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Abstract—In this work, we try to combine software-defined
networking (SDN), in-band network telemetry (INT), and data
analytics to realize a novel closed-loop network automation
system. To architect the data plane, we jointly consider P4-based
and protocol-oblivious forwarding (POF) based programmable
data plane switches (PDP-SWs) to build a generic programmable
data plane (G-PDP), such that the two types of PDP-SWs can
benefit each other mutually to overcome their own drawbacks.
In the control plane, we expand ONOS to ensure that it can
effectively manage the PDP-SWs in the G-PDP. We also design
and implement data analyzers (DAs) in its data analytics subsys-
tem, and deploy them distributedly in the G-PDP to alleviate the
burden of data processing in the control plane. Our proposal is
demonstrated experimentally with a network system prototype
that consists of six PDP-SWs, and the results confirm that it can
realize closed-loop network automation effectively and balance
the tradeoff between flexibility and performance properly.
Index Terms—Network automation, Programmable data plane

(PDP), P4, Protocol-oblivious forwarding (POF), In-band net-
work telemetry (INT), Software-defined networking (SDN).

I. INTRODUCTION

Nowadays, the booming of network services has reshaped
our daily lives toward “conducting everything on the Internet",
and this trend will persist for the foreseeable future [1].
Hence, network systems are undergoing dramatic changes
to diversify network elements and protocols in the Internet
[2, 3]. For instance, mobile networks are being transitioned
to 5G [4, 5], elastic optical networking (EON) has been
developed to make the optical layer more flexible [6–8], and
programmable data plane (PDP) are unleashing the packet
layer from being restricted by network protocols [9, 10]. To
better utilize these new technologies, people have proposed
software-defined networking (SDN) [11, 12], virtual network
slicing [13–15], and network function virtualization (NFV)
[16–18], and widely deployed them in production networks.
Although the aforementioned advances have made the Internet
more adaptive and programmable, they also complicate the
network control and management (NC&M) mechanisms [19].
This dilemma motivates researchers to consider how to lever-
age data analytics to mimic the “observe-analyze-act" loop in
human brains for realizing realtime, self-adaptive and cost-
efficient network automation [20, 21].
However, it is never a easy job to implement closed-loop

network automation because it needs support from a few

perspectives. First of all, compared with distributed and au-
tonomous NC&M, a centralized NC&M mechanism can assist
network automation better since it can obtain a global view
on the network and orchestrate more network elements (NEs).
Therefore, SDN [11] is preferred because it decouples the
control and data planes of a network to facilitate centralized
NC&M. Secondly, network automation requires the NEs to be
not only flexible and programmable (i.e., not being restricted
by network protocols) but also high-performance (i.e., having
high throughput and short packet processing latency). This
demand can be supported by PDP [9, 10], which enables the
customization of data plane logic (i.e., defining packet fields
and programming packet processing pipelines at will) without
sacrificing packet processing performance. The protocol inde-
pendent forwarding (PIF) project of open network foundation
(ONF) [22] suggests that PDP can leverage the programming
protocol-independent packet processers (P4) [9] or protocol-
oblivious forwarding (POF) [10]. As P4 and POF take different
technical approaches, each of them has pros and cons.
The third support needed by network automation is the

capability of visualizing a network in various granularities. In
SDN, the centralized control plane can still use the traditional
polling-based approaches (e.g., the simple network manage-
ment protocol (SNMP) [23]) to monitor the data plane in the
out-of-band and coarse-grained manner. However, this is not
good enough, because in order to let network automation make
accurate and timely decisions, a fine-grained (i.e., in flow-
/packet-level) and realtime network monitoring technique is
necessary. To this end, in-band network telemetry (INT) [24]
has attracted intensive interests recently [25–28]. Specifically,
INT is a PDP-enabled network monitoring technique, with
which the realtime status of each PDP switch (PDP-SW) on a
packet’s forwarding path is recorded and inserted as specific
INT fields in the packet’s header. Hence, INT can collect per-
packet/per-hop information of a flow, and monitor it compre-
hensively in the end-to-end manner. This overcomes the delay
and consistency issues of polling-based monitoring. Finally,
network automation needs to be equipped with an effective
data analytics technique, for collecting, parsing, indexing and
processing the enormous amount of network status data and
inferring accurate NC&M decisions from it in realtime.
In this work, we design, prototype and experimentally

demonstrate a closed-loop network automation system. The



innovations in our proposed system can be understood in the
following three parts. In the data plane, we jointly consider
P4-based and POF-based PDP-SWs to build a generic PDP
(G-PDP), such that the two types of PDP-SWs can benefit
each other mutually to overcome their own intrinsic draw-
backs. For instance, the runtime programmability of POF-
based PDP-SWs makes the G-PDP more flexible, while the
packet processing performance of P4-based ones ensures the
throughput of the G-PDP. In the control plane, we extend the
well-known ONOS platform [29] to make sure that it can
effectively manage the switches in the G-PDP. Meanwhile,
we also implement deep learning (DL) based modules in the
control plane to enable knowledge-defined NC&M. Finally, in
the data analytics subsystem, we design and implement data
analyzers (DAs), each of which can collect, parse and index
the packets with INT fields at a speed of 2 million packets
per second (Mpps), and deploy them distributedly in the data
plane to offload the tasks of data analytics and alleviate the
burden of data processing in the control plane.
To demonstrate the effectiveness of our proposal, we con-

sider service function chaining (SFC) [18] as the background,
and design and conduct experiments with a network system
prototype that consists of six PDP-SWs. Our experimental re-
sults indicate that the closed-loop network automation system
can make accurate and timely NC&M decisions to manage
the G-PDP in a self-adaptive manner. Specifically, the service
policies in the G-PDP can be updated adaptively according to
realtime network status, without causing any service interrup-
tion, while we also maintain the packet processing capacity
of critical nodes in the G-PDP to meet the stringent QoS
requirements of network applications.
The rest of the paper is organized as follows. Section II

explains the background of the key techniques considered
in this work. We describe the design of our closed-loop
network automation system in Section III. The experimental
demonstrations are presented and discussed in Section IV.
Finally, we summarize the paper in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we describe the background and related work
about PDP and INT briefly, which are the key techniques con-
sidered in this work to build closed-loop network automation.

A. Programmable Data Plane (PDP)

OpenFlow [30] is one of the most famous specifications
for SDN. However, the data plane specified by OpenFlow is
protocol-dependent, which means that it defines match fields
and actions based on existing network protocols. Therefore,
the specification of OpenFlow has to be updated frequently
to accommodate new protocols, while this not only causes
compatibility issues but also limits the programmability of data
plane. To address these issues, people turned to develop the
PDP techniques that can customize data plane logic without
being restricted by network protocols. According to the PIF
project of ONF [22], both P4 and POF can facilitate PDP.

P4 specifies the guidelines for writing and compiling packet
processing programs, and with it, we customize how a PDP-
SW handles packets in configuration and runtime phases [22].
Specifically, in the configuration phase, we define packet
processing pipelines with the P4 language, compile them to
target-specific binaries, and program the programmable packet
processors in PDP-SWs with the target-specific binaries, while
in the runtime phase, each pipeline is activated by installing
flow tables in it. Therefore, it would be difficult to readjust the
packet processing pipelines in P4-based PDP-SWs in runtime
(i.e., they cannot fully ensure runtime programmability). Be-
sides, with the support from hardware, P4-based PDP-SWs
have superior packet processing performance [31]. For the
control plane, P4Runtime [32] was developed and integrated
in the ONOS platform [29], which enables runtime control of
P4-based PDP-SWs via gRPC [33].
On the other hand, POF inherits the operation principle

of OpenFlow, i.e., the control plane can program the data
plane in runtime by installing flow tables in switches and
composing packet processing pipelines with them. However,
POF refers to packet fields in a more generic way, i.e., each
packet field is denoted as a tuple <offset, length>, where
offset specifies the bit-offset of the field in a packet to tell
its location, and length describes the length of the field in bits
[34]. Then, each entry in a flow table defines its match field(s)
in <offset, length>, while the corresponding match action(s)
are specified with the instructions defined in the underlying
primitive instruction set of POF [35] (i.e., the instructions
also operate based on <offset, length>). Hence, the packet
processing in POF is also protocol-agnostic, and POF-based
PDP-SWs can fully ensure runtime programmability (i.e.,
packet processing pipelines in POF-based PDP-SWs can be
changed in runtime with TableMod messages). Nevertheless,
as all the existing POF-based PDP-SWs are based on software
[27, 36, 37], their packet processing throughput (i.e., 10 Gbps
for packets with sizes at 128 bytes or longer) cannot match to
that of P4-based PDP-SWs. As for the control plane, we have
expanded ONOS to add in the support of POF [38].
To this end, we can see that P4 and POF achieve different

tradeoffs between flexibility and performance, which suggests
that there might not be a universal winner between them
to adapt to all the scenarios of network automation. This
motivates us to jointly consider P4-based and POF-based PDP-
SWs to build a G-PDP, and study how to make the two types
of PDP-SWs benefit each other mutually.

B. In-band Network Telemetry (INT)
Since its inception [24], INT has been considered as a pow-

erful network monitoring technique to visualize the dynamic
operations in networks in a realtime and flow-oriented way.
With momentum gained from P4-based PDP-SWs, people
have leveraged INT to collect per-packet information at a
line-rate of 100 Gbps [39]. However, other than the packet
processing throughput, the implementations of INT should also
pay attention to the overheads caused by inserting INT fields
in packets. Specifically, the insertion of INT fields can not only



Fig. 1. Self-adaptive INT in a network automation system.

consume noticeable bandwidth resources but also generate
excessively long packets [27]. To reduce the overheads of INT,
a few selective/probabilistic INT schemes have been proposed
in [25–28], which were all based on the idea of sampling
packets for inserting INT fields.
Note that, due to its unique benefits on network moni-

toring, INT has already become an important part in net-
work automation. Therefore, how accurate and timely the
NC&M decisions from a network automation system can be
actually depends significantly on the INT scheme used in
the network automation system. Meanwhile, considering the
dynamic network environment of today’s Internet, we would
expect the network automation system to readjust its INT
scheme on-the-fly, such that the tradeoff among overheads,
accuracy and timeliness of the INT-based network monitoring
is always optimized according to the network status and the
requirements of network automation [40–42].
Specifically, Fig. 1 shows the principle of self-adaptive INT

in a network automation system. Here, we assume that selec-
tive INT is used. The network controller can configure certain
PDP-SWs in the data plane to update the INT schemes on
them in runtime. For instance, the controller may change the
sampling frequency and locations of telemetry data collection,
and modify the types of telemetry data to collect at the PDP-
SWs. The distributed data analyzers (DAs) in the data plane
collect, parse and index the packets with INT fields, and store
the extracted telemetry data in the databases (DBs) associated
with them. Then, the DAs analyze the telemetry data, and
provide realtime feedbacks to the controller if necessary. For
example, when a DA detects a sign of network exception, it
may suggest the controller to increase the sampling frequency
of INT and the types of telemetry data to collect at certain
PDP-SWs, in order to zoom in the monitoring on suspicious
network region(s) for expediting the trouble-shooting. Never-
theless, as not all the PDP-SWs are runtime programmable,
we need to carefully design the operation procedure of our
closed-loop network automation to make P4-based and POF-
based PDP-SWs work cooperatively for self-adaptive INT.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first explain our considerations on system
design, then describe our design of the control plane, data
plane and data analytics subsystem in details, and finally
present the implementation of the network automation system.

A. Considerations on Operation Principles
Note that, how to collect and process network status data is

a key problem to address in the design of network automation
system. The following two operation principles explain our
considerations on this problem for the system design.

• Integration of in-band/out-of-band monitoring: With the
centralized control plane, SDN enables polling-based
schemes to monitor the G-PDP in the global but coarse-
grained manner, and the status data is collected peri-
odically through the northbound interface. Hence, this
can be understood as out-of-band monitoring. On the
other hand, INT inserts realtime telemetry data in packet
headers to realize fine-grained and flow-oriented network
visualization, i.e., the in-band monitoring. To ensure the
effectiveness of network automation, the control plane
needs to observe and analyze the status of the G-PDP in
different granularities, i.e., both realtime/non-realtime and
global/flow-specific telemetry data is required. Hence,
we will integrate in-band and out-of-band monitoring
schemes in our network automation system.

• Collaboration of centralized/distributed data analysis: As
INT collects per-packet/per-hop information of each flow,
it will generate large volumes of telemetry data. There-
fore, if we implement DL-based data analytics modules
in the distributed DAs and process the telemetry data with
them, a fairly large amount of data processing burden can
be offloaded from the controller. Then, the centralized
and distributed data analysis can collaborate as follows.
The DAs realize flow-level data analysis in the distribut-
ed way, and only send reports to the controller when
necessary (e.g., an exception is detected). The controller
collects the reports to obtain the digested information
about active flows, and combines the information with
the global status data stored locally to reach intelligent
NC&M decisions for network automation.

B. Control Plane to Manage G-PDP
Since the G-PDP consists of both P4-based and POF-based

PDP-SWs, we design the control plane as shown in Fig. 2
to make sure that the PDP-SWs can be managed efficiently
and network applications can be operated with minimized
dependency on P4 and POF. Note that, as the control plane is
developed based on ONOS, it can leverage the cluster-based
configuration to improve scalability. The detailed explanations
on the modules in the control plane are as follows.

• G-PDP Manager: On the northbound side, this module
provides a universal interface to network applications,
such that they can care less about the difference between
P4 and POF. On the southbound side, according to an



Fig. 2. Design of the control plane for G-PDP.

application’s intent, the protocol-agnostic program inter-
face translates its flow rules into P4-based flow entries
and POF-based flow tables, and installs them into the
corresponding PDP-SWs by using the P4-/POF-specified
protocol stacks and the PDP-SW control channel.

• Topology Manager: This module helps the controller to
maintain the topology of the G-PDP correctly and timely.
Here, the link discovery and host discovery are based on
the link layer discovery protocol (LLDP) and the address
resolution protocol (ARP), respectively. Meanwhile, we
distinguish P4-based and POF-based PDP-SWs by as-
signing non-overlapped Device IDs to them. Specifically,
each Device ID contains 4 bytes, and the highest 1-byte
in it are set as 0x00 and 0xff to indicate that a PDP-SW
is P4-based and POF-based, respectively.

• Knowledge-defined NC&M: The network monitor sub-
module in this module collects telemetry data through
both the in-band and out-of-band monitoring schemes,
while one or more DL modules are implemented in
the network control submodule to facilitate closed-loop
network automation based on the telemetry data, i.e.,
realizing the control loop of ‘observe-analyze-act".

C. Design of G-PDP
1) Configuration of G-PDP: In our network automation

system, we assume that the G-PDP consists of both P4-based
and POF-based PDP-SWs. Here, the P4-based PDP-SWs are
the commercially-available ones based on the Tofino ASIC
[31], while the POF-based PDP-SWs are software-based ones
that we developed in [27] by expanding the OpenvSwitch
(OVS) platform, namely, OVS-POF. As the software/hardware
architectures of the PDP-SWs are different, some of the
telemetry data types that can be collected by them are also
different, as listed in Table I. For instance, a POF-based
PDP-SW can measure the data traffic on a port in terms of
accumulated bytes (Bytes), number of accumulated packets
(Packets), and instant bandwidth usage (Bandwidth), while
due to its limitations on arithmetic calculations, a P4-based
PDP-SW usually only provides the queue length of the buffer
on an output port (Queue Length). Meanwhile, both types of

PDP-SWs can record the per-hop information of an individual
packet, such as the latency to process it in a PDP-SW (Hop
Latency), its ingress time to a PDP-SW (Ingress Time), and its
input and output ports at a PDP-SW (Input Port/Output Port).

TABLE I
AVAILABLE TELEMETRY DATA TYPES IN PDP-SWS

Telemetry Data Type POF-based PDP-SWs P4-based PDP-SWs

Forwarding Behavior � �

Queue Length �

Bytes �

Packets �

Bandwidth �

Hop Latency � �

Ingress Time � �

Output Port � �

Input Port � �

Device ID � �

(a) Packet format

(b) Packet processing procedure

Fig. 3. Designs in G-PDP to enable selective INT.

2) Packet Format and Packet Processing Procedure: Since
INT is necessary to our network automation system, we
implement selective INT (Sel-INT) [27] in the G-PDP. Here,
because the G-PDP consists of P4-based and POF-based PDP-
SWs, we design a unified packet format, as shown in Fig. 3(a).
The packet fields, which are related to Sel-INT (i.e., the INT
header and INT stack), are inserted after the IP header of
each INT packet, where an INT packet refers to a packet that
contains INT-related fields. Specifically, the length of the INT
header is 5 bytes, while the length of the INT stack is variable.
In the INT header, the 2-byte Type field contains 0x0908

and we use it as a flag to indicate an INT packet, the 1-byte
Length field records the number of hops that the packet has
experienced, which helps a DA to extract telemetry data in the
end, and the 2-byte MapInfo field is a bitmap, which instructs



the PDP-SWs along the packet’s forwarding path to collect the
required types of telemetry data and insert the collected data
as fields in the INT stack. A Device ID field in the INT stack
is 4-byte and it refers to a unique PDP-SW in the G-PDP. The
INT Stack field following a Device ID includes all the required
types of telemetry data about the hop.
The Sel-INT in the G-PDP works as follows. When a packet

enters its ingress PDP-SW, the PDP-SW first determines
whether it should be selected as an INT packet according to
the policy provided by the control plane. If yes, the PDP-
SW inserts an INT header in the packet, collects telemetry
data as required, and encodes the collected data in the INT
stack following the INT header. Otherwise, the packet will
be forwarded to the next hop directly. Next, when the packet
enters each intermediate PDP-SW on its forwarding path, the
same operations are applied on it. Finally, the egress PDP-SW
duplicates the INT packet to send to a DA, removes all the
INT-related fields to convert it back to a normal packet, and
then sends the packet to its destination host. Hence, the Sel-
INT is made transparent to the users of network applications.
Note that, with Sel-INT, the required types of telemetry

data to be collected at each hop are determined by the
MapInfo field, whose content is provided by the control
plane. Specifically, MapInfo uses each of its lowest 10 bits
to represent a telemetry data type listed in Table I, i.e., a bit 1
means that the corresponding type of telemetry data should be
collected, vice versa. As P4-based and POF-based PDP-SWs
support different types of telemetry data, we introduce two
INT bitmasks, i.e., P4_INT_Bitmask and POF_INT_Bitmask,
which equal 0x02ff and 0x031f, respectively, according to
Table I. Then, as shown in the packet processing procedure in
Fig. 3(b), each PDP-SW uses its own INT bitmask to turn off
unsupported telemetry data types in the MapInfo field of an
INT packet, before conducting the required INT operations.
As the length of an INT packet increases after each hop,

we also program the PDP-SWs to check its length against the
maximum transmission unit (MTU) of the network. Specifical-
ly, as illustrated in Fig. 3(b), if a PDP-SW finds that an MTU
violation will occur on a packet due to the insertion of INT-
related fields at this hop, it will skip the INT operations on the
packet. Note that, this generally will not affect the accuracy
and timeliness of Sel-INT, because the skipped telemetry data
can be collected with other shorter packets.
3) Self-adaptive Network Monitoring with Sel-INT: The ba-

sic principle of Sel-INT is based on the observation that most
network applications would not require per-packet telemetry
data collection, because the network status will not change
that fast. Therefore, the overheads of INT can be significantly
reduced with packet sampling, which involves the selections
of INT packets (i.e., packet selection) and telemetry data types
(i.e., type selection). Here, in our network automation system,
both the packet selection and the type selection are determined
at the ingress PDP-SW of an application flow. Specifically,
the frequency of inserting INT headers in the flow’s packets
decides the sampling frequency of packet selection, while the
content of the inserted MapInfo determines the type selection.

Fig. 4. Self-adaptive Network Monitoring with Sel-INT.

The overheads of INT can be further reduced by leveraging
data compression, which maps the exact values of telemetry
data to approximate ones that can be represented with less
bits. For instance, according to the number of PDP-SWs in
a normal network, the Device ID field can be compressed to
one byte, and as for a type of telemetry data whose value is
time-varying (e.g., Packets and Queue Lengths), we can use
division/logarithm operations to compress it with acceptable
precision. As shown in Fig. 4, packet sampling and data
compression can be combined and applied to INT packets
alternatively according to the instructions from the controller.
Note that, for realizing self-adaptive network monitoring,

the schemes of Sel-INT on packet flows need to be updated
in runtime. For example, since the additional bandwidth usage
caused by Sel-INT can induce unnecessary congestion when
the original traffic load of a flow is already high, the controller
needs to adjust the schemes of Sel-INT dynamically. Mean-
while, as we have explained above, the Sel-INT scheme on a
packet flow is enforced at its ingress PDP-SW. Therefore, to
fully explore the runtime programmability of POF-based PDP-
SWs, we can put them at the edge of the G-PDP to facilitate
self-adaptive network monitoring (i.e., letting the controller
update their packet processing pipelines for Sel-INT in run-
time), while P4-based PDP-SWs should be put on the critical
nodes in the G-PDP (e.g., those whose node betweenness
centralities or/and connectivity degrees are relatively high) to
better utilize their superior packet processing performance.

D. Data Analytics Subsystem
To efficiently process the enormous telemetry data collected

with Sel-INT in realtime, we design DAs and deploy them in
the G-PDP distributedly. We leverage the data plane develop-
ment kit (DPDK) [43] to accelerate the collecting and parsing
of INT packets in the DAs. We also implement a filtering
scheme to save the storage space in each DA, i.e., the con-
sistent or slow-varying values of telemetry data are ignored.
To process the collected telemetry data and reach timely and
intelligent NC&M decisions, our network automation system
leverages both the centralized controller and distributed DAs
and implements DL-assisted data analytics in them.

E. System Implementation
Fig. 5 shows the overall architecture for the implementation

of our network automation system. To make the system user-



Fig. 5. Architecture of our system implementation.

friendly, we implement a graphical user interface (GUI) based
on the open-source Grafana framework, and put it on top of
the controller to visualize the status of the G-PDP in realtime.
Besides, the GUI also displays the anomaly alarms from the
controller and DAs, and provides the interfaces for the network
operator to invoke failure recovery and deploy service policies.
For the centralized controller, Fig. 5 specifically explains the

implementation of the knowledge-defined NC&M in it, which
includes the submodules for network control and network
monitor. Moreover, we also implement a traffic engineering
database (TED) there to record the provisioning schemes of
the active flows in the G-PDP. In the network monitor, the
flow-level monitor communicates with the distributed DAs
through the DA reporting channel to collect rich telemetry data
regarding the applications running in the G-PDP, and based on
the telemetry data, the telemetry orchestrator implements self-
adaptive adjustments on Sel-INT schemes to optimizing them
for network automation. Then, the network control implements
the suggested adjustments in the G-PDP through the PDP-
SW control channel. Meanwhile, it also leverages DL-assisted
data analytics to ensure that the NC&M decisions are tailored
properly according to the QoS demands of each application.
In the G-PDP, the packet processing pipelines in POF-

based PDP-SWs can be updated in runtime by the controller,
with TableMod and FlowMod messages, while for the P4-
based PDP-SWs, we implement a P4 runtime agent based on
Stratum on each of them, and make it communicate with the
controller via gRPC to realize runtime control (i.e., managing
the flow entries in P4-based packet processing pipelines). The
configuration of each DA is also laid out in Fig. 5. Here, the
database (DB) is used for storing the filtered and digested
telemetry data, and it is implemented based on influxDB,
which is an open-source time-series database platform.

IV. EXPERIMENTAL DEMONSTRATION
In this section, we prototype the proposed network automa-

tion system in a small but real network testbed, and conduct

Fig. 6. Experimental Setup.

experiments to demonstrate its effectiveness.

A. Experimental Setup
Fig. 6 shows the configuration of the network testbed for

experimental demonstrations, which is built with real-world
NEs. The centralized controller is developed based on the
ONOS platform, and it runs on a high-performance Linux
server. All the DL-assisted data analytics modules (i.e., those
in the controller and DAs) are implemented by leveraging
TensorFlow, and they also run on Linux servers.
In the network testbed, the G-PDP consists of three P4-

based PDP-SWs and three POF-based PDP-SWs, and the PDP-
SWs are interconnected according to the six-node topology
in Fig. 6. Here, each P4-based PDP-SW is a hardware-based
commercial product based on the Tofino ASIC [31], while
a POF-based PDP-SW is our OVS-POF [27] and it runs on
an independent high-performance Linux server. The DAs are
home-made, and they leverage DPDK to achieve the packet
processing throughput of 2 million packet per second (Mpps)
[27]. The end hosts (i.e., Hosts A-C in Fig. 6) are emulated
with commercial traffic generators/analyzers, and we configure
them to be located in different local area networks (LANs).
We set the bandwidth capacity of each link in the G-PDP as
10 Gbps. As shown in Fig. 6, we consider two application
flows in the network testbed, i.e., Flows 1 and 2. Here, Flow
1 has time-varying data-rate that changes within [2, 6] Gbps
according to a realistic trace in [44], while the data-rate of
Flow 2 is fixed at 4 Gbps.

B. System Function Verification
We first show the experimental results regarding the closed-

loop operation of the network automation system in Fig.
7. Specifically, the results are about the Flow 1 in Fig. 6.
First of all, we collect the control messages that the network
automation system generates for the flow with Wireshark, and
list the results in Fig. 7(a). When the flow first enters the G-
PDP, the control plane configures the related PDP-SWs to set
up its forwarding path and assign an initial Sel-INT scheme to
it (Step 1). When INT packets reach their last hop in the G-
PDP (i.e., PDP-SW 6), the PDP-SW will duplicate and send
them to a DA (Step 2). Next, after the INT packets have



been collected, parsed, indexed and analyzed by the DA, it
will send the telemetry data digested from them to the DB
for being queried by the controller in the future, and it will
also forward the digested data to the GUI via HTTP messages
(Steps 3 and 4). Then, the GUI can visualize the statistics
of the flow as shown in Fig. 7(b). Meanwhile, the controller
can further analyze the digested data and invoke self-adaptive
readjustments on the flow’s Sel-INT scheme. For instance, the
wireshark capture of the packets in Flow 1 suggests that the
packet sampling frequency has been adjusted to 50%.

(a) Flow of control messages

(b) Snapshot of GUI

(c) Details of an INT packet

Fig. 7. Closed-loop operation of our network automation system.

C. Necessity of G-PDP
We then leverage SFC as the background to demonstrate the

necessity of G-PDP. Specifically, we consider two scenarios,
each of which needs to deploy virtual network functions
(vNFs) on PDP-SW 6 in the testbed. There are two types of
vNFs, which are for firewall (vNF-FW) and NAT (vNF-NAT).

As vNF-FW and vNF-NAT can both be realized by using the
“match-and-action" principle, they can be instantiated on PDP-
SWs directly by deploying correct packet processing pipelines
there. The two active flows are still Flows 1 and 2 in Fig. 6.
In Scenario 1, we only activate Flow 1, but the vNF(s)

deployed on PDP-SW 6 needs to be updated dynamically over
time. Then, we consider two configurations of the G-PDP, i.e.,
PDP-SW 6 is a P4-based and POF-based one, respectively. The
experiment runs as follows. Initially, we only deploy vNF-NAT
on PDP-SW 6, and at t = 65 seconds, we need to deploy
vNF-FW on it too. Hence, the packet processing pipelines
on PDP-SWs need to be reprogrammed in runtime. As for
the P4-based PDP-SW, this cannot be done without service
interruption, because it has to update the P4 program, and
recompile and reload it to its programmable ASIC. As shown
in Fig. 8(a), the recompilation of the P4-based PDP-SW causes
a service interruption on Flow 1, which lasts for ∼16 seconds.
We then change PDP-SW 6 to be a POF-based one, and redo

the experiment. With the runtime programmability of POF-
based PDP-SWs, vNF-FW can be deployed on PDP-SW 6
instantly by letting the controller send TableMod messages to
update its packet processing pipelines. Therefore, as shown in
Fig. 8(a), there will be no service interruption. The experimen-
tal results in Scenario 1 suggest that the full flexibility of the
data plane cannot be ensured without POF-based PDP-SWs.
In Scenario 2, we do not change the vNF deployments

dynamically, but consider a dynamic traffic condition. Specif-
ically, Flow 1 is first activated at t = 0 second, and at
t = 65 seconds, we activate Flow 2 to send traffic from Host
C to Host B. As Flows 1 and 2 both go through PDP-SW
6, the pressure of packet processing on it can be increased
dynamically. Here, we still consider two cases in which PDP-
SW 6 is a P4-based and POF-based one, respectively. This
time, the superior packet processing performance of P4-based
PDP-SW 6 guarantees that it can process the packets from
the two flows and implement the vNFs’ operations on them
without any difficulty. Specifically, as shown in Fig. 8(b), the
packet throughput of P4-based PDP-SW 6 is just the sum of
the two flows after t = 65 seconds. However, due to the limited
packet throughput of POF-based PDP-SWs, the POF-based
PDP-SW 6 can cause packet drops after t = 65 seconds.
To this end, we can see that by jointly consider P4-based

and POF-based PDP-SWs, G-PDP can make them benefit each
other mutually. More specifically, in the G-PDP, we should
deploy POF-based PDP-SWs on the nodes that might need to
readjust their packet processing pipelines dynamically, to fully
explore their runtime programmability, and as for the P4-based
PDP-SWs, we should put them on the critical nodes that might
need to process packets in heavy loads, to better utilize their
superior packet processing performance.

D. Performance Benchmark of Control Plane
Note that, the closed-loop operation of our network automa-

tion system cannot be realized time-efficiently without an ef-
fective controller. Meanwhile, compared with the conventional
SDN controllers, the controller in our system needs to take



(a) Scenario 1: receiving bandwidth on Host B

(b) Scenario 2: receiving packet rate on Host B

Fig. 8. Experimental results to demonstrate the necessity of G-PDP.

care of additional tasks on DL-assisted data analytics. In our
design, we actually introduce distributed DAs to offload some
of the additional tasks from the controller. Hence, we design
the experiments to verify and quantify the benefits brought
by the distributed DAs, i.e., benchmarking our controller with
the one that does not leverage distributed DAs to offload the
tasks. Fig. 9(a) plots the results on the total processing time
for a burst of INT packets that includes different number of
telemetry data samples. It can be seen that the DAs effectively
offload the DL tasks, and thus the total processing time from
the controller that uses the task offloading is much shorter.
Next, we measure our controller’s throughput for processing

PacketIn messages, when it needs to handle the digested
telemetry data from the DAs simultaneously. The measurement
is done by leveraging the POF Cbench tool [45], which
emulates 30 PDP-SWs to generate PacketIn messages. In Fig.
9(b), we can see that the controller’s throughput for processing
PacketIn messages decreases by 15.4%, when the speed of
telemetry data samples from the DAs increases from 0 to
10, 000 samples/second.

V. CONCLUSION
In this work, we designed, prototyped and experimentally

demonstrated a closed-loop network automation system. In its
data plane, we jointly considered P4-based and POF-based
PDP-SWs to build a G-PDP, such that the two types of PDP-
SWs can benefit each other mutually to overcome their own
intrinsic drawbacks. In the control plane, we expanded the

(a) Average processing time for INT packets

(b) Average throughput for PacketIn messages

Fig. 9. Results of performance evaluations on the controller.

ONOS platform to make sure that it can effectively manage
the PDP-SWs in the G-PDP. Meanwhile, we also implemented
DL-based modules in the control plane to enable knowledge-
defined NC&M. We designed and implemented DAs in its
data analytics subsystem, and deployed them distributedly
in the G-PDP to offload the tasks of data analytics and
alleviate the burden of data processing in the control plane.
The experiments with a network system prototype that consists
of six PDP-SWs confirmed the effectiveness of our proposal.
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