeanc that the proposed DRL-assisted approach outperforms the
network virtualization [3, 4] and network reconfiguratidsl.[ existing algorithmsi.e., it uses less number of reconfigurations
Meanwhile, it is known that optical networks transmit highto achieve lower overall blocking probability.
throughput traffic over long distances in the most costegiife
way. More promisingly, recent advances on the flexible-grid ||, NETWORK MODEL AND ALGORITHM DESIGN
elastic optical networks (EONs) make the optical layer more
spectrum-efficient, adaptive, and application-aware 6, 7 We mode the topology of an EON &3(V, E), whereV

Note that, realizing multicast directly in the optical layeand E are the sets of nodes and fiber links, respectively.
has a few advantages, such as less bandwidth overheadsH@ie, considering the complicated structure and expensive
much larger multicast capacity [8], while the agility of E©N cost of multicast-capable (MC) switches [11], we assume tha
further promotes these advantages. Hence, since the imeepeach nodev € V contains a common bandwidth-variable
of EONs, the problem of multicast provisioning has attrdcteoptical switch that is multicast-incapable (M), similas the
intensive interests, and numerous algorithms were praposssumption used in [12]. Hence, in the EON, each multicast
[9-11]. However, due to theV'P-hardness of the problem,session is established by combining several lightpathsiid b
the proposed algorithms either are not time-efficient ono&n a logic light-tree. Each fiber link € £ can accommodaté’
guarantee the performance gap to optimal solutions. Mamgovirequency slots (FS’), each of which has a bandwidth &
the dynamic nature of multicast services determines thett ed5Hz, and provides a capacity ®2.5 Gbps if BPSK is used.
multicast session needs to be updated consisteingly,the When setting up a lightpath, we select the modulation format
members in its multicast group can join or leave dynamicalfccording to the length of its routing path, and assume that
during its life-time [12]. This makes multicast in EONs eveithe feasible modulation formats are BPSK, QPSK, 8QAM and
more complex, as the provisioning scheme of each multicd€§QAM. Each multicast session is definedMs (s, D, b, ),
session should be readjusted adaptively to maintain ofittma where s denotes the sourcd) represents the set of destina-

Previously, in [12], people studied how to formulate antlons,b is the bandwidth demand in Gbps, anid its life-time.
reconfigure multicast sessions dynamically in EONs. Specifi When a multicast session first comes in, we use the
cally, they divided the light-tree reconfiguration into twob- spectrum-flexible member-only relay (SFMOR) algorithm][11
problems i{.e, tree selection and tree rearrangement), and set up the lightpaths for provisioning it. Meanwhile, ithgr
designed algorithms to tackle them. For the tree seledtimy, the life-time of each multicast sessiol), is actually time-
considered two strategies, which were based on D-value aratiant, which means that destination nodes can join anatlea
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the session on-the-fly. Therefore, to adapt to the dynantic en 0.208
vironment, the provisioning schemes of the multicast sessi 20206
need to be reconfigured timely. We develop a novel DRL §o204 — DRLP
model to effectively address the aforementioned problem of o =D drer
multicast session reconfiguration. Specifically, the foasib S o108
elements of the DRL model are designed as follows. 0196 W

Agent: The agent uses the asynchronous advantage actor- 0 100 200 300 400 500 600 700 800

Training Episodes

critic (A3C) framework [14]. As shown in Fig. 1(a), A3C
achieves intelligent decision-making in a dynamic enwiron
ment with two neural networks (NNs). The actor NN (A-NN) a1
chooses the best action to address the current state, \While t S20{ 4

(a) Overall blocking probability

critic NN (C-NN) evaluates the selected action to improve

g A
the performance of decision-making. The actions, statels an Ejj v
rewards are stored in the experience buffer, with which the Bl ore
A-NN and C-NN are trained in the online manner. 515 — o1SP
—= QTS-P
00 200

State We define the environment state based on the spec- B e
trum assignment and remaining life-time of each multicast Training Episodes
session. For the-th sessionM R;(s, D,b,t), we denote its (b) Number of reconfigurations
current light-tree ag;, and meanwhile, we use the SFMOR Fig. 2. Training performance of DRL (at traffic load 4§ Erlangs).
algorithm to get a new light-tre®* for M R; by treating it as
a new session. Then, we define three functionssl&)s(T;)
returns the total number of FS’' allocated to light-trég
2) cuts(T;) provides the total number of spectrum cuts [1
caused by7;, which is the spectrum fragmentation induced b%p
provisioning7;, and 3)time(7;) returns the remaining life- h
time of the multicast session that usgs Hence, the state of
multicast sessiod/; is defined as

light-trees to reconfigure based on the current state, thenac
is just the selection ratio. Then, we get the number of light-
5tI'ees to reconfigure with the ratio, sort the in-servicetlighes
in ascending order of their stateise(, C; in (1)), and select
e top-ranked light-trees accordingly.
Reward: The objective of the DRL model is to find the
optimal ratio of light-trees to reconfigure, such that we can
invoke the least number of reconfigurations to achieve the lo
. est overall blocking probability. Hence, we design the m&lva
Ci = ots(rry 1L F - leuts(T7) — cuts(To)l} to contain two factors. The first factor is the instant blaogki
(1 — ke - time(T5)], probability (BP) in the period from after this reconfiguration
wherek; and k. are the coefficients for normalization. Ap-to before the next one, while the second one is the number of
parently, the smaller the first two terms on the right side difjhtpaths (V) to form the new light-trees after reconfiguration.
Eq. (1) are, the better the new light-trég* is. The third Then, the instant reward is definedras: k3-log(BP)+ks-N,
term considers the remaining life-time & R;, and if the whereks; andk, are the negative coefficient for normalization.
value is larger, the session is closer to be expired and tieus t Fig. 1(a) explains the system architecture and operation
worth of its reconfiguration will be less. Therefore, a small procedure of our proposal. The EON is operated based on
value of stateC; suggests that multicast sessidhR; should the software-defined networking (SDN) architecture [16jeT
be selected with a larger probability for reconfiguration. Tcontroller reconfigures the provisioning schemes of masdic
jointly consider all the in-service sessions, we use thermesessions periodically with a fixed interval. When a recon-
and variance of their states to denote the EON’s state.  figuration is about to happen, the controller forwards the
Action: As the DRL agent needs to determine the ratio afurrent network status to the feature engineering module,

slots(T;")
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Fig. 3. Performance comparisons for partial rearrangerf(@ptand (b)), and full rearrangement ((c) and (d)).

which extracts the state to send to the DRL agent. Then, the IV. SUMMARY
on which we select the light-trees to reconfigure. provisioning schemes of multicast sessions in an EON dynam-

~Next, new light-trees are obtained with the SFMOR algGeqly. Our results verified that the proposal has the iigefice
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