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Abstract—With the explosive growth of edge applications in
the 5G/B5G era, edge-cloud collaboration (ECC) is playing a
prominent role in edge service provisioning. For highly diversified
edge-cloud collaborative services (ECSs), the joint allocation of
heterogeneous computing resources in heterogeneous servers and
multi-dimensional underlying optical network resources should
be conducted. In this paper, we investigate the heterogeneous task
scheduling for ECSs over multilayer elastic optical network (ML-
EON), which involves the joint allocation of heterogeneous com-
puting resources in edge and cloud servers and high-dimensional
network resources. We propose a Task-Node Matching Score
(TNMS) based method, which evaluates the fitness for each
mapping tuple between each task in ECS and each substrate node
in ML-EON, and adaptively generates a specific matching score
for each task-node pair. Furthermore, TNMS is extended with
a pre-allocation mechanism (TNMS-Pre) to estimate the costs
of multi-dimensional resources in ML-EON for virtual link (VL)
mapping. The estimated VL mapping costs are integrated into the
matching scores to guide the task placement to be cost-efficient.
To guarantee the feasibility, a maximal weight matching (MWM)
based method is presented to determine the task placement
schemes. Simulation results demonstrate the effectiveness of the
adaptive scoring for heterogeneous task placement and the pre-
allocation mechanism for reducing the ML-EON costs.

Index Terms—Multi-access Edge Computing, Elastic Optical
Network, Multilayer Network, Heterogeneous Task Placement.

I. INTRODUCTION

Faced with the proliferation of edge applications, including
industrial IoT, smart cities, and VR/AR, multi-access edge
computing (MEC) is becoming a promising service paradigm
to ease the computational intensity at end devices and reduce
data transmission burden to the cloud [1]. It is reported that by
2023, 50% of the newly deployed on-premises infrastructures
will be in edge locations instead of corporate datacenters [2].

Considering the capital expenditures (CAPEX) in edge
infrastructure construction, edge servers often own fewer com-
puting capacities than cloud servers. To cope with such com-
puting capacity limitation at the edge, edge-cloud collaboration
(ECC) becomes a necessity to better handle the services [3]:
Edge-cloud collaborative services (ECSs) are split into several
heterogeneous computing tasks, where the latency-sensitive
computing tasks are offloaded to edge servers, while the com-
puting tasks that are latency-insensitive and computational-
intensive are served by cloud datacenters (DC). The hetero-
geneities of the tasks in ECS are reflected in the requirements
for heterogeneous computing resources (CPU, GPU, FPGA,

storage, etc.) [4] and heterogeneous servers (edge or cloud
server) [3].

Recent works for task placement in ECC scenarios have
focused on i) computing job partition [5], ii) hierarchical
functional division [6] [7], and iii) resource procurement and
auction [8]. In the aspect of resource allocation for data
exchanges among the tasks in ECS, which are represented as
virtual links (VLs) in services, these works only consider the
bandwidth-level allocation but neglect the resource granularity
and physical transmission effects in the underlying optical
network. However, the underlying optical network, especially
multilayer elastic optical network (ML-EON) with traffic
aggregation, fine-granular bandwidth, sliceable spectrum, and
tunable modulation format, is of high-dimensional resources
to be allocated [9]–[11], e.g., frequency slots (FSs), modu-
lation format, and sliceable bandwidth variable transponders
(SBVTs) [12] [13]. It is still a challenge to perform joint allo-
cation of heterogeneous computing resources in heterogeneous
servers and high-dimensional ML-EON resources.

Virtual optical network embedding (VONE) has been inves-
tigated to jointly allocate the optical network and computing
resources [14]–[17]. Most of the existing works take the
residual/required resource capacities of the substrate/virtual
network as criteria to rank the substrate nodes/virtual nodes
for embedding. However, two drawbacks exist in these meth-
ods for ECS provisioning in ML-EON: i) Faced with task
heterogeneities, the static ranking for substrate nodes only
considers the residual resources but does not integrate the
differences among tasks. Thus, the adaptiveness to different
ECS is insufficient. ii) The costs for high-dimensional optical
network resources in ML-EON for VL mapping are neglected
in the virtual node mapping process in these methods, which
will cause the ECS to be blocked due to VL mapping failings.

From the above analyses, to better handle the heterogeneous
task scheduling in ML-EON, the following challenges are
of the essence but have not been fully investigated: i) for
each specific ECS, the substrate nodes should be dynamically
evaluated rather than statically evaluated, and ii) the potential
cost of high-dimensional optical network resources for VL
mapping should be considered in the task placement process.
To tackle the above challenges, we propose a Task-Node
Matching Score (TNMS) based method for heterogeneous
computing task placements in the ECC environment over ML-
EON. The main contributions of this paper are as follows:



• The proposed TNMS-based method computes a specific
matching score that is tightly coupled with ECS for each
task-node pair to achieve adaptiveness to different ECSs.
In addition to the residual resources, the heterogeneous
task adjacency relations in the ECS are integrated into
the computation of the matching scores.

• We further extend the TNMS with a VL pre-allocation
mechanism (TNMS-Pre) to integrate the mapping costs of
VLs over ML-EON into the matching scores. TNMS-Pre
estimate the fine-grained costs of VL mapping in ML-
EON, including the costs of bandwidth (BW), FSs, and
sub-transponders (STPs) in SBVTs, and then integrate
them into the matching score to guide the task placements
towards lower operational expenditures (OPEX).

• As the matching scores represent tendencies of task
placements, we present a method based on maximal
weight bipartite graph matching to determine the final
task placement, where the matching scores are taken as
the weights of the bipartite graph. The method can bal-
ance tendencies among tasks and enforce task placement
to conform to basic constraints.

The rest of the paper is organized as follows. Section
II describes the system model. TNMS and TNMS-Pre, are
presented in Section III. The performance evaluations are
performed in Section IV, and Section V summarizes the paper.

II. SYSTEM MODEL

A. Substrate Network

The underlying ML-EON is modeled as a directed graph
Gs = {V,E}, with V and E represent the substrate node set
and fiber link set, respectively. V is composed of an edge
computing node set VE , a cloud computing node set VC ,
and a transmission-only node set VT . The computing node
set Vc = VE ∪ VC , where nodes in VE and VC are edge
servers and cloud servers, andNs = |Vc| is the node number in
Vc. Heterogeneous computing resources are equipped in each
computing node ns ∈ Vc, with Tc type of computing resources.
The initial and residual capacity of k-th type of computing
resource in node ns are Isk and Rs

k, respectively. Location
label Ls ∈ {edge, cloud} is assigned to each computing node
to indicate the role of this node in ML-EON. Each fiber link
esr ∈ E between node ns and node nr consists of two
opposite directional fibers, each of which consists of S FSs,
and the granularity of each FS is set as B GHz. The lightpath
between source node nr and end node ns is denoted as Prs.

As is depicted in Fig. 1, each node in ML-EON maintains an
IP/OTN-over-EON architecture. The IP layer provides class-
specific traffic engineering with multiprotocol label switching
(MPLS) [9], while OTN layer supports large-granular broad-
band service transmissions with efficient multiplexing and
switching [18]. We abstract the IP and OTN layers as the upper
layer, which acts as the role of aggregating multiple low-bitrate
VLs into high-speed traffic flows, for underlying EON. SBVTs
with sub-transponders are equipped between IP/OTN router
and reconfigurable optical add/drop multiplexer (ROADM)
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Fig. 1. Illustrations on traffic scheduling in multilayer EON.

for electrical-to-optical conversion and multiple optical flows
grooming [13]. After converting signals from electrical domain
to optical domain with SBVT, ROADM is used for switching
in FS granularity [19]. As is illustrated in Fig. 1, the VLs
with the same source node and destination node are groomed
together and transmit in the optical domain. The traffic will
only go up to the upper layer at the destination node, while
bypass the intermediate routers.

B. Edge-cloud Collaborative Service

Given an ECS Gv = {T, L}, tv ∈ T denotes the computing
task and luv ∈ L denotes the VL for data transmission from
task tu to task tv . Nv = |T | is the task number in Gv . Cv

k is
the required capacity for k-th computing resource by task tv .
Each task also requires a specific location Lv ∈ {edge, cloud}.
Each computing task tv can be placed onto only one substrate
computing node ns which must satisfy the constraints of Ls =
Lv and Rs

k ≥ Cv
k . The bandwidth of VL luv is denoted as buv .

The dynamic ECS arrival follows the Poisson process with an
average arrival rate of λ requests per time unit, and the lifetime
of each ECS follows the negative exponential distribution with
an average of 1/µ time units.

III. TASK-NODE MATCHING SCORE-BASED
HETEROGENEOUS TASK PLACEMENT

In polynomial time, the task placement with VL mapping
in ML-EON can be reduced to the virtual network embedding
(VNE) problem, which has been proved NP-hard [20]. Node
ranking (NR) based methods, with moderate computational
complexity, are typical methods for jointly allocating the
computing and network resources for network-form requests
[14]–[17] [21]. However, the NR-based methods face two
drawbacks in heterogeneous task scheduling in ML-EON:
i) Lack of adaptiveness to different ECSs: the ranks are
statically evaluated, which are only associated with the status
of substrate nodes, instead of being adaptively evaluated
according to different ECS requirements. ii) Unaware of VL
mapping cost in VN mapping: the VL mapping costs of high-
dimensional optical network resources in ML-EON are not
fully considered in the task mapping process. Such inherent
drawbacks will mislead the heterogeneous task placement
to sub-optimality and constraint violation. The misleading
effects are illustrated in Fig. 2. The assumption is held that
all substrate links are with the same and sufficient residual
bandwidth. For ECS 1, if only check the residual computing
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heterogeneity and VL mapping cost in task placement.

resources in the substrate network, node A will rank higher
than node D. However, node A is incapable of handling
the task a′ due to insufficient capacity of the second type
computing resource. For ECS 2, if do not consider the VL
mapping cost, the rank for node C and E are higher than
node B and F . However, place tasks b′′ and c′′ onto nodes C
and E will cause more bandwidth consumption. Therefore, it
is proper to place tasks b′′ and c′′ onto the nodes B and F
because shorter paths will be used for VL a′′b′′ and a′′c′′.

Thus, we propose the Task-Node Matching Score (TNMS)
method for task placement to achieve high adaptiveness to
ECSs, and then extend TNMS with pre-allocation (TNMS-
Pre) to perform VL mapping cost-aware task placement.

A. Task-Node Matching Score (TNMS)

In TNMS, a specific matching score ρsv for each task-
node pair (tv, ns) is adaptively computed according to the
topology of ECS and the adjacency relations of the tasks. The
following criteria lead to a higher ρsv include: i) there are
more computing resources in ns that can be given to tv; ii)
ρru is higher, where nr is another substrate node and tu is a
neighbor of tv; and iii) there are more bandwidth between ns

and nr. With the above criteria, the matching score ρsv for
each task-node (tv, ns) pair is adaptively computed and tightly
coupled with ECS. Since ρsv is associated with all other ρru,
it is formulated in a recursive form:

ρsv = α
∑
k

Rs
k/C

v
k + (1− α)

∑
r 6=s,u∈N(v)

msv
ru · ρru, (1)

where Rs
k/C

v
k stands for computing ability of the k-th type of

computing resource in ns for tv , N (v) is the set of neighbor
tasks of tv , and α ∈ (0, 1) is the balance coefficient. The

msv
ru =

{
b (s, r) , Ls(r) = Lv(u), R

s(r)
k ≥ Cv(u)

k

0, otherwise
(2)

is the residual bandwidth metric where b (s, r) is the minimum
bandwidth of links in the shortest path between ns and nr.

The parameters in (1) are vectorized as follows:
ρ = (ρ11, · · · , ρ1Nv , ρ21, · · · , ρNsNv )

T ∈ RNsNv×1 rep-
resents the task-node matching score vector and C =∑

k

(
R1

k

C1
k
, · · · , R1

k

CNv
k

,
R2

k

C1
k
, · · · , R

Ns
k

CNv
k

)
∈ RNsNv×1 represents

the computing ability vector. To facilitate the convergence of
(1), msv

ru is normalized as:

m̄sv
ru =

msv
ru∑Ns

r=1

∑Nv

u=1m
sv
ru

. (3)

And m̄ is vectorized to the residual bandwidth metric matrix
M̄ ∈ RNsNv×NsNv , which is defined as

M̄ =



m̄11
11 · · · m̄11

1Nv
m̄11

21 · · · m̄11
NsNv

...
...

...
...

m̄1Nv
11 · · · m̄1Nv

1Nv
m̄1Nv

21 · · · m̄1Nv

NsNv

m̄21
11 · · · m̄21

1Nv
m̄21

21 · · · m̄21
NsNv

...
...

...
...

m̄NsNv
11 · · · m̄NsNv

1Nv
m̄NsNv

21 · · · m̄NsNv

NsNv


.

(4)
Then, the vectorization form of (1) can be rewritten as:

ρ = αC + (1− α) M̄ · ρ. (5)

The existence of a unique solution for ρ is proved as follows.
Theorem 1. The infinite-norm of M̄ satisfies

∥∥M̄∥∥
∞ = 1.

Proof. For any vector x ∈ RNsNv×1 whose infinite-
norm satisfies ‖x‖∞ = maxi |xi| = 1, M̄ · x ∈
RNsNv×1 and

∥∥M̄ · x∥∥∞ = maxi

∣∣∣∑NsNv

j=1 m̄ijxj

∣∣∣ ≤
maxi

∑NsNv

j=1 |m̄ij | |xj | ≤ maxi

∑NsNv

j=1 |m̄ij |. According to
the definition of infinite-norm of matrix, we can conclude
that

∥∥M̄∥∥
∞ ≤ maxi

∑NsNv

j=1 |m̄ij |. Select a column k in M̄

that satisfies
∑NsNv

j=1 |m̄kj | = maxi

∑NsNv

j=1 |m̄ij | and set an
auxiliary vector y = (y1, · · · , yNv ), with

yj =

{
1, m̄kj = 0

|m̄kj | /m̄kj , m̄kj 6= 0
. (6)

Obviously, ‖y‖∞ = 1 and M̄·y =
(
· · · ,

∑NsNv

j=1 |m̄kj |, · · ·
)

.

Also,
∥∥M̄∥∥

∞ ≥
∥∥M̄ · y∥∥∞ = maxi

∑NsNv

j=1 |m̄ij · yj | ≥∑NsNv

j=1 |m̄kj | = maxi

∑NsNv

j=1 |m̄ij |. From the above
steps,

∥∥M̄∥∥
∞ = maxi

∑NsNv

j=1 |m̄ij |. According to (3),∑NsNv

j=1 |m̄ij | ≤ 1, and thus,
∥∥M̄∥∥

∞ = 1 is proved. �
Theorem 2. I− (1− α) M̄ is reversible.
Proof. Suppose the matrix I − (1− α) M̄ is irreversible.

Then det
[
I− (1− α) M̄

]
= 0, and the linear homogeneous

equation set
[
I− (1− α) M̄

]
· x = 0 has a non-zero so-

lution x0. Therefore, there exists an x0, where ‖x0‖∞ =∥∥(1− α) M̄ · x0

∥∥
∞. According to the Compatibility of Ma-

trix,
∥∥(1− α) M̄ · x0

∥∥
∞ ≤ |1− α|

∥∥M̄∥∥
∞‖x0‖∞. Because

1 − α < 1 and
∥∥M̄∥∥

∞ = 1 (Theorem 1), we can conclude
that ‖x0‖∞ >

∥∥(1− α) M̄ · x0

∥∥
∞, which will lead to a

contradiction. Therefore, the matrix I− (1− α) M̄ is proved
to be reversible. �

With Theorem 2, the unique solution of ρ can be given by
ρ = α

[
I− (1− α) M̄

]−1·C. When the network scale is large,
the direct computation is infeasible. An iterative algorithm,
which calculates the ρ with ρk+1 = αC+(1− α) M̄·ρk until
‖ρk+1 − ρk‖ < σ (σ � 1), are used to ease the computational
complexity [21].



B. TNMS with Pre-allocation Mechanism (TNMS-Pre)

TNSM holds the idea of “how to successfully allocate the
ECS”. The paths that have more residual bandwidth are more
likely to be used. However, to minimize the cost of ECS
provisioning, the cost of VL mapping should be integrated
into matching score computation. Nevertheless, the accurate
and actual VL mapping cost cannot be explicitly evaluated for
matching score before task placement because VL mapping
can be conducted only after the source and end node are
confirmed, which is associated with the task placement.

To address this dilemma, we estimate the transmission
cost of VLs under each task placement scheme with a pre-
allocation mechanism and integrate the estimated VL costs
into matching scores computation. For each VL luv , we pre-
allocate the luv with all possible task placement schemes.
Denoted ζsvru as the cost of luv when task tv and tu are
respectively placed onto the node ns and nr. Then, the cost
corresponding to a specific scheme is embedded into (2) as:

msv
ru =

{
b (s, r)− βζsvru, Ls(r) = Lv(u), R

s(r)
k ≥ Cv(u)

k

0, otherwise
,

(7)
where β balances between the residual bandwidth and map-
ping cost. Eq. (7) indicates that the task placement schemes
(tv, ns) and (tu, nr) are preferred if the transmission cost
between ns and nr for VL luv is low. The cost ζsvru is computed
as ζsvru = w · csvru, where w =

(
wBW , wFS , wSTP

)
and

csvru =
(
cBW
uv,rs, c

FS
uv,rs, c

STP
uv,rs

)T
are the unit cost and usage

of BW, FS, and STP when luv is mapped between ns and nr,
respectively. The usages of BW, FS, and STP are estimated as
follows: The VL luv firstly tries to aggregate with the existing
lightpaths between ns and nr. If there exist a lightpath with
sufficient bandwidth, cFS

uv,rs = cSTP
uv,rs = 0, as no FS and STP

are newly used. If the aggragation fails, a new lightpath should
be established. The routing, modulation format, spectrum, and
transponder assignment (RMSTA) algorithm, which hold the
ideas of K-shortest path (KSP) for path selection and first-fit
(FF) for FS, SBVT, and STP assignments, will be executed.
cFS
uv,rs equals to the occupied FS number, and cSTP

uv,rs = 2 for
STPs used in source node and end node. cBW

uv,rs always equals
to the product of the bandwidth of luv and the number of links
in the mapped lightpath. Noted that, such process is only the
pre-allocation for luv to estimate the mapping cost, and the
final VL mapping will be conducted after the task placement.
The computing of ρ in TNMS-Pre is the same as III. A.

C. Task Placement with Auxiliary Bipartite Graph

For the task placement, we set the placement sequence as
S = (s1, . . . , sv, . . . , sNv

), with sv ∈ [1,Ns] indicates that
the computing task tv is placed onto the substrate computing
node nsv . Each sv is selected with the maximum matching
score sv = args max ρsv . However, multiple tasks may tend
to be placed onto the same substrate node which will violate
the basic constraint. To seek balance among these tasks, we
set the objective as maximizing the sum of matching scores.

Algorithm 1: Task Placement with ABG.
Input: ρ, computing node set Vc, task set T
Output: Placement sequence S

1 Initialization: Construct a complete bipartite graph G̃,
with the computing node set Vc and the task set T as
two node sets, and weight set w̃← 0;

2 for each ns ∈ Vc do
3 for each tv ∈ T do
4 if Ls = Lv and Rs

k ≥ Cv
k then

5 ρMsv ← 1

6 else
7 ρMsv ← 0

8 ρ′sv = ρsv · ρMsv
9 w̃sv ← ρ′sv

10 M← KM (w̃)
11 Extracting S from M

A method based on maximal weight bipartite graph match-
ing is presented to obtain the placement sequence. Algorithm
1 shows the procedure of the task placement with bipartite
graph matching. An Auxiliary Bipartite Graph (ABG) G̃ ={
Vc, T, Ẽ

}
is constructed, with computing node set Vc and

task set T as two separate node sets of the graph. G̃ is a
complete bipartite graph, in which all the (tv, ns) pairs have a
link ẽsv ∈ Ẽ between ns and tv . To satisfy the computing
capacity constraint and location constraint, a mask matrix
ρM is constructed to remove the infeasible task placement
schemes, with each element

ρMsv =

{
1, Ls = Lv, Rs

k ≥ Cv
k

0, otherwise
. (8)

The weight vector for G̃ is computed as ρ′ = ρ�ρM , where
ρ′ ∈ RNsNv×1, and � is the Hadamard Product of matrix.
Each element ρ′sv ∈ ρ′ is the weight of the ẽsv . With above
settings, the objective of maximizing the sum of matching
scores is equivalent to finding the maximal weight matching
(MWM) of G̃. It is intuitive that when finding an MWM
M =

{(
ns̃1 , 1

)
, . . . ,

(
ns̃Nv ,Nv

)}
satisfies that the sum of

weights is maximized, we can let S equal to the substrate
node sequence in M as S = (s̃1, . . . , s̃v, . . . , s̃Nv

), which
maximize the sum of matching scores and satisfies

S = arg max
S

{
ρ′s11 + . . .+ ρ′svv + . . .+ ρ′sNvNv

}
. (9)

To this end, the Kuhn-Munkres (KM) algorithm is adopted to
compute the MWM in G̃ and the placement sequence S. After
the task placement, the VL mapping follows the process for
VL mapping in ζsvru computing in V. B. The total VL mapping
cost ζECS is computed as

ζECS =
∑
u,v

(
wBW buv |Prs|+ wFScFS

uv + wSTP cSTP
uv

)
.

(10)



TABLE I
SIMULATION CONFIGURATIONS OF SUBSTRATE NETWORKS AND ECSS.

Parameters NSFNET CORONET
Number of substrate nodes/substrate links 14/22 75/99

Number of total computing nodes 14 45
Number of edge/cloud nodes 10/4 30/15
Types of computing resources CPU, GPU, FPGA, storage

Computing capacity in edge/cloud nodes [50, 100] / [500, 1000] units
Number of edge tasks in ECS [2, 5] [4, 10]
Number of cloud tasks in ECS [1, 3] [2, 6]

Computing requirement of edge tasks [1, 5] units
Computing requirement of cloud tasks [10, 50] units

Bandwidth requirement of VLs [10, 100] Gbps

IV. PERFORMANCE EVALUATION

In this section, we perform experiments to demonstrate
the effectiveness of the proposed methods in the aspects of
blocking ratio, ECS capacity, and VL mapping costs.

A. Experimental Settings

The 14-node NSFNET and 75-node CORONET [22], are
adopted as substrate networks to evaluate the methods. The
configurations of substrate network are listed in Line 2-6
in Table I. The computing SNs are randomly appointed to
guarantee the generality. In ML-EON, each fiber contains FSs
with the number of S = 200, and the granularity of each FS is
12.5 GHz. The guard band is set as 1 FS [23]. The number of
SBVTs in each node, the number of STPs in each SBVT, and
the maximum FSs that an STP can carry are 20, 10, and 10,
respectively. The modulation format of a lightpath, including
BPSK, QPSK, 8-QAM, and 16-QAM, is determined in terms
of the transparent transmission distance of the lightpath [23].
The configurations of tasks and VLs in ECS are listed in Line
7-11 in Table I. When generating ECS, a spanning tree is
randomly constructed to guarantee the connectivity of ECS,
and other edges are connected with probability of τ = 0.2.
Parameters in TNMS and TNMS-Pre are determined by grid
search and are fixed as {α, β} = {0.1, 0.2}. wBW = 0.4 [24],
and wFS and wSTP are set as 1. All simulations are performed
with 2.60 GHz Intel Xeon-6240 CPU and 16 GB RAM.

B. Performance Comparisons

We adopted two heuristics as benchmarks: GRC [21] and
TMR [15]. Since the benchmarks do not consider the task
heterogeneities, they are modified as follows: after getting the
node ranks, for each task tv , sort the nodes that have the same
type of location and sufficient computing resources with tv in
a descending order. Then place the tv onto the first node, and
delete the node to avoid overlapping tasks placement.

The blocking ratios (BRs) of the proposed methods and
benchmarks are evaluated in Fig. 3. BR measures the ratio
between the number of blocked ECSs to the total number of
ECSs. Under the light traffic load scenario, the BRs are similar
among the four methods. However, with the increase of ECS
load, the BRs of the proposed methods, TNMS and TNMS-
Pre, outperform the benchmarks in both of the topologies.
Furthermore, the TNMS-Pre which integrates the ML-EON

(a) (b)

Fig. 3. The blocking ratios of TNMS, TNMS-Pre and benchmarks under (a)
NSFNET topology and (b) CORONET topology.

TABLE II
ECS CAPACITY UNDER DIFFERENT NETWORK TOPOLOGIES.

NSFNET (CECS ± std) CORONET (CECS ± std)
GRC 75.2± 8.5 48.9± 4.2
TMR 82.7± 8.7 51.7± 3.6

TNMS 116.6± 8.2 60.9± 4.7
TNMS-Pre 142.3± 11.8 72.8± 5.6

transmission costs in to task placements is superior to other
methods in reducing the number of the blocked ECS requests.

We further evaluate the maximum ECS number (ECS ca-
pacity CECS) that the substrate networks can support. With a
higher ECS capacity, the network resource utilization will be
higher and the BRs will be reduced. We repeat the experiments
ten times and compute the average CECS and the standard
deviation (std). As is listed in Table II, in both topologies,
CECS under the GRC and TMR are smaller compared with the
proposed methods. It is mainly because the benchmarks do
not adaptively evaluate the task placement schemes according
to the requirements of the heterogeneous tasks and do not
consider the VL mapping cost in the task placement process.
Furthermore, the ECS capacity of TNMS-Pre is larger than
that of TNMS because it tends to map the VLs with fewer
costs and thus, occupies fewer network resources.

It is also worthy to examine the cost of ECS with different
task placement methods. The average costs of VL mapping
in each ECS over ML-EON are depicted in Fig. 4. With the
increase of ECS load, decreasing trends exist in all conditions.
This is mainly because that with more ECSs remain in the
network, the services are more compact in the substrate
network. Among four methods, the decreasing trend of TNMS-
Pre is flatter because no matter what the underlying ML-
EON status is, it always tends to minimize the VL mapping
cost. It can also be observed that TNMS-Pre obtains the least
cost among the methods, which demonstrates the effectiveness
of the pre-allocation mechanism and integration of the VL
mapping cost into task placement in TNMS-Pre.

C. Computation Complexity Evaluations

The time-efficiencies and scalabilities of TNMS and TNMS-
Pre in different topologies are evaluated in Fig. 5. The TNMS
achieves average computing times less than 18ms and 65ms for
an ECS in NSFNET and CORONET topologies. For TNMS-
Pre, although a longer computing time is caused by the pre-
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(a) (b)

Fig. 4. The average cost of a single ECS with TNMS, TNMS-Pre and
benchmarks under (a) NSFNET topology and (b) CORONET topology.

(a) (b)

0.03s 0.36s

Fig. 5. The cumulative distribution function (CDF) of the computing time
for a single ECS under (a) NSFNET topology and (b) CORONET topology.

allocation process of VLs, the average increased computing
times in the two networks are within 0.03s and 0.36s, respec-
tively.

V. CONCLUSION

In this paper, we investigate the heterogeneous task place-
ment in the edge-cloud collaboration scenario over ML-EON.
TNMS is proposed to adaptively evaluate the task placement
scheme for each specific ECS request. To further reduce
the ECS cost of VL mapping in ML-EON, TNMS-Pre is
advocated with a pre-allocation mechanism to integrate the
cost of VL mapping into the task placement process. The pro-
posed methods outperform benchmarks in blocking ratio, ECS
capacity, and the average cost of ECSs. The computational
efficiencies of the proposed methods are also demonstrated.
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