
Reconfiguring Multicast Sessions in EONs
Adaptively with Deep Reinforcement Learning

(Invited Paper)

Xiaojian Tian, Baojia Li, and Zuqing Zhu
University of Science and Technology of China, Hefei, Anhui230027, China, Email: zqzhu@ieee.org

Abstract—We proposed a deep reinforcement learning (DRL)
based approach to reconfigure the multicast sessions in an
elastic optical network (EON) adaptively. Simulation results
demonstrate that our proposal maintains the optimality of light-
trees with less reconfigurations and reduces blocking probability.
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Deep reinforcement learning (DRL), Reconfiguration.

I. I NTRODUCTION

Nowadays, the volume of multicast services has been in-
creasing dramatically in the Internet, due to the rise of cloud
services, video-related applications and distributed computing
[1, 2]. Since 2020, the increasing trend becomes even more
remarkable due to the surge in the demands for video con-
ferencing and online classroom services during the epidemic.
This has put great pressure on the infrastructure and service
provisioning of the Internet, and thus promoted the research on
network virtualization [3, 4] and network reconfiguration [5].
Meanwhile, it is known that optical networks transmit high-
throughput traffic over long distances in the most cost-effective
way. More promisingly, recent advances on the flexible-grid
elastic optical networks (EONs) make the optical layer more
spectrum-efficient, adaptive, and application-aware [6, 7].

Note that, realizing multicast directly in the optical layer
has a few advantages, such as less bandwidth overheads and
much larger multicast capacity [8], while the agility of EONs
further promotes these advantages. Hence, since the inception
of EONs, the problem of multicast provisioning has attracted
intensive interests, and numerous algorithms were proposed
[9–11]. However, due to theNP-hardness of the problem,
the proposed algorithms either are not time-efficient or cannot
guarantee the performance gap to optimal solutions. Moreover,
the dynamic nature of multicast services determines that each
multicast session needs to be updated consistently,i.e., the
members in its multicast group can join or leave dynamically
during its life-time [12]. This makes multicast in EONs even
more complex, as the provisioning scheme of each multicast
session should be readjusted adaptively to maintain optimality.

Previously, in [12], people studied how to formulate and
reconfigure multicast sessions dynamically in EONs. Specifi-
cally, they divided the light-tree reconfiguration into twosub-
problems (i.e., tree selection and tree rearrangement), and
designed algorithms to tackle them. For the tree selection,they
considered two strategies, which were based on D-value and

Q-value, respectively. They also developed algorithms to solve
the second sub-problem with full and partial rearrangements.
The performance of light-tree reconfiguration can be evaluated
in two asperts,i.e., the number of reconfigurations and the
overall blocking probability. Specifically, to maximize the effi-
ciency, we need to invoke the least number of reconfigurations
to get the lowest blocking probability. Nevertheless, to the best
of our knowledge, how to optimize this tradeoff has not been
fully explored yet. This is because in a dynamic EON, it is
difficult to use a deterministic algorithm to optimize the se-
lection ratio of light-trees for the D-value-based tree selection
(DTS) and Q-value-based tree selection (QTS) schemes [12].

In this work, we solve this problem by proposing a novel
approach based on the deep reinforcement learning (DRL)
[13], which can obtain the statistically optimal ratio of light-
trees to reconfigure based on network status. Our results show
that the proposed DRL-assisted approach outperforms the
existing algorithms,i.e., it uses less number of reconfigurations
to achieve lower overall blocking probability.

II. N ETWORK MODEL AND ALGORITHM DESIGN

We mode the topology of an EON asG(V,E), whereV
and E are the sets of nodes and fiber links, respectively.
Here, considering the complicated structure and expensive
cost of multicast-capable (MC) switches [11], we assume that
each nodev ∈ V contains a common bandwidth-variable
optical switch that is multicast-incapable (MI), similar as the
assumption used in [12]. Hence, in the EON, each multicast
session is established by combining several lightpaths to build
a logic light-tree. Each fiber linke ∈ E can accommodateF
frequency slots (FS’), each of which has a bandwidth of12.5
GHz, and provides a capacity of12.5 Gbps if BPSK is used.
When setting up a lightpath, we select the modulation format
according to the length of its routing path, and assume that
the feasible modulation formats are BPSK, QPSK, 8QAM and
16QAM. Each multicast session is defined asMR(s,D, b, t),
wheres denotes the source,D represents the set of destina-
tions,b is the bandwidth demand in Gbps, andt is its life-time.

When a multicast session first comes in, we use the
spectrum-flexible member-only relay (SFMOR) algorithm [11]
to set up the lightpaths for provisioning it. Meanwhile, during
the life-time of each multicast session,D is actually time-
variant, which means that destination nodes can join and leave



Fig. 1. (a) System architecture and operation principle, and (b) NSFNET topology

the session on-the-fly. Therefore, to adapt to the dynamic en-
vironment, the provisioning schemes of the multicast sessions
need to be reconfigured timely. We develop a novel DRL
model to effectively address the aforementioned problem of
multicast session reconfiguration. Specifically, the four basic
elements of the DRL model are designed as follows.

Agent: The agent uses the asynchronous advantage actor-
critic (A3C) framework [14]. As shown in Fig. 1(a), A3C
achieves intelligent decision-making in a dynamic environ-
ment with two neural networks (NNs). The actor NN (A-NN)
chooses the best action to address the current state, while the
critic NN (C-NN) evaluates the selected action to improve
the performance of decision-making. The actions, states and
rewards are stored in the experience buffer, with which the
A-NN and C-NN are trained in the online manner.

State: We define the environment state based on the spec-
trum assignment and remaining life-time of each multicast
session. For thei-th sessionMRi(s,D, b, t), we denote its
current light-tree asTi, and meanwhile, we use the SFMOR
algorithm to get a new light-treeT ∗

i
for MRi by treating it as

a new session. Then, we define three functions: 1)slots(Ti)
returns the total number of FS’ allocated to light-treeTi,
2) cuts(Ti) provides the total number of spectrum cuts [15]
caused byTi, which is the spectrum fragmentation induced by
provisioningTi, and 3)time(Ti) returns the remaining life-
time of the multicast session that usesTi. Hence, the state of
multicast sessionMi is defined as

Ci =
slots(T ∗

i )

slots(Ti)
· {1 + k1 · [cuts(T

∗

i )− cuts(Ti)]}

· [1− k2 · time(Ti)] ,

(1)

wherek1 and k2 are the coefficients for normalization. Ap-
parently, the smaller the first two terms on the right side of
Eq. (1) are, the better the new light-treeT ∗

i
is. The third

term considers the remaining life-time ofMRi, and if the
value is larger, the session is closer to be expired and thus the
worth of its reconfiguration will be less. Therefore, a smaller
value of stateCi suggests that multicast sessionMRi should
be selected with a larger probability for reconfiguration. To
jointly consider all the in-service sessions, we use the mean
and variance of their states to denote the EON’s state.

Action: As the DRL agent needs to determine the ratio of

(a) Overall blocking probability

(b) Number of reconfigurations

Fig. 2. Training performance of DRL (at traffic load of45 Erlangs).

light-trees to reconfigure based on the current state, the action
is just the selection ratio. Then, we get the number of light-
trees to reconfigure with the ratio, sort the in-service light-trees
in ascending order of their states (i.e., Ci in (1)), and select
the top-ranked light-trees accordingly.

Reward: The objective of the DRL model is to find the
optimal ratio of light-trees to reconfigure, such that we can
invoke the least number of reconfigurations to achieve the low-
est overall blocking probability. Hence, we design the reward
to contain two factors. The first factor is the instant blocking
probability (BP ) in the period from after this reconfiguration
to before the next one, while the second one is the number of
lightpaths (N ) to form the new light-trees after reconfiguration.
Then, the instant reward is defined asr = k3 ·log(BP )+k4 ·N ,
wherek3 andk4 are the negative coefficient for normalization.

Fig. 1(a) explains the system architecture and operation
procedure of our proposal. The EON is operated based on
the software-defined networking (SDN) architecture [16]. The
controller reconfigures the provisioning schemes of multicast
sessions periodically with a fixed interval. When a recon-
figuration is about to happen, the controller forwards the
current network status to the feature engineering module,
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Fig. 3. Performance comparisons for partial rearrangement((a) and (b)), and full rearrangement ((c) and (d)).

which extracts the state to send to the DRL agent. Then, the
agent leverages its A-NN to choose the selection ratio, based
on which we select the light-trees to reconfigure.

Next, new light-trees are obtained with the SFMOR algo-
rithm, and the controller implements the light-tree reconfigu-
ration schemes in the EON. Before the next reconfiguration,
the controller collects the network status again, and sendsit to
the reward calculation module, which then can get the instant
reward of the last action from the agent. We organize the state,
action and reward as a sample to we insert in the experience
buffer. Finally, the EON proceeds for the next interval. When
enough samples have been accumulated in the experience
buffer, an on-line training is triggered to update the DRL.

III. PERFORMANCEEVALUATIONS

The simulations consider an EON with the NSFNET topol-
ogy in Fig. 1(b), where there areF = 100 FS’ on each
fiber link. The multicast sessions are generated dynamically
according to the Poisson traffic model. For each session
MRi(s,D, b, t), the sources and destinationsD are randomly
selected, where the initial size ofD is within [2, 5], the
bandwidth demandb uniformly distributes within [50, 400]
Gbps, and the life-timet follows the exponential distribution
with an average of500 time-units. Meanwhile, during the life-
time of anMRi, destinations can join or leave it dynamically.
The interval between two adjacent reconfigurations is100
time-units. We use the algorithms developed in [12] (i.e., DTS
and QTS) as benchmarks, and consider both the partial and
full rearrangement schemes in [12] for DTS, QTS and DRL.

Fig. 2 shows the training performance of our DRL agent.
Fig. 2(a) indicates that with partial rearrangement, the blocking
performance of DTS-P and QTS-P is worse than that of our
DRL-assisted approach. As each light-tree is a logic one and
built with several lightpaths, the “number of reconfigurations”
in Fig. 2(b) is defined as the average number of lightpath
reconfigurations per session. The results in Fig. 2 suggest that
compared with the benchmarks, our proposal leverages less
lightpath reconfigurations to achieve better blocking perfor-
mance. Then, we consider more traffic loads, and plot the
results on blocking probability and number of reconfigurations
in Figs. 3(a) and 3(b), respectively. Similar trends can still
be observed. We also compare the algorithms’ performance in
Figs. 3(c) and 3(d), for when they are using full rearrangement,
i.e., the advantages of our proposal become even more obvious.

IV. SUMMARY

We proposed a DRL-based approach to reconfigure the
provisioning schemes of multicast sessions in an EON dynam-
ically. Our results verified that the proposal has the intelligence
to maintain the optimality of light-trees adaptively.
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