
1

Application-driven Provisioning of Service Function
Chains over Heterogeneous NFV Platforms

Lu Dong, Nelson L. S. da Fonseca, and Zuqing Zhu,Senior Member, IEEE

Abstract—Although network function virtualization (NFV) has
been proven to be beneficial in terms of equipment cost, service
delivery flexibility, and time-to-market, most of the studies in
this area only addressed homogeneous NFV platforms (e.g.,
with virtual machines (VMs) only). In this work, we argue
that by leveraging heterogeneous NFV platforms such as VMs,
docker containers, and programmable hardware accelerators
(e.g., SmartNICs), one could achieve better flexibility and cost-
effectiveness to support virtual network function servicechains
(vNF-SCs) with various quality-of-service (QoS) requirements.
Therefore, we study application-driven provisioning of vNF-SCs
over heterogeneous NFV platforms, and design a polynomial-time
approximation algorithm to tackle the problem for near-opt imal
solutions. We first introduce a layered auxiliary graph (LAG)
based approach to model the problem of vNF-SC provisioning,
and then formulate a novel integer linear programming (ILP)
model based on it. Specifically, the ILP model minimizes the
total cost of vNF-SC deployment while ensuring that the QoS
requirements of all the vNF-SCs are satisfied. To solve the ILP
time-efficiently, we propose an approximation algorithm based on
linear programming (LP) relaxation and randomized rounding.
Extensive simulations confirm that with significantly improved
time-efficiency, our proposed algorithm can provide near-optimal
solutions whose gaps to the exact ones are bounded.

Index Terms—Network function virtualization (NFV), Hetero-
geneous NFV platforms, Service function chaining, Approxima-
tion algorithm, Linear relaxation.

I. I NTRODUCTION

OVER the past decade, the Internet has gone through revo-
lutionary changes to accommodate tremendous emerging

applications [1, 2], for making our daily lives much more
comfortable and convenient. Traditionally, service providers
(SPs) rely on special-purpose middleboxes to support new
applications, which recently becomes increasingly challenging
because of the unbearable costs and maintenance complexity,
and the long time-to-market. To address these challenges,
SPs have switched to network function virtualization (NFV)
[3, 4], which can realize network applications with virtual
network functions (vNFs) running on general-purpose hard-
ware/software platforms instead of using proprietary hardware
[5, 6]. For instance, they can decompose network services into
atomic network functions (e.g., firewall and load-balancer),
instantiate the network functions with vNFs, and steer applica-
tion traffic through required vNFs in sequence to realize each
network service (i.e., vNF service chaining (vNF-SC) [7, 8]).

L. Dong and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China,Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

N. Fonseca is with the Institute of Computing, State University of Camp-
inas, Campinas, SP 13083-852, Brazil.

Manuscript received on August 7, 2020.

The success of cloud computing and network slicing in 5G
and datacenter networks has promoted the idea of composing
network services as vNF-SCs [6, 9]. To fully explore the
benefits of vNF-SC, previous studies have considered both
the algorithm design for its service provisioning [10–12] and
the system implementation for orchestrating IT and bandwidth
resources for its deployment in real networks [13, 14]. Never-
theless, most of the existing studies on vNF-SC overlooked the
possibility of using heterogeneous NFV platforms to realize
vNFs, and assumed that all the vNFs would be instantiated
over the same type of platforms (e.g., virtual machines (VMs)).

Note that, we can utilize various software/hardward plat-
forms, e.g., VMs, docker containers [15], and programmable
hardware accelerators (i.e., field programmable gate arrays
(FPGAs) [16] and SmartNICs [17]), to realize vNFs. Here,
VMs and docker containers can be deployed on commod-
ity servers, while FPGA and SmartNICs are also general-
purpose commodity hardware due to their programmability
and commercial availability. Hence, realizing vNFs over these
heterogeneous platforms will not violate the basic principle
of NFV. Meanwhile, the unique features of the heterogeneous
NFV platforms provide SPs better programmability and flexi-
bility to support various quality-of-service (QoS) requirements
simultaneously for vNF-SCs [18, 19]. For example, vNFs can
be instantiated on docker containers with setup latencies less
than one second [13], while those on SmartNICs can easily
achieve over10 Gbps traffic processing capacity [19].

Specifically, vNFs based on software platforms (i.e., VMs
and docker containers) have advantages in terms of cost, elas-
ticity, and setup latency, while their traffic processing capaci-
ties and data processing latencies could be the bottleneck for
high-throughput and ultra-low-latency services (e.g., remote
surgery). This is because software platforms have inherent
performance overheads compared with hardware ones. On
the other hand, even though FPGAs and SmartNICs ensure
superior traffic processing performance, they have relatively
high costs and need to be reprogrammed for deploying new
vNFs (i.e., long setup latency). As each application has its
own QoS demands from clients as well as other unique
requirements like setup latency and service flexibility from its
SP, its provisioning based on a vNF-SC should be “application-
driven”, i.e., we need to consider the aforementioned advan-
tages and disadvantages of each NFV platform and serve the
application’s vNF-SC in the way that both its SP and clients
can be satisfied. For instance, in the case where certain clients
of vNF-SCs can move around and have stringent QoS demands
for low latency (e.g., the ultra-low latency scenario in 5G),
the SP will have difficulty satisfying the QoS demands if it

2

deploys all the vNFs in software platforms. On the other hand,
deploying all the vNFs in SmartNICs might not be a good
solution either, because they are relatively expensive andcan
hardly be reprogrammed quickly to adapt to the movement of
clients. With heterogeneous NFV platforms, the SP has more
flexibility to handle such situations. Hence, it will be relevant
to consider application-driven provisioning of vNF-SCs over
heterogeneous NFV platforms that separately consider VMs,
docker containers, and SmartNICs for vNF deployments.

In our previous work [19], we studied this problem prelimi-
narily, mainly from the perspective of system implementation.
Specifically, we laid out the network model, built a simple
testbed to demonstrate the benefits of serving vNF-SCs over
heterogeneous platforms, and formulated an integer linearpro-
gramming (ILP) model based on the measurements to optimize
the application-driven provisioning of vNF-SCs in terms of
cost-effectiveness. However, we did not try to optimize the
ILP’s formulation or solve it time-efficiently. The ILP in [19]
was only solved for small-scale problems (i.e., serving at most
6 vNF-SCs in a six-node topology). This is because the basic
problem of vNF-SC provisioning isNP-hard [20], and the
ILP becomes intractable for large-scale problems. Although
time-efficient heuristics can be leveraged to find feasible
solutions, they can hardly obtain near-optimal solutions whose
performance gap to the optimal ones is guaranteed.

Motivated by the aforementioned dilemma, we, in this work,
revisit the problem of application-driven provisioning ofvNF-
SCs over heterogeneous NFV platforms, from the perspectives
of theoretical analysis and algorithm design. We first introduce
a layered auxiliary graph (LAG) based scheme to model
the problem with a compact ILP. Then, we optimize the
ILP’s formulation to improve its practicalness and optimization
performance, such that the total cost of vNF-SC deployment
can be minimized while the QoS requirements of all the vNF-
SC requests are satisfied with carefully-chosen NFV platforms.
Next, we design a polynomial-time approximation algorithm
based on linear programming (LP) relaxation with randomized
rounding, to solve the ILP’s optimization time-efficientlyfor
near-optimal solutions. Finally, we conduct extensive simula-
tions to evaluate our proposal and verify its performance. The
major contributions of this work are summarized as follows.

• We consider application-driven provisioning of vNF-SCs
over heterogeneous NFV platforms and design an LAG-
based approach to model the provisioning problem.

• We formulate a compact ILP model to solve the problem
exactly, based on the LAG-based problem modeling.

• Based on the ILP model, we design a polynomial-time
algorithm with LP relaxation and randomized rounding
to approximate the exact solutions.

• We run extensive simulations to verify the performance
of our proposed approximation algorithm.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. In Section III, we describethe
application-driven vNF-SCs provisioning problem and explain
the LAGs to model it. The novel ILP model is formulated
in Section IV, and we design the approximation algorithm
based on LP relaxation with randomized rounding in Section

V. The performance evaluation is then presented in Section
VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Nowadays, NFV has gained intensive interests from both
academia and industry and thus promoted active research
and development activities. The technical documents for NFV
standardization have been published in [21, 22] to explain
the requirements and service frameworks of NFV and its
typical use-cases, respectively. Depending on how the traffic
flows are organized and routed over required vNFs, NFV can
assist an SP to compose its network services in the forms of
vNF-SCs [7, 23], vNF multicast trees [24], and generic vNF
forwarding graphs [25]. It should be noted that the problem
of NFV-based service composition is fundamentally different
from the famous virtual network embedding (VNE) prob-
lem [26–29], according to the analysis in [24]. Specifically,
NFV-based service composition can instantiate multiple vNFs,
which belong to the same network service, on one substrate
network element, while this changes the virtual topology and
is normally not allowed in VNE. We focus on the provisioning
of vNF-SCs over heterogeneous NFV platforms in this work,
while more sophisticated service compositions with the same
background will be considered in our future work. For the
technical standard regarding vNF-SC, one can refer to [30].

Previously, many studies have been dedicated to optimizing
the vNF-SC provisioning in different types of networks [12].
Using packet networks as substrate networks (SNTs), the
studies in [31–34] have formulated optimization models and
designed heuristic algorithms to tackle the problem. For exam-
ple, the authors of [34] proposed an ILP model and a heuristic
to optimize the vNF-SC provisioning across geographically-
distributed clouds. Considering an optical network (e.g., the
fixed-grid wavelength-division multiplexing (WDM) network
or the flexible-grid elastic optical network (EON) [35–37])as
the SNT, researchers have also studied how to orchestrate IT
resources together with the spectra in fiber links for assembling
vNF-SCs in datacenter interconnections [10, 38]. Note that, the
unique consideration of provisioning vNF-SCs in an optical
network is that the bandwidth resources are represented by
discrete wavelength channels. Hence, the joint optimization of
IT and bandwidth resource allocations becomes more complex
than its counterpart in a packet network [39].

In addition to conventional optimization techniques, recent
studies have also leveraged game theory [40, 41] and machine
learning [8, 11] to optimize vNF-SC provisioning. Howev-
er, all the studies mentioned above resorted to either non-
polynomial-time algorithms that are not scalable or heuristics
whose performance gaps to the exact ones are not bounded.
More importantly, none of them has considered the provision-
ing of vNF-SCs over heterogeneous NFV platforms.

Researchers have also tried to design approximation algo-
rithms that can solve the provisioning of vNF-SCs with guar-
anteed gaps to the exact solutions [9, 42–46]. Dietrichet al.
[9] presented a holistic solution to the problem of network ser-
vice embedding in multi-provider networks. Specifically, they
decomposed the problem into two subproblems and designed

3

R1 s
1

vNF 1 d
1

R2 s
2

vNF 3 vNF 1 vNF 4 d
2

2 4

5

3

1

SmartNIC

s1 d1

s2

d2

2 4

51

vNF 3

vNF 1

vNF 4

Docker

VM

Fig. 1. Provisioning vNF-SCs over heterogeneous NFV platforms.

LP formulations to derive near-optimal solutions for both of
them. The authors of [42] first modeled the problem of vNF
placement as a combination of the facility location problem
and the generalized assignment problem, and then designed
an approximation algorithm that can provide near-optimal
solutions with bi-criteria constant approximation guarantees.
Nevertheless, their model did not address the flow routing
for vNF-SCs. In [43], the researchers designed a system that
can dynamically provision IT and bandwidth resources to
vNF-SCs to provide timing guarantees. They considered a
homogeneous NFV environment in datacenters, and designed
an approximation algorithm to maximize the number of vNF-
SC requests that can be provisioned successfully.

Sanget al. [44] designed two polynomial-time algorithms
for vNF-SC provisioning and proved their approximation
ratios, but they assumed that there was only one type of vNFs
in the network, which is not practical for general cases. The
study in [45] showed that vNF-SC provisioning can be mapped
to an exponential number of min-cost flow problems, based
on which it developed an approximation algorithm. In [46],
the authors formulated a mixed integer linear programming
(MILP) model and proposed a polynomial-time algorithm to
maximize the acceptable flow rate under a budget on energy
costs, but latency constraints were not considered. These
studies also did not consider heterogeneous NFV platforms.

The heterogeneous NFV platforms considered in this work
refer to the general-purpose hardware/software platforms, e.g.,
VMs, docker-containers, and SmartNICs, which can be pro-
grammed to carry various vNFs. The network environment
considered here is different from the hybrid environment in
[47, 48], which consists of both special-purpose middleboxes
and homogeneous NFV platforms (e.g., VMs). More specifi-
cally, all the heterogeneous platforms in our NFV environment
can support various types of vNFs, while each middlebox in
the hybrid environment is only dedicated to a single network
function. Therefore, in our case, the vNF-SC provisioning is
much more flexible and thus more complex.

To the best of our knowledge, the only existing studies that
have considered heterogeneous NFV platforms are the HYPER
in [18] and our own study in [19]. In [18], HYPER was

developed as a high-performance service framework based on
OpenStack and ONetCard, for realizing vNF-SCs over hetero-
geneous NFV platforms. Although the authors did an excellent
job on system implementation, they did not focus much on the
algorithm design of application-driven provisioning of vNF-
SCs. For instance, they simply modeled the vNF placement as
a bin packing problem but ignored the affiliation among vNFs
for a specific vNF-SC. Moreover, their algorithm did not try
to optimize the flow routing for vNF-SCs.

This paper greatly extends our preliminary study in [19],
by proposing a novel and compact ILP based on the LAG-
based problem modeling and designing an approximation
algorithm that can ensure near-optimal solutions. More specif-
ically, in terms of the ILP formulation, we make three major
improvements. Firstly, the ILP in [19] is a path-based one,
which means that we need to pre-calculateK shortest paths
between each node pair in the SNT. This, however, restricts the
optimality of the ILP’s solutions, especially when the SNT’s
topology is relatively large, and increasing the value ofK
cannot resolve the issue completely. Hence, this work designs
the ILP as a link-based one, which means that all the feasible
paths in the SNT can be checked to guarantee its optimality.
Secondly, with the LAG-based problem modeling, the ILP in
this work describes the mapping of each vNF in a vNF-SC to a
VM/Docker/SmartNIC on a substrate node more clearly, and
its compactness is also ensured. Finally, in addition to data
processing latency, this work also considers the propagation
delay on network links, which makes the ILP more practical.

III. PROBLEM DESCRIPTION

In this section, we first describe the heterogeneous envi-
ronment that includes software and hardware NFV platforms
such as VM, docker container and SmartNIC, for vNF-SC
deployment, then explain the LAGs for problem modeling, and
finally define the problem of application-driven provisioning
of vNF-SCs over heterogeneous NFV platforms.

A. Heterogeneous NFV Platforms

Fig. 1 shows an example on the network environment that
includes heterogeneous NFV platforms. Here, each node in the
substrate network (SNT) can support an arbitrary combination
of three types of NFV platforms (i.e., VM, docker container
(Docker) and SmartNIC), which are not special-purpose but
can be used to instantiate different types of vNFs and satisfy
various QoS requirements of applications. Hence, they are
actually the virtualized IT resources in the SNT to facilitate
NFV. For instance,Nodes1 and 4 only support SmartNICs
and Dockers, respectively,Node 2 can carry both VMs and
Dockers, andNode3 includes all the three types of platforms.
To save the total deployment cost, we allow different vNF-SCs
to share a vNF. For example, vNF-SCsR1 andR2 in Fig. 1
share thevNF 1 instantiated on a SmartNIC onNode3.

B. Layered Auxiliary Graphs (LAGs)

Since a vNF-SC request demands for an ordered sequence of
vNFs to process application traffic along the chosen path from

4

2 4

5

3

1

R s vNF 1 vNF 2 d1 4

2 4

5

3

1

2 4

5

3

1

Fig. 2. Example on LAGs and provisioning a vNF-SC with them.

source to destination, we model it asRi(si, di, SCi, bi, ti),
where i is its unique index,si and di are the source and
destination nodes, respectively,bi represents its bandwidth
requirement,ti is its tolerable end-to-end delay, andSCi =<
fi,1, · · · , fi,l, · · · , fi,Ni

> denotes its vNF sequence. Here,
fi,l is the type of thel-th vNF, andNi is the number of vNFs
in the vNF-SC. Each vNF inSCi needs to be mapped onto a
VM/Docker/SmartNIC on a substrate node (SN), and we can
either deploy a new vNF for it or make it use an existing
vNF that is in the same type and has enough data processing
throughput left. Then, the traffic of the vNF-SC needs to be
steered through the deployed vNFs in the sequence required
by SCi. To model these relations with a compact ILP model
and consequently facilitate the design of our approximation
algorithm, we leverage the idea of LAGs in [49],i.e., using
a few layered graphs derived from the physical topology to
help build an integrated view during modeling. Specifically,
we first decompose a vNF-SCSCi =< fi,1, · · · , fi,Ni

> into
a few segments, each of which corresponds to the connection
between two adjacent vNFs,i.e., the segments are< si, fi,1 >,
< fi,1, fi,2 >, · · · , < fi,Ni

, di >. Then, we slice the SNT’s
topology intoL∗ LAGs, each of which has the same topology
as that of the SNT, and we have

L
∗ = max

i
(Ni + 1). (1)

The LAGs are denoted asG0, G1, · · · , GL∗−1. The provision-
ing of each vNF-SC requestRi will involve (Ni+1) LAGs. We
number the segments ofRi from 0 to Ni, where< si, fi,1 >
is the 0-th segment and so on. Then, the provisioning of the
j-th segment is handled in thej-th LAG Gj , and the edge
between two adjacent LAGs represent a vNF. For instance,
for Ri, the edge betweenGj andGj+1 is for the vNFfi,j+1.

Fig. 2 depicts an example on LAGs. The traffic of the vNF-
SC originates fromNode 1, is processed byvNFs 1 and 2
sequentially, and terminates atNode 4. As Ni = 2, we use
three LAGs,i.e., G0, G1, andG2, to provision it. InG0, since
the source of the vNF-SC isNode1, we have a dummy node
o+1 to point toNode1 and placevNF 1 on Node2. Then, the
segment inG1 starts fromNode2 and ends atNode3, where
vNF 2 is placed. Finally, inG2, the segments ends at another
dummy nodeo−4 . Hence, the path fromo+1 to o−4 represents
of the provisioning scheme of the vNF-SC.

C. Network Model

We model the SNT’s topology as an undirected graph
G(V,E), whereV andE are the sets of SN and substrate links
(SLs), respectively. Each SNv ∈ V can carryhv NFV plat-
forms at most, and more specifically, the maximum numbers
of NFV platforms that can be VMs/Dockers/SmartNICs in SN
v ∈ V are denoted ashU

v /h
D
v /h

S
v , respectively. We use three

parameters to denote the type of thek-th NFV platform on SN
v, and their values are determined in advance. Specifically,
µv,k, ξv,k and νv,k are boolean parameters that equal 1 if
the k-th NFV platform on SNv is a VM/Docker/SmartNIC,
respectively, and 0 otherwise. We have

h
U
v + h

D
v + h

S
v = hv , ∀v ∈ V, (2)

µv,k + ξv,k + νv,k = 1, ∀v ∈ V, k ∈ [1, hv]. (3)

By adjusting the values of{hU
v , h

D
v , hS

v , µv,k, ξv,k, νv,k}, we
can make each SN support an arbitrary combination of
VMs/Dockers/SmartNICs. The total IT resource capacities
of the NFV platforms on SNv are CU

v /CD
v /CS

v for VM-
s/Dockers/SmartNICs, respectively.

Each vNF-SC can be built with different types of vNFs (e.g.,
firewall and network address translator (NAT)). Therefore,we
denote the vNF types that can be supported in the SNT with set
M . For a vNF belonging to typem ∈ M , if it gets deployed
on a VM/Docker/SmartNIC, it consumeŝcUm/ĉDm/ĉSm units of
IT resources (e.g., the percentage of memory usage), can at
most processbUm/bDm/bSm data traffic in terms of bandwidth
units, and takesrUm/rDm/rSm units of time to process application
data, respectively. For the communications among vNFs, we
use(uk1

, vk2
) to denote the link(u, v) ∈ E between thek1-

th NFV platform on SNu and thek2-th NFV platform on
SN v. Obviously, for any two platforms on a same SNv ∈ V ,
the link (vk1

, vk2
) does not consume any bandwidth resources.

Hence, we use links between NFV platforms to represent the
routing path of each vNF-SC, and to denote the special cases
of source and destination (i.e., si and di of Ri), we add a
dummy nodeo+v or o−v to the LAGs if si or di is on SN
v ∈ V , respectively. Fig. 3 gives an example to explain the
path computation mentioned above, where the vNF-SC’s traffic
gets routed aso+2 →2→3→4→o−4 , andvNF 1 is deployed on
the k1-th platform inNode3, which is a SmartNIC.

IV. ILP FORMULATION

In this section, we formulate an ILP model to solve the
problem of application-driven provisioning of vNF-SCs over
an SNT that contains heterogeneous NFV platforms, based
on the LAG-based modeling discussed in Section III-B. The
optimization objective is to minimize the total deploymentcost
of all the vNF-SC requests. Specifically, to provision a vNF-
SC request, we need to deploy the required vNFs on proper
platforms in the SNs (i.e., the platforms can be based on
VMs/Dockers/SmartNICs), and connect the vNFs in sequence
by steering the traffic of the request from source to destination.

Notations:
• G(V,E): the topology of the SNT.
• Gj : the j-th LAG sliced from the SNT.
• Ri(si, di, SCi, bi, ti): the i-th vNF-SC request (Ri ∈ R).

5

2 4

5

3

1

R s vNF 1 d2 4

VM Docker SmartNIC

k
1

Fig. 3. Example of network model.

• Ni: the number of vNFs in requestRi.
• β: the unit cost of bandwidth usage on each SL.
• M : the set of available vNF types.
• fm

i,l : the boolean parameter that equals 1 if thel-th vNF
in SCi is a type-m vNF (m ∈ M), and 0 otherwise.

• hv: the number of NFV platforms that SNv has.
• µv,k: the boolean parameter that equals 1 if thek-th

platform on SNv is a VM, and 0 otherwise.
• ξv,k: the boolean parameter that equals 1 if thek-th

platform on SNv is a docker container, and 0 otherwise.
• νv,k: the boolean parameter that equals 1 if thek-th

platform on SNv is a SmartNIC, and 0 otherwise.
• d(uk1

,vk2)
: the boolean parameter that equals 1 ifu 6= v

(i.e., (u, v) ∈ E and u, v ∈ V), and 0 otherwise.
This parameter is introduced to determine whether a link
between the vNFs deployed on any two NFV platforms
consumes bandwidth resources in the SNT.

• D(uk1
,vk2)

: the propagation latency of link(uk1
, vk2

).
• o+v /o

−
v : the dummy node to/from SNv if it is the

source/destination of a vNF-SC request.
• CU

v /CD
v /CS

v : the IT resource capacity of a VM/Docker/
SmartNIC on SNv, respectively.

• bUm/bDm/bSm: the processing throughput of a VM/Docker/
SmartNIC, respectively, if it carries a type-m vNF.

• rUm/rDm/rSm: the unit data processing latency of a VM/
Docker/SmartNIC, respectively, if carrying a type-m vNF.

• αU
m/αD

m/αS
m: the unit cost of IT resources for deploying

a type-m vNF on a VM/Docker/SmartNIC.
Variables:
• xi,(uk1

,vk2),j
: the boolean variable that equals 1 if link

(uk1
, vk2

) in LAG Gj is used to provision requestRi,
and 0 otherwise.

• yv,ki,l : the boolean variable that equals 1 if thel-th vNF
in SCi is deployed on thek-th platform in SNv, and 0
otherwise.

• φv,k
m : the boolean variable that equals 1 if thek-th

platform in SNv carries a type-m vNF, and 0 otherwise.
Objective:
The objective is to minimize the total deployment cost of all

the vNF-SC requests. Here, the deployment cost of each vNF-
SC request includes both the cost of IT resource usages for

vNF placement and the cost of bandwidth usage. Therefore,
the optimization objective is

Minimize T = Tv + Tb, (4)

whereTv andTb are the costs of IT and bandwidth usages,

Tv =
∑

m,v,k

(

α
U
m · φ

v,k
m · µv,k + α

D
m · φ

v,k
m · ξv,k + α

S
m · φ

v,k
m · νv,k

)

,

Tb =
∑

i,u,k1,v,k2,j

β · bi · d(uk1
,vk2

) · xi,(uk1
,vk2

),j .

(5)
Constraints:



































∑

m,k

ĉ
U
m · φ

v,k
m · µv,k ≤ C

U
v

∑

m,k

ĉ
D
m · φ

v,k
m · ξv,k ≤ C

D
v

∑

m,k

ĉ
S
m · φ

v,k
m · νv,k ≤ C

S
v

, ∀v ∈ V. (6)

Eq. (6) ensures that the vNF deployment on the NFV platforms
in each SN will not exceed their IT resource capacities.































∑

i

bi ·
∑

l

f
m
i,l · y

v,k

i,l · µv,k ≤ b
U
m

∑

i

bi ·
∑

l

f
m
i,l · y

v,k

i,l · ξv,k ≤ b
D
m

∑

i

bi ·
∑

l

f
m
i,l · y

v,k

i,l · νv,k ≤ b
S
m

, ∀m,v, k. (7)

Eq. (7) ensures that the vNF deployment on the platforms in
each SN will not exceed their data processing capacities.

∑

l,m

f
m
i,l ·

∑

v,k

y
v,k

i,l · (µv,k · r
U
m + ξv,k · r

D
m + νv,k · r

S
m)

+
∑

(uk1
,vk2

),j

xi,(uk1
,vk2

),j ·D(uk1
,vk2

) ≤ ti, ∀i.
(8)

Eq. (8) ensures that, for a requestRi, its end-to-end latency,
which includes both the data processing latency and the link
propagation delay, will not exceed the QoS requirementti.

∑

v,k

y
v,k
i,l = 1, ∀i, l. (9)

Eq. (9) ensures that each vNF inSCi is deployed on one and
only one NFV platform.

∑

m

φ
v,k
m ≤ 1, ∀v, k. (10)

Eq. (10) ensures that each NFV platform on an SN can only
be used to carry one type of vNF at most.






















∑

i,l

f
m
i,l · y

v,k
i,l > (φv,k

m − 1) ·



1 +
∑

i,l

f
m
i,l





∑

i,l

f
m
i,l · y

v,k

i,l ≤ φ
v,k
m ·

∑

i,l

f
m
i,l

, ∀m,v, k. (11)

φ
v,k
m ≥ y

v,k

i,l · f
m
i,l, ∀m,v, k, i, l. (12)

Eqs. (11)-(12) ensure that the values of the variables are set
correctly according to their inherent relations. In other words,

6

Eq. (11) makes sure that if

(

∑

i,l

fm
i,l · y

v,k
i,l

)

> 0, we have

φv,k
m = 1, andφv,k

m should be set as 0 otherwise.
∑

v,k2

xi,(uk1
,vk2

),j −
∑

v,k2

xi,(vk2 ,uk1
),j = y

u,k1

i,j − y
u,k1

i,j+1,

∀k1, u ∈ V, i, j ∈ [1, Ni − 1].

(13)

Eq. (13) ensures the flow conservation constraint, which means
that the in and out flows of each NFV platform is equal except
for the ingress/egress points of a segment ofSCi in Gj .

∑

v,k2

xi,(uk1
,vk2

),0 −
∑

v,k2

xi,(vk2 ,uk1
),0

=

{

1, k1 = o
+
u andu = si,

− y
u,k1

i,1 , otherwise,
∀i.

(14)

Eq. (14) ensures the flow conservation constraint in the first
LAG G0, when servingRi.

∑

v,k2

xi,(uk1
,vk2

),Ni
−

∑

v,k2

xi,(vk2 ,uk1
),Ni

=

{

− 1, k1 = o
−

u andu = di,

y
u,k1

i,Ni
, otherwise,

∀i.

(15)

Eq. (15) ensures the flow conservation constraint in theNi-th
LAG GNi

, when servingRi.

y
v,o+

v

i,l = y
v,o−

v

i,l = 0, ∀i, l, v, o
+
v , o

−

v . (16)

Eq. (16) ensures that the dummy nodes to/from each SNv
cannot be used for real vNF deployment.

∑

u,k1,v,k2

xi,(uk1
,vk2

),j ≥ 1, ∀i, j. (17)

Eq. (17) ensures that at least one link inGj is chosen for
composing a path segment ofRi.















∑

v,k2

xi,(uk1
,vk2

),j ≥ y
u,k1

i,j

∑

v,k2

xi,(vk2 ,uk1
),j−1 ≥ y

u,k1

i,j

, ∀u, k1, j ∈ [1, Ni] . (18)

Eq. (18) ensures the correct relation between vNF placement
and routing path construction. Specifically, it makes sure that
if the k1-th platform on SNu is used to deploy thej-th
vNF of SCi, the path calculation in LAGsGj−1 and Gj

should consider thek1-th platform on SNu as an end-node for
segments< fi,j−1, fi,j > and< fi,j , fi,j+1 >, respectively.

V. DESIGN OFAPPROXIMATION ALGORITHM

Solving the aforementioned ILP model can obtain the exact
solutions of our problem, but it would be intractable for large-
scale ones. Meanwhile, it is known that even the basic vNF
placement problem isNP-hard [12]. Therefore, we resort to a
polynomial-time approximation algorithm which can guaran-
tee the performance gap to the exact solutions. Specifically,
our approximation algorithm leverages LP relaxation with
randomized rounding to solve the problem of application-
driven provisioning of vNF-SCs over heterogeneous NFV
platforms time-efficiently and obtain near-optimal solutions.

A. Overall Procedure

Algorithm1 shows the overall procedure of our approxima-
tion algorithm. In addition to the information about the SNT
and vNF-SC requests, it also takes several positive parameters
(i.e., Q, γ, δ, ǫ, andζ) as the inputs. We useQ andγ to adjust
the tradeoff between the time complexity of the algorithm
and its approximation ratio, and their values are determined
empirically [50]. Specifically, the value ofγ can be understood
as a preset expectation on the output ofAlgorithm 1. We will
prove the relation betweenγ and the approximation ratio of
Algorithm1 later in Section V-D, and will show the effects of
γ with the simulations in Section VI.δ, ǫ, andζ are the ratios
to tighten the constraints in Eqs. (6)-(8) for the LP relaxation,
respectively, and they are introduced to ensure that we can
get feasible solutions to the original ILP model through LP
relaxation with randomized rounding. The values ofδ, ǫ, and
ζ are also determined empirically.

In Line 1, we relax all the boolean variables in the ILP mod-
el to real ones within[0, 1] and get an LP model. Then,Line 2
tightens several constraints in the LP with the corresponding
ratios. For instance, we tighten the IT resource capacitieswith
δ, which means that in the LP model, we have











C̃
U
v = C

U
v · (1− δ)

C̃
D
v = C

D
v · (1− δ)

C̃
S
v = C

S
v · (1− δ)

, ∀v ∈ V, (19)

where C̃U
v , C̃D

v , and C̃S
v are the corresponding IT resource

capacities in the LP. The similar tightening scheme appliesto
the constraints in Eqs. (7) and (8). The LP is solved inLine
3 to obtain the objectiveTLP, which is a lower-bound of the
solution to the original ILP. This can be done in polynomial-
time [51] (e.g., with the ellipsoid algorithm [52]).

Line 4 is for the initialization of the randomized rounding.
The while-loop coveringLines5-14 performs the randomized
rounding forQ iterations at most. In each iteration,Line 6
performs randomized rounding on the real variables in{Xi,j},
calculates{yv,ki,l , φv,k

m } based on the rounding results, and
obtains an integer solutionS, all with Algorithm 2. Then, we
calculate the objectiveT and validate all the constraints in the
original ILP with S (Line 7). If S is a feasible solution to
the ILP, Line 9 checks whether its performance satisfies the
approximation ratioγ. If yes, we get a qualified solution to the
ILP. Otherwise, the while-loop proceeds to the next iteration.

B. Randomized Rounding

Algorithm 2 explains the randomized rounding to construct
an integer solution based on the solution to the LP,i.e.,
{Xi,j}. Lines 1-2 are for the initialization. Then, in the for-
loop coveringLines3-33, each iteration determines the integer
solution{xi,(uk1

,vk2),j
} that is related to provision requestRi

in LAG Gj . Specifically, the operations are as follows. For
each requestRi, we calculate a path segment inGj , which
starts from a link(uk1

, vk2
). Here, we use(vk, ∗) to denote

all the outgoing links from thek-th platform on SNv. Then,
following the chosen link, we select an outgoing link from its
ending platform with a probability ofxi,(uk1

,vk2),j
, and repeat

the procedure until reaching the ending platform ofRi in Gj .

7

In Line 4, we initializet1 andt2, which represent the starting
SN and the platform on the SN that originates the chosen link,
respectively. Then, if thexi,(uk1

,vk2),j
from the LP is within

(pu,k1

1 , pu,k1

2], link (uk1
, vk2

) is chosen in LAGGj to serve
Ri (Lines 9-23). Here,F1 is the flag to indicate whether the
provisioning inGj has ended, while flagF2 tells us whether a
required link has been found for the segment inGj , andLines
13-15 help to avoid endless loops. Finally, when all the values
of {xi,(uk1

,vk2),j
} have been obtained,Lines 34-35 compute

{yv,ki,l , φv,k
m } based on them, insert the variables inS, and

returnS as an integer solution from the randomized rounding.

Algorithm 1: Procedure of Approximation Algorithm

Input : SNT topologyG(V,E), set of vNF-SC
requestsR, maximum number of rounding
trials Q, approximation ratiosγ, δ, ǫ, andζ.

1 relax the ILP of Eqs. (4)-(18) to get an LP;
2 tighten the LP’s constraints in Eqs. (6)-(8) with ratios
δ, ǫ andζ, respectively;

3 solve the LP to get{xi,(uk1
,vk2),j

, yv,ki,l , φv,k
m } in real

numbers and the objectiveTLP with Eqs. (4)-(5);
4 q = 1, Xi,j = {xi,(uk1

,vk2),j
}, ∀i, j;

5 while q ≤ Q do
6 perform randomized rounding on{Xi,j} to get an

integer solutionS with Algorithm 2;
7 calculate objectiveT and validate all constraints

in the original ILP withS;
8 if S is a feasible solution to the ILPthen
9 if T ≤ (1 + γ) · TLP then

10 break;
11 end
12 end
13 q = q + 1 ;
14 end

C. Time Complexity

The time complexity ofAlgorithm 2 is O(|R| ·max
i

(Ni) ·

max
i,j

(|Xi,j |)2). In Algorithm1, solving the LP is known to be

within polynomial time. Specifically, its complexity isO(Z3.5 ·
L) if we use the famous interior point method [53], whereZ
is the number of variables andL is the total number of bits
of the input. Hence, the overall complexity ofAlgorithm 1 is
O(Q · |R| ·max

i
(Ni) ·max

i,j
(|Xi,j |)2 + Z3.5 · L). To this end,

we can see thatAlgorithm 1 is a polynomial-time algorithm.

D. Approximation Ratio

Lemma 1. Algorithm 1 is an approximation algorithm for
the original provisioning problem defined in the ILP, and its
approximation ratio is upper-bounded by(1 + γ).

Proof: After relaxing the ILP, we get the LP’s solution
(i.e., TLP) as a lower-bound of the optimal solution (i.e., de-
noted asTILP). As the original optimization is a minimization

Algorithm 2: Randomized Rounding

Input : SNT topologyG(V,E), set of vNF-SC
requestsR, {Xi,j} from the LP.

Output : An integer solutionS.

1 S = ∅;
2 choose the value ofp within (0, 1) randomly;
3 for each requestRi ∈ R do
4 t1 = si, t2 = o+u , pv,k1 = 0, pv,k2 = 0;
5 for each LAGGj used byRi do
6 F1 = 0;
7 while F1 = 0 do
8 F2 = 0;
9 for eachxi,(uk1

,vk2),j
related toGj do

10 if u = t1 and k1 = t2 then
11 pu,k1

2 = pu,k1

2 + xi,(uk1
,vk2),j

;

12 if pu,k1

1 < p ≤ pu,k1

2 then
13 if link (uk1

, vk2
) has been

chosenthen
14 break;
15 end
16 insertxi,(uk1

,vk2),j
= 1 in S;

17 t1 = v, t2 = k2, F2 = F2 + 1;
18 updatept1,t21 andpt1,t22 ;
19 break;
20 end
21 pt1,t21 = pt1,t22 ;
22 end
23 end
24 if F2 > 0 then
25 F1 = 0;
26 else
27 F1 = 1;
28 deploy thej-th vNF of SCi on the

t2-th platform on SNt1;
29 update the corresponding variablex

and insert it inS;
30 end
31 end
32 end
33 end
34 calculate{yv,ki,l , φv,k

m } based on thex-based variables
in S and insert them inS;

35 return (S);

problem, each feasible solution (i.e., T) provided byAlgorithm
1 sets an upper-bound on the optimal solution. Hence, we can
calculate the approximation ratio ofAlgorithm 1 as

η =
T

TILP
≤

(1 + γ) · TLP

TILP
≤

(1 + γ) · TILP

TILP
= 1 + γ, (20)

i.e., the approximation ratio will not exceed(1 + γ).

Lemma 2. Due to the randomized rounding, the probability of
Algorithm 2 obtaining a feasible solutionT ≥ (1+γ) ·TILP is

upper-bounded byexp(−λ·γ2), where we haveλ =
min

i

(bi)

3·max
i

(bi)
.

8

Proof: In order to prove the probabilistic guarantee,
we recast the algorithm in terms of random variables, and
analyze the total bandwidth costTb in Eq. (5) first. For
boundingTb in Algorithm2, we introduce the discrete random
variableYi,u,k1,v,k2,j ∈

{

0, β · bi · d(uk1
,vk2)

}

. According to
the principle of randomized rounding, we have the probability
P
(

Yi,u,k1,v,k2,j = β · bi · d(uk1
,vk2)

)

= xi,(uk1
,vk2),j

. Hence,
we can get the total bandwidth cost of one trial inAlgorithm2
asT̃b =

∑

Yi,u,k1,v,k2,j , which makes the output ofAlgorithm
2 asTb = E(T̃b). Next, we scale variablesYi,u,k1,v,k2,j within
[0, 1], i.e., Y ′ = Y

β·max
i

(bi)
, and haveT̃ ′

b =
∑

Y ′. By applying

the well-known Chernoff-Bound [54], we can get

P
(

T̃
′

b > (1 + γ) · E(T̃ ′

b)
)

≤ exp(−γ
2
·
E(T̃ ′

b)

3
), (21)

whereE(T̃ ′

b
)

3 is a part of the multiplicative form and provides a
looser but more convenient bound [54]. Then, as the condition
Tb = E(T̃b) ≥ β ·min

i
(bi) always holds, we define

λ =
min

i
(bi)

3 ·max
i

(bi)
, (22)

and finally get

P
(

T̃b > (1 + γ) · Tb

)

≤ exp(−λ · γ
2), (23)

which proves the probabilistic guarantee for the total band-
width cost. Meanwhile, following the similar procedure, we
can also prove the probabilistic guarantee for the total IT
resource cost. Finally, as the output ofAlgorithm2 provides an
upper-bound on the optimal solution of the original problem
(i.e., TILP), we prove the probabilistic guarantee.

TABLE I
PARAMETERS OF VNF DEPLOYMENTS(ADAPTED FROM [19])

vNF 1 vNF 2 vNF 3 vNF 4

Throughput
(Gbps)

VM (bUm) 1.60 1.55 1.57 1.42

Docker (bDm) 1.32 1.26 1.22 1.7

SmartNIC (bSm) 10 10 10 10

Processing
Latency (µs)

VM (rUm) 177 190 224 262

Docker (rDm) 154.5 154.6 155.7 197

SmartNIC (rSm) 110.2 110.7 110.9 111.7

Memory
Usage (%)

VM (ĉUm) 3.7 3.7 3.5 3.7

Docker (̂cDm) 0.003 0.003 0.002 0.01

SmartNIC (̂cSm) 26.25 22.75 26.25 23.83

VI. PERFORMANCEEVALUATION

In this section, we perform numerical simulations to evalu-
ate the performance of our proposed approaches for the vNF-
SC provisioning over heterogeneous NFV platforms.

A. Simulation Setup

In the simulations, we consider two SNT topologies,i.e.,
the small-scale six-node topology in Fig. 4(a) and the large-
scale NSFNET topology in Fig. 4(b). We consider|M | = 4
types of vNFs, and the parameters about their deployments

on a VM/Docker/SmartNIC are in Table I, which are the ex-
perimental results measured in [19]. Specifically, we deployed
the VMs and Dockers on Linux servers, each of which is a
Lenovo ThinkSystem SR650 with 2.10 GHz Intel Xeon Silver
4110 CPU and 32 GB memory and runs Ubuntu 16.04, while
we also equip Netronome Agilio SmartNICs on the servers to
support vNFs. All the network interfaces on the servers were
based on 10 GbE (i.e., with a traffic processing throughput
of 10 Gbps)1. Table I captures certain real differences when
a vNF is operating over a VM/Docker/SmartNIC, while more
practical differences will be considered in our future experi-
mental studies. The number of vNFs required by each vNF-SC
request is randomly chosen within[1, 4]. The cost coefficients
are set asβ = 0.4, αU

m = 1, αD
m = 1.6, andαS

m = 1.76,
according to the latest realistic data [55, 56]. As programmable
hardware is relatively expensive, we assume that the SNT with
the six-node topology has at most one SmartNIC per SN, while
each SN in the NSFNET topology can equip two at most.

In order to emulate application-driven provisioning, the
simulations consider three scenarios, whose QoS requirements
are normal, large-bandwidth and low-latency, respectively. The
bandwidth demand of each request in the normal and low-
latency scenarios is randomly chosen from[0.1, 0.3] Gbps,
while for the large-bandwidth one, it is within[0.5, 0.8] Gbps.
Each request can tolerant an end-to-end latency random-
ly chosen within [0.85, 5] msecs in the normal and large-
bandwidth scenarios, while its requirement on end-to-end
latency is within[0.5, 0.8] msecs in the low-latency scenario.
To ensure sufficient statistical accuracy, we run10 independent
simulations and average the results to get each data point. The
simulations are carried out on a computer with3.0 GHz Intel
Core i5-7400 CPU and8 GB memory, and the environment
is MATLAB 2016a with GLPK toolbox and Gurobi v9.0.

B. Small-Scale Simulations

We first use the six-node topology to conduct small-scale
simulations to compare the performance of our approximation
algorithm to that of the ILP model. The maximum number
of iterations (i.e., the while-loop inAlgorithm 1) is fixed as
Q = 10, while in the simulations, the while-loop actually gets
executed7 times at most and roughly3 times on average.

Table II lists the simulation results. We observe that the gap
between the near-optimal results fromAlgorithm 1 and the
exact ones from the ILP is very small. Specifically, the largest
approximation ratio isγmax = 0.0749, while the average
approximation ratio isγ̄ = 0.0230. We can also see that
for the normal scenario in small scale, solving the ILP can
take slightly longer time than the approximation algorithm.
However, if we keep increasing the problem’s scale or make it

1Theoretically speaking, the processing latency of a vNF should increase
with the rate of the traffic being processed, especially whenthe traffic rate is
approaching to the processing capacity of the vNF. However,in a practical
network system, we will see packet drops when the traffic rateis close to
the processing capacity of a vNF, which will severely affectthe vNF’s QoS.
Hence, in [19], we measured each vNF’s data processing throughput and
latency in the situation that it is far from being stressed and there is no packet
drop. This is actually the reason why the processing latencies in Table I are
constant numbers,i.e., the maximum traffic rate to a vNF is much smaller
than its actual data processing capacity.

9

1

2

3

4

5

6

(a) Six-node topology

1

2

3

6

10

4
5

7

8 9

14

13

12
11

(b) NSFNET topology

Fig. 4. SNT topologies with propagation latencies marked inµs.

2 4 6 8
Number of Requests (|R|)

0

5

10

15

A
ve

ra
ge

 T
ot

al
 C

os
t Normal

Large-Bandwidth
Low-Latency

(a) vNF-SC deployment cost

Normal Large-Bandwidth Low-Latency

Simulation Scenarios

0

1

2

3

4

A
ve

ra
ge

 N
um

be
r

VMs
Docker Containers
SmartNICs

(b) Device number for|R| = 8

Fig. 5. Optimal results for application-driven vNF-SC provisioning over
heterogeneous NFV platforms.

more complex (e.g., the one in the large-bandwidth scenario,
where more provisioning schemes have to be tried for each
request to satisfy its bandwidth requirement),Algorithm 1
shows its high time-efficiency clearly. Specifically,Algorithm
1 runs much faster than the ILP in such cases, and its running
time does not increase exponentially with the problem’s scale.
The results in Table II verify the effectiveness of our proposed
approximation algorithm.

Fig. 5 shows the optimal results regarding the application-
driven vNF-SC provisioning in the six-node topology. In Fig.

TABLE II
SIMULATION RESULTS WITH SIX -NODE TOPOLOGY

|R| 2 4 6 8

Normal Scenario

ILP

Total Deployment Cost 3.40 4.41 4.88 5.40

IT Resource Cost 3.16 3.85 4 4.12

Bandwidth Cost 0.24 0.56 0.88 1.28

Average running time (s) 0.41 1.12 3.05 70.05

Algorithm 1

Total Deployment Cost 3.40 4.41 4.88 5.44

IT Resource Cost 3.16 3.85 4 4.15

Bandwidth Cost 0.24 0.56 0.88 1.29

Average running time (s) 0.31 0.55 1.03 2.08

Large-Bandwidth Scenario

ILP

Total Deployment Cost 4.50 6.02 8.00 12.13

IT Resource Cost 3.3 4.34 5.52 7.78

Bandwidth Cost 1.20 1.68 2.48 4.35

Average running time (s) 0.57 21.06 950.08 2581.75

Algorithm 1

Total Deployment Cost 4.50 6.27 8.24 12.51

IT Resource Cost 3.3 4.67 5.76 8.68

Bandwidth Cost 1.20 1.60 2.48 3.83

Average running time (s) 0.49 0.99 1.48 3.90

Low-Latency Scenario

ILP

Total Deployment Cost 4.31 5.13 5.96 8.10

IT Resource Cost 3.97 4.57 4.96 6.22

Bandwidth Cost 0.34 0.56 1.00 1.88

Average running time (s) 1.12 17.45 27.32 103.52

Algorithm 1

Total Deployment Cost 4.35 5.20 6.37 8.70

IT Resource Cost 4.03 4.64 5.52 7.36

Bandwidth Cost 0.32 0.56 0.85 1.34

Average running time (s) 0.42 0.96 1.49 2.97

5(a), we notice that when the number of requests is the same,
the total deployment cost increases if we switch from the
normal scenario to the large-bandwidth one or the low-latency
one. This is because when the QoS requirement becomes
more stringent, provisioning a vNF-SC request could involve
more bandwidth or/and IT resource cost. The results in Table
II confirm the analysis, and so do those in Fig. 5(b). For
instance, Fig. 5(b) indicates that in the normal scenario, vNF-
SC requests can be provisioned without using any SmartNICs,
while the largest number of SmartNICs would be required to
serve the requests in the low-latency scenario. Therefore,the
results in Table II and Fig. 5 also suggest that by leveraging
heterogeneous NFV platforms, we can provision vNF-SC
requests with various QoS requirements more cost-effectively.
This further justifies the motivation of this work.

C. Large-Scale Test

We then use the large-scale NSFNET topology to evaluate
our proposal. This time, as the ILP has already become
intractable, we only simulate our approximation algorithm
(i.e., Algorithm1), and use it to provisioning different numbers
of vNF-SCs to check its scalability. In the simulations, we
assume that the maximum number of requests is|R| = 64.
This is because in practical cases, it would be rare for an SP
to receive more than64 vNF-SC requests simultaneously and
provision them in a batch. Hence, if more requests come in at
different time instants, the SP can simply apply our approxi-
mation algorithm multiple times instead of provisioning them
in one batch. Moreover, in the large-scale simulations, we do

10

not distinguish the normal, large-bandwidth, and low-latency
scenarios, but assume that vNF-SC requests with various
QoS requirements distribute randomly in the pending requests.
Therefore, the simulation scenario will be more practical.

We first evaluate the convergence performance ofAlgorithm
1 with the most stressful case (i.e., it needs to jointly optimize
the provisioning schemes of|R| = 64 pending vNF-SC re-
quests). Fig. 6 shows the results on convergence performance,
where the result of the LP-relaxation gives a lower-bound and
each feasible solution obtained in one iteration provides an
upper-bound. We can see that for the most stressful case,
Algorithm 1 converges after only30 iterations to achieve an
upper-bound on the approximation ratio as1 + γ = 1.2629.

0 10 20 30 40 50
Iteration Number

0

10

20

30

40

T
ot

al
 C

os
t

lower-bound
upper-bound

Fig. 6. Convergence performance ofAlgorithm 1 for serving |R| = 64

vNF-SCs in NSFNET topology.

Then, we change the number of pending requests from4 to
64, applyAlgorithm 1 with γ ∈ {0.3, 0.5, 0.7} to serve them,
and record the average total deployment cost and the average
number of iterations to achieve the selectedγ. Fig. 7 shows the
simulation results. As expected, the results in Fig. 7(a) suggest
that with a smallerγ, the total deployment cost of vNF-
SC requests can be further reduced with our approximation
algorithm. Meanwhile, the tradeoff is that a smallerγ makes
the algorithm run more iterations to obtain a qualified solution.
Therefore, for our proposed approximation algorithm, we can
adjust the value ofγ to tackle the tradeoff between the
solution’s optimality and the running time. Nevertheless,in
all the simulation scenarios, decreasingγ from 0.7 to 0.3
would not lead to an excessive increase of iterations, which
confirms the scalability of our proposal. Table III lists the
average running time taken byAlgorithm 1, whenγ is fixed
as 0.3 and the number of requests inR changes from4 to
64. It can be seen that when|R| increases from4 to 64, the
average time thatAlgorithm1 takes to serve one request only
increases from1.56 to 3.26 seconds. This further confirms the
time-efficiency and scalability of our proposal.

D. Comparative Evaluations

In addition to evaluating our proposal in different simu-
lation scenarios, we should also compare it with state-of-art
benchmarks. However, to the best of our knowledge, there
is no existing algorithm that was designed to address our
problem of application-driven provisioning of vNF-SCs over
heterogeneous NFV platforms. Therefore, we try to adopt a

4 8 16 32 48 64
Number of Requests (|R|)

0

20

40

A
ve

ra
ge

 T
ot

al
 C

os
t

(a) vNF-SC deployment cost

4 8 16 32 48 64
Number of Requests (|R|)

0

10

20

30

A
ve

ra
ge

 It
er

at
io

n
T

im
es

(b) Iterations to achieve selectedγ

Fig. 7. Simulation Results with NSFNET topology.

TABLE III
AVERAGE RUNNING T IME OF Algorithm1 (γ = 0.3)

|R| Average Running Time (s)

4 6.22

8 15.59

16 33.07

32 81.18

48 136.01

64 208.76

benchmark from the studies whose backgrounds are similar
to ours, and decide to use the approximation algorithm de-
veloped in [9], which is also based on LP relaxation with
rounding and solves the problem of network function subgraph
(NF-subgraph) provisioning. Here, an NF-subgraph can be
understood as the merging result of several vNF-SCs. As
the benchmark considers similar constraints and optimization
objective as ours, we can apply minor modifications to adapt
it to our problem. Meanwhile, since it treats NF-subgraphs as
the basic virtual structures for service provisioning, we merge
4 vNF-SCs to compose each NF-subgraph2.

We first compareAlgorithm1 and the benchmark in the SNT
whose topology is the 14-node NSFNET, and the simulation
parameters are the same as those in the previous subsection.

2Note that, if the number of vNF-SCs in each NF-subgraph is toolarge,
it would be difficult for the benchmark to find the best provisioning scheme
for the resulting NF-subgraph. Hence, for fair comparisons, we only include
4 vNF-SCs in each NF-subgraph. We also try to merge other smallnumbers
of vNF-SCs as an NF-subgraph, and the results follow the sametrend.

11

4 8 16 32 48 64
Number of Requests (|R|)

0

20

40

60

80

100

T
ot

al
 D

ep
lo

ym
en

t C
os

t

0

0.5

1

1.5

2

R
un

ni
ng

 T
im

e
R

at
io

 o
f A

lg
or

ith
m

 1
 to

 B
en

ch
m

ar
k

Benchmark
Algorithm 1

Fig. 8. Comparisons of Algorithm 1 and the benchmark with NSFNET
topology.

1

2

3

6 10

4

5

7

8

9

14

13

12

11

16

15

3

Fig. 9. 16-node SNT topology with propagation latencies marked inµs.

Fig. 8 compares the two algorithms in terms of the deployment
cost of vNF-SCs and running time. Note that, to ensure fair
comparisons, we terminate the two algorithms after similar
numbers of iterations. We observe thatAlgorithm 1 outper-
forms the benchmark to provide lower deployment costs, while
its running time is only slightly longer. This is because the
benchmark does not specifically consider the heterogeneous
NFV platforms to satisfy different QoS demands, or optimize
the routing of each vNF-SC together with the placements of
vNFs (i.e., it first determines the placements of vNFs and then
calculates the routing paths based on them). Meanwhile, as
Algorithm 1 addresses a more sophisticated optimization, it
takes slightly longer time to accomplish the task.

Next, we simulate the two algorithm with the random SNT
topology in Fig. 9, which has 16 SNs, and a new type of vNFs
(i.e., vNF 5) is also introduced to compare the algorithms in
more aspects. The parameters ofvNF 5 are assumed to be the
average values of the corresponding ones ofvNFs1-4 in Table
I, and the other simulation parameters are still the same. Fig.
10 plots the simulation results of the two algorithms, which
still have the similar trends as those in Fig. 8. The results in
Figs. 8 and 10 verify the advantages of our proposal, and thus
further justify the contributions of this work.

VII. C ONCLUSION

In this paper, we studied application-driven provisioning
of vNF-SCs over heterogeneous NFV platforms. An LAG-
based approach was first introduced to model the provisioning
problem. Then, based on the vNF-SC requests and their LAGs,

4 8 16 32 48 64
Number of Requests (|R|)

0

20

40

60

80

100

120

T
ot

al
 D

ep
lo

ym
en

t C
os

t

0

0.5

1

1.5

2

R
un

ni
ng

 T
im

e
R

at
io

 o
f A

lg
or

ith
m

 1
 to

 B
en

ch
m

ar
k

Benchmark
Algorithm 1

Fig. 10. Comparisons of Algorithm 1 and the benchmark with 16-node
topology.

we formulated a novel ILP model to optimize the application-
driven provisioning of vNF-SCs, such that the total cost of
vNF-SC deployment can be minimized while the QoS require-
ments of all the vNF-SCs are satisfied. To reduce the time
complexity of problem solving, we designed an approximation
algorithm based on LP relaxation with randomized rounding.
Extensive simulations confirmed that with significantly im-
proved time-efficiency, our proposed algorithm provides near-
optimal solutions whose approximation ratios are bounded.
Although the focus of this work is algorithm design but not
system implementation, our proposal uses practical assump-
tions and thus can be implemented in the control plane of an
SDN-based NFV framework (e.g., the network service header
(NSH) architecture [57]) to provide high-performance vNF-
SC provisioning schemes. In our future work, we will try to
verify this with experimental investigations.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC
projects 61871357, 61771445 and 61701472, ZTE Research
Fund PA-HQ-20190925001J-1, Zhejiang Lab Research Fund
2019LE0AB01, CAS Key Project (QYZDY-SSW-JSC003),
and SPR Program of CAS (XDC02070300).

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2017-2022.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-741490.
html

[2] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] M. Chiosi et al., “Network functions virtualisation,” 2012. [Online].
Available: https://portal.etsi.org/nfv/nfvwhite paper.pdf

[4] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,”IEEE Commun.
Mag., vol. 53, pp. 90–97, Feb. 2015.

[5] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,”IEEE Commun. Surveys Tuts., vol. 18, pp. 236–
262, First Quarter 2016.

[6] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,”IEEE Commun. Surveys Tuts.,
pp. 1409–1434, Second Quarter 2018.

[7] J. Liu et al., “On dynamic service function chain deployment and
readjustment,”IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[8] B. Li, W. Lu, and Z. Zhu, “Deep-NFVOrch: Leveraging deep reinforce-
ment learning to achieve adaptive vNF service chaining in EON-DCIs,”
J. Opt. Commun. Netw., vol. 12, pp. A18–A27, Jan. 2020.

12

[9] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider
service chain embedding with Nestor,”IEEE Trans. Netw. Serv. Manag.,
vol. 14, pp. 91–105, Jan. 2017.

[10] W. Fanget al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[11] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network
orchestration for on-demand and cost-effective vNF service chaining
in inter-DC elastic optical networks,”J. Opt. Commun. Netw., vol. 10,
pp. D29–D41, Oct. 2018.

[12] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey onservice
function chaining,”J. Netw. Comput. Appl., vol. 75, pp. 138–155, Nov.
2016.

[13] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[14] T. Kuo, B. Liou, K. Lin, and M. Tsai, “Deploying chains ofvirtual
network functions: On the relation between link and server usage,”
IEEE/ACM Trans. Netw., vol. 26, pp. 1562–1576, Aug. 2018.

[15] J. Andersonet al., “Performance considerations of network functions
virtualization using containers,” inProc. of ICNC 2016, pp. 1–7, Feb.
2016.

[16] C. Kachris, G. Sirakoulis, and D. Soudris, “Network function virtual-
ization based on FPGAs: A framework for all-programmable network
devices,”arXiv preprint arXiv:1406.0309, 2014.

[17] Y. Le et al., “UNO: Uniflying host and smart NIC offload for flexible
packet processing,” inProc. of ACM SoCC 2017, pp. 506–519, Sept.
2017.

[18] C. Sun, J. Bi, Z. Zheng, and H. Hu, “HYPER: A hybrid high-
performance framework for network function virtualization,” IEEE J.
Sel. Areas Commun., vol. 35, pp. 2490–2500, Nov. 2017.

[19] L. Dong et al., “On application-aware and on-demand service compo-
sition in heterogenous NFV environments,” inProc. of GLOBECOM
2019, pp. 1–6, Dec. 2019.

[20] M. Bouet, T. Leguay, J.and Combe, and V. Conan, “Cost-based place-
ment of vDPI functions in NFV infrastructures,”Int. J. Netw. Manag.,
vol. 25, pp. 490–506, Nov./Dec. 2015.

[21] “Network functions virtualization (NFV),” Tech. Rep., Oct. 2014.
[Online]. Available: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/
NFV White Paper3.pdf

[22] “Network functions virtualisation (NFV): use cases,”Tech. Rep., Oct.
2013. [Online]. Available: http://www.etsi.org/deliver/etsi gs/nfv/001
099/001/01.01.0160/gs nfv001v010101p.pdf

[23] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service
chain deployment based on affiliation-aware vNF placement,” in Proc.
of GLOBECOM 2016, pp. 1–6, Dec. 2016.

[24] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[25] Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualnetwork
function graph (vNFG) provisioning in multidomain elasticoptical
networks,”J. Lightw. Technol., vol. 35, pp. 2712–2723, Jul. 2017.

[26] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[27] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[28] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[29] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[30] “IETF service function chaining (SFC),” Tech. Rep., Apr. 2014.
[Online]. Available: https://datatracker.ietf.org/wg/sfc/charter

[31] I. Janget al., “Optimal network resource utilization in service function
chaining,” in Proc. of NetSoft 2016, pp. 11–14, Jun. 2016.

[32] S. Draxler, H. Karl, and Z. Mann, “Jasper: Joint optimization of scaling,
placement, and routing of virtual network services,”IEEE Trans. Netw.
Serv. Manag., vol. 15, pp. 946–960, Sept. 2018.

[33] C. Mouradianet al., “Application component placement in NFV-based
hybrid cloud/fog systems with mobile fog nodes,”IEEE J. Sel. Areas
Commun., vol. 37, pp. 1130–1143, May 2019.

[34] D. Bhamareet al., “Optimal virtual network function placement in multi-
cloud service function chaining architecture,”Comput. Commun., vol.
102, pp. 1–16, Apr. 2017.

[35] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[36] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[37] L. Gonget al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[38] M. Xia et al., “Network function placement for NFV chaining in
packet/optical datacenters,”J. Lightw. Technol., vol. 33, pp. 1565–1570,
Apr. 2015.

[39] W. Fanget al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnections,”J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Mar. 2015.

[40] X. Chenet al., “Leveraging mixed-strategy gaming to realize incentive-
driven VNF service chain provisioning in broker-based elastic optical
inter-datacenter networks,”J. Opt. Commun. Netw., vol. 10, pp. A232–
A240, Feb. 2018.

[41] X. Chen, Z. Zhu, R. Proietti, and B. Yoo, “On incentive-driven VNF ser-
vice chaining in inter-datacenter elastic optical networks: A hierarchical
game-theoretic mechanism,”IEEE Trans. Netw. Serv. Manag., vol. 16,
pp. 1–12, Mar. 2019.

[42] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” inProc. of INFOCOM 2015, pp.
1346–1354, Apr. 2015.

[43] Y. Li, L. Phan, and B. Loo, “Network functions virtualization with soft
real-time guarantees,” inProc. of INFOCOM 2016, pp. 1–9, Apr. 2016.

[44] Y. Sanget al., “Provably efficient algorithms for joint placement and
allocation of virtual network functions,” inProc. of INFOCOM 2017,
pp. 1–9, May 2017.

[45] J. Zhang, W. Wu, and J. Lui, “On the theory of function placement and
chaining for network function virtualization,” inProc. of ACM MobiHoc
2018, pp. 91–100, Jun. 2018.

[46] I. Jang, D. Suh, S. Pack, and G. Dan, “Joint optimizationof service
function placement and flow distribution for service function chaining,”
IEEE J. Sel. Areas Commun., vol. 35, pp. 2532–2541, Nov. 2017.

[47] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” inProc. of CNSM 2014, pp. 418–423,
Nov. 2014.

[48] B. Yi, X. Wang, M. Huang, and A. Dong, “A multi-stage solution for
NFV-enabled multicast over the hybrid infrastructure,”IEEE Commun.
Lett., vol. 21, pp. 2061–2064, Sept. 2017.

[49] X. Liu, L. Gong, and Z. Zhu, “Design integrated RSA for multicast
in elastic optical networks with a layered approach,” inProc. of
GLOBECOM 2013, pp. 2346–2351, Dec. 2013.

[50] P. Raghavan and C. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,”Combinatorica,
vol. 7, pp. 365–374, Dec. 1987.

[51] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms. MIT press, 2009.

[52] D. Goldfarb and M. Todd, “Modifications and implementation of the
ellipsoid algorithm for linear programming,”Math. Program., vol. 23,
pp. 1–19, Dec. 1982.

[53] G. Strang, “Karmarkar’s algorithm and its place in applied mathematics,”
Math. Intell., vol. 9, pp. 4–10, Jan. 1987.

[54] D. Dubhashi and A. Panconesi,Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[55] (2019) Amazon web services. [Online]. Available: https://aws.amazon.
com/cn/ec2/pricing/reserved-instances/pricing/

[56] (2019) Colfax direct. [Online]. Available: http://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=3017&idcategory=0

[57] J. Halpern and C. Pignataro, “Service function chaining (SFC)
architecture,” RFC 7655, Oct. 2015. [Online]. Available: https:
//tools.ietf.org/html/rfc7665.

