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Abstract—To closely monitor the performance of lightpaths
in an elastic optical network (EON), people need to rely on
real-time and fine-grained spectrum monitoring. This, however,
will generate tremendous telemetry data, which can put great
pressure on both the control and data planes. In this work, we
design and experimentally demonstrate AutoSpecheck, which is a
DL-assisted network automation (DLaNA) system that can realize
highly-efficient and automatic spectrum inspection for anomaly
detection in EONs. Specifically, we architect AutoSpecheckbased
on the software-defined EON (SD-EON) architecture, and pro-
pose techniques to greatly reduce the loads of data reporting (in
the data plane) and data analyzing (in the control plane). To
reduce the loads of data reporting, we leverage the AutoEncoder
(AE) technique to design a spectrum data compression method.
To improve the efficiency of data analytics, we first design a
coarse filtering module (CFM) to let the control plane filter out
most of the normal data before invoking the DL-based anomaly
detection. Then, to address the difficulty of labeling massive
spectrum data, we develop a DL-based anomaly detection based
on semi-supervised learning. Our experimental demonstrations
consider two representative intra-channel anomalies (i.e., the
filter drifting and in-band jamming), and the results confirm
that AutoSpecheck can achieve highly-efficient and automatic
spectrum inspection for anomaly detection in EONs.

Index Terms—Software-defined networking (SDN), Elastic op-
tical networks (EONs), Network automation, Anomaly detection,
Deep learning (DL), AutoEncoder (AE), Spectrum inspection.

I. I NTRODUCTION

NOWADAYS, the rapid deployment of cloud infrastruc-
tures and fast emergence of bandwidth-hungry applica-

tions (e.g., Big Data analytics and live streaming) have driven
network traffic to skyrocket in volume and become much more
dynamic [1–4]. Hence, flexible-grid elastic optical networks
(EONs) have recently attracted intensive interests and have
been considered as a promising technology for the optical layer
[5–7]. This is because EONs get rid of the restrictions due to
fixed spectral grids, and enable adaptive spectrum allocation
at a granularity of12.5 GHz or even narrower [8–10].

However, the rising of EONs also brings challenges to
network control and management (NC&M), especially for
anomaly detection in the optical layer [11–13]. Specifically,
the challenges are introduced due to two reasons. Firstly, the
lightpaths in EONs use various spectral widths and more
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modulation formats, while the significant increase of com-
binations makes it much more difficult to detect anomalies.
For instance, the anomaly detection based on comparing
lightpaths’ spectra to a standard spectral shape [14] will be
inapplicable. Secondly, as they use sophisticated modulation
formats, such as quadrature phase shift keying (QPSK) and 16-
quadrature amplitude modulation (16-QAM), the lightpathsin
EONs are more prone to be affected by quality-of-transmission
(QoT) degradations. This means that the anomaly detection in
EONs has to be more sensitive and precise than its antecessors.

The anomalies concerned by an NC&M system can be
categorized into hard and soft failures. Hard failures refer to
those that will cause severe performance degradations or even
disconnect lightpaths completely, and they can be detected
with traditional optical performance monitoring techniques
[15]. On the other hand, soft failures are much less harmful
than the hard ones, which makes them hard to detect, and
they would still cause lightpath disfunction if having been
ignored for a long time [14]. Note that, in addition to the
reactive technique to detect soft failures timely and precisely,
their impacts can also be mitigated proactively by estimating
and reserving sufficient QoT margins [16]. Although people
have already proven the effectiveness of the proactive schemes,
soft failure detection is still necessary and important forEONs.
This is because the highly dynamic traffic in today’s Internet
makes reconfigurations common in the optical layer [17], and
the QoT of lightpaths can become unstable due to frequent re-
configurations [18]. Hence, we have to face the dilemma that if
reserving excessive margins, network resources will be under-
utilized during normal operation, but reducing the marginswill
lead to higher failure probabilities during reconfigurations.

One can hardly realize timely and precise anomaly detection
without real-time and fine-grained network monitoring [13],
which has recently made promising advances due to the
introduction of network telemetry [19, 20] and disaggregation
of optical networking systems [21]. Specifically, we can deploy
many optical performance monitors (OPMs) in a disaggregated
optical networking system, and then leverage network teleme-
try techniques to convey the collected status data to the NC&M
system for deep learning (DL) based data analytics [22]. Note
that, many OPMs are essentially simplified optical spectrum
analyzers, due to the reason that most of the key performance
metrics of a lightpath (e.g., power level, optical signal-to-noise
ratio (OSNR), and channel width) can be obtained through
spectrum analysis [11]. Meanwhile, the current commercially-
available OPMs can quickly scan the whole C-band using a
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fine resolution of312.5 MHz within one or two seconds [23].
Nevertheless, the aforementioned real-time and fine-grained

spectrum monitoring will generate tremendous status data,
which will flood the control channels between the NC&M sys-
tem and an EON, and put great pressure on the DL-based data
analytics in it. To the best of our knowledge, how to improve
the efficiency of spectrum inspection for anomaly detectionin
EONs still has not been fully explored. Hence, in this work, we
design and experimentally demonstrate AutoSpecheck, which
is a DL-assisted network automation (DLaNA) system that
can realize highly-efficient and automatic spectrum inspection
for anomaly detection in EONs. Specifically, we architect
AutoSpecheck based on the software-defined EON (SD-EON)
architecture [24, 25], propose new techniques to greatly reduce
the loads of data reporting (in the data plane) and data
analyzing (in the control plane), and implement our proposals
in a real SD-EON testbed for experimental demonstrations.

Compared with the existing schemes for DL-based anomaly
detection in EONs, our innovations and contributions can be
summarized as follows. Firstly, we leverage the AutoEncoder
(AE) technique [26] to design a spectrum data compression
method, which not only significantly reduces the load of
data reporting from the data plane, but also ensures that the
correlations buried in spectrum data will be kept through the
compression. Secondly, we design a coarse filtering module
(CFM) for the control plane to filter out most of the normal
data before invoking the DL-based spectrum inspection for
anomaly detection. Note that, during network operation, the
QoT of a lightpath stays normal in most of the time [27], and
thus the CFM can greatly relieve the load of data analyzing.

Thirdly, to address the difficulty of labeling massive spec-
trum data, we develop the DL-based anomaly detection based
on semi-supervised learning. Specifically, we first proposean
unsupervised learning model based on clustering to detect
anomalies in and label massive data automatically by utilizing
only a small amount of labeled data, and then design a super-
vised learning model that can leverage the labeled data to train
its deep neural network (DNN) for accurate anomaly detection.
Fourthly, we implement our proposals in an SD-EON testbed
to consider two representative intra-channel anomalies (i.e.,
filter drifting and in-band jamming [28]). Finally, we conduct
experiments to verify that AutoSpecheck can achieve highly-
efficient and automatic spectrum inspection for anomaly de-
tection in EONs, and close the loop of “observe-analyze-act”
for the DLaNA to 1) detect and locate anomalies timely and
accurately and 2) implement recovery plans quickly.

The rest of paper is organized as follows. Section II briefly
surveys the related work. We present the overall design of Au-
toSpecheck in Section III. Sections IV and V elaborate on our
proposals for the data and control planes, respectively, toreal-
ize highly-efficient and automatic spectrum inspection. Then,
the numerical results regarding AutoSpecheck are discussed
in Section VI, and we show its experimental demonstrations
in Section VII. Finally, Section VIII summarizes the paper.

II. RELATED WORK

Recently, the promising advances on DL have promoted
the idea of integrating DL models in NC&M systems to real-

ize the so-called knowledge-defined networking (KDN) [29].
Following this trend, people have proposed various DLaNA
systems for optical networks, to facilitate QoT estimation
[30], anomaly detection [27, 31, 32], physical-layer securi-
ty monitoring [28, 33], network function virtualization [34,
35], datacenter management [36, 37],etc. For comprehensive
information about the applications of DL in optical networks,
one is suggested to check the surveys and tutorials in [38–40].

Since each fiber link can carry a tremendous volume of
data traffic, survivability and availability are always important
topics in the design and operation of EONs. Therefore, the
previous studies in [41–43] have considered how to allocate
backup resources to protect lightpaths against hard failures
such as fiber cuts. However, they did not address how to detect
and locate anomalies, especially when they are soft failures.
In the proactive manner, the impacts of soft failures can be
relieved or even avoided by estimating and reserving enough
QoT margins [16]. Hence, people have designed different
machine learning models to achieve precise QoT estimation
for lightpaths [44–46]. Although it can compensate for future
QoT degradations to ensure the performance of lightpaths, the
proactive scheme also results in under-utilization of spectrum
resources in EONs during normal operation. Hence, timely
and accurate anomaly detection and corresponding service
recovery are vital for realizing low-margin operation [47].

For anomaly detection, the authors of [48] took the bit-
error-rate (BER) of lightpaths as the input to detect anomalies
related to optical filtering. Nevertheless, BER measurement
or estimation requires complicated implementations related
to the time-domain (e.g., the coherent detection and digital
signal processing (DSP) [11]), which are expensive and only
available at the receiver end. Therefore, the anomaly detection
might have difficulty to precisely locate where the anoma-
lies happen on lightpaths. Moreover, it is known that BER
might not always be available in EONs, since certain cross-
domain lightpaths may end in other domains [49]. Regarding
the anomaly detection in filterless optical networks (FONs),
Shariati et al. [50–52] proposed several interesting optical
signal tracking approaches to detect small laser drifts. There
are two major differences between these studies and our work.
Firstly, as laser drifting can only happen at the transmitter
of a lightpath, the studies in [50–52] only needed to address
anomaly detection, while we consider anomaly detection and
location. Secondly, because the studies only focused on track-
ing the central frequency of each optical transmitter accurately,
they did not need to use supervised learning. However, in our
case, we need to address two different types of anomalies, and
thus the mapping between spectrum features and anomalies is
not that straightforward. Therefore, we have to leverage semi-
supervised learning for the anomaly detection and location.

On the other hand, spectrum analysis can be realized at
any point on a lightpath, does not need sophisticated time-
domain processing, and is much cheaper. Hence, it would be
more promising to detect anomalies with spectrum inspection
[53]. However, as the spectrum inspection needs to operate
on tremendous spectrum data from real-time and fine-grained
monitoring, the loads of data reporting and analyzing will
cause severe scalability issues. The studies in [54, 55] de-
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veloped a few machine learning based approaches to analyze
optical spectrum for soft-failure detection and location (with
the focus on filter drifting and filter tightening). Althoughthese
studies considered a similar problem as ours, we make new
contributions over them and thus the techniques proposed in
this work can be used to improve the efficiency of the soft-
failure detection and location in [54, 55]. Specifically, asthey
leveraged the classification based on support vector machine
(SVM) or decision tree (DT) for detecting and locating soft-
failures, our CFM can also help their systems filter out most
of the normal data in advance and thus reduce the load of
data analyzing in the classification, and our GMM-based data
clustering and labeling can be leveraged to avoid the hassleof
labeling data manually too. Note that, the proposals in [54,55]
were based on the node-based approach in the data plane. In
other words, the soft-failure detection is mainly accomplished
by local OPMs. The benefits of this approach are: 1) decisions
can be made locally and timely, and 2) the need of sending
spectrum data to the control plane can be minimized. However,
the involvement of the control plane is still needed, and thus
the authors designed algorithms for the control plane to obtain
a global view for anomaly detection and location.

Hence, we consider the controller-based approach in this
work. Nevertheless, for both the node-based approaches in
[54, 55] and our controller-based one, there are pros and cons
(i.e., there does not exist a universal winner). Therefore, we
should select the right one to implement according to its actual
characteristics of an optical network. In [56, 57], the authors
discussed the learning life cycle to speed up the network
automation in optical networks, while the techniques used for
anomaly detection and location were based on the designs in
[54, 55]. Hence, the studies also assumed that the anomaly
detection and location are based on supervised learning with
the node-based approach. Note that, with supervised learning,
the classification models have to be trained with massive
labeled data that tells the ground-truth about anomalies before
they can be put into operation, and thus data labeling will be
an issue. Finally, we would like to mention that our AE-based
spectrum data compression can also be leveraged to improve
the efficiency of the node-based systems proposed in [50–52,
54–57], because it can reduce the storage used to record the
standard spectra and/or correction masks in local OPMs.

Previously, the study in [27] considered how to detect
anomalies with unlabeled data, to avoid the hassle of labeling
massive data. Nevertheless, the proposed algorithm could only
differentiate the normal and abnormal data points, but could
not classify the anomalies or locate them in the data plan.
On the other hand, Christodoulopouloset al. [58] investigated
the method to realize accurate anomaly detection and location
with as few OPMs as possible. However, reducing the number
of OPMs can only partially address the scalability issues, and
cannot resolve the difficulty on data labeling. To the best ofour
knowledge, highly-efficient spectrum inspection for anomaly
detection in EONs is still under-explored.

III. OVERALL SYSTEM DESIGN

Fig. 1 shows the overall system design of AutoSpecheck,
which includes new functional modules in both the data and
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Fig. 1. Network architecture and system design of AutoSpecheck.

control planes of an SD-EON. The data plane of the SD-EON
consists of bandwidth-variable optical cross-connects (BV-
OXCs) interconnected by optical fibers. By leveraging built-in
bandwidth-variable wavelength selective switches (BV-WSS’),
each BV-OXC de-multiplexes lightpaths from input fibers,
terminates those that mark the BV-OXC as their destinations,
and optically grooms the remaining ones with the locally-
generated lightpaths to send to the corresponding output fibers.
For network monitoring, we place at least one OPM on each
fiber link, which taps a small portion of optical power from
the fiber and performs spectrum analysis on the signal.

A. Major Components

In our AutoSpecheck, the OPM is a commercial product that
can scan the whole spectrum of C-band with a fine resolution
of 312.5 MHz in two seconds [23]. Hence, the spectrum of
each lightpath can be represented with a series of power levels
at the spectral points in its channel, which can be modeled as
Pl,m = {p

(1)
l,m, · · · , p

(n)
l,m}, where l andm are the indices of

the lightpath and the OPM, respectively, andn is the number
of spectral points collected for the lightpath. To realize real-
time monitoring, OPMs in the data plane need to report all
the spectrum data (i.e., {Pl,m, ∀l,m}) to the control plane
frequently, which will generate a large volume of traffic in
the control channels. Hence, as shown in Fig. 1, we design a
spectrum data agent (SpecAG) to compress the data received
from each OPM with an AutoEncoder (AE) based technique
[26]. The SpecAG transforms eachPl,m to P̂l,m, which is
also a vector but containing much fewer elements (i.e., from
160 elements to6 or less), and it ensures that the correlations
buried inPl,m will be kept through the compression. We will
explain the details about SpecAG in Section IV.

In the control plane, the SDN controller is developed based
on the well-known ONOS platform [59], and it communicates
with the network elements in the data plane with the OpenFlow
protocol. The controller collects compressed spectrum data
from the data plane, stores the data in the traffic engineering
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database (TED), leverages the DLaNA module for timely
and accurate anomaly detection, calculates the recovery plan
when encountering anomalies, and reconfigures the data plane
accordingly. In the TED, the data plane is modeled as a graph
G(V,E), whereV andE are the sets of BV-OXCs and fiber
links, respectively, while the information about each lightpath
l is recorded as a tuple<Rl, {P̂l,m, ∀m ∈ Rl}>, where
Rl denotes the set of fiber links on its routing path, and each
OPMm corresponds to a fiber link. Then, the set of lightpaths
is denoted asL = {l0, l1, · · · }, and the TED organizes the
information regarding each lightpath as an entry.

The DLaNA in the control plane takes lightpaths’ spectrum
data from the TED for anomaly detection and location. Note
that, to precisely detect and classify anomalies, the DLaNA
needs to be trained with labeled data, but labeling massive
spectrum data manually will be time-consuming and inconve-
nient. Therefore, we design the data preprocessing module for
data labeling, which leverages unsupervised learning together
with only a small amount of labeled data to detect anomalies
in and label massive spectrum data automatically. Then, the
labeled data is used to train the coarse filtering module (CFM),
such that it can filter out most of the normal data before
invoking the DL-based spectrum inspection,i.e., reducing the
load of data analyzing significantly.

The anomaly detection and location module also gets trained
with the labeled data, to detect and classify different types
of anomalies based on the compressed spectrum data. Next,
during network operation, the anomaly detection and location
module return the information about anomalies to the con-
troller, which comes up with proper recovery plans. This work
considers two representative intra-channel anomalies,i.e., filter
drifting and in-band jamming. Our DLaNA does not assume
a fixed channel width to adapt to the lightpaths in EONs, and
its detailed design will be discussed in Section V.

B. Data Collection and Preparation

In this work, we collect spectrum data from a real EON
system and apply our proposal on the data to demonstrate
its practicalness. Fig. 2 shows the experimental setup, where
the lightpaths are generated and received by the bandwidth
variable transponders (BV-Ts) in our Juniper optical packet
platform (BTI-7800). With three pairs of BV-Ts, we can set
up three lightpaths, each of which uses a channel width of
50 GHz to achieve the data-rate of100 Gbps with QPSK
modulation (i.e., 31.2 Gbaud with forward-error correction
(FEC)). In the experiments, we configure the50-GHz channels
of the three lightpath as adjacent, only concern the lightpath
that locates in the middle of the three, and use the remaining
two as possible background lightpaths. Then, we can obtain
four lightpath scenarios by configuring the BV-Ts (i.e., only
the concerned lightpath is on, the concerned lightpath and a
background one are on, and all the three lightpaths are on).

Next, we consider fiber transmission and optical switching.
As shown in Fig. 2, there is a fiber link with inline erbium-
doped fiber amplifier (EDFA) before the receiver, while before
this final fiber link, we can insert[2, 10] stages of fiber trans-
mission and optical switching. Here, the fiber transmission

BV-T AttenuatorOPM

25 km Fiber 

EDFA

ASE BV-WSS Mux/Demux
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Fig. 2. Experimental setup for spectrum data collection.
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Fig. 3. Spectra of normal and abnormal lightpaths.

is also realized with a fiber link with inline EDFA, and the
optical switching is realized by a BV-WSS. Therefore, we can
get nine transmission/switching scenarios. Meanwhile, aswe
consider two types of anomalies (i.e., filter drifting and in-
band jamming) and there are8 severities of filter drifting,
we totally have10 anomaly scenarios including the normal
cases. Here, filter drifting is emulated by changing the central
frequency of the BV-WSS in a stage, while in-band jamming
is realized by using a BV-WSS to make the noise from an
amplified spontaneous emission (ASE) noise generator span
the same channel of the concerned lightpath, and injecting it
in one of the stages with a fiber coupler. As we only address
soft failures in this work, we make sure that the anomalies on
the concerned lightpath only cause minor BER degradations at
its receiver, but will not disconnect its data transmission. Fig.
3 gives several examples on the spectra of lightpaths. It can
be seen that the spectrum of a lightpath with in-band jamming
will not be significantly different from that without.

At this moment, we have four lightpath scenarios, nine
transmission/switching scenarios, and ten anomaly scenarios,
which totally result in360 combinations. For each combi-
nation, we can further change its setup (e.g., changing the
location of anomaly insertion, slightly adjusting the magnitude
of the concerned anomaly, and varying the attenuations before
inline EDFAs) to obtain15 lightpath states. Finally, we can
use the setup in Fig. 2 to get5, 400 types of lightpaths.

Meanwhile, we have to explain that not all the data used
in this work is purely from experiments, and we do leverage
simulations to obtain certain part of it. This is because we
can only use a BV-WSS to emulate a filter drifting of12.5
GHz, and the drifting can be toward both directions, while
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Fig. 4. Comparison of measured and simulated spectra of a lightpath going
through a BV-WSS with12.5 GHz filter drifting.

a smaller filter drifting is not feasible. Hence, in order to
generate the filter drifting that is smaller than12.5 GHz, we
measure the transfer function of the BV-WSS on a50-GHz
channel, change the central frequency of the transfer function
with a numerical method to get a new one that can induce a
desired filter drifting, and apply the obtained transfer function
to the spectra collected in experiments to emulate the smaller
filter drifting. Note that, the numerical method will not make
our data collection inaccurate or impractical, because it is still
based on real-world measurements. To prove this, we first
conduct an experiment to measure the spectrum of a lightpath
that goes through a BV-WSS with12.5 GHz drifting, and then
use the method mentioned above to simulate the spectrum. The
results are shown in Fig. 4, which indicates that the measured
and simulated spectra do not have noticeable differences.

IV. AE- BASED SPECTRUM DATA COMPRESSION INDATA

PLANE

The AE-based data compression in an OPM needs to trans-
form spectrum vectorPl,m to a vectorP̂l,m that contains fewer
elements. Note that, we concern more about the shape of the
spectrum in anomaly detection, and thus each OPM normalizes
the power levels inPl,m according to the peak power of
each lightpath. As shown in Fig. 5, the data compression
module follows the operation principle of AE [26] to include
an encoder and an decoder. Here, the encoder compresses
spectrum data, while the decoder is included to assist the
training of the encoder and guarantee that useful information
will not be lost through the compression.

In Fig. 5, the encoder first uses a convolutional neural
network (CNN) after the input layer. This is because the
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Fig. 5. AE-based data compression module.

CNN can accurately detect the presence of specific features
in spectrum vectors (e.g., the shapes of rising and falling
edges and the ripples in the pass-band), with the convolution
kernels that will be optimized in training. The CNN can extract
important features in the spectrum data, but the size of its
output is the same as that of the input spectrum vector. Hence,
we insert a max-pooling layer after it to compress the extracted
features, whose output will be further compressed with a fully-
connected layer to minimize the number of elements. The
output of the fully-connected layer is just the compressed
spectrum vector̂Pl,m, which will be sent to the control plan for
data analytics. Meanwhile,̂Pl,m also gets fed into the decoder
to evaluate the performance of the encoder, and the decoder
leverages two fully-connected layers to reconstruct the original
spectrum vectorPl,m based onP̂l,m.

In the training, we input spectrum vectors to the encoder
to get compressed vectors, use the decoder to reconstruct
the original vectors, and then update the parameters of the
encoder and decoder according to the mean squared error
(MSE) between the original and reconstructed vectors.

MSE(Pl,m, P
′

l,m) =
1

n
·

n∑

i=1

(p
(i)
l,m − p

(i)
l,m

′

)2, (1)

whereP ′
l,m = {p

(1)
l,m

′
, · · · , p

(n)
l,m

′
} is the reconstructed spec-

trum vector from the decoder. To show the effectiveness of
our AE-based data compression, we train and test one for
lightpaths with a channel width of50 GHz as follows1. For the
5, 400 lightpaths considered in Section III-B, we use OPMs to
measure the optical spectra at the inputs/outputs of fiber links
along their routing paths, and get54, 000 spectrum vectors,
among which the vectors for normal and abnormal lightpaths
are equal. Hence, each vectorPl,m represents a lightpath’s
spectrum at a certain location, and since the lightpath’s channel
width is 50 GHz and an OPM scans with a resolution of
312.5 MHz, Pl,m is a vector with160 elements. Next, in the
54, 000 spectrum vectors, we randomly select80% to put in
the training set, and use the remaining ones as the testing set.

We set the length of the compressed spectrum vectorP̂l,m as
{2, 3, 6}, and Table I shows the results on the MSE in Eq. (1)

1Note that, our AE-based data compression can also operate onthe spectrum
data of lightpaths whose channel widths are various, as longas each of their
spectrum vector has the same length. This can be achieved by including down-
/up-sampling after spectrum scanning in each OPM.
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TABLE I
RESULTS OFAE-BASED DATA COMPRESSION

Output Lengths 6 3 2

Data Compression Ratio 26.67 53.33 80

Average MSE
(

×10−2
)

3.103 3.105 4.268

Training Time (sec) 1747.74 2119.41 3138.69
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Fig. 6. Comparison of original and reconstructed spectra ofa lightpath, when
AE-based data compression output3-element vectors.

and training time. Here, the MSE is calculated and averaged
over all the spectrum vectors in the testing set. We can see that
the average MSE almost stays the same (∼3.1%) when we
reduce output length from6 to 3, but it increases noticeably
if we keep reducing the output length to2. Meanwhile, the
results on the training time suggest that it takes more time
to get an AE for compressing the spectrum vectors to those
that contain fewer elements. However, the training time only
increases by21% when the output length gets decreased from
6 to 3. Therefore, we set the output length of the AE-based
data compression as3 in the rest of the paper, and in this case,
the comparison of the original and reconstructed spectra ofa
lightpath can be seen in Fig. 6.

V. SEMI-SUPERVISEDLEARNING BASED ANOMALY

DETECTION IN CONTROL PLANE

This section describes the control plane design of Au-
toSpecheck,i.e., the data preprocessing for automatic labeling,
the CFM, and the DL-based anomaly detection and location.
As lightpaths in an EON do not have a standard spectral shape,
we compare the compressed spectrum vectors collected along
the routing path of a lightpath for anomaly detection. To see
how the optical spectrum of a lightpath changes after cascaded
BV-WSS’, we use the system configuration in Section III-B,
and measure the optical spectra of a100 Gbps QPSK lightpath
from back-to-back to after6 cascaded BV-WSS’, where each
BV-WSS has a channel width of50 GHz. The results are
shown in Fig. 7, which indicates that the spectra only shrink
slightly and the additional shrinking on them becomes more
ignorable, when the number of cascaded BV-WSS’ increases.
Specifically, the6-dB bandwidth of the lightpath only decreas-
es less than1 GHz after6 cascaded BV-WSS’. Therefore, we
do not consider the spectrum narrowing effect due to cascaded
BV-WSS’ in the algorithm design below. Meanwhile, we need
to admit that the effect can become more significantly, if the
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Fig. 7. Optical spectra of100 Gbps lightpath after cascaded BV-WSS’.

lightpath is operating in the low-margin scenario. To address
such cases, we can leverage the correction masks discussed in
[54–57] to compensate for the spectrum narrowing effect.

A. Automatic Data Labeling

As explained in Section III, we need to design a data
preprocessing technique to get rid of the hassle of labeling
massive spectrum data manually. We assume that there are|Rl|
fiber links in the routing path of lightpathl, m1 is the OPM
that is the nearest to the source ofl, and the OPMs on links
from source to destination are indexed with{m1, · · · ,m|Rl|},
respectively. After receiving the compressed spectrum vectors
for a lightpath from the data plane, we first organize the vectors
into pairs. In each pair, the two vectors correspond to the first
and other hops of the lightpath, respectively. Then, we denote
such a vector pair as a sample (Sl,mi

= {P̂l,m1
, P̂l,mi

}, i ∈
[2, |Rl|]). Next, we manually label a small portion of the
samples (i.e., one for each anomaly category), and use an
unsupervised learning model based on clustering to classify
anomalies based on the labeled data. Therefore, the data
labeling can be accomplished automatically.

We consider two types of anomalies (i.e., filter drifting and
in-band jamming), and each type of anomalies can have a few
severities. Hence, we define each anomaly category to include
all the anomalies whose types and severities are both the same.
Then, if the numbers of severities for the two anomaly types
are predefined asM1 and M2, respectively, we totally have
M1 +M2 + 1 anomaly categories (one for the normal case).

Algorithm1 shows the procedure of the unsupervised learn-
ing for automatic data labeling. As the numbers of severities
for the two anomaly types areM1 andM2, respectively,Line
1 usesM1 + M2 + 1 pre-labeled samples to represent all
the anomaly categories, which are the only ones that need
to be labeled manually. We useLines 2-3 to initialize the
parameters for the sample classification that tells anomaly
types and severities. Here,N ′ is defined to limit the maximum
number of iterations in the while-loop that coversLines 4-9,
and its value is determined empirically (Line 3).

Next, the while-loop tries to classify samples inS into
different numbers of clusters until there have been(N ′ −N)
iterations. In each iteration, we first leverage the Gaussian
mixture model (GMM) [60], which tries to describe a set
of data with a few Gaussian probability density functions
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Algorithm 1: Unsupervised Learning for Data Labeling
Input : Number of severities for filter driftingM1,

number of severities for in-band jammingM2, set
of data samplesS = {Sl,mi

, ∀l, i}.

1 useM1 +M2 + 1 pre-labeled compressed spectrum
vector pairs (i.e., samples) to represent all the anomalies;

2 insert the pre-labeled samples inS;
3 N = M1 +M2 + 1, N ′ = 3 ·N , B = ∅;
4 while N ≤ N ′ do
5 apply GMM-based unsupervised learning to classify

vectors inS into N clusters;
6 calculate BIC over theN clusters to obtainb;
7 insert tuple{b,N} in B;
8 N = N + 1;
9 end

10 find the smallestb in B and its correspondingN ;
11 merge theN clusters intoN ′ ones based on Euclidean

distance between cluster centers and pre-labeled samples;
12 label all the samples inS according to obtained clusters;

(GPDFs) whose means and covariance matrices are different,
to classify the vectors inS into a fixed number of clusters
(Line 5). Note that, even though GMM can adapt to clusters
with arbitrary shapes, it needs to know the number of clusters
to classify in advance. Hence, we fix the number of clusters
in each iteration, get the clusters with GMM, and calculate
the Bayesian information criterion (BIC) [61]b to evaluate
the quality of the obtained clusters (Line 6). According to
[61], a smallerb indicates a better clustering.Line 7 records
the value ofb and number of clusters in the current iteration
in set B. After the while-loop,Line 10 finds the smallest
b and its corresponding number of clustersN in B, which
represents the best clustering. Then,Line 11 merges the
clusters according to the Euclidean distance between the center
of each cluster to the pre-labeled samples. Specifically, if
a cluster does not include any pre-labeled sample, we will
merge it to the cluster whose pre-labeled sample has the
smallest Euclidean distance to its center. Finally, we label all
the samples inS according to the pre-labeled sample in each
obtained cluster (Line 12).

B. Efficient Anomaly Detection and Location

Note that, the QoT of a lightpath usually stays normal in
most of its network operation time [27], and thus even after
compression, abnormal vectors are still very sparse in the spec-
trum data received by the control plane. Hence, we propose
a CFM to filter out most of the normal data before invoking
the DL-based spectrum inspection for anomaly detection, such
that the load of data analyzing can be greatly reduced. We
denote an anomaly asa = {l,m, tp, sv}, where l refers to
the abnormal lightpath,m represents the OPM that reports
the abnormal spectrum vector and it actually indicates the
location of the anomaly, andtp and sv tell the type and
severity of the anomaly, respectively. For each lightpathl,
its compressed spectrum data includes a series of vectors as

…
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Fig. 8. Design of CFM.

TABLE II
ACCURACY ON TESTINGSET (45% OF SAMPLES ARE ABNORMAL)

Samples in Training Set 10% 30% 50% 70% 90%

GMM (%) 98.42 99.54 99.82 99.89 99.90

CFM w/ GMM (%) 99.58 99.76 99.90 99.91 99.97

CFM w/ Ground-truth (%) 99.75 99.83 99.93 99.93 99.97

{P̂l,m, ∀m ∈ Rl}, where each concerned OPMm corresponds
to a fiber link on the lightpath’s routing pathRl.

We design CFM based on the observation that when a
lightpath is transmitted all-optically, the shape of its spectrum
should stay similar from one link to another when it does not
experience any anomaly, and even in the low-margin scenario,
the spectrum narrowing due to cascaded BV-WSS’ can be
compensated with correction masks [54–57]. Specifically, for
a lightpath l that has|Rl| hops, the CFM can compare the
spectra from OPMm|Rl| with that from OPMm1 to filter out
most of the normal data. The architecture of the CFM is shown
in Fig. 8. Specifically, for each lightpathl, the CFM takes the
compressed spectrum vectors of the first and last hops as inputs
(i.e., P̂l,m1

and P̂l,m|R
l
|
, respectively), compares their shapes

with its hidden layers, and determines whether the lightpath
is abnormal with its output layer. We train the CFM with the
labeled data from the data preprocessing module in the offline
manner. If the CFM determines that a lightpathl is abnormal,
it forwards all the related spectrum data{P̂l,m, ∀m ∈ Rl} to
the anomaly detection and location module.

As shown in Fig. 9(a), we leverage a neural network that
uses exactly the same architecture of the CFM to compare the
spectrum vectors in{P̂l,m1

, · · · , P̂l,m|R
l
|−1

}, and utilize the
binary search to quickly locate where the anomaly happens.
Note that, the trained GMM that is for automatic data labeling
can also be reused to determine the type and severity of each
anomaly, as shown in Fig. 9(b). Before being putting into
operation, the CFM in the anomaly detection and location
module is also trained in the offline manner with the labeled
data from the data preprocessing module.

VI. N UMERICAL RESULTS

In this section, we present numerical results about the DL
models proposed for AutoSpecheck to show their performance.

A. Performance of Data Preprocessing for Labeling and CFM

With the5, 400 lightpaths in Section III-B, we measure the
optical spectra at different locations on their routing paths,
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Fig. 9. Design of anomaly detection and location module.

and get37, 800 spectrum vectors, among which the vectors
of normal samples take up45% and the rest are anomalies,
and the abnormal ones are evenly distributed over the9
anomaly scenarios (i.e., 8 severities of filter drifting and in-
band jamming). Then, we use the AE-based approach to
compress each spectrum vector to a 3-element sample, and
insert all the obtained samples in a data setS, which is used
to evaluateAlgorithm 1.

We haveM1 = 8 andM2 = 1, divide S into the training
and testing sets that include different portions of samples, use
the training set to train the GMM in the data preprocessing
module, and test the accuracy of its data labeling with the
testing set. Note that, when the ratio of training to testing
samples is selected, we randomly allocate the samples inS

to them. The results on the GMM’s labeling accuracy on the
testing set are listed in Table II. It can be seen that even if
the GMM is only trained with10% of samples inS, it can
deliver a labeling accuracy of98.42% on the remaining90%
of samples in the testing set. This confirms the effectiveness of
Algorithm1. Fig. 10 shows how BIC changes with the number
of clusters, when we train the GMM with10% of samples
in S. We observe that BIC reaches its minimum when there
are 16 clusters. As we finally need to classify the samples
into 10 categories, the16 clusters are merged into10 clusters
by Line 9 in Algorithm 1. Table II also suggests that the
labeling accuracy on the testing set increases with the portion
of samples in the training set, which is well expected because
the GMM gets trained better with a larger training set.

Then, we use the labeled data obtained by the data pre-
processing module to train the CFM, also with different
ratios of training to testing samples. Table II also shows
the classification accuracy of the CFM, where the “CFM w/
GMM” means that the CFM is trained with the data labeled by
the GMM, and the “CFM w/ Ground-truth” refers to the one
trained with the ground-truth data. It can be seen that due to
its sophisticated architecture, the CFM always provides higher
classification accuracy than the GMM even if it is trained with
the data labeled by the GMM. This observation confirms two
important features of our design. Firstly, the small percentage
of incorrect labeling in the training set for the CFM will not
affect its classification accuracy. Secondly, even if the GMM
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Fig. 10. BIC versus number of clusters (trained with10% of samples inS).

TABLE III
ACCURACY ON TESTINGSET (10% OF SAMPLES ARE ABNORMAL)

Samples in Training Set 10% 30% 50% 70% 90%

GMM (%) 98.24 99.50 99.82 99.86 99.89

CFM (%) 98.90 99.75 99.89 99.91 99.93

already provides accurate labeling, the CFM is still necessary,
because it can further improve the classification accuracy and
does not need to simultaneously consider a large number of
samples to accomplish the data filtering. Meanwhile, between
the two CFMs, the one trained with the ground-truth data
can achieve a higher accuracy, which is expected. However,
the relative difference is really small (i.e., with a maximum
value of0.17%), and it decreases with the size of the training
set. This further proves that our semi-supervised learningcan
perform well regardless of the small portion of labeling errors
induced by the GMM, and also suggests that training the
CFM with a larger number of samples can compensate for
the negative effect due to the labeling errors.

Note that, the results in Table II are obtained based on the
assumption that the ratio of abnormal samples is45% in S.
This, however, might not be the case in practical situations,
since the QoT of a lightpath usually stays normal in most of
its operation time [27]. Therefore, we include more lightpaths
of normal states and exclude ones of anomalies so as to reduce
the percentage of abnormal samples inS from 45% to 10% and
redo the simulations. The new results are listed in Table III. We
can see that the general trends of the results stay unchanged,
and the classification accuracies of the GMM and CFM either
manage to be the same or only decrease slightly. This further
verify the performance and practicalness of our design.

B. Performance of Anomaly Detection and Location

In the anomaly detection and location module, we locate
anomalies by leveraging a neural network that has the same
structure of the CFM and the binary search. Hence, there is
no need to analyze its accuracy again, and we will show the
effectiveness of the anomaly location with the experimental
demonstrations in Section VII. The anomaly detection reuses
the GMM in the data preprocessing module to determine
the anomaly type and severity. We consider two scenarios
to test the performance of the anomaly detection,i.e., the
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Fig. 11. Confusion matrices of anomaly detection.

sizes of training and testing sets have ratios of1:9 and 1:1,
respectively. Meanwhile, to emulate practical situations, we
set the percentage of abnormal samples inS as 10%. Fig.
11 plots the confusion matrices that describe the anomaly
detection’s performance on the testing sets,i.e., the breakdown
of classification errors. The numbers on the x- and y-axes
indicate the anomaly categories, each of which corresponds
to an anomaly with a certain severity. More specifically,
Category-0 is for the normal case,Category-1 to Category-8
are for filter drifting with different severities, andCategory-9
is for in-band jamming. The results in Fig. 11 confirm that the
anomaly detection can accurately tell the types and severities
of anomalies in both scenarios.

C. Performance of Overall AutoSpecheck System

Finally, we perform numerical simulations to verify the
overall performance of AutoSpecheck, especially its time-
efficiency. We still use the DL models that are trained in
the aforementioned subsections to build our AutoSpecheck
system. Note that, an optical network should operate normally
in most of the time, and thus in a practical scenario, the
samples about abnormal lightpaths should be much less than
those about normal ones [27]. Hence, to emulate such a
practical scenario, we recollect spectrum vectors of the5, 400
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Fig. 12. Processing time used by AutoSpecheck.

lightpaths in Section III-B and keep the ratio of abnormal
lightpaths as10%. Then, we leverage AutoSpecheck to check
the spectrum vectors, record its processing time, and plot the
results in Fig. 12. Although its processing time increases with
the number of lightpaths, the AutoSpecheck system only uses
4.23 seconds to process all the spectrum samples of the5, 400
lightpaths. On average, it only takes783 µs to process one
lightpath, which proves the time efficiency of AutoSpecheck.

We also show the breakdown of the processing time in
Fig. 12(a). It can be seen that the anomaly location takes
the majority of the processing time, which is because for
each abnormal lightpath, it needs to invoke the CFM multiple
times in the binary search. Note that, the anomaly location
happens after the initial screening of spectrum samples in
another CFM, when most of the normal samples have been
removed. Hence, we can expect that the time used for anomaly
location could be much longer if we do not have the initial
screening with the CFM. Moreover, with the initial screening,
the anomaly detection only takes37.4 msec in total to process
the spectrum data of5, 400 lightpaths, which only contributes
to less than1% of the total processing time. We also remove
the CFM from AutoSpecheck and measure the total processing
time. The comparison of the total processing time used by the
AutoSpecheck systems with and without the CFM is shown
in Fig. 12(b), which indicates that the total processing time
is much longer when the CFM is removed. This confirms the
benefit of our CFM on improving the system’s time-efficiency.
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Fig. 13. Experiment setup for detecting and recovering filter drifting.

VII. E XPERIMENTAL DEMONSTRATIONS

In this section, we implement our AutoSpecheck system in
a real EON testbed that is built with commercial products,
to further verify its performance and practicalness. The EON
testbed consists of 6 nodes and 8 fiber links, as shown in Fig.
13. Each node is built with Finisar1× 9 BV-WSS’ to realize
flexible-grid optical switching.

A. Detection and Recovery of Filter Drifting

With the experimental setup in Fig. 13, we first conduct
an experiment to detect and recover filter drifting with Au-
toSpecheck. Here, we connect two BV-Ts on our Juniper
optical packet platform to the optical ports onSW0, and the
BV-Ts generate100 Gbps QPSK optical signals centered at
1557.36 and1558.17 nm, respectively. The optical signals are
transmitted according to the routing paths ofLP1 and LP2
in Fig. 13 to form two lightpaths. On the fiber links ofLP1,
the OPMs collect spectrum vectors of the lightpath, compress
them with AE-based data compression, and send compressed
spectrum vectors to the control plane every3.5 seconds.

We capture control messages in the control plane and
illustrate them in Fig. 14(a). Here, the first message block in
Fig. 14(a) is for normal operation. The SpecAGs in the OPMs
first report compressed spectrum vectors to the controller.
Then, the controller forms the end-to-end spectrum data forthe
lightpath by organizing compressed spectrum vectors accord-
ing to the order of OPMs that the lightpath passes through
(i.e., M0→M1→M2), and sends the lightpath data to the
DLaNA. Next, the DLaNA leverages the CFM and anomaly
detection and location module to check status of the lightpath,
and returns anomaly reports to the controller. As shown in
Fig. 14(b), because the DLaNA does not detect any anomaly,
it returns the anomaly reports, in which the anomaly type is
set as 0 (i.e., the normal case) and the lightpath ID is also set
as 0 to suggest that there is no lightpath to worry about.

We then introduce filter drifting onLP1, and to emulate
the filter drifting, we configure the pass-band onSW2 for
LP1 as[1557.262, 1557.566] nm during operation. The second
message block in Fig. 14(a) indicates that the DLaNA quickly
detects the anomaly, classifies it correctly, and sends an
anomaly report to the controller. The details on the anomaly
report are illustrated in Fig. 14(c), which includes the ID of
the abnormal lightpath, and the position, type and severityof
the detected anomaly. With the anomaly report, the controller
sends aFlowModmessage toSW2 to reconfigure it back to the
normal state, as shown in the third message block in Fig. 14(a),
which also indicates that the status of the lightpath returns to
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Fig. 14. Messages for detecting and recovering filter drifting.
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Fig. 15. Experiment setup for detecting and recovering in-band jamming.

normal at the next network monitoring time. Note that, the
filter drifting is actually a soft failure that will not disconnect
LP1. We measure pre-FEC-BER on the receiver end ofLP1.
The results indicate that when the lightpath is in its normal
state, its pre-FEC-BER is∼8.5×10−5, and the pre-FEC-BER
increases to∼1.2× 10−3 when the filter drifting happens.

B. Detection and Recovery of In-band Jamming

We adjust the experimental setup to that in Fig. 15 to
show how to detect and recover in-band jamming with
AutoSpecheck. This time, when the experiment first starts,
LP1 still uses the same routing path as before. We still
capture control messages in the control plane, and they are
shown in Fig. 16(a), where the first message block is still
for normal operation. Then, during operation, we inject in-
band jamming into the fiber link betweenSW1 and SW2.
The second message block in Fig. 16(a) indicates that the
DLaNA in our AutoSpecheck system detects the anomaly
quickly, and sends an accurate anomaly report to the con-
troller (as shown in Fig.16(b)). Upon receiving the anomaly
report, the controller decides to rerouteLP1 to go through
SW0→SW4→SW5→SW3, for staying away from the in-band
jamming. As illustrated in the third message block in Fig.
16(a), the controller sendsFlowMod messages to the related
optical switches to accomplish the rerouting. Finally, thelast
message block in Fig. 16(a) shows that the status ofLP1 goes
back to normal at the next network monitoring time. When
the in-band jamming is present, the pre-FEC-BER ofLP1
increases from∼8.5× 10−5 to ∼1.67× 10−3.
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VIII. C ONCLUSION

In this paper, we considered how to improve the efficien-
cy of spectrum inspection for anomaly detection in EONs,
and designed and experimentally demonstrated AutoSpecheck.
Specifically, we architected AutoSpecheck based on the SD-
EON architecture, proposed new techniques to greatly reduce
the loads of data reporting (in the data plane) and data analyz-
ing (in the control plane), and implemented it in a real network
testbed for experimental demonstrations. To reduce the loads
of data reporting in the data plane, we used the AE technique
to design a spectrum data compression method, which not only
significantly reduces the load of data reporting from the data
plane, but also ensures that the correlations buried in spectrum
data will be kept through the compression. To improve the
efficiency of data analytics in the control plane, we made two
major innovations. Firstly, we designed a CFM for the control
plane to filter out most of the normal data before invoking
the DL-based spectrum inspection for anomaly detection. Sec-
ondly, to address the difficulty of labeling massive spectrum
data, we developed a DL-based anomaly detection based on
semi-supervised learning. Our experimental demonstrations
considered two representative intra-channel anomalies (i.e., the
filter drifting and in-band jamming), and the results verified
that AutoSpecheck can achieve highly-efficient and automatic
spectrum inspection for anomaly detection in EONs.
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