
1

You Calculate and I Provision: A DRL-assisted
Service Framework to Realize Distributed and

Tenant-driven Virtual Network Slicing
Xu Zhang, Baojia Li, Jianquan Peng, Xiaoqin Pan, Zuqing Zhu,Senior Member, IEEE,

Abstract—This paper studies the problem of virtual network
(VNT) slicing in datacenter interconnections (DCIs), and pro-
poses a novel service framework to better balance the tradeoff
between cost-effectiveness and time-efficiency. Our idea is to
partition a DCI into non-overlapped subgraphs, divide the VNT
slicing in each subgraph into four collaborative steps, andget
tenants involved in the calculation of virtual network embedding
(VNE) schemes. With our proposal, an agent of infrastructure
provider (InP) leverages deep reinforcement learning (DRL) to
price and advertise the substrate resources in one subgraph,
motivates tenants to request resources in a load-balanced manner,
and accepts VNE schemes from the tenants to avoid resource
conflicts. Meanwhile, the tenants’ task is to compute their own
VNE schemes independently and distributedly according to the
resource information (i.e., the available resources and their
prices) advertised by the agent. We first design the DRL model
based on the deep deterministic policy gradient (DDPG), and
develop a VNT compression method based on auto-encoder
(AE) to generalize the DRL’s operation. Then, we study how
to resolve resource conflicts among the distributedly-calculated
VNE schemes, build a conflict graph (CG) to transform the VNE
selection into finding the maximum weighted independent set
(MWIS) in the CG, and design a polynomial-time approximation
algorithm to solve the problem. Extensive simulations confirm
that compared with the centralized service framework relying
solely on the InP for VNE calculation, our proposed DRL-assisted
distributed framework provisions VNT requests with significantly
shorter computation time and comparable blocking performance.

Index Terms—Virtual network embedding (VNE), Deep rein-
forcement learning (DRL), Auto-encoder (AE), Distributed and
parallel operation, Datacenter interconnections (DCIs).

I. I NTRODUCTION

NOWADAYS, the booming of cloud computing and other
Internet-based applications has pushed the traffic among

datacenters (DCs) to grow rapidly [1–3]. Hence, the architec-
ture of DC interconnections (DCIs) is facing great challenges
to support the traffic demands timely and cost-effectively [4].
This dilemma has motivated people to consider network virtu-
alization [5]. With network virtualization, traditional Internet
service providers (ISPs) evolve into two types of entities,i.e.,
the infrastructure providers (InPs) and service providers(SPs).
Specifically, SPs are the tenants to lease virtual networks
(VNTs) in the pay-as-you-go manner from a substrate network

X. Zhang, B. Li, J. Peng, X. Pan and Z. Zhu are with the School of
Information Science and Technology, University of Scienceand Technology
of China, Hefei, Anhui 230027, P. R. China (Email: zqzhu@ieee.org).

X. Pan is also with the Engineering Technology Center, Southwest Univer-
sity of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

Manuscript received May 11, 2020.

(SNT) that is owned by an InP, while the InP builds VNTs on-
demand with substrate resources in its SNT (i.e., the resources
on substrate links (SLs) and substrate nodes (SNs)) [6, 7]. If
the SNT is a DCI, the InP can provide SPs with IT resources
in the DCs and bandwidth resources in the optical inter-DC
network dynamically and adaptively, such that time-varying
demands from heterogeneous network services can be satisfied
cost-efficiently [8, 9]. Hence, network virtualization in the
DCI not only improves the utilization of the InP’s substrate
resources, but also shortens the time-to-market of the SPs’
network services,i.e., achieving a win-win situation.

Despite the aforementioned benefits, it is still challenging
for an InP to provision VNTs cost-effectively and time-
efficiently. The major difficulty comes from the fact that the
key problem of network virtualization, namely, virtual network
embedding (VNE), isNP-hard [10]. This means that it would
be intractable for an InP to obtain the optimal VNE solution,
if there are many VNTs to slice or/and the size of its SNT
is relatively large. Previous studies have designed numerous
algorithms to tackle VNE in various networks with different
optimization objectives [10–13], and the system prototypes for
VNT slicing have also been experimentally demonstrated [14–
16]. Nevertheless, most of these investigations tried to solve
VNE in the centralized manner,i.e., the InP calculates all the
VNE schemes without any tenant participation.

In this work, we revisit the problem of VNT slicing in
DCIs, and argue that the tradeoff between cost-effectiveness
and time-efficiency can be better balanced if the novel service
framework shown in Fig. 1 is adopted. Here, the main idea
is to get tenants involved in VNE calculation, and thus VNT
slicing can be accomplished in a distributed and tenant-driven
manner. Specifically, the InP still has the objective to maximize
the revenue from provisioned VNTs (or to minimize VNT
blockings), but it divides VNT slicing into four steps to
leverage the computing power of tenants.

The InP first collects VNT requests from its tenants (Step
1). Then, instead of calculating the VNE schemes by itself,
the InP utilizes a deep reinforcement learning (DRL) model
to quickly analyze the VNT requests for resource pricing and
advertising. Specifically, for each VNT request, the InP checks
its characteristics with a DRL model, which will assign the
request to a subgraph in the DCI to embed its VNT and price
the related substrate resources accordingly (Step 2). Hence, in
the subsequent step, the VNE schemes calculated distributedly
by the tenants will have the least resource conflicts. To ensure
the performance of the DRL-assisted resource pricing and

2

InP

• Objective: Maximize the revenue from VNTs / Minimize VNT blockings

• Actions:

• Collect VNT requests and assign them to subgraphs in DCI

• Perform DRL-assisted pricing on substrate resources

• Advertise information regarding SNT to tenants

• Collect and grant VNE schemes from tenants

Tenant 1

• Actions:

• Submit VNT request to InP

• Calculate VNE scheme with

the lowest cost

• Submit VNE scheme to InP

……

2 3 41

Tenant N

• Actions:

• Submit VNT request to InP

• Calculate VNE scheme with

the lowest cost

• Submit VNE scheme to InP

2 3 412 3 41

Tenant submits VNT request to InP.

InP advertises SNT information to tenant.

Tenant submits VNE scheme to InP.

InP grants and provisions VNE scheme.

1

2

3

4

…… ……

Fig. 1. Service framework for distributed and tenant-driven VNT slicing.

advertising, we design the DRL model based on the deep
deterministic policy gradient (DDPG) [17], which consists
of pricing and management modules. Meanwhile, since each
VNT request can only be represented by a complex and high-
dimensional data structure (i.e., the topology and resource
demands of virtual links (VLs) and virtual nodes (VNs)),
we consider how to avoid the “curse of dimensionality” and
generalize the operation of the DRL model. Specifically, we
leverage the idea of auto-encoder (AE) [18] to propose a VNT
compression method that can discard irrelevant information,
reduce the dimensionality of VNTs’ data, and effectively
extract the key features of VNTs to feed into the DRL model.

In Step 3, the InP advertises the information regarding its
SNT (i.e., for each tenant that submitted a VNT request, the
InP provides the topology and resource prices of the assigned
subgraph), and lets the tenants calculate their VNE schemes
independently and distributedly1. If two or more tenants are
assigned to a same subgraph, they calculate the VNE schemes
of their VNTs with the same substrate topology and resource
prices. Finally, the InP collects VNE schemes from the tenants,
and grants them in the way such that the revenue from VNTs
can be maximized or the VNT blockings can be minimized
(Step 4). As the VNE schemes are calculated distributedly,
they could have resource conflicts,i.e., provisioning multiple
VNE schemes simultaneously could violate the resource ca-
pacity constraint(s) of certain SL(s)/SN(s). Hence, we study
how to resolve the resource conflicts by provisioning VNE
schemes selectively. Specifically, we construct a conflict graph
(CG) based on the VNE schemes, transform the problem into
finding the maximum weighted independent set in the CG, and
design a polynomial-time approximation algorithm to solveit.

In all, our proposal of the distributed and tenant-driven
service framework in Fig. 1 effectively simplifies the In-
P’s network control and management (NC&M) and greatly
improves the time-efficiency of VNT slicing in DCIs. We
conduct extensive simulations to evaluate its performance, and

1Note that, our service framework does not restrict the VNE algorithm
used by the tenants. In other words, with the adaptivity provided by the DRL
model, it works well as long as the VNE algorithm provides thetenants with
feasible VNE schemes and tries to reduce their costs.

demonstrate that compared with the centralized benchmark,
it provides comparable VNT blocking probability but much
better scalability in terms of running time. In summary, the
major contributions of this work are

• We propose a DRL-assisted service framework for dis-
tributed and tenant-driven VNT slicing in DCIs.

• We design a DRL model, which can quickly analyze VNT
requests to price and advertise the substrate resources in a
DCI, for intelligently guiding the subsequent distributed
VNE calculation to minimize resource conflicts.

• We develop a VNT compression method based on AE to
not only limit the DRL model’s input dimensionality but
also generalize its operation.

• We leverage a polynomial-time approximation algorithm
to select conflict-free VNE schemes to provision.

The rest of paper is organized as follows. Section II briefly
surveys the related work. We describe the overall design of
the proposed service framework and the concerned problem
of VNT slicing in a DCI in Section III. Then, Sections IV
and V elaborate on the DRL model for resource pricing
and advertising and the approximation algorithm for selecting
conflict-free VNE schemes, respectively. Next, we discuss the
numerical simulations for performance evaluation in Section
VI. Finally, Section VII summaries the paper.

II. RELATED WORK

As the key problem of network virtualization, VNE has
been studied intensively in both theoretical and experimental
aspects. Using various networks as SNT, the studies in [9, 10,
12, 13, 19–23] formulated a few integer linear programming
(ILP) and mixed integer linear programming (MILP) models
for VNE. As the ILP/MILP models will become intractable
for large-scale problems, they also designed polynomial-time
heuristics and approximation algorithms to trade solution
performance for time-efficiency. Through the process, it is
found that the performance of VNE can be improved by
considering the topology information of SNT and VNTs. For
instance, inspired by PageRank [24], the investigations in[7,
25] abstracted the topology information of SNT and VNTs
and utilized the abstracted information to assist node mapping.
Different from the one in packet networks, the VNE in optical
networks (i.e., the SNT is a fixed-grid wavelength-division
multiplexing (WDM) network [9] or a flexible-grid elastic
optical network (EON) [26–28]) needs to solve the famous
routing and spectrum assignment (RSA) problem in link
mapping. Since RSA itself isNP-hard, such VNE problems
are intrinsically more complex. A relatively comprehensive
survey on the existing VNE algorithms can be found in [11].

In addition to theoretical studies, people have also developed
network virtualization hypervisors (NVHs) to demonstrate
slicing VNTs over a shared SNT experimentally [14–16].
However, all the aforementioned studies relied solely on
computing power of the InP to optimize the VNE schemes of
VNT requests,i.e., utilizing the purely centralized scenario.
Note that, there could be many VNTs for the InP to slice [1],
and in this situation, the purely centralized scenario can hardly
deliver high-performance VNE solutions while maintaining
reasonably good scalability in terms of computation time.

3

Previously, researchers also designed algorithms to achieve
distributed/parallel VNE [29–31], which were all based on the
idea to partition the SNT topology intoN non-overlapped sub-
graphs. Then, by delegating VNT requests to the subgraphs,
the InP can useN processes to calculate the VNE schemes
(i.e., each is within a subgraph) in parallel. Although we
also divide the SNT topology into subgraphs, our proposal is
different from theirs, because they still let the InP calculate all
the VNE schemes without any tenant participation. Moreover,
as their degree of parallelism is just the number of subgraphs
partitioned from the SNT (i.e., N), there is a tradeoff between
the degree of parallelism and the performance of parallel VNE.
Specifically, the average size of non-overlapped subgraphs
decreases withN , which will eventually block certain VNTs.

Recently, people started to incorporate machine learning
(ML) techniques in NC&M to solve complex optimizations
or/and make intelligent and timely decisions [32, 33]. Among
the ML techniques, DRL has been considered as a promising
one because it adopts online training, which is suitable to
handle dynamic network environments [34, 35]. Leveraging
ML techniques to tackle VNE problems has just started to
attract research interests since recently [36–38], but allthe
proposals were based on the centralized scenario. In [36], the
authors designed an ML model to forecast whether a VNT
request should be accepted for VNE calculation. The studies
in [37, 38] considered how to leverage DRL to solve VNE
problems directly. The RDAM algorithm proposed in [37] used
novel methods to represent and update SNT information, and
designed a DRL model to solve node mapping. Dolatiet al.
[38] designed DeepViNE, whose main idea is to encode the
information of SNT and VNTs as two-dimensional images and
then solve VNE accordingly based on Q-learning.

Although RDAM and DeepViNE could outperform a few
existing VNE algorithms, using DRL to solve VNE problems
directly might suffer from two issues. Firstly, it cannot avoid
the “curse of dimensionality”, since the sizes of state and
action spaces increase quickly with the sizes of SNT/VNT
topologies. Secondly, it can hardly provide a generic solution,
i.e., when the topologies of SNT/VNT change, the DRL model
needs to be retrained or even re-architected.

Therefore, in this work, we make tenants calculate their
VNE schemes with classical VNE algorithms (i.e., non-ML-
based ones), but only leverage DRL to optimize the resource
pricing and advertising for the InP. Then, the sizes of the
DRL model’s state and action spaces can be well controlled.
In other words, our DRL model does not directly participate
in VNE calculations, but it can adjust the prices of substrate
resources intelligently to affect VNE results indirectly.We
proposed the preliminary version of our DRL-assisted service
framework in [39]. However, the DRL model was based on Q-
learning and not optimized, and the conflict-free selectionof
VNE schemes was not addressed. Then, in [40], we redesigned
the DRL model based on DDPG and developed a heuristic to
select conflict-free VNE schemes greedily. Nevertheless, as
we will show later, the DRL model can be further optimized
by introducing the AE-based VNT compression. Moreover, to
ensure the performance of solutions, we need a polynomial-
time approximation algorithm for conflict-free VNE selections.

Network Virtualization Hypervisor

AE-based

VNT

Compression

DRL Model

Conflict-free VNE Selection

Agent 1 of InP

VNT 1 VNT 2 VNT N

VNE 1 VNE 2 VNE N

1

Report

VNTs

……

……

Resource Pricing

Resource

Management

OXC
DC

A Subgraph in SNT

Tenants

2

23

4

4
2

AE-based

Classifier ……
Agent M

Agent 1VNT Requests

Fig. 2. Architecture of our proposed service framework.

III. PROBLEM DESCRIPTION

In this section, we first describe the overall design of our
service framework, and then define the network model and
optimization problem of slicing VNTs in a DCI.

A. DRL-assisted Service Framework

Fig. 2 shows the architecture of our DRL-assisted service
framework to realize distributed and tenant-driven VNT slic-
ing. To ensure the scalability of our approach, we also assume
that the InP can divide the topology of the DCI (i.e., the SNT
topology) into several non-overlapping subgraphs, if the SNT
topology is relatively large [29–31]. Note that, the topology
partition can be accomplished with the multilevel recursive
bisection partitioning algorithm developed in [41], whichcan
quickly partition a relatively large topology into roughlyequal-
sized subgraphs with three phases, for coarsening, partitioning,
and un-coarsening, respectively. Moreover, the algorithmalso
minimizes the number of links among the obtained subgraphs.
The VNT slicing in the subgraphs is managed by independent
agents, which include DRL models with similar architectures
and operation principles. After receiving a batch of VNT re-
quests, the InP first uses an auto-encoder (AE) based classifier
to distribute them to the agents. The AE-based classifier tries
to send VNTs with similar characteristics to different agents,
such that in subsequent steps, the resource conflicts among
the VNE schemes obtained by the tenants can be reduced.
The AE-based classifier will be designed in Section IV.

Next, each agent accomplishes the VNT slicing in its
subgraph with four steps, and at each provisioning time, the
operations are as follows. The tenants assigned to the agent
first report all the pending VNT requests, which get stored
and processed by the AE-based VNT compression module
(Step 1), which extracts key features of the VNT requests and
feeds them into the DRL model that consists of two modules,
and meanwhile, the modules collect the current state of the

4

SNT from the NVH. Based the output of the AE-based VNT
compression module, the resource pricing and management
modules price the substrate resources in the agent’s subgraph
and turn off some resources for certain tenants, respectively,
and they then send results to the tenants accordingly (Step 2).
Specifically, the pricing module tries to guide the tenants to not
use bottleneck resources, while the management module aims
to shutting down different resources for the tenants to relieve
resource competition. They are both based on DRL, where
their DRL agents observe the same network environment, but
their training and operations are independent of each other.
The details regarding them will be discussed in Section IV.

Upon receiving the results on resource pricing and adver-
tising modules, each tenant calculates its own VNE scheme
independently and distributedly, with the objective of mini-
mizing the total VNE resource cost. Then, the tenants submit
their VNE schemes to the agent (Step 3). The agent utilizes
a conflict-free VNE selection algorithm to process the VNE
schemes, chooses to provision those that lead to maximized
revenue from VNTs or minimized VNT blockings, and finally
deploys the selected VNE schemes with the NVH (Step 4).

TABLE I
NOTATIONS FOR THENETWORK MODEL

Notation Explanation

DCI :

vEi the i-th edge SN inV E

vIi the i-th intermediate SN inV I

E(v) the set of SLs that connect to SNv ∈ V

Rc
i the amount of available IT resources in the DC ofvEi

Rb
e the available bandwidth on an SLe ∈ E

k-th VNT Request Gr
k
(V r

k
, Er

k
):

vr
k,i

the i-th VN in V r
k

Rr
k,i

the amount of IT resources demanded by VNvr
k,i

Rr
k,e

the amount of bandwidth required by VLe ∈ Er
k

Note that, despite the regulations of the resource pricing
and management modules, the tenants can still obtain VNE
schemes with resource conflicts. Therefore, the agent has
to reject certain VNE schemes, which is the downside of
distributed VNE calculation. From the agent’s perspective,

DC 1

DC 2

DC 3

DC 4

Edge SN 1

Edge SN 2

Edge SN 3

Edge SN 4

Intermediate SN 1

Intermediate SN 2

SL 1

SL 2 SL 5

SL 6

SL 4 SL 7

SL 3

(a)

(c)(b)

VN 2

VN 3

VN 1

VL 1

VL 2

VL 1
DC 1 DC 3

DC 2 DC 4

VN 1 VN 2

VN 3VL 2
VL 3

VN V

VL 3

Fig. 3. Example on VNT slicing in a subgraph of DCI, (a) the SNT, (b) a
tenant’s VNT request, and (c) the VNE scheme computed by the tenant.

it can reduce resource conflicts by motivating the tenants to
demand for substrate resources in the load-balanced way, and
this can be done by pricing substrate resources adaptively and
restricting the resource usage of each tenant intelligently. This
is essentially a repeated leader-follower game, where the agent
of the InP is the leader and the tenants are the followers.
The agent first makes the decision on resource pricing and
advertising to affect the tenants’ behaviors (i.e., preventing
them from competing for scarce substrate resources). Then,
the tenants independently calculate their VNE schemes whose
resource conflicts will in turn affect the agent’s strategy at the
next provisioning time. Due to the complexity of the VNE
problem and the dynamic nature of VNT requests, it would
be rather difficult to analyze the game analytically. Hence,we
leverage DRL to make wise decisions for the agent.

B. Network Model

Table I lists the notations defined for the network model.
1) Substrate Network:The topology of a subgraph in the

SNT is modeled as a graphG(V,E), whereV and E are
the sets of SNs and SLs in it, respectively. As shown in
Fig. 3(a), there are actually two types of SNs,i.e., the edge
and intermediate SNs, respectively. Specifically, each edge
SN includes a local DC and an optical cross-connect (OXC)
and it is included in setV E , while an intermediate SN only
contains an OXC and it is enclosed in setV I . Hence, we have
V E ∩ V I = ∅ andV E ∪ V I = V . The VNT slicing considers
two types of substrate resources, which are the IT resources
on DCs and the bandwidth resources on SLs (i.e., fiber links).
In this work, we assume that the bandwidth resources can
be allocated in a granularity that is much smaller than a
wavelength channel, which is actually the practical case in
DCIs considering the various bandwidth demands of network
services [1]. In other words, we model each SL as a bandwidth
pipe and tackle the VNE problem in the packet layer, and thus
there is no need to consider the RSA problem in link mapping.

2) Virtual Networks: At each provisioning time, the InP
could use the AE-based classifier to allocateK pending VNT
requests from tenants to an agent. Thek-th VNT request is
denoted asGr

k(V
r
k , E

r
k), whereV r

k andEr
k are the sets of VNs

and VLs, respectively. Fig. 3(b) shows an example of VNT.
3) VNE Calculation: Based on the information provided

by the agent, each tenant calculates the VNE scheme of its
VNT request and tries to minimize the total VNE resource
cost. Specifically, in order to solve the VNE problem, the
tenant needs to a) choose a DC node in the SNT to embed
each VN in its VNT such that the VN’s IT resource demand
can be satisfied (i.e., the node mapping), and b) set up each
VL between a VN pair on a substrate path with sufficient
bandwidth end-to-end (i.e., the link mapping). Fig. 3(c) shows
the VNE scheme computed by a tenant.

As the VNE problem isNP-hard, tenants should use
heuristic algorithms to tackle it, such that cost-effective VNE
schemes can be calculated time-efficiently. In Section VI, we
will show that our service framework is agnostic to the VNE
algorithm used by the tenant. Hence, we will not specify a
heuristic for the tenants, and assume that they can leverage
any existing approach with reasonably good performance.

5

IV. DRL- ASSISTEDRESOURCEPRICING AND

ADVERTISING

As shown in Fig. 2, the VNT requests from tenants are
first distributed to different agents of the InP by the AE-
based classifier, and then each agent processes its VNT
requests with the help from the tenants. Specifically, there
are three major components in each agent,i.e., the DRL-
based resource pricing and management modules, the AE-
based VNT compression, and the conflict-free VNE selection.
In this section, we explain our designs of the first two, and
because the DRL-based modules define the output as well as
operation principle of the AE-based VNT compression, they
are introduced first. Meanwhile, as the AE-based classifier in
Fig. 2 shares the same operation principle with the AE-based
VNT compression, it is also briefly covered in this section.

A. Resource Pricing and Management Modules

Each agent uses the resource pricing and management
modules to price the substrate resources in its subgraph of the
SNT and choose the policy to hide some resources from certain
tenants, respectively. Both modules are based on DRL, where
their DRL agents observe the same network environment (i.e.,
the resource utilization in the subgraph and the information
regarding VNT requests), but use different action spaces.

1) Actions of Resource Pricing Module:To restrict the
output dimensionality of its DRL model, we need to carefully
design the actions of the pricing module. Intuitively, its actions
are to price the resources on|V E | + |E| substrate elements,
where the number of SLs (|E|) is normally much greater than
that of edge SNs (|V E |) in a mesh subgraph.

Definition 1. In an SNT, we define asubstrate cluster (SC) as
a tree-type structure, which is rooted in an edge SN and may
also have branches that include SLs and intermediate SNs.

We obtain SCs by partitioning the SNT topology (as shown
in Fig. 4(a)). SCs do not overlap with each other, and an SL
between two SNs is randomly assigned to one of their SCs.
Hence, an SC might only contain one SN but zero SL. To
optimize the actions of the pricing module, we make it change
the prices of the substrate resources in each SC simultaneously.
This is because the resource usages of the substrate elements
in an SC are normally highly-correlated [7]. Hence, we reduce
the DRL’s outputs from|V E |+ |E| to |V E |. Then, the actual
pricing model is defined as follows. We first normalize the
resource capacity of each substrate element (i.e., an SN/SL)
to one, and then let the DRL price the unit usage (e.g., 1%)
of the resources on each substrate element in an SC as

wj = cj + aj · δj , (1)

wherej is the global index of the substrate element,cj andδj
are the empirically-selected constants to denote its base and
incremental resource costs, respectively, andaj ∈ [0, 1] is a
ratio whose value is determined by the DRL’s actions. Hence,
the DRL changes the unit price2 of the resources on a substrate

2Here, the “price” might not be the real unit price of substrate resources.
It should be understood as a weight of the resources, which isprovided by
the InP to the tenants to guide their VNE calculations, such that the overall
blocking probability of VNT requests can be minimized.

element within[cj , cj + δj]. Note that, the values ofcj andδj
can be different for different substrate elements, while for all
the substrate elements in an SC, theiraj are the same.

Hence, at provision timet, the pricing module’s action is
to determine the ratios for all the SCs,i.e., getting At =
{aj, ∀j}. Meanwhile, if we denote the current network state
regarding both the SNT’s subgraph and the pending VNT
requests assigned to use the subgraph asSt, the DRL of the
pricing module needs to learn the pricing strategyπ(At|St).

2) Actions of Resource Management Module:To avoid the
tenants competing for substrate resources when calculating
their VNE schemes distributedly and independently, we intro-
duce the resource management module to hide some resources
from being advertised to certain tenants [42]. Specifically, we
define a parameterp to denote the probability that a DC should
be hidden in the resource advertisements to tenants. In each
service provisioning,p uses the same value for all the tenants,
but because the DCs are hidden in the resource advertisement
to each tenant randomly with a probability ofp, the resource
advertisements to different tenants can hide different DCs,
i.e., the topology information received by the tenants can be
different. If a DC is hidden for certain tenants, we set the
amount of available IT resources on the corresponding edge
SN as 0, while the tenants still receive a connected subgraph.
Hence, at provision timet, the management module’s action
is to select a proper value forp (i.e., Pt = {p, p ∈ [0, 1]}),
and it needs to learn the strategyπ(Pt|St).

B. Design of DRL Model

The principle of DRL is about letting an intelligent agent3

interact with a dynamic environment and choose proper actions
to address different environment states, such that the agent’s
reward from the environment can be maximized [43]. Hence,
each DRL model involves four basic elements,i.e., the agent,
state, action, and reward. We design the DRL model for the
resource pricing and management modules based on DDPG
[17], which is known to be powerful for optimizing actions
with continuous values to tackle high-dimensional states.For
the two modules, their DRL models use the same neural
network structure, observe the same network state, and collect
the same reward. The only difference is that their action spaces
are defined differently. Therefore, we use the resource pricing
module as an example to explain the DRL models’ design.

Fig. 4(b) shows the operation principle of the DRL model
for resource pricing. The environment is just a subgraph in the
SNT, and thus its state includes the information about both
the subgraph (i.e., the topology and resource usage on each
substrate element) and the pending VNT requests. Note that,
to generalize the DRL’s operation, we abstract the information
of VNT requests with AE-based VNT compression, which will
be introduced in the next subsection. The DRL model consists
of two neural networks, which are the actor neural network (A-
NN) and the critic neural network (C-NN), and leverages them
to optimize its decision making. Specifically, at eacht, the A-

3The agent here refers to the DRL agent in each DRL model, but not an
agent of the InP for network slicing.

6

Edge Node

Observation of Environment

DRL Agent
Reward

State

Action

Q Value
(,)

C-NN

A-NN
Action

State

SNT

VNTs

Environment

5

4

2

3

1

Intermediate Node

SC 1

SC 2

SC 3

SC 5

SC 4

(b)(a)

(c)

Input

Layer
Hidden

Layer 1

Hidden

Layer 2

Output

Layer

(d)

Input

Layer
Hidden

Layer 1

Hidden

Layer 2

Output

Layer

(,)

Fig. 4. (a) Example on partitioning an SNT into SCs, (b) DDPG-based DRL model for resource pricing and advertising, and (c) and (d) Architectures of
A-NN and C-NN, respectively.

NN selects an actionAt based on its learned pricing strategy
π(At|St), while the C-NN evaluates the selected action.

As the action space is continuous (i.e., eachaj ∈ At is a real
number), the A-NN gets a deterministic action with the pricing
function At = µ(St|θ

a), where θa denotes its parameters.
After applying actionAt to the environment, the DRL agent
gets an instant rewardrt to evaluate the performance ofAt in
stateSt. Here,rt is defined as the acceptance ratio of the VNT
requests considered att. Then, the environment proceeds to
stateSt+1, and the aforementioned procedure gets repeated. At
eacht, the agent gets a tuple<St,At, rt,St+1> and stores it
as an entry of experience, which is used in the online training
of A-NN and C-NN to update their parameters (θa andθc).

The C-NN uses a value functionQ(St,At|θc) to evaluate
the actions taken by the A-NN, which is also optimized in
online training. The training happens when the agent accumu-
lates enough entries of experience, and the C-NN replays the
entries to get the long-term reward at stateSt

Rt = Q(St,At|θ
c). (2)

Meanwhile, with the instant rewardrt stored in the corre-
sponding entry, we can get another estimated long-term reward
using the Bellman equation

R′
t = rt + γ ·Q(St+1,A

′
t+1|θ

c), (3)

whereA′
t+1 is the new action provided by the updated A-NN

with St+1 as the input, andγ is the discount factor, which
is a constant within[0, 1]. As the C-NN’s training is to learn
how to evaluate the A-NN’s actions more accurately, its loss
function is defined as

σ =
1

N

∑

t

(R′
t −Rt)

2
, (4)

where N is the number of experience entries used in the
training. The training updates the C-NN’s parametersθc to
minimize the lossσ. In the meantime, the A-NN’s training
continuously optimizes the parametersθa of its pricing func-
tion µ(St|θa), according to the evaluation provided by the C-
NN. The A-NN updatesθa with the sampled policy gradient

∇θa ≈

1

N
·
[

∇AQ(S ,A|θc)|S=St,A=A′

t

]

· ∇θaA
′
t. (5)

whereA′
t is new action withSt.

Figs. 4(c) and 4(d) lay out the architectures of the A-NN
and C-NN, respectively. Here, the A-NN takes the stateSt

observed from the environment as the input, and outputs an
actionAt to price the substrate resources in each SC. Hence,
the dimensions of the A-NN’s input and output layers are
|V E |+ |E|+ |FR| and|V E |, respectively, where|FR| refers to
the number of features that the AE-based VNT compression
obtains from VNTs. Meanwhile, we allocate two hidden layers
in the A-NN, to map its inputs to outputs (i.e., St → At)
with fully-connected neural networks. The structure of theC-
NN is similar to that of the A-NN, but the dimensions of
its input and output layers are2 · |V E | + |E| + |FR| and 1,
respectively. The C-NN’s input layer takes both the stateSt

and the actionAt provided by the A-NN, while its output
layer is one-dimensional, which represents the evaluationof
the actionAt in the stateSt (i.e., Q(St,At|θc)).

The design of the DRL model for the resource management
module is similar, except that it utilizes the A-NN and C-
NN to learn the resource shutting down strategyπ(Pt|St) in
online training. As the operations of the resource pricing and
management modules are correlated, we train them alternately,
i.e., the parameters of one module keep unchanged when those
of the other one are being updated in online training.

C. AE-based VNT Compression

As the environmental stateSt includes the information about
both the subgraph and pending VNT requests, the state space
would be extremely large if we directly put the VNT requests
in St. This will make the DRL models converge very slowly
or even not converge in training, and thus would seriously
affect the performance of our service framework. Therefore,
we design a VNT compression method by leveraging AE [18].

Fig. 5(a) explains the principle of AE, which uses self-
supervised learning to characterize high-dimensional data,
with an encoder and a decoder. The encoder maps the input
samplesX to feature spaceZ with an encoding function
g : X → Z, while the decoder reverts the process to obtain the
reconstructed samplesX ′ based onZ with a decoding function
f : Z → X ′. To optimize the encoder/decoder, AE leverages
a DNN to minimize the reconstruction errors betweenX and
X ′. Although AE has already demonstrated its effectiveness
in the compression and reconstruction of Euclidean data, such
as images, texts and videos, we are facing the following two
challenges when trying to utilize it for VNT compression.

Firstly, the high-dimensional graph-structured data regard-
ing VNT requests is non-Euclidean and irregular. For instance,

7

Input Samples

error

Encoder Decoder

Reconstructed

Samples

Feature

(a) (b)

(,) Tensor

Kernel Size: (,), Stride: (, 1), Filter:

Layer 1

Layer 2

…

…
…
…

(, 1) Tensor

Channels:

Fig. 5. (a) Generic principle of AE, and (b) AE-based VNT compression.

each VNT has a variable number of unordered VNs, and the
VNs can have different numbers of adjacent nodes. This would
make certain important operations (e.g., convolution), which
can be easily done on Euclidean data, not directly applicable.
Secondly, how to organize the unordered VNTs and input them
in the DNN of AE is also challenging. Hence, inspired by the
work in [44], we first design the preprocessing to transform the
graph-structured data regarding VNT requests into a structure
that can be processed by convolutions, and then design the
DNN to extract the important features with AE.

Algorithm 1: Preprocessing of VNT Requests

Input : K VNT requests{Gr
k(V

r
k , E

r
k)}, Kmax, Vmax.

Output : A list of regular Euclidean dataGE .

1 GE = ∅;
2 sort VNT requests in descending order of|V r

k | (primary)
and |Er

k| (secondary);
3 for each VNT requestGr

k(V
r
k , E

r
k) in sorted orderdo

4 sort its VNs in descending order of node degree;
5 representGr

k as a|V r
k |×|V r

k | adjacency matrixAk;
6 updateAk to Vmax×Vmax matrix with zero padding;
7 insertAk in GE ;
8 end
9 if K < Kmax then

10 insert(Kmax −K) Vmax×Vmax 0-matrices inGE ;
11 end

1) Preprocessing of VNT Requests: Algorithm1 shows the
procedure of VNT preprocessing. Here, in addition toK VNT
requests, the algorithm also needs to knowKmax as the upper-
bound ofK andVmax as the maximum number of VNs in a
VNT. As the preprocessing is conducted by an agent of the InP,
it should not be difficult to set or estimateKmax andVmax.
The basic idea ofAlgorithm1 is to organize the VNT requests
in a fixed-sized data structure where the data of each VNT is
ordered uniquely. Therefore, the feature extraction with AE
would provide a unique mapping forX → Z. The sorting
of VNT requests has a time complexity ofO(K2

max) , and
the number of operations to construct an adjacency matrix is
proportional toVmax·(Vmax−1)

2 . Hence, the time complexity of
Algorithm 1 is O(K2

max +Kmax · V2
max).

2) Design of AE for VNT Compression:Our AE for VNT
compression considers the adjacency matrix of each VNT as
a receptive field.Algorithm 1 provides us withKmax sparse

matrices, each of which has a size ofVmax×Vmax. The matri-
ces can be shaped as a(Kmax · Vmax,Vmax) tensor, which is
used as the input of the AE’s neural network. Specifically, the
operation of the VNT compression based on AE is explained in
Fig. 5(b). We first apply a 2-dimensional convolutional layer
with receptive field(Vmax,Vmax) and stride(Vmax, 1). The
setting on the sizes of the receptive field and stride means that
the convolution kernel only moves laterally, and every timeit
just jumps from one adjacency matrix to another. For example,
the blue square in Fig. 5(b) represents a convolution kernel,
which will move from left to right and perform a convolution
operation on the input tensor. As the first layer of the AE
only has one input channel, the actual size of the convolution
kernel is(Vmax,Vmax, 1). The convolution kernel sweeps over
the input tensor, makes multiplication summation of the matrix
elements in the receptive field, and superimposes the deviation,

Lo(i) = [Li

⊕

w](i) + b

=

Vmax−1
∑

x=0

Vmax−1
∑

y=0

[Li(Vmax · i+ x, y) · w(x, y)] + b,

i ∈ [0, Kmax − 1],

(6)

whereLi andLo are the input and output of the first layer,
respectively, andw and b denote the weight and bias of the
convolution kernel, respectively. We obtain a(Kmax, 1) tensor
with the convolution in Eq. (6), where each element is the
aggregated information of a VNT request.

The first layer of the AE usesM convolution kernels for the
aforementioned operation, and thus the number of its outputs
(i.e., the inputs to the second layer) isM . Hence, the size
of the tensor obtained by the first layer is(Kmax, 1,M). The
operation in the second layer is the same as that in a classical
one-dimensional convolutional neural network. In our service
framework, the AE is trained in advance to minimize recon-
struction errors. Then, during operation, it compresses VNT
requests before inputting them to the DRL-based resource
pricing and management modules. The AE-based classifier in
Fig. 2 uses the same operation principle. Specifically, it also
leverages AE to extract and characterize the high-dimensional
data regarding VNT requests, and will send VNTs with similar
characteristics to different agents of the InP.

V. SELECTING CONFLICT-FREE VNE SCHEMES

The AE-based VNT classification and the DRL-assisted
resource pricing and advertising modules cannot eliminate

8

resource conflicts. Therefore, each agent of the InP still needs
an algorithm to select conflict-free VNE schemes to provision.
The VNE selection should be done in a time-efficient and
cost-effective manner, since it directly affects the performance
of the InP. In this section, we transform it into a classic
optimization problem, and leverage the approach in [45] to
design a polynomial-time approximation algorithm to solveit.

A. Problem Definition

The VNE scheme of each VNT requestGr
k(V

r
k , E

r
k) can be

represented by two sets of variables,i.e.,

Mk = {xk
i,i′ , y

k
e,e′ , ∀vrk,i ∈ V

r
k , e ∈ E

r
k}, (7)

where the variables are defined as:
• xk

i,i′ : the boolean variable that equals 1 if thei-th VN in
V r
k (vrk,i) is mapped on thei′-th edge SN inV E (vEi′),

and 0 otherwise.
• yke,e′ : the boolean variable that equals 1 if VLe ∈ Er

k

goes through SLe′ ∈ E, and 0 otherwise.
The optimization of VNE selection can be modeled as follows.

Parameters:
• wk: the positive weight of the VNE scheme (i.e., Mk)

of the k-th VNT requestGr
k(V

r
k , E

r
k).

Variables:
• ξk: the boolean variable that equals 1 if the VNE scheme
Mk is selected, and 0 otherwise.

Objective:
The objective of the VNE selection is to maximize the total

weight of the selected VNE schemes. Here, the weight of each
VNE scheme is defined by the InP to guide the optimization.
For instance, if the InP defines the weights as{wk = 1, ∀k ∈
[1,K]}, the objective will be to minimize VNT blockings.

Maximize
K
∑

k=1

ξk · wk. (8)

Constraints:
K
∑

k=1

ξk ·





∑

vr
k,i

∈V r
k

x
k
i,i′ · R

r
k,i



 ≤ R
c
i′ , ∀vEi′ ∈ V

E
, (9)

K
∑

k=1

ξk ·





∑

e∈Er
k

y
k
e,e′ ·R

r
k,e



 ≤ R
b
e′ , ∀e′ ∈ E. (10)

Eqs. (9)-(10) ensure that the selected VNE schemes do not
cause any IT/bandwidth resource conflicts.

B. Algorithm Design

With all the VNE schemes calculated by the tenants, an
agent of the InP can build a conflict graph (CG)Gc(V c, Ec),
where each node in setV c corresponds to a VNE schemeMk

and thus associates with a weightwk, and two nodes inV c are
connected by a link in setEc if there are potential resource
conflicts between their VNE schemes. Here, we refer to the
resource conflicts as “potential” because the connected nodes
in the CG might not be mutually exclusive. For instance, the
VNE schemes in Fig. 6(a) suggest that embeddingM1, M2

and M3 in the SNT simultaneously will lead to a resource
conflict on SN 8, and thus the nodes for the three VNE
schemes are all connected in the CG in Fig. 6(b). Nevertheless,
if we rejectM3, there will be no resource conflict onSN 8,
and thenM1 andM2 can be provisioned simultaneously. To
this end, we can see that the VNE selection problem becomes
to find the maximum weighted independent set (MWIS) in the
CG, after removing certain VNE schemes (i.e., nodes in the
CG) and the potential resource conflicts due to them (i.e., links
in the CG). Fig. 6(c) illustrates an example of the MWIS.

With the CG, we designAlgorithm2 based on the approach
in [45] to solve the VNE selection problem.Lines1-3 are for
the initialization. In each iteration, the while-loop deletes a
node from the CG in the greedy manner, and updates it from
Gc

i to Gc
i+1 (Lines4-9). In Line 5, w(v) returns the weight of

the VNE scheme that is represented by nodev in the CG, while
d(Gc

i , v) gives the degree of nodev in graphGc
i . Note that,

when updating the CG inLine 7, we remove not only nodeui

but also the potential resource conflicts due to it. For example,
in the CG in Fig. 6(b), if we remove the node forM3, the link
between the nodes forM1 andM2 should also be deleted
because they will not have resource conflicts anymore. The
time complexity ofAlgorithm 2 is O(K2 · (|V E |+ |E|)).

Algorithm 2: Selection of Conflict-free VNE Schemes

Input : Subgraph of SNTG(V,E), VNT requests and
their VNE schemes{Gr

k(V
r
k , E

r
k), Mk, ∀k}.

Output : Index set of selected VNE schemesK ′.

1 hypothetically embed all the VNE schemes in
{Mk, ∀k ∈ [1,K]} to find potential resource conflicts;

2 build CGGc(V c, Ec) based on the potential conflicts;
3 i = 0, Gc

i (V
c
i , E

c
i) = Gc(V c, Ec);

4 while Ec
i 6= ∅ do

5 ui = argmin
v∈V c

i

{

w(v)

d(Gc
i
,v)·[d(Gc

i
,v)+1]

}

;

6 delete nodeui from Gc
i (V

c
i , E

c
i);

7 updateGc
i accordingly to obtainGc

i+1;
8 i = i+ 1;
9 end

10 get index setK ′ based onGc
i (V

c
i , E

c
i);

Meanwhile, we hope to point out that our VNE selection
is still different from the problem of finding MWIS in [45],
because the conflicts in the CG are not necessarily mutually
exclusive. Hence,Algorithm 2 can operate differently from
that in [45], especially for how to update the CG in each
iteration (Lines 6-7). More importantly, the difference makes
the approximation ratio proved in [45],i.e.,

η =
1

dmax(Gc) + 1
, (11)

where dmax(G
c) returns the maximum node degree of CG

Gc, only provide a relatively loose lower-bound. We can
easily verify that the actual approximation ratio achievedby
Algorithm 2 could be much higher. Also, the approximation
ratio in Eq. (11) is still not a constant factor, becausedmax(G

c)

9

is not upper-bounded in an arbitrary CG. However, as we have

dmax(G
c) ≤ |V c| − 1 = K − 1, (12)

where K is the total number of VNE schemes that the
agent received, we can maintain the approximation ratio of
Algorithm 2 by limiting the value ofK with an upper-bound
Kmax, which is a reasonable approach to take in real NC&M.

VI. PERFORMANCEEVALUATION

In this section, we perform extensive simulations to evaluate
the performance of our proposed service framework.

A. Simulation Setup

The simulations consider SNTs and VNTs whose sizes are
various. Each VNT uses a random topology in which each VN
pair is directly connected with a probability of0.5. Meanwhile,
to mimic the situation in real DCIs, we obtain the topology of
an SNT by extending and combining the famous topologies for
wide-area networks (e.g., the NSFNET topology [26]). In each
SNT, we randomly select50% SNs as edge SNs and allocate
certain IT resources in the DCs attached to them. The VNT
requests are generated dynamically with the Poisson traffic
model, where the number of requests arriving in each service
cycle follows the Poisson distribution with an average ofK̄,
while the holding time of each request obeys the negative
exponential distribution with an average oft̟ service cycles.
Therefore, the traffic load of VNT requests can be quantified
as K̄ · t̟. We assume that each VNT can containVmax = 6
VNs at most, while the largest number of VNT requests that
can be processed in a batch actually changes according to
simulation scenarios, asKmax ∈ [10, 40]. In the DRL of the
pricing module, the two hidden layers of the A-NN consist
of 50 and 40 neurons, respectively, while the numbers of
neurons in those of the C-NN are60 and 30, respectively.
For the management module, the A-NN and C-NN use the
same numbers of neurons in their hidden layers, as50 and20,
respectively. The rest of the key parameters are listed in Table
II. Simulations average the results from5 independent runs to
get each data point, for ensuring sufficient statistical accuracy.

As we have explained before, our service framework is
agnostic to the actual VNE algorithm used by the tenants,
due to the adaptivity provided by the DRL model. In other

1

2

4

(b)

1

2

4

Remove Node 3

(c)(a)

78

4

1

3

6

52

SNT

1 4

Capacity of SN IT Usage of VNs

1 2 3 4

VNTs

Fig. 6. Example on solving VNE selection, (a) SNT, VNTs and VNE
schemes, (b) building CG for VNE schemes, and (c) finding MWISin CG.

TABLE II
KEY SIMULATION PARAMETERS

Each SNT

Number of SNs [14, 112]

Number of SLs [22, 248]

IT resource capacity of an edge SN [20, 30] units
Bandwidth resource capacity of an SL [20, 30] units

Each VNT

Number of VNs [2, 4]

Connectivity of VN pairs 0.5

IT resource demand of a VN [0.5, 1] unit
Bandwidth demand of a VL [0.2, 1] unit

words, if the tenants in our distributed service framework
and the InP in the centralized one use similar VNE algo-
rithms, our service framework should provision VNT requests
with significantly shorter computation time and comparable
blocking performance4. Note that, we need to change a VNE
algorithm slightly when adapting it in our service framework.
Specifically, we replace the capacity of SNs/SLs used in the
original algorithm with operators related to resource prices.

B. Performance of Conflict-free VNE Selection

We first verify the performance of the approximation algo-
rithm for conflict-free VNE selection. The subgraph of SNT
takes the NSFNET topology (14 SNs and22 SLs), and the
tenants use a modified version of the global resource capacity
(GRC) based VNE (GRC-VNE) in [7]. To select conflict-
free VNE schemes from those provided by the tenants, we
first solve the ILP model defined by Eqs. (7)-(10) to get
exact solutions, and then obtain approximation solutions with
Algorithm 2. Fig. 7 compares the solutions from the ILP
and approximation algorithm, which indicates that the latter
approximates the exact solutions well. Meanwhile, the running

4The simulations assume that the InP’s objective is to minimize VNT
blockings, i.e., we have{wk = 1, ∀k} in Eq. (8). We also confirm that
the service framework performs similarly even if{wk} take different values.

TABLE III
RESULTS ONRUNNING T IME (SECONDS)

of VNE Schemes 10 15 20 25

ILP 0.00012 0.00292 0.00332 2.2265
Approximation Algorithm 0.00019 0.00031 0.00035 0.00072

of VNE Schemes 30 35 40

ILP 17.575 1519.7 26289
Approximation Algorithm 0.00116 0.00352 0.00843

10 15 20 25 30 35 40

Number of VNE Schemes from Tenants

0

10

20

30

40

C
on

fli
ct

-f
re

e
V

N
E

 S
ch

em
es

ILP
Approximation Algorithm

Fig. 7. Performance of conflict-free VNE selection.

10

time of the algorithms is listed in Table III. We can see that
approximation algorithm is much more time-efficient.

C. Benchmarking with Centralized VNE Algorithms

Next, we perform dynamic simulations to compare our
distributed service framework with the centralized one.

1) Sensitivity to Tenants’ VNE Algorithm:We consider an
SNT topology that includes56 SNs, and allocate4 agents
to manage the DCI. To test our framework’s sensitivity to
tenants’ VNE algorithm, we consider two VNE algorithms,
i.e., the GRC-VNE [7] and improved closeness (IC) based
VNE (IC-VNE) [46]. Using each VNE algorithm, the simu-
lations compare the centralized framework with our proposed
one. Specifically, the InP in the centralized framework use the
algorithm to calculate VNE schemes for all the VNT requests,
while in our proposal, the tenants use a slightly modified
version of the algorithm to obtain their own VNE scheme
independently. We put “DRL-” in front of an algorithm’s name
to refer to its usage in our DRL-assisted distributed framework,
e.g., “DRL-GRC-VNE”. To justify the effectiveness of our
DRL models, we also consider a framework that uses the same
VNT provisioning procedure as our DRL-assisted distributed
framework but replaces the DRL models with a deterministic
algorithm for adjusting the policy of resource pricing and ad-
vertising. Specifically, the algorithm makes the unit priceof the
resources on each substrate element decrease in proportional
with the resources’ availability, and fixes the probabilityof
hiding a DC in resource advertising. For fair comparisons, we
adjust the settings of the deterministic algorithm to minimize
its blocking probability, and it is referred to as deterministic
resource pricing (DRP). We put “DRP-” in front of a VNE
algorithm’s name if it is used with the DRP algorithm.

Fig. 8 shows the results on blocking probability. In Fig.
8(a), we observe that the blocking probability from DRL-
GRC-VNE is higher than that from GRC-VNE, which can be
explained as follows. GRC-VNE is good at distributing VNTs
evenly in the SNT with the help of the global resource infor-
mation, and thus the blocking performance of DRL-GRC-VNE
can be slightly worse due to the occasional resource conflicts
among distributed-calculated VNE schemes from tenants. The
results in Fig. 8(b) indicate that DRL-IC-VNE and IC-VNE
have similar blocking performance, but this time, the blocking
probability from DRL-IC-VNE is lower than that from IC-
VNE. This is because IC-VNE cannot distribute VNTs evenly
in the global manner, while the resource pricing in our DRL-
assisted framework can overcome this issue. Therefore, the
disadvantage due to resource conflicts gets compensated. We
also notice that with both VNE algorithms, the DRP-based
framework performs much worse than our DRL-assisted ones.
This actually confirms the effectiveness of our DRL models,
i.e., they can price and advertise resources intelligently, such
that the tenants are motivated to ask for substrate resources in
the way that resource conflicts can be minimized.

Table IV lists the ratio of the running time of the centralized
framework to that of our distributed framework. For fair
comparisons, the running time of our distributed framework
covers the time taken by its overall procedure (i.e., delegating

200 250 300 350 400

Traffic Load (Erlangs)

10-4

10-3

10-2

10-1

100

B
lo

ck
in

g
P

ro
ba

bi
lit

y

 GRC-VNE
 DRL-GRC-VNE
 DRP-GRC-VNE

(a) GRC-VNE

200 250 300 350 400

Traffic Load (Erlangs)

10-4

10-3

10-2

10-1

100

B
lo

ck
in

g
P

ro
ba

bi
lit

y
 IC-VNE
 DRL-IC-VNE
 DRP-IC-VNE

(b) IC-VNE

Fig. 8. Blocking probability from centralized and distributed frameworks.

TABLE IV
RUNNING T IME RATIO OF CENTRALIZED VERSUSDISTRIBUTED

Traffic Load (Erlangs) 204 264 300 360 420

GRC-VNE/DRL-GRC-VNE 10.5 13.5 14.6 16.9 19.7
IC-VNE/DRL-IC-VNE 36.2 42.0 44.6 55.8 60.9

VNT requests to the subgraphs andSteps 1-4 in Fig. 2).
With both VNE algorithms, our distributed framework is much
more time-efficient than the centralized one, and the advantage
becomes more significant as the traffic load increases. This
is because the centralized framework lets the InP calculate
VNE schemes for all the VNT requests, while our distributed
framework makes tenants compute their own VNE schemes
independently and in parallel (i.e., in Step 3). Meanwhile, with
IC-VNE, our proposal achieves larger reduction on running
time. This is because our resource pricing can distinguish edge
SNs better in node mapping, and thus it reduces the number
of candidate edge SNs to check for embedding each VN.

Furthermore, to confirm that our DRL-assisted distributed
framework operates more stably, we fix the traffic load at264
Erlangs and plot the how the blocking probability changes over
time in the centralized and distributed frameworks in Fig. 9.
For both VNE algorithms, the instant blocking rate from our
framework changes within much smaller ranges than that from
the centralized framework, even though the two frameworks
perform similarly in terms of long-term blocking probability.
We also try different traffic loads and can always observe
similar trends in the results. These results further verifies the
adaptivity of our DRL-based approach.

11

0 20 40 60 80 100
��������������

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

��
��

��
��

��
��
��

��
���
�

�

��
�������
���������
�

��
�������	�������
�
�������
���������
�
�������	�������

(a) GRC-VNE

0 20 40 60 80 100

�������������

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

��
��

��
��

��
��
��

��
���
�

��	�����
���	���������
��	�����
�����������
����
���	���������
����
�����������

(b) IC-VNE

Fig. 9. Blocking probability over time when traffic load is264 Erlangs.

2) Scalability Analysis:To analyze the scalability of our
DRL-assisted distributed framework, we change the size of the
SNT to include14 to 112 SNs and increase the traffic load
proportionally (i.e., from 75 to 600 Erlangs), while the number
of agents changes within[1, 8] accordingly. Fig. 10 shows the
results on blocking probability in SNTs with different sizes.
We can see similar trends as those in Fig. 8,i.e., GRC-VNE
performs slightly better than DRL-GRC-VNE, while DRL-IC-
VNE provides lower blocking probability than IC-VNE. The
running time ratios in Table V suggest that for the SNTs with
different sizes, our DRL-assisted service framework is still
much more time-efficient, and its advantage on time-efficiency
increases with the SNT’s size. We also confirm that as long as
the traffic load changes in proportional with the SNT’s size,
the trends in Fig. 10 and Table V can always be observed.

D. Effects of AE-based Classifier

We also perform simulations to verify the effectiveness of
the AE-based classifier. The simulations use an SNT with56
SNs, which is divided into4 subgraphs, and fix the traffic load
as300 Erlangs. With this setting, the blocking probability of
our DRL-GRC-VNE is a few percent in Fig. 8(a), which is in
the range of practical operation. Then, we try to remove the

TABLE V
RUNNING T IME RATIO OF CENTRALIZED VERSUSDISTRIBUTED

Number of SNs 14 42 70 98 112
Traffic Load (Erlangs) 75 225 375 525 600

GRC-VNE/DRL-GRC-VNE 4.0 9.6 21.6 49.8 70.7
IC-VNE/DRL-IC-VNE 4.0 19.5 83.7 209.8 289.2

14 28 42 56 70 84 98 112

Number of SNs in SNT

0

0.02

0.04

0.06

0.08

0.1

B
lo

ck
in

g
P

ro
ba

bi
lit

y

DRL-GRC-VNE
GRC-VNE

(a) GRC-VNE

14 28 42 56 70 84 98 112

Number of SNs in SNT

0

0.05

0.1

0.15

0.2

B
lo

ck
in

g
P

ro
ba

bi
lit

y

DRL-IC-VNE
IC-VNE

(b) IC-VNE

Fig. 10. Blocking probability in SNTs with different sizes.

20 30 40 50 60 70 80

Proportion of Similar VNT Requests (%)

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

B
lo

ck
in

g
P

ro
ba

bi
lit

y

 w/ AE-based Classifier
 w/o AE-based Classifier

Fig. 11. Performance comparison of DRL-GRC-VNE with and without AE-
based classifier (56 SNs in4 subgraphs, and traffic load at300 Erlangs).

AE-based classifier from the service framework, and change
the ratio of similar VNT requests in each batch. The results on
blocking probability are shown in Fig. 11, which indicates that
the scheme with the AE-based classifier always outperforms
the one without it, and the performance gap increases with
the ratio of similar VNT requests in each batch. This confirms
the effectiveness of the AE-based classifier. We also perform
more simulations with different settings, and verify that the
results always follow the same trend as shown in Fig. 11.

VII. C ONCLUSIONS

In this work, we proposed a DRL-assisted distributed and
tenant-driven service framework to realize VNT slicing in
DCIs, such that the tradeoff between cost-effectiveness and
time-efficiency can be better balanced. The main idea was to
get tenants involved in VNE calculation. Extensive simulations

12

verified that compared with the centralized service framework,
our proposal provisions VNT requests with significantly short-
er computation time and comparable blocking performance.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC projects
61871357, 61771445 and 61701472, Zhejiang Lab Re-
search Fund 2019LE0AB01, CAS Key Project (QYZDY-SSW-
JSC003), and SPR Program of CAS (XDC02070300).

REFERENCES

[1] Cisco Global Cloud Index: Forecast and Methodology, 2016-2021.
[Online]. Available: https://www.cisco.com/c/en/us/solutions /service-
provider/visual-networking-index-vni/index.html

[2] J. Yao, P. Lu, L. Gong, and Z. Zhu, “On fast and coordinateddata
backup in geo-distributed optical inter-datacenter networks,” J. Lightw.
Technol., vol. 33, pp. 3005–3015, Jul. 2015.

[3] X. Xie et al., “Evacuate before too late: Distributed backup in inter-DC
networks with progressive disasters,”IEEE Trans. Parallel Distrib. Syst.,
vol. 29, pp. 1058–1074, May 2018.

[4] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[5] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,”IEEE Comput., vol. 38, pp. 34–
41, Apr. 2005.

[6] M. Chowdhury and R. Boutaba, “Network virtualization: State of the
art and research challenges,”IEEE Commun. Mag., vol. 47, pp. 20–26,
Jul. 2009.

[7] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekingvirtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[8] M. Bari et al., “Data center network virtualization: A survey,”IEEE
Commun. Surveys Tuts., vol. 15, pp. 909–928, Second Quarter 2013.

[9] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding in optical datacenter networks,” J. Opt.
Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[10] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, pp. 206–219, Feb. 2012.

[11] A. Fischeret al., “Virtual network embedding: A survey,”IEEE Com-
mun. Surveys Tuts., vol. 15, pp. 1888–1906, Fourth Quarter 2013.

[12] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[13] Y. Xue, J. Peng, K. Han, and Z. Zhu, “On table resource virtualization
and network slicing in programmable data plane,”IEEE Trans. Netw.
Serv. Manag., in Press, vol. 16, pp. 647–660, Jun. 2019.

[14] R. Munozet al., “Integrated SDN/NFV management and orchestration
architecture for dynamic deployment of virtual SDN controlinstances
for virtual tenant networks,”J. Opt. Commun. Netw., vol. 7, pp. B62–
B70, Nov. 2015.

[15] J. Yin et al., “Experimental demonstration of building and operating
QoS-aware survivable vSD-EONs with transparent resiliency,” Opt.
Express, vol. 25, pp. 15 468–15 480, 2017.

[16] Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netw., vol. 10, pp. A206–
A215, Feb. 2018.

[17] T. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv:1509.02971, Feb. 2016. [Online]. Available:
https://arxiv.org/abs/1509.02971

[18] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,”Science, vol. 313, pp. 504–507, Jul. 2006.

[19] Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embedding
problem: A column generation approach,” inProc. of INFOCOM 2013,
pp. 410–414, Apr. 2013.

[20] C. Papagianniet al., “On the optimal allocation of virtual resources in
cloud computing networks,”IEEE Trans. Comput., vol. 62, pp. 1060–
1071, Jun. 2013.

[21] L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual
network embedding over elastic optical infrastructures,”in Proc. of ICC
2013, pp. 3466–3470, Jun. 2013.

[22] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[23] J. Liu et al., “On dynamic service function chain deployment and
readjustment,”IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[24] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,”Comput. Netw., vol. 56, pp. 3825–
3833, Dec. 2012.

[25] S. Zhanget al., “Virtual network embedding with opportunistic resource
sharing,”IEEE Trans. Parallel Distrib. Syst., vol. 25, pp. 816–827, Mar.
2013.

[26] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[27] L. Gonget al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[28] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[29] M. Beck et al., “A distributed, parallel, and generic virtual network
embedding framework,” inProc. of ICC 2013, pp. 3471–3475, Jun.
2013.

[30] H. Caoet al., “Location aware and node ranking value-assisted embed-
ding algorithm for one-stage embedding in multiple distributed virtual
network embedding,”IEEE Access, vol. 6, pp. 78 425–78 436, 2018.

[31] A. Song et al., “Distributed virtual network embedding system with
historical archives and set-based particle swarm optimization,” IEEE
Trans. Syst., Man, Cybern., Syst., in Press, 2019.

[32] J. Xie et al., “A survey of machine learning techniques applied to
software defined networking (SDN): Research issues and challenges,”
IEEE Commun. Surveys Tuts., vol. 21, pp. 393–430, First Quarter 2019.

[33] F. Musumeciet al., “A survey of machine learning techniques applied
to software defined networking (SDN): Research issues and challenges,”
IEEE Commun. Surveys Tuts., vol. 21, pp. 1383–1408, Second Quarter
2019.

[34] X. Chenet al., “DeepRMSA: A deep reinforcement learning framework
for routing, modulation and spectrum assignment in elasticoptical
networks,”J. Lightw. Technol., vol. 37, pp. 4155–4163, Aug. 2019.

[35] B. Li, W. Lu, and Z. Zhu, “Deep-NFVOrch: Leveraging deepreinforce-
ment learning to achieve adaptive vNF service chaining in EON-DCIs,”
J. Opt. Commun. Netw., in Press, 2019.

[36] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer,“Boost
online virtual network embedding: Using neural networks for admission
control,” in Proc. of CNSM 2016, pp. 10–18, Nov. 2016.

[37] H. Yaoet al., “RDAM: A reinforcement learning based dynamic attribute
matrix representation for virtual network embedding,”IEEE Trans.
Emerg. Topics Comput., in Press, 2018.

[38] M. Dolati, S. Hassanpour, M. Ghaderiy, and A. Khonsari,“DeepViNE:
Virtual network embedding with deep reinforcement learning,” in Proc.
of INFOCOM WKSHIPS NI 2019, pp. 879–885, Apr. 2019.

[39] W. Lu, H. Fang, and Z. Zhu, “AI-assisted resource advertising and
pricing to realize distributed tenant-driven virtual network slicing in
inter-DC optical networks,” inProc. of ONDM 2018, pp. 1–6, May
2018.

[40] X. Zhang, W. Lu, B. Li, and Z. Zhu, “DRL-based network orchestration
to realize cooperative, distributed and tenant-driven virtual network
slicing,” in Proc. of ACP 2019, pp. 1–3, Nov. 2019.

[41] G. Karypis and V. Kumar, “Parallel multilevel series k-way partitioning
scheme for irregular graphs,”Siam Rev., vol. 41, pp. 278–300, Feb. 1999.

[42] W. Fang et al., “Joint defragmentation of optical spectrum and it re-
sources in elastic optical datacenter interconnections,”J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Apr. 2015.

[43] I. Goodfellow, Y. Bengio, and A. Courville,Deep Learning. MIT Press,
2016.

[44] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” inProc. of NIPS 2017, pp. 1024–1034, Dec.
2017.

[45] S. Sakai and K. Togasaki, M.and Yamazaki, “A note on greedy algo-
rithms for the maximum weighted independent set problem,”Discrete
Appl. Math., vol. 126, pp. 313–322, Mar. 2003.

[46] Z. Wang et al., “Virtual network embedding by exploiting topological
information,” inProc. of GLOBECOM 2012, pp. 2603–2608, Dec. 2012.

