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Abstract—To closely monitor the performance of lightpaths
in an elastic optical network (EON), people need to rely on
real-time and fine-grained spectrum monitoring. This, howeer,
will generate tremendous telemetry data, which can put grea
pressure on both the control and data planes. In this work, we
design and experimentally demonstrate AutoSpecheck, whicis a
DL-assisted network automation (DLaNA) system that can rebze
highly-efficient and automatic spectrum inspection for ananaly
detection in EONSs. Specifically, we architect AutoSpechedased
on the software-defined EON (SD-EON) architecture, and pro-
pose techniques to greatly reduce the loads of data reportg(in
the data plane) and data analyzing (in the control plane). To
reduce the loads of data reporting, we leverage the AutoEnater
(AE) technique to design a spectrum data compression method
To improve the efficiency of data analytics, we first design a
coarse filtering module (CFM) to let the control plane filter out
most of the normal data before invoking the DL-based anomaly
detection. Then, to address the difficulty of labeling masse
spectrum data, we develop a DL-based anomaly detection bake
on semi-supervised learning. Our experimental demonstrabns
consider two representative intra-channel anomaliesife., the
filter drifting and in-band jamming), and the results confirm
that AutoSpecheck can achieve highly-efficient and automat
spectrum inspection for anomaly detection in EONSs.

Index Terms—Software-defined networking (SDN), Elastic op-
tical networks (EONs), Network automation, Anomaly detecton,
Deep learning (DL), AutoEncoder (AE), Spectrum inspection
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I. INTRODUCTION

modulation formats, while the significant increase of com-
binations makes it much more difficult to detect anomalies.
For instance, the anomaly detection based on comparing
lightpaths’ spectra to a standard spectral shape [14] vell b
inapplicable. Secondly, as they use sophisticated maddalat
formats, such as quadrature phase shift keying (QPSK) and 16
guadrature amplitude modulation (16-QAM), the lightpaths
EONSs are more prone to be affected by quality-of-transimmssi
(QoT) degradations. This means that the anomaly detedtion i
EONSs has to be more sensitive and precise than its antesessor
The anomalies concerned by an NC&M system can be
categorized into hard and soft failures. Hard failures rréde
those that will cause severe performance degradationseor ev
disconnect lightpaths completely, and they can be detected
with traditional optical performance monitoring technégu
[15]. On the other hand, soft failures are much less harmful
than the hard ones, which makes them hard to detect, and
they would still cause lightpath disfunction if having been
ignored for a long time [14]. Note that, in addition to the
reactive technique to detect soft failures timely and [melgi
their impacts can also be mitigated proactively by estingati
and reserving sufficient QoT margins [16]. Although people
have already proven the effectiveness of the proactivesehe
soft failure detection is still necessary and importanH@NSs.
This is because the highly dynamic traffic in today’s Intérne
makes reconfigurations common in the optical layer [17], and

OWADAYS, the rapid deployment of cloud infrastrucyhe o of lightpaths can become unstable due to frequent re-
tures and fast emergence of bandwidth-hungry applicgsnigurations [18]. Hence, we have to face the dilemma that i

tions .9, Big Data analytics and live streaming) have drivefugerying excessive margins, network resources will beund

network traffic to skyrocket in volume and become much motg;jized during normal operation, but reducing the margifis
dynamic [1-4]. Hence, flexible-grid elastic optical neth®r 5,4 to higher failure probabilities during reconfiguratio

(EONSs) have recently attracted intensive interests an@ hav gne can hardly realize timely and precise anomaly detection

been considered as a promising technology for the optigatla

without real-time and fine-grained network monitoring [13]

[5—7]. This is be_cause EONSs get rid of_the restrictions due _\t/%ich has recently made promising advances due to the
fixed spectral grids, and enable adaptive spectrum alwtatinroduction of network telemetry [19, 20] and disaggrémat

at a granularity ofl2.5 GHz or even narrower [8—10].
However, the rising of EONs also brings challenges

of optical networking systems [21]. Specifically, we canldgp

tt‘?ﬁany optical performance monitors (OPMs) in a disaggrebate

network control and management (NC&M), especially fogytica| networking system, and then leverage network telem
anomaly detection in the optical layer [11-13]. Specificall ¢y techniques to convey the collected status data to the MC&

the challenges are introduced due to two reasons. Firbty,

Eystem for deep learning (DL) based data analytics [22]eNot

lightpaths in EONs use various spectral widths and mOfRa; many OPMs are essentially simplified optical spectrum
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metrics of a lightpathd.g, power level, optical signal-to-noise
ratio (OSNR), and channel width) can be obtained through
spectrum analysis [11]. Meanwhile, the current commescial
available OPMs can quickly scan the whole C-band using a



fine resolution o0f312.5 MHz within one or two seconds [23]. ize the so-called knowledge-defined networking (KDN) [29].
Nevertheless, the aforementioned real-time and fine-gdairFollowing this trend, people have proposed various DLaNA
spectrum monitoring will generate tremendous status datystems for optical networks, to facilitate QoT estimation
which will flood the control channels between the NC&M sysf30], anomaly detection [27, 31, 32], physical-layer sécur
tem and an EON, and put great pressure on the DL-based dgtanonitoring [28, 33], network function virtualization 43
analytics in it. To the best of our knowledge, how to improv85], datacenter management [36, 3&%. For comprehensive
the efficiency of spectrum inspection for anomaly detection information about the applications of DL in optical netwsyk
EON: s still has not been fully explored. Hence, in this work, wone is suggested to check the surveys and tutorials in [38—40
design and experimentally demonstrate AutoSpecheck,hwhic Since each fiber link can carry a tremendous volume of
is a DL-assisted network automation (DLaNA) system thafata traffic, survivability and availability are always iorpant
can realize highly-efficient and automatic spectrum inpac topics in the design and operation of EONs. Therefore, the
for anomaly detection in EONs. Specifically, we architegirevious studies in [41-43] have considered how to allocate
AutoSpecheck based on the software-defined EON (SD-EObJckup resources to protect lightpaths against hard éaslur
architecture [24, 25], propose new techniques to greatlyece such as fiber cuts. However, they did not address how to detect
the loads of data reporting (in the data plane) and dadad locate anomalies, especially when they are soft falure
analyzing (in the control plane), and implement our prof®sdn the proactive manner, the impacts of soft failures can be
in a real SD-EON testbed for experimental demonstrationsrelieved or even avoided by estimating and reserving enough
Compared with the existing schemes for DL-based anomadoT margins [16]. Hence, people have designed different
detection in EONs, our innovations and contributions can Ipeachine learning models to achieve precise QoT estimation
summarized as follows. Firstly, we leverage the AutoEncodfr lightpaths [44—46]. Although it can compensate for fetu
(AE) technique [26] to design a spectrum data compressiQoT degradations to ensure the performance of lightpdibs, t
method, which not only significantly reduces the load giroactive scheme also results in under-utilization of spec
data reporting from the data plane, but also ensures that tBgources in EONs during normal operation. Hence, timely
correlations buried in spectrum data will be kept through trand accurate anomaly detection and corresponding service
compression. Secondly, we design a coarse filtering moduézovery are vital for realizing low-margin operation [47]
(CFEM) for the control plane to filter out most of the normal For anomaly detection, the authors of [48] took the bit-
data before invoking the DL-based spectrum inspection ferror-rate (BER) of lightpaths as the input to detect andsal
anomaly detection. Note that, during network operatioe, thelated to optical filtering. Nevertheless, BER measurgmen
QoT of a lightpath stays normal in most of the time [27], andr estimation requires complicated implementations e€lat
thus the CFM can greatly relieve the load of data analyzingo the time-domain€.g, the coherent detection and digital
Thirdly, to address the difficulty of labeling massive speaignal processing (DSP) [11]), which are expensive and only
trum data, we develop the DL-based anomaly detection baseghilable at the receiver end. Therefore, the anomaly tletec
on semi-supervised learning. Specifically, we first propmse might have difficulty to precisely locate where the anoma-
unsupervised learning model based on clustering to detéies happen on lightpaths. Moreover, it is known that BER
anomalies in and label massive data automatically by @iz might not always be available in EONs, since certain cross-
only a small amount of labeled data, and then design a supgsmain lightpaths may end in other domains [49]. Regarding
vised learning model that can leverage the labeled dataito trthe anomaly detection in filterless optical networks (FQNSs)
its deep neural network (DNN) for accurate anomaly detactioShariati et al. [50-52] proposed several interesting optical
Fourthly, we implement our proposals in an SD-EON testbaignal tracking approaches to detect small laser drifteré@h
to consider two representative intra-channel anomalies ( are two major differences between these studies and our. work
filter drifting and in-band jamming [28]). Finally, we conclu Firstly, as laser drifting can only happen at the transmitte
experiments to verify that AutoSpecheck can achieve highlgf a lightpath, the studies in [50-52] only needed to address
efficient and automatic spectrum inspection for anomaly denomaly detection, while we consider anomaly detection and
tection in EONs, and close the loop of “observe-analyz&-adbcation. Secondly, because the studies only focused ok-tra
for the DLaNA to 1) detect and locate anomalies timely anidg the central frequency of each optical transmitter aately,
accurately and 2) implement recovery plans quickly. they did not need to use supervised learning. However, in our
The rest of paper is organized as follows. Section Il briefiyase, we need to address two different types of anomalids, an
surveys the related work. We present the overall design ef Athus the mapping between spectrum features and anomalies is
toSpecheck in Section Ill. Sections IV and V elaborate on oubt that straightforward. Therefore, we have to leveragei-se
proposals for the data and control planes, respectivelgdb supervised learning for the anomaly detection and location
ize highly-efficient and automatic spectrum inspectionefh  On the other hand, spectrum analysis can be realized at
the numerical results regarding AutoSpecheck are disduss@y point on a lightpath, does not need sophisticated time-
in Section VI, and we show its experimental demonstratio@®main processing, and is much cheaper. Hence, it would be
in Section VII. Finally, Section VIl summarizes the paper. more promising to detect anomalies with spectrum inspectio
[53]. However, as the spectrum inspection needs to operate
Il. RELATED WORK on tremendous spectrum data from real-time and fine-grained
Recently, the promising advances on DL have promotadonitoring, the loads of data reporting and analyzing will
the idea of integrating DL models in NC&M systems to realeause severe scalability issues. The studies in [54, 55] de-



veloped a few machine learning based approaches to analyze
optical spectrum for soft-failure detection and locatiovitl

the focus on filter drifting and filter tightening). Althougtese
studies considered a similar problem as ours, we make new
contributions over them and thus the techniques proposed in
this work can be used to improve the efficiency of the soft-
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failure detection and location in [54, 55]. Specifically,thsy 1
leveraged the classification based on support vector machin Controller

(SVM) or decision tree (DT) for detecting and locating soft- __---2%7 T SIo--__
failures, our CFM can also help their systems filter out most - -~ : S T=a
of the normal data in advance and thus reduce the load of 'ESWG Ej

data analyzing in the classification, and our GMM-based data B— J

clustering and labeling can be leveraged to avoid the hasle
labeling data manually too. Note that, the proposals in 54,
were based on the node-based approach in the data plane. In | EON = = 55
other words, the soft-failure detection is mainly accostpid

by local OPMs. The benefits of this approach are: 1) decisions
can be made locally and timely, and 2) the need of sending
spectrum data to the control plane can be minimized. HowevEf: %
the involvement of the control plane is still needed, andsthu

the authors designed algorithms for the control plane tainbt control planes of an SD-EON. The data plane of the SD-EON

a ?_:Obal view for ané)mzathl dete(;tlolp argd Iogatlon. hi tc.onsists of bandwidth-variable optical cross-connect¥- (B
kenile, W?hclong e,;\r be t(;]O?hYO er;j aze %pproac '2 )XCs) interconnected by optical fibers. By leveraging biuilt

work. Neverineless, Tor bo € hode-based approac esoé[hdwidth-variableWavelength selective switches (BV&NS

[54, 5] and our controller-based one, there are pros and “%ch BV-OXC de-multiplexes lightpaths from input fibers,

('he" Itgerel d(t)(tahs npth(:mst ? L_mlvclersal v;nnner)(.j_Th(ire{o;j, tv\{grminates those that mark the BV-OXC as their destinations
should sefect the night one 1o Implement according to teact , optically grooms the remaining ones with the locally-

characteristics of an optical network. In [56, 57], the auth nerated lightpaths to send to the corresponding outparsfib

dIStCUSS§d t_he Ietgrnllng t“fe kcycleh_}o tzpetedhup the netév?ilgr network monitoring, we place at least one OPM on each
automation In optical networks, while the techniques used lg,) . link, which taps a small portion of optical power from

anomaly detection and location were based on the design§ A fip . :
. er and perform ectrum anal on the signal.
[54, 55]. Hence, the studies also assumed that the anomaly ! P S spectru ysis Si9

detection and location are based on supervised learnirg wit _
the node-based approach. Note that, with supervised tegrniA- Major Components
the classification models have to be trained with massiveln our AutoSpecheck, the OPM is a commercial product that
labeled data that tells the ground-truth about anomaliésrée can scan the whole spectrum of C-band with a fine resolution
they can be put into operation, and thus data labeling will teé 312.5 MHz in two seconds [23]. Hence, the spectrum of
an issue. Finally, we would like to mention that our AE-baseghch lightpath can be represented with a series of powedsleve
spectrum data compression can also be leveraged to imprav¢he spectral points in its channel, which can be modeled as
the efficiency of the node-based systems proposed in [50-%2,, = {pﬁ;, e ,pl(f;)L}, wherel andm are the indices of
54-57], because it can reduce the storage used to recordttieelightpath and the OPM, respectively, amds the number
standard spectra and/or correction masks in local OPMs. of spectral points collected for the lightpath. To realiealf
Previously, the study in [27] considered how to dete¢ime monitoring, OPMs in the data plane need to report all
anomalies with unlabeled data, to avoid the hassle of lapelithe spectrum datai.é., {F, .., Vi,m}) to the control plane
massive data. Nevertheless, the proposed algorithm colyd ofrequently, which will generate a large volume of traffic in
differentiate the normal and abnormal data points, butdouhe control channels. Hence, as shown in Fig. 1, we design a
not classify the anomalies or locate them in the data plespectrum data agent (SpecAG) to compress the data received
On the other hand, Christodoulopouletsal. [58] investigated from each OPM with an AutoEncoder (AE) based technique
the method to realize accurate anomaly detection and tocat[26]. The SpecAG transforms eadh ,, to ]%,m, which is
with as few OPMs as possible. However, reducing the numtedso a vector but containing much fewer elemennts, (from
of OPMs can only partially address the scalability issues, a160 elements t@ or less), and it ensures that the correlations
cannot resolve the difficulty on data labeling. To the bestwof buried in P, ,,, will be kept through the compression. We will
knowledge, highly-efficient spectrum inspection for anbmaexplain the details about SpecAG in Section IV.
detection in EONSs is still under-explored. In the control plane, the SDN controller is developed based
on the well-known ONOS platform [59], and it communicates
lIl. OVERALL SYSTEM DESIGN with the network elements in the data plane with the OpenFlow
Fig. 1 shows the overall system design of AutoSpechegiotocol. The controller collects compressed spectruna dat
which includes new functional modules in both the data aricbm the data plane, stores the data in the traffic engingerin

BV-OXC - = Training — Normal Operation

Network architecture and system design of AutoSeelch



database (TED), leverages the DLaNA module for timely 5] -E-El"}
and accurate anomaly detection, calculates the recovary pl & I _______________ oo { =
=

=

when encountering anomalies, and reconfigures the data plagziy- LD [ P
accordingly. In the TED, the data plane is modeled as a grapgp- jw = j=
G(V,E), whereV and E are the sets of BV-OXCs and fiber

links, respectively, while the information about each tigth 12101 Stages

! is recorded as a tupleR;, {P,,, Vm € R;}>, where _ oo
R; denotes the set of fiber links on its routing path, and each @er o P cors e
OPM m corresponds to a fiber link. Then, the set of lightpaths sse [Eevwss ) mocoemuc I 25 e
is denoted ad = {lo,l1,---}, and the TED organizes the _ ) )
. . . : Fig. 2. Experimental setup for spectrum data collection.
information regarding each lightpath as an entry.

The DLaNA in the control plane takes lightpaths’ spectrum
data from the TED for anomaly detection and location. Note
that, to precisely detect and classify anomalies, the DLaNA 1ol /# \
needs to be trained with labeled data, but labeling massive / 3
spectrum data manually will be time-consuming and inconve-
nient. Therefore, we design the data preprocessing module f

0

20—+ 1\

Power (dBm)

data labeling, which leverages unsupervised learningthege -30 f /’ "‘-._\\-
with only a small amount of labeled data to detect anomalies | i\

in and label massive spectrum data automatically. Then, the 40 - bk
labeled data is used to train the coarse filtering module (gFM | || |- IFnil_tbe;n%rijt;nrgmmg
;uch_that it can filter out most _of the_r_wormal da_ta before 2 57 1557406 1557303 1557262 1557161
invoking the DL-based spectrum inspectide,, reducing the Wavelength (nm)

load of data analyzing significantly.

The anomaly detection and location module also gets trainggt 3 Spectra of normal and abnormal lightpaths.
with the labeled data, to detect and classify different $ype
of anomalies based on the compressed spectrum data. Next,
during network operation, the anomaly detection and locatiiS also realized with a fiber link with inline EDFA, and the
module return the information about anomalies to the cofPtical switching is realized by a BV-WSS. Therefore, we can
troller, which comes up with proper recovery plans. Thiskvordet nine transmission/switching scenarios. Meanwhileyas
considers two representative intra-channel anomalestilter ~ consider two types of anomaliesg, filter drifting and in-
drifting and in-band jamming. Our DLaNA does not assum@and jamming) and there ar severities of filter drifting,
a fixed channel width to adapt to the lightpaths in EONs, a¢e totally havel0 anomaly scenarios including the normal

its detailed design will be discussed in Section V. cases. Here, filter drifting is emulated by changing thereént
frequency of the BV-WSS in a stage, while in-band jamming

is realized by using a BV-WSS to make the noise from an
B. Data Collection and Preparation amplified spontaneous emission (ASE) noise generator span

In this work, we collect spectrum data from a real EONhe same channel of the concerned lightpath, and injecting i
system and apply our proposal on the data to demonstréiteone of the stages with a fiber coupler. As we only address
its practicalness. Fig. 2 shows the experimental setupravh&oft failures in this work, we make sure that the anomalies on
the lightpaths are generated and received by the bandwitli concerned lightpath only cause minor BER degradatibns a
variable transponders (BV-Ts) in our Juniper optical packés receiver, but will not disconnect its data transmissiéig.
platform (BTI-7800). With three pairs of BV-Ts, we can seB gives several examples on the spectra of lightpaths. It can
up three lightpaths, each of which uses a channel width 6 seen that the spectrum of a lightpath with in-band jamming
50 GHz to achieve the data-rate aH0 Gbps with QPSK Will not be significantly different from that without.
modulation {e., 31.2 Gbaud with forward-error correction At this moment, we have four lightpath scenarios, nine
(FEQ)). In the experiments, we configure iieGHz channels transmission/switching scenarios, and ten anomaly sienar
of the three lightpath as adjacent, only concern the lightpavhich totally result in360 combinations. For each combi-
that locates in the middle of the three, and use the remainingtion, we can further change its setupg, changing the
two as possible background lightpaths. Then, we can obtdieation of anomaly insertion, slightly adjusting the miagde
four lightpath scenarios by configuring the BV-Tise( only of the concerned anomaly, and varying the attenuationg®efo
the concerned lightpath is on, the concerned lightpath andndine EDFAs) to obtainl5 lightpath states. Finally, we can
background one are on, and all the three lightpaths are onlse the setup in Fig. 2 to gét400 types of lightpaths.

Next, we consider fiber transmission and optical switching. Meanwhile, we have to explain that not all the data used
As shown in Fig. 2, there is a fiber link with inline erbium-n this work is purely from experiments, and we do leverage
doped fiber amplifier (EDFA) before the receiver, while beforsimulations to obtain certain part of it. This is because we
this final fiber link, we can insef2, 10] stages of fiber trans- can only use a BV-WSS to emulate a filter drifting td.5
mission and optical switching. Here, the fiber transmissidBHz, and the drifting can be toward both directions, while
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CNN can accurately detect the presence of specific features

£
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& 25 kernels that will be optimized in training. The CNN can egtra
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Fig. 4. Comparison of measured and simulated spectra ohgpéth going N . .
through a BV-WSS with1 2.5 GHz filter drifting. spectrum vectop, ,,,, which will be sent to the control plan for

data analytics. Meanwhilé?l,m also gets fed into the decoder
to evaluate the performance of the encoder, and the decoder

measure the transfer function of the BV-WSS o(®GHz | the training, we input spectrum vectors to the encoder

channel, change the central frequency of the transfer ftmctyy get compressed vectors, use the decoder to reconstruct
with a numerical method to get a new one that can induc& original vectors, and then update the parameters of the
desired filter drifting, and apply the obtained transferdion  oncoder and decoder according to the mean squared error

to the spectra collected in experiments to emulate the emall\iSE) petween the original and reconstructed vectors.
filter drifting. Note that, the numerical method will not neak

gur data collection inaccurate or impractical, becau_sxesstlll _ MSE(P,m, Pf.) = 1 Z(Pz(fm *Pz(,?n/)Q’ )
ased on real-world measurements. To prove this, we first
conduct an experiment to measure the spectrum of a lightpath , ,
that goes through a BV-WSS witt2.5 GHz drifting, and then where P/, = {pl(ylyzl e ,pl(f:,)l } is the reconstructed spec-
use the method mentioned above to simulate the spectrum. Titen vector from the decoder. To show the effectiveness of
results are shown in Fig. 4, which indicates that the medsureur AE-based data compression, we train and test one for
and simulated spectra do not have noticeable differences. lightpaths with a channel width & GHz as follows. For the
5,400 lightpaths considered in Section IlI-B, we use OPMs to
IV. AE-BASED SPECTRUMDATA COMPRESSION INDATA  measure the optical spectra at the inputs/outputs of fibks li
PLANE along their routing paths, and g&t, 000 spectrum vectors,

The AE-based data compression in an OPM needs to trag§20ong which the vectors for normal and abnormal lightpaths
form spectrum vectoP, ,,, to a vectorP, ,,, that contains fewer are equal. Hence, each vectdy,,, represents a lightpath's
elements. Note that, we concern more about the shape of $€ctrum at a certain location, and since the lightpatresiokl
spectrum in anomaly detection, and thus each OPM normalixéélth is 50 GHz and an OPM scans with a resolution of
the power levels inP,,, according to the peak power 0f312.5 MHz, P, ,,, is a vector with160 elements. Next, in the
each lightpath. As shown in Fig. 5, the data compressiéd, 000 spectrum vectors, we randomly sel&€t to put in
module follows the operation principle of AE [26] to includethe training set, and use the remaining ones as the testing se
an encoder and an decoder. Here, the encoder compress¥¥e set the length of the compressed spectrum vegtoras
spectrum data, while the decoder is included to assist ti 3,6}, and Table | shows the results on the MSE in Eq. (1)

training of the encoder and guarantee that useful infoonati

will not be lost through the compression. INote that, our AE-based data compression can also operdite spectrum
. . . data of lightpaths whose channel widths are various, as é&sngach of their

In Fig. 5, the encoder first uses a convolutional neuré@ectrum vector has the same length. This can be achievettloging down-

network (CNN) after the input layer. This is because thep-sampling after spectrum scanning in each OPM.

=1



TABLE | 0
RESULTS OFAE-BASED DATA COMPRESSION

Output Lengths | 6 3 2 -0}
Data Compression Ratiq 26.67 53.33 80 §—15 - T
Average MSE(x10~2) 3.103 3.105 4.268 2 0l | L
[0) ‘ \I
Training Time (sec) 1747.74 | 2119.41 | 3138.69 2 250 | |
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40 } lightpath is operating in the low-margin scenario. To addre
g';;fi’n";"“ded such cases, we can leverage the correction masks discussed i
1337567 1557466 1557.363 1557262 1557.161 [54-57] to compensate for the spectrum narrowing effect.
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Fig. 6. Comparison of original and reconstructed spectial@fhtpath, when A. AUtomat.IC DaFa Labe!mg )
AE-based data compression outgdelement vectors. As explained in Section Ill, we need to design a data

preprocessing technique to get rid of the hassle of labeling

massive spectrum data manually. We assume that thef&gre

and training time. Here, the MSE is cglculated and averaggfer links in the routing path of lightpath m; is the OPM
over all the spectrum vectors in the testing set. We can g€ 4t is the nearest to the sourcelpfind the OPMs on links

the average MSE almost stays the_sgm@.(%) whe_n We  from source to destination are indexed Wjthu1., - - - e
reduce output length fror to 3, but it increases noticeably respectively. After receiving the compressed spectruntovec
if we keep reducing the output length fo Meanwhile, the ¢ 3 |ightpath from the data plane, we first organize theofesct
results on the training time suggest that it takes more tifigq pajrs, In each pair, the two vectors correspond to tisé fir

to get an AE for compressing the spectrum vectors to thoggq other hops of the lightpath, respectively. Then, we teno
that contain fewer elements. However, the training timeyonk ,.n a vector pair as a sampl§, {,, = {pl P, ), ie
TN ,M1y NUZE B

increases by1% when the output length gets decreased fror[nl IR,[]). Next, we manually label a small portion of the

6 to 3. Therefore, we set the output length of the AE-basedyples e, one for each anomaly category), and use an
data compression asin the rest of the paper, and in this cas&,nsypervised learning model based on clustering to classif
the comparison of the original and reconstructed spect@ Ofnomalies based on the labeled data. Therefore, the data

lightpath can be seen in Fig. 6. labeling can be accomplished automatically.
We consider two types of anomalidse(, filter drifting and
V. SEMI-SUPERVISEDLEARNING BASED ANOMALY in-band jamming), and each type of anomalies can have a few
DETECTION IN CONTROL PLANE severities. Hence, we define each anomaly category to iaclud

This section describes the control plane design of Aall the anomalies whose types and severities are both the.sam
toSpechecki,e., the data preprocessing for automatic labeling;hen, if the numbers of severities for the two anomaly types
the CFM, and the DL-based anomaly detection and locaticare predefined a3/; and M,, respectively, we totally have
As lightpaths in an EON do not have a standard spectral shapé, + Ms + 1 anomaly categories (one for the normal case).
we compare the compressed spectrum vectors collected alonglgorithm 1 shows the procedure of the unsupervised learn-
the routing path of a lightpath for anomaly detection. To seérg for automatic data labeling. As the numbers of severitie
how the optical spectrum of a lightpath changes after castador the two anomaly types arkf/; and M, respectivelyLine
BV-WSS’, we use the system configuration in Section IlI-Bl usesM; + M + 1 pre-labeled samples to represent all
and measure the optical spectra dfté Gbps QPSK lightpath the anomaly categories, which are the only ones that need
from back-to-back to afteé cascaded BV-WSS’, where eachto be labeled manually. We udénes 2-3 to initialize the
BV-WSS has a channel width df0 GHz. The results are parameters for the sample classification that tells anomaly
shown in Fig. 7, which indicates that the spectra only shrirtkpes and severities. Herd' is defined to limit the maximum
slightly and the additional shrinking on them becomes moraimber of iterations in the while-loop that covdnmes 4-9,
ignorable, when the number of cascaded BV-WSS’ increasasd its value is determined empiricallyie 3).

Specifically, the5-dB bandwidth of the lightpath only decreas- Next, the while-loop tries to classify samples # into
es less than GHz after6 cascaded BV-WSS'. Therefore, wedifferent numbers of clusters until there have béaf — N)
do not consider the spectrum narrowing effect due to castcadierations. In each iteration, we first leverage the Gaussia
BV-WSS' in the algorithm design below. Meanwhile, we neethixture model (GMM) [60], which tries to describe a set
to admit that the effect can become more significantly, if thef data with a few Gaussian probability density functions



Algorithm 1: Unsupervised Learning for Data Labeling O O
Input: Number of severities for filter drifting/;, i O O O
number of severities for in-band jammirg., set o O (O>Normal
of data sample$ = {S; ,,,, Vi,i}. Oy O35 ppmorma
1 useM; + Ms + 1 pre-labeled compressed spectrum B O O O
vector pairs i(e., samples) to represent all the anomalies; Hop :
2 insert the pre-labeled samples$n O O
3 N:Ml +M2+1,NI:3-N,B:(Z); Input Hidden Output
4 Whlle N S N/ dO Layer Layers Layer
5 apply GMM-based unsupervised learning to classify rig 8. Dpesign of CFM.
vectors inS into N clusters;
. TABLE I
6 _CaICU|ate BIC over. theV clusters to obtairb; ACCURACY ONTESTING SET (45% OF SAMPLES ARE ABNORMAL)
7 insert tuple{b, N} in B;
8 dN =N+1 Samples in Training Set| 10% | 30% | 50% | 70% | 90%
9 en
: : . N GMM (%) 98.42 | 99.54 | 99.82 | 99.89 | 99.90
1 merge e chusters inon” anes based on Eucldean P W CHM 00 | 9955 6876 | 5650 | 9901 9997
g CFM w/ Ground-truth %) | 99.75 | 99.83 | 99.93 | 99.93 | 99.97

distance between cluster centers and pre-labeled samples;
12 label all the samples i8 according to obtained clusters;

{Plym, VYm € R;}, where each concerned OPMcorresponds
to a fiber link on the lightpath’s routing path;.

(GPDFs) whose means and covariance matrices are differenyVe design CFM based on the observation that when a
to classify the vectors if$ into a fixed number of clusters ightpath is transmitted all-optically, the shape of itespum
(Line 5). Note that, even though GMM can adapt to clusteﬁé‘c’“'q stay similar from one link to_another when it does not
with arbitrary shapes, it needs to know the number of clestéfXP€rience any anomaly, and even in the low-margin scgnario
to classify in advance. Hence, we fix the number of clustelfd® Spectrum narrowing due to cascaded BV-WSS’ can be
in each iteration, get the clusters with GMM, and calculafg®?mpensated with correction masks [54-57]. Specificadly, f
the Bayesian information criterion (BIC) [63] to evaluate 2 lightpathl that has|R;| hops, the CFM can compare the
the quality of the obtained clustersiife 6). According to SPectra from OPMn g, with that from OPMm; to filter out
[61], a smallerb indicates a better clusteringine 7 records MOst of the normal data. The architecture of the CFM is shown
the value ofv and number of clusters in the current iteratio? Fi9- 8. Specifically, for each lightpath the CFM takes the

in set B. After the while-loop,Line 10 finds the smallest COMPressed spectrum vectors of the first and last hops atsinpu
b and its corresponding number of cluste¥sin B, which -8+ Fim, @nd By, , respectively), compares their shapes
represents the best clustering. Theripe 11 merges the Wlth its hldder? Iayers, and determines yvhether the Ilglhtpat
clusters according to the Euclidean distance between titerce IS @Pnormal with its output layer. We train the CFM with the
of each cluster to the pre-labeled samples. Specifically, /@P€led data from the data preprocessing module in the efflin
a cluster does not include any pre-labeled sample, we wil@nner. If the CFM determines that a lightpatis abnormal,
merge it to the cluster whose pre-labeled sample has thfPrwards all the related spectrum d&&,.., ¥m € Ri} to
smallest Euclidean distance to its center. Finally, wellalie the anomaly detection and location module.

the samples i$ according to the pre-labeled sample in each AS Shown in Fig. 9(a), we leverage a neural network that

obtained clusterLfne 12). uses exactly the same architecture of the CFM to compare the
spectrum vectors i{ Py m,,- - ,B,mm”,l}, and utilize the
binary search to quickly locate where the anomaly happens.

B. Efficient Anomaly Detection and Location Note that, the trained GMM that is for automatic data lateelin

Note that, the QoT of a lightpath usually stays normal if@n also be reused to determine the type and severity of each
most of its network operation time [27], and thus even aft@nomaly, as shown in Fig. 9(b). Before being putting into
compression, abnormal vectors are still very sparse inghe-s operation, the CFM in the anomaly detection and location
trum data received by the control p|ane_ Hence, we propdé@dule is also trained in the offline manner with the labeled
a CFM to filter out most of the normal data before invokingata from the data preprocessing module.
the DL-based spectrum inspection for anomaly detectioeh su
that the load of data analyzing can be greatly reduced. We V. NUMERICAL RESULTS
denote an anomaly as = {I,m, tp, sv}, wherel refers to In this section, we present numerical results about the DL
the abnormal lightpathyn represents the OPM that reportgnodels proposed for AutoSpecheck to show their performance
the abnormal spectrum vector and it actually indicates the ) .
location of the anomaly, andp and sv tell the type and A. Performance of Data Preprocessing for Labeling and CFM
severity of the anomaly, respectively. For each lightpgth  With the 5,400 lightpaths in Section I1I-B, we measure the
its compressed spectrum data includes a series of vectoroptical spectra at different locations on their routinghsat
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Fig. 9. Design of anomaly detection and location module.
ACCURACY ONTESTING SET (10% OF SAMPLES ARE ABNORMAL)

Samples in Training Se1 10% | 30% | 50% | 70% | 90%

GMM (%) 98.24 | 99.50 | 99.82 | 99.86 | 99.89
CFM (%) 98.90 | 99.75 | 99.89 | 99.91 | 99.93

and get37,800 spectrum vectors, among which the vectors
of normal samples take ups% and the rest are anomalies,
and the abnormal ones are evenly distributed over Ghe
anomaly scenarios.€., 8 severities of filter drifting and in-
band jamming). Then, we use the AE-based approach atf?
compress each spectrum vector to a 3-element sample, BQ@

insert all the ob'galned samples in a data Sewhich is used does not need to simultaneously consider a large number of
to evaluateAlgorithm 1. o ] o samples to accomplish the data filtering. Meanwhile, betwee
We haveM,; = 8 and M, = 1, divide S into the training the two CFMs, the one trained with the ground-truth data
and testing sets that include different portions of samples .5 achieve a higher accuracy, which is expected. However,
the training set to train the GMM in the data preprocessingg rejative difference is really smail.é., with a maximum
module, and test the accuracy of its data labeling with g6 of0.17%), and it decreases with the size of the training
testing sgt. Note that, when the ratio of training to testl_nggt_ This further proves that our semi-supervised learnirg
samples is selected, we randomly allocate the samplé inherform well regardiess of the small portion of labelingoesr
to them. The results on the GMM's labeling accuracy on thgq,ced by the GMM, and also suggests that training the

testing set are listed in Table II. It can be seen that evendin with a larger number of samples can compensate for
the GMM is only trained with10% of samples inS, it can o negative effect due to the labeling errors.

deliver a labeling accuracy ¢i.42% on the remaining0% Note that, the results in Table Il are obtained based on the
of samples in the testing set. This confirms the effectivenés assumption that the ratio of abnormal samplegf% in S.
Algorithm 1. Fig. 10 shows how BIC changes with the numbefyis however, might not be the case in practical situations

of clusters, when we train the GMM with0% of samples gjnce the QoT of a lightpath usually stays normal in most of
in S. We observe that B!C reaches its minimum when thefg operation time [27]. Therefore, we include more lighsa

are 16 clusters. As we finally need to classify the samplegt ,ormal states and exclude ones of anomalies so as to reduce
into 1_0 cate_gones, 'Fhé6 clusters are merged inttd) clusters the percentage of abnormal sampleS ifiom 45% to 10% and

by Line 9 in Algorithm 1. Table Il also suggests that thgagg the simulations. The new results are listed in TableVe
labeling accuracy on the testing set increases with thequort o5 see that the general trends of the results stay unchanged
of samples in the training set, which is well expected beeaug the classification accuracies of the GMM and CFM either
the GMM gets trained better with a larger training set. manage to be the same or only decrease slightly. This further

Then, we use the labeled data obtained by the data pygrify the performance and practicalness of our design.
processing module to train the CFM, also with different

ratios of training to testing samples. Table Il also shows ) )

the classification accuracy of the CFM, where the “CFM w- Performance of Anomaly Detection and Location

GMM” means that the CFM is trained with the data labeled by In the anomaly detection and location module, we locate
the GMM, and the “CFM w/ Ground-truth” refers to the onenomalies by leveraging a neural network that has the same
trained with the ground-truth data. It can be seen that duedtucture of the CFM and the binary search. Hence, there is
its sophisticated architecture, the CFM always providghé&i no need to analyze its accuracy again, and we will show the
classification accuracy than the GMM even if it is trainedhwiteffectiveness of the anomaly location with the experimlenta
the data labeled by the GMM. This observation confirms twiemonstrations in Section VII. The anomaly detection rguse
important features of our design. Firstly, the small petaga the GMM in the data preprocessing module to determine
of incorrect labeling in the training set for the CFM will notthe anomaly type and severity. We consider two scenarios
affect its classification accuracy. Secondly, even if theNEMto test the performance of the anomaly detectioe, the

ady provides accurate labeling, the CFM is still nezgss
ause it can further improve the classification accurady a
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Fig. 11.  Confusion matrices of anomaly detection. lightpaths in Section 1lI-B and keep the ratio of abnormal
lightpaths asl0%. Then, we leverage AutoSpecheck to check
the spectrum vectors, record its processing time, and béot t
results in Fig. 12. Although its processing time increasihl w
the number of lightpaths, the AutoSpecheck system only uses
.23 seconds to process all the spectrum samples o theo
htpaths. On average, it only tak&83 us to process one

sizes of training and testing sets have ratiosl®f and 1:1,
respectively. Meanwhile, to emulate practical situatjons
set the percentage of abnormal samplesSias 10%. Fig.
11 plots the confusion matrices that describe the anomg

detectlon'_s p(_arformance on the testing sets, the breakdown Ii%htpath, which proves the time efficiency of AutoSpecheck
of classification errors. The numbers on the x- and y-axe We also show the breakdown of the processing time in
indicate the anomaly categories, each of which correspor]gla 12(a). It can be seen that the anomaly location takes
to an anomaly with a certain severity. More specificth{h ’ '
Category0 is for the normal case;ategoryl to Category8

are for filter drifting with different severities, andategory9

is for in-band jamming. The results in Fig. 11 confirm that th
anomaly detection can accurately tell the types and s&erit

of anomalies in both scenarios.

e majority of the processing time, which is because for
each abnormal lightpath, it needs to invoke the CFM multiple
times in the binary search. Note that, the anomaly location
ﬁappens after the initial screening of spectrum samples in
another CFM, when most of the normal samples have been
removed. Hence, we can expect that the time used for anomaly
location could be much longer if we do not have the initial
C. Performance of Overall AutoSpecheck System screening with the CFM. Moreover, with the initial screepin
Finally, we perform numerical simulations to verify thehe anomaly detection only tak8%.4 msec in total to process
overall performance of AutoSpecheck, especially its timé¢he spectrum data df, 400 lightpaths, which only contributes
efficiency. We still use the DL models that are trained ito less thanl% of the total processing time. We also remove
the aforementioned subsections to build our AutoSpechettie CFM from AutoSpecheck and measure the total processing
system. Note that, an optical network should operate ndymalime. The comparison of the total processing time used by the
in most of the time, and thus in a practical scenario, thsutoSpecheck systems with and without the CFM is shown
samples about abnormal lightpaths should be much less tharig. 12(b), which indicates that the total processingetim
those about normal ones [27]. Hence, to emulate suchisamuch longer when the CFM is removed. This confirms the
practical scenario, we recollect spectrum vectors ofith®)0  benefit of our CFM on improving the system'’s time-efficiency.



10

e A e o e
Mo Swi /3 Swz - m2 1325  0.002605164 Controller DLaNA Lightpath 591 Lightpath data l@
. !_,'1_._ 5 EI' 1828 0.115607752. _DLaNA _ _ Controller _Anomaly  _ _ ll5Anomaly: 0 _ _ _ _ _ _ _ \
N 1145 3.468988796  SpecAG Controller Collection 580 Compressed Spectrum Vectors
SWo LP1 S 1147 3.469144857 Controller DLaNA Lightpath 582Lightpath data
TXOQ “I/ \ W3 — 1149 3.528289607  DLaNA Controller  Anomaly 115 Anomaly: 0
= <7 | '." R)(D 1561 7.078291880 SpecAG Controller Collection 589 Compressed Spectrum Vectors
Tt [ 5= = 1563 7.078567768  Controller DLaNA Lightpath 591Lightpath data
\ 1568 7.225292593  DLaNA Controller  Anomaly 115 Anomaly: ©
-, LP2 new
E'—l' VT T T T s P Py T T i et s e
Sw4 SW5 4507 35.873149609 Controller DLaNA Lightpath 585 Lightpath data ‘@
v 4512 35.932732871 _DLaNA _ _Controller _Anomaly  _ _115Anomaly: 1 _ _ _ _ _ _ _ 1
X
13518 35.936477982 “Controller sw2 — — — “openflow _ — 138Type: OFPT FLOW oD — — 7y @
4824 39.482821274 Controller DLaNA Lightpath 600 Lightpath data
Fig. 13. Experiment setup for detecting and recoveringr fitting. 14827 39.543264751 _DLaNA . Comtroller _Anomaly. _ _ L1SAnomaly: o - _ _ _ _ _ )
(a)
VII. EXPERIMENTAL DEMONSTRATIONS Lighpaht_ID: © Lighpaht ID: 1
. . . . Position: 0 Position: 2
In this section, we implement our AutoSpecheck system in  Type: 0 Type: 1
; ; ; ; Severity: 0 Severity: 8
a real EON testbed that is built with commercial products, Y Y

e . (b) (©)
to further verify its performance and practicalness. TheNEO ©

testbed consists of 6 nodes and 8 fiber links, as shown in Fig. 14. Messages for detecting and recovering filter duti
13. Each node is built with Finisdrx 9 BV-WSS’ to realize

flexible-grid optical switching. wo o
[ swi1 ;‘ sSw2 M2
i i ifti . LP1 EL_/Q
A. Detection and Recovery of Filter Drifting o Suy /;] / 2 »
[ M3 EJrxo

With the experimental setup in Fig. 13, we first conduct i J\% / //r"’
an experiment to detect and recover filter drifting with Au- swa j__,-—s@ =
toSpecheck. Here, we connect two BV-Ts on our Juniper =
optical packet platform to the optical ports &\0, and the
BV-Ts generatel00 Gbps QPSK optical signals centered afig. 15. Experiment setup for detecting and recoveringanebjamming.
1557.36 and1558.17 nm, respectively. The optical signals are
transmitted according to the routing pathsld®1 and LP2
in Fig. 13 to form two lightpaths. On the fiber links &P1, normal at the next network monitoring time. Note that, the
the OPMs collect spectrum vectors of the lightpath, conrefiiter drifting is actually a soft failure that will not discmect
them with AE-based data compression, and send compresgpd. We measure pre-FEC-BER on the receiver endlRf.
spectrum vectors to the control plane ev8ry seconds. The results indicate that when the lightpath is in its normal

We capture control messages in the control plane agghte, its pre-FEC-BER is8.5 x 10~°, and the pre-FEC-BER
illustrate them in Fig. 14(a). Here, the first message block increases tev1.2 x 10~3 when the filter drifting happens.

Fig. 14(a) is for normal operation. The SpecAGs in the OPMs

first report compressed spectrum vectors to the controller.

T_hen, the controlle_r forms the end-to-end spectrum datthdr 5 patection and Recovery of In-band Jamming

lightpath by organizing compressed spectrum vectors decor

ing to the order of OPMs that the lightpath passes throughWe adjust the experimental setup to that in Fig. 15 to
(i.,e, M0O—M1—M?2), and sends the lightpath data to thehow how to detect and recover in-band jamming with
DLaNA. Next, the DLaNA leverages the CFM and anomabjutoSpecheck. This time, when the experiment first starts,
detection and location module to check status of the lightpaLP1 still uses the same routing path as before. We still
and returns anomaly reports to the controller. As shown @apture control messages in the control plane, and they are
Fig. 14(b), because the DLaNA does not detect any anomaiiown in Fig. 16(a), where the first message block is still
it returns the anomaly reports, in which the anomaly type fer normal operation. Then, during operation, we inject in-
set as Oi(e., the normal case) and the lightpath ID is also sétand jamming into the fiber link betweeBWL and SW2.

as 0 to suggest that there is no lightpath to worry about. The second message block in Fig. 16(a) indicates that the

We then introduce filter drifting ol.P1, and to emulate DLaNA in our AutoSpecheck system detects the anomaly
the filter drifting, we configure the pass-band &W2 for quickly, and sends an accurate anomaly report to the con-
LP1 as[1557.262, 1557.566] nm during operation. The secondtroller (as shown in Fig.16(b)). Upon receiving the anomaly
message block in Fig. 14(a) indicates that the DLaNA quickhgport, the controller decides to rerout®l to go through
detects the anomaly, classifies it correctly, and sends &W0—SWA—SW5—SW3, for staying away from the in-band
anomaly report to the controller. The details on the anomgmming. As illustrated in the third message block in Fig.
report are illustrated in Fig. 14(c), which includes the 1D 0l6(a), the controller sendslowMod messages to the related
the abnormal lightpath, and the position, type and sevefity optical switches to accomplish the rerouting. Finally, thet
the detected anomaly. With the anomaly report, the cometrolimessage block in Fig. 16(a) shows that the statusRif goes
sends &lowMod message t&W2 to reconfigure it back to the back to normal at the next network monitoring time. When
normal state, as shown in the third message block in Fig)l4(#e in-band jamming is present, the pre-FEC-BERL&¥L
which also indicates that the status of the lightpath retwon increases from-8.5 x 107 to ~1.67 x 1073,
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(9
VIII. CONCLUSION [10]

In this paper, we considered how to improve the efficien-
cy of spectrum inspection for anomaly detection in EON$11]
and designed and experimentally demonstrated AutoSpkchec
Specifically, we architected AutoSpecheck based on the
EON architecture, proposed new techniques to greatly eeduc
the loads of data reporting (in the data plane) and data &naI%/B]
ing (in the control plane), and implemented it in a real netwo
testbed for experimental demonstrations. To reduce thasloa
of data reporting in the data plane, we used the AE technicidél
to design a spectrum data compression method, which not only
significantly reduces the load of data reporting from theadafis)
plane, but also ensures that the correlations buried inispac
data will be kept through the compression. To improve tHe?!
efficiency of data analytics in the control plane, we made two
major innovations. Firstly, we designed a CFM for the contrél7]
plane to filter out most of the normal data before invoking
the DL-based spectrum inspection for anomaly detectioo: Sgg
ondly, to address the difficulty of labeling massive speutru
data, we developed a DL-based anomaly detection based 1%51
semi-supervised learning. Our experimental demonsmati&
considered two representative intra-channel anomalestbe [20]
filter drifting and in-band jamming), and the results vedfie
that AutoSpecheck can achieve highly-efficient and aut@mag,;
spectrum inspection for anomaly detection in EONs.
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