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Abstract—This paper studies the problem of virtual network
(VNT) slicing in datacenter interconnections (DCIs), and po-
poses a novel service framework to better balance the trad&o
between cost-effectiveness and time-efficiency. Our ide& ito
partition a DCI into non-overlapped subgraphs, divide the WT
slicing in each subgraph into four collaborative steps, andget
tenants involved in the calculation of virtual network embedding
(VNE) schemes. With our proposal, an agent of infrastructue
provider (InP) leverages deep reinforcement learning (DRI} to
price and advertise the substrate resources in one subgraph
motivates tenants to request resources in a load-balancedanner,

and accepts VNE schemes from the tenants to avoid resourcefésources, but also shortens the time-to-market of the SPs

conflicts. Meanwhile, the tenants’ task is to compute their wn
VNE schemes independently and distributedly according totte
resource information (i.e., the available resources and their
prices) advertised by the agent. We first design the DRL model
based on the deep deterministic policy gradient (DDPG), and

(SNT) that is owned by an InP, while the InP builds VNTs on-
demand with substrate resources in its SN&.,(the resources
on substrate links (SLs) and substrate nodes (SNs)) [6f 7]. |
the SNT is a DCI, the InP can provide SPs with IT resources
in the DCs and bandwidth resources in the optical inter-DC
network dynamically and adaptively, such that time-vagyin
demands from heterogeneous network services can be shtisfie
cost-efficiently [8, 9]. Hence, network virtualization imet
DCI not only improves the utilization of the InP’s substrate
network servicesi.e., achieving a win-win situation.

Despite the aforementioned benefits, it is still challeggin
for an InP to provision VNTs cost-effectively and time-
efficiently. The major difficulty comes from the fact that the

develop a VNT compression method based on auto-encoderkey problem of network virtualization, namely, virtual netrk

(AE) to generalize the DRL's operation. Then, we study how
to resolve resource conflicts among the distributedly-caldated
VNE schemes, build a conflict graph (CG) to transform the VNE
selection into finding the maximum weighted independent set
(MWIS) in the CG, and design a polynomial-time approximation
algorithm to solve the problem. Extensive simulations confin
that compared with the centralized service framework relyng
solely on the InP for VNE calculation, our proposed DRL-asssted
distributed framework provisions VNT requests with significantly
shorter computation time and comparable blocking performance.

Index Terms—Virtual network embedding (VNE), Deep rein-
forcement learning (DRL), Auto-encoder (AE), Distributed and
parallel operation, Datacenter interconnections (DCIs).

N

|I. INTRODUCTION

embedding (VNE), isVP-hard [10]. This means that it would
be intractable for an InP to obtain the optimal VNE solution,
if there are many VNTSs to slice or/and the size of its SNT
is relatively large. Previous studies have designed nuasero
algorithms to tackle VNE in various networks with different
optimization objectives [10-13], and the system protosyjoe
VNT slicing have also been experimentally demonstrated [14
16]. Nevertheless, most of these investigations tried teeso
VNE in the centralized manneige., the InP calculates all the
VNE schemes without any tenant participation.

In this work, we revisit the problem of VNT slicing in
DCls, and argue that the tradeoff between cost-effects®ne
and time-efficiency can be better balanced if the novel servi
framework shown in Fig. 1 is adopted. Here, the main idea
is to get tenants involved in VNE calculation, and thus VNT

OWADAYS, the booming of cloud computing and othegjicing can be accomplished in a distributed and tenanedri
Internet-based applications has pushed the traffic amapgnner. Specifically, the InP still has the objective to naze

datacenters (DCs) to grow rapidly [1-3]. Hence, the architéihe reyenue from provisioned VNTs (or to minimize VNT
ture of DC interconnections (DCIs) is facing great challeng blockings), but it divides VNT slicing into four steps to
to support the traffic demands timely and cost-effectivdly [ leverage the computing power of tenants.

This dilemma has motivated people to consider network virtu The InpP first collects VNT requests from its tenarsep

alization [5]. With network virtualization, traditionahternet
service providers (ISPs) evolve into two types of entities,
the infrastructure providers (InPs) and service provig8s).

Specifically, SPs are the tenants to lease virtual networks

1). Then, instead of calculating the VNE schemes by itself,
the InP utilizes a deep reinforcement learning (DRL) model
to quickly analyze the VNT requests for resource pricing and
vertising. Specifically, for each VNT request, the InPobise

(VNTs) in the pay-as-you-go manner from a substrate netwogk characteristics with a DRL model, which will assign the
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the related substrate resources accordingtgl§ 2. Hence, in

the subsequent step, the VNE schemes calculated disttlpute
by the tenants will have the least resource conflicts. Torensu
the performance of the DRL-assisted resource pricing and



InP demonstrate that compared with the centralized benchmark,

+ Objective: Maximize the revenue from VNTs / Minimize VNT blockings

. Actions: it provides comparable VNT blocking probability but much
0 CelsU e il aesign i ( Sl [ Rl better scalability in terms of running time. In summary, the
« Perform DRL-assisted pricing on substrate resources . . A .
+ Advertise information regarding SNT to tenants maJOI‘ Contr|but|0ns Of th|S Work are
" Collectand grant VNE schemes from tenants « We propose a DRL-assisted service framework for dis-
@Légi GUAA (1%4)& tributed and tenant-driven VNT slicing in DCls.
[1]] [1]] [1]] « We design a DRL model, which can quickly analyze VNT
Tenant 1 Tenant N requests to price and advertise the substrate resources in a
« Actions: « Actions: H H i H H
S sabmit VNT request fo InP S submit VNT requestfo InP DCI, for |ntel!|gently gulldllng the subsequeqt distributed
. Calculate VNE scheme with " + Calculate VNE scheme with VNE calculation to minimize resource conflicts.
the lowest cost the lowest cost .
.+ Submit VNE scheme to InP " Submit VNE scheme to InP « We develop a VNT compression method based on AE to
(@ Tenant subrits VNT request fo InP. not only limit the DRL model's input dimensionality but
(2) InP advertises SNT information to tenant. aISO genera“ze |tS 0perat|on

@ Tenant submits VNE scheme to InP.
@ InP grants and provisions VNE scheme.

« We leverage a polynomial-time approximation algorithm

to select conflict-free VNE schemes to provision.

Fig. 1. Service framework for distributed and tenant-driweNT slicing. The rest of paper is Organized as follows. Section Il bneﬂy
surveys the related work. We describe the overall design of
the proposed service framework and the concerned problem

advertising, we design the DRL model based on the deep VNT slicing in a DCI in Section lll. Then, Sections IV

deterministic policy gradient (DDPG) [17], which consisteand V elaborate on the DRL model for resource pricing

of pricing and management modules. Meanwhile, since eaghd advertising and the approximation algorithm for séiect

VNT request can only be represented by a complex and higtenflict-free VNE schemes, respectively. Next, we dischss t

dimensional data structure.€., the topology and resourcenumerical simulations for performance evaluation in Qecti

demands of virtual links (VLs) and virtual nodes (VNs))VI. Finally, Section VII summaries the paper.

we consider how to avoid the “curse of dimensionality” and

generalize the operation of the DRL model. Specifically, we Il. RELATED WORK

leverage the idea of auto-encoder (AE) [18] to propose a VNTAs the key problem of network virtualization, VNE has

compression method that can discard irrelevant informatidoeen studied intensively in both theoretical and expertaien

reduce the dimensionality of VNTs' data, and effectivelpspects. Using various networks as SNT, the studies in [9, 10

extract the key features of VNTSs to feed into the DRL model2, 13, 19-23] formulated a few integer linear programming

In Step 3 the InP advertises the information regarding it§LP) and mixed integer linear programming (MILP) models

SNT (.e, for each tenant that submitted a VNT request, tHer VNE. As the ILP/MILP models will become intractable

InP provides the topology and resource prices of the asgigrfer large-scale problems, they also designed polynorima-t

subgraph), and lets the tenants calculate their VNE schenfiésiristics and approximation algorithms to trade solution

independently and distributedlylf two or more tenants are performance for time-efficiency. Through the process, it is
assigned to a same subgraph, they calculate the VNE schefpegd that the performance of VNE can be improved by
of their VNTs with the same substrate topology and resourgensidering the topology information of SNT and VNTs. For
prices. Finally, the InP collects VNE schemes from the tésjaninstance, inspired by PageRank [24], the investigationd jn
and grants them in the way such that the revenue from VN28] abstracted the topology information of SNT and VNTs
can be maximized or the VNT blockings can be minimize@nd utilized the abstracted information to assist node ngpp

(Step 4. As the VNE schemes are calculated distributediifferent from the one in packet networks, the VNE in optical

they could have resource conflicte., provisioning multiple networks {e., the SNT is a fixed-grid wavelength-division

VNE schemes simultaneously could violate the resource daultiplexing (WDM) network [9] or a flexible-grid elastic

pacity constraint(s) of certain SL(s)/SN(s). Hence, wedgtu optical network (EON) [26-28]) needs to solve the famous

how to resolve the resource conflicts by provisioning VNEouting and spectrum assignment (RSA) problem in link
schemes selectively. Specifically, we construct a conftiagpy mapping. Since RSA itself i8/P-hard, such VNE problems

(CG) based on the VNE schemes, transform the problem irtte intrinsically more complex. A relatively comprehemsiv

finding the maximum weighted independent set in the CG, aftrvey on the existing VNE algorithms can be found in [11].

design a polynomial-time approximation algorithm to sdlve  In addition to theoretical studies, people have also dpegio

In all, our proposal of the distributed and tenant-driveRetwork virtualization hypervisors (NVHs) to demonstrate

service framework in Fig. 1 effectively simplifies the Inslicing VNTs over a shared SNT experimentally [14-16].

P's network control and management (NC&M) and greatllowever, all the aforementioned studies relied solely on

improves the time-efficiency of VNT slicing in DCls. Wecomputing power of the InP to optimize the VNE schemes of

conduct extensive simulations to evaluate its performzamng VNT requestsj.e., utilizing the purely centralized scenario.
Note that, there could be many VNTSs for the InP to slice [1],

INote that, our service framework does not restrict the VNgoahm 51 in this situation, the purely centralized scenario canallly
used by the tenants. In other words, with the adaptivity iokex by the DRL deli high f VNE uti hil L
model, it works well as long as the VNE algorithm provides theants with 9€IIVEr Nigh-perrormance solutions while maintaining

feasible VNE schemes and tries to reduce their costs. reasonably good scalability in terms of computation time.



Previously, researchers also designed algorithms to aehie — ) Agent M

distributed/parallel VNE [29-31], which were all based be t VNT Requests Torams | 4A0eNt1
idea to partition the SNT topology inth non-overlapped sub- va'Nﬂ TTONTZ T T T T TWIN
graphs. Then, by delegating VNT requests to the subgraphs, VAT A )
the InP can useéV processes to calculate the VNE schemes Repot/ & &~ TTTTT3TT
. . - . VNE 1 VNE2  +r=er- VNE N
(i.e., each is within a subgraph) in parallel. Although we UNTs| o m e .
also divide the SNT topology into subgraphs, our proposal is AL PPN — )Y,
different from theirs, because they still let the InP cadtalall 1 DRL Model 1
the VNE schemes without any tenant participation. Moreover N (resae @ (I ,
as their degree of parallelism is just the number of subgraph @ | Comf)tgsion Resource :
partitioned from the SNTif., N), there is a tradeoff between 1 Management i
the degree of parallelism and the performance of paralldEVN N S 10 '
o . ! [ Network Virtualization Hypervisor ] 1
Specifically, the average size of non-overlapped subgraphs ! @ !
decreases withV, which will eventually block certain VNTSs. | iy A Subgraphin SNT 5, 1
Recently, people started to incorporate machine learning ' & T _;[b; P '
(ML) techniques in NC&M to solve complex optimizations \ g?ig&;, _gf_: ~2¥ oc )
or/and make intelligent and timely decisions [32, 33]. Amon A _ _i_h_ - jﬂ_ _O_XC_ i
the ML techniques, DRL has been considered as a promising Agent 1 of InP

one because it adopts online training, which is suitable to , ,

handle dynamic network environments [34, 35]. Leveraging® 2 Architecture of our proposed service framework.

ML techniques to tackle VNE problems has just started to

attract research interests since recently [36—38], buthal

proposals were based on the centralized scenario. In [36], t I1l. PROBLEM DESCRIPTION

authors designed an ML model to forecast whether a VNT | this section, we first describe the overall design of our

request should be accepted for VNE calculation. The studigsryice framework, and then define the network model and

in [37, 38] considered how to leverage DRL to solve VN%ptimization problem of slicing VNTs in a DCI.

problems directly. The RDAM algorithm proposed in [37] used

novel methods to represent and update SNT information, and ) ,

designed a DRL model to solve node mapping. Dotatal. A DRL-assisted Service Framework

[38] designed DeepViNE, whose main idea is to encode theFig. 2 shows the architecture of our DRL-assisted service

information of SNT and VNTSs as two-dimensional images arfdamework to realize distributed and tenant-driven VNTcsli

then solve VNE accordingly based on Q-learning. ing. To ensure the scalability of our approach, we also assum
Although RDAM and DeepVINE could outperform a fewthat the InP can divide the topology of the DGk( the SNT

existing VNE algorithms, using DRL to solve VNE problemdopology) into several non-overlapping subgraphs, if thd'S

directly might suffer from two issues. Firstly, it cannotoidd  topology is relatively large [29—-31]. Note that, the topmto

the “curse of dimensionality”, since the sizes of state arghrtition can be accomplished with the multilevel recusiv

action spaces increase quickly with the sizes of SNT/VNR@isection partitioning algorithm developed in [41], whican

topologies. Secondly, it can hardly provide a generic sayt quickly partition a relatively large topology into rougteyual-

i.e., when the topologies of SNT/VNT change, the DRL modeized subgraphs with three phases, for coarsening, paitit,

needs to be retrained or even re-architected. and un-coarsening, respectively. Moreover, the algoridiso
Therefore, in this work, we make tenants calculate theininimizes the number of links among the obtained subgraphs.

VNE schemes with classical VNE algorithmise(, non-ML- The VNT slicing in the subgraphs is managed by independent

based ones), but only leverage DRL to optimize the resouragents, which include DRL models with similar architecture

pricing and advertising for the InP. Then, the sizes of thend operation principles. After receiving a batch of VNT re-

DRL model’s state and action spaces can be well controlleglests, the InP first uses an auto-encoder (AE) based aassifi

In other words, our DRL model does not directly participat® distribute them to the agents. The AE-based classifies tri

in VNE calculations, but it can adjust the prices of substrato send VNTs with similar characteristics to different atgen

resources intelligently to affect VNE results indirectide such that in subsequent steps, the resource conflicts among

proposed the preliminary version of our DRL-assisted servithe VNE schemes obtained by the tenants can be reduced.

framework in [39]. However, the DRL model was based on Qrhe AE-based classifier will be designed in Section V.

learning and not optimized, and the conflict-free selectbn  Next, each agent accomplishes the VNT slicing in its

VNE schemes was not addressed. Then, in [40], we redesigsetigraph with four steps, and at each provisioning time, the

the DRL model based on DDPG and developed a heuristicdperations are as follows. The tenants assigned to the agent

select conflict-free VNE schemes greedily. Nevertheless, first report all the pending VNT requests, which get stored

we will show later, the DRL model can be further optimize@nd processed by the AE-based VNT compression module

by introducing the AE-based VNT compression. Moreover, t&tep 1), which extracts key features of the VNT requests and

ensure the performance of solutions, we need a polynomitdeds them into the DRL model that consists of two modules,

time approximation algorithm for conflict-free VNE selests. and meanwhile, the modules collect the current state of the



SNT from the NVH. Based the output of the AE-based VN1t can reduce resource conflicts by motivating the tenants to
compression module, the resource pricing and managemeemand for substrate resources in the load-balanced wdy, an
modules price the substrate resources in the agent’s quibgrthis can be done by pricing substrate resources adaptinely a
and turn off some resources for certain tenants, respégtiveestricting the resource usage of each tenant intelligefltlis

and they then send results to the tenants accordil®iBp(2. is essentially a repeated leader-follower game, whereghata
Specifically, the pricing module tries to guide the tenaotsdt of the InP is the leader and the tenants are the followers.
use bottleneck resources, while the management module aifhe agent first makes the decision on resource pricing and
to shutting down different resources for the tenants teveli advertising to affect the tenants’ behaviois.( preventing
resource competition. They are both based on DRL, whetteem from competing for scarce substrate resources). Then,
their DRL agents observe the same network environment, lthe tenants independently calculate their VNE schemesavhos
their training and operations are independent of each .othesource conflicts will in turn affect the agent’s strategyha

The details regarding them will be discussed in Section IV.next provisioning time. Due to the complexity of the VNE
Upon receiving the results on resource pricing and advegrroblem and the dynamic nature of VNT requests, it would

tising modules, each tenant calculates its own VNE scherne rather difficult to analyze the game analytically. Henee,

independently and distributedly, with the objective of min leverage DRL to make wise decisions for the agent.

mizing the total VNE resource cost. Then, the tenants submit

their VNE schemes to the agertép 3. The agent utilizes B. Network Model

a conflict-free VNE selection algorithm to process the VNE Taple | lists the notations defined for the network model.

schemes, chooses to provision those that lead to maximized) Substrate NetworkThe topology of a subgraph in the

revenue from VNTs or minimized VNT blockings, and finallySNT is modeled as a grapi(V, E), where V and E are

deploys the selected VNE schemes with the N\Gtep 4.

TABLE |
NOTATIONS FOR THENETWORK MODEL

the sets of SNs and SLs in it, respectively. As shown in
Fig. 3(a), there are actually two types of SNg,, the edge

and intermediate SNs, respectively. Specifically, eacheedg
SN includes a local DC and an optical cross-connect (OXC)

Notation Explanation and it is included in set’Z, while an intermediate SN only
DCI: contains an OXC and it is enclosed in $ét. Hence, we have

v the i-th edge SN inV’E VENVI =0 andVF UVI = V. The VNT slicing considers

ol the i-th intermediate SN /! two types of substrate resources, which are the IT resources
EZ(U) the set of SLs that connect to SNe V on DCs and the bandwidth resources on Slss, (fiber links).

R¢ the amount of available IT resources in the DCugt In this work, we assume that the bandwidth resources can
RY the available bandwidth on an SLe E be allocated in a granularity that is much smaller than a

k-th VNT Request G} (V7, ET):

wavelength channel, which is actually the practical case in
DCls considering the various bandwidth demands of network

/i thei-th VN in V;© - )
Ry the amount of IT resources demanded by VN, services [1]. In other words, we quel each SL as a bandwidth
Ry the amount of bandwidth required by iLe E] pipe and tackle the VNE problem in the packet layer, and thus

Note that, despite the regulations of the resource pricin
and management modules, the tenants can still obtain VN
schemes with resource conflicts. Therefore, the agent H
to reject certain VNE schemes, which is the downside
distributed VNE calculation. From the agent's perspectiv

there is no need to consider the RSA problem in link mapping.
2) Virtual Networks: At each provisioning time, the InP

Id use the AE-based classifier to allocatepending VNT
guests from tenants to an agent. Théh VNT request is
noted as:, (V7, E} ), whereV,” andE}, are the sets of VNs
gnd VLs, respectively. Fig. 3(b) shows an example of VNT.

3) VNE Calculation: Based on the information provided
by the agent, each tenant calculates the VNE scheme of its

"""""""""""""""""""" B oo B VNT request and tries to minimize the total VNE resource
e VN2 §Dc1;' Y - - N cost. Specifically, in order to solve the VNE problem, the
®) w1 T ws (o) v tenant needs to a) choose a DC node in the SNT to embed
ARV P %vm
‘ P L B L3 EES ocs each VN in its VNT such that the VN's IT resource demand

Fig. 3.

Edge SN 3

DC 3™,

SL5

Intermediate SN 2

Edge SN 4

Example on VNT slicing in a subgraph of DCI, (a) the SK) a

tenant’s VNT request, and (c) the VNE scheme computed byethant.

can be satisfiedi.e., the node mapping), and b) set up each
VL between a VN pair on a substrate path with sufficient
bandwidth end-to-end.€., the link mapping). Fig. 3(c) shows
the VNE scheme computed by a tenant.

As the VNE problem isAP-hard, tenants should use
heuristic algorithms to tackle it, such that cost-effeetWNE
schemes can be calculated time-efficiently. In Section \d, w
will show that our service framework is agnostic to the VNE
algorithm used by the tenant. Hence, we will not specify a
heuristic for the tenants, and assume that they can leverage
any existing approach with reasonably good performance.



IV. DRL-ASSISTEDRESOURCEPRICING AND element within[c;, ¢; 4 6;]. Note that, the values af; andJ;
ADVERTISING can be different for different substrate elements, whilealio

As shown in Fig. 2, the VNT requests from tenants afl@€ substrate elements in an SC, thejrare the same.

first distributed to different agents of the InP by the AE- Hence, at provision time, the pricing module’s action is
based classifier, and then each agent processes its ViQTdetermine the ratios for all the SCise., getting A, =
requests with the help from the tenants. Specifically, thet&;, ¥j}. Meanwhile, if we denote the current network state
are three major components in each agémt, the DRL- regarding both the SNT's subgraph and the pending VNT
based resource pricing and management modules, the Agduests assigned to use the subgrapli;ashe DRL of the
based VNT compression, and the conflict-free VNE selectiopficing module needs to learn the pricing strategyl:|S; ).
In this section, we explain our designs of the first two, and 2) Actions of Resource Management ModuTe: avoid the
because the DRL-based modules define the output as welkeants competing for substrate resources when calcglatin
operation principle of the AE-based VNT compression, théfieir VNE schemes distributedly and independently, weointr
are introduced first. Meanwhile, as the AE-based classifier duce the resource management module to hide some resources
Fig. 2 shares the same operation principle with the AE-basem being advertised to certain tenants [42]. Specificaily
VNT compression, it is also briefly covered in this section. define a parameterto denote the probability that a DC should

be hidden in the resource advertisements to tenants. In each
A. Resource Pricing and Management Modules service provisioningp uses the same value for all the tenants,

Each agent uses the resource pricing and managen%because the DCs are hidden in the resource advertisement
modules to price the substrate resources in its subgragteof {0 €ach tenant randomly with a probability pf the resource
SNT and choose the policy to hide some resources from cert@fyertisements to different tenants can hide different,DCs
tenants, respectively. Both modules are based on DRL, whéfe the topology information received by the tenants can be
their DRL agents observe the same network environriesat ( different. If a DC is hidden for certain tenants, we set the

the resource utilization in the subgraph and the infornmati@mount of available IT resources on the corresponding edge
regarding VNT requests), but use different action spaces. SN as 0, while the tenants still receive a connected subgraph

1) Actions of Resource Pricing Modulefo restrict the Hence, at provision time, the management module’s action

output dimensionality of its DRL model, we need to careful§’ {© Select a proper value for (i.e, P = {p, p € [0,1]}),
design the actions of the pricing module. Intuitively, itians @nd it needs to learn the strategyP;|S:).

are to price the resources oW | + |E| substrate elements,

where the number of SLSK)|) is normally much greater thanB_ Design of DRL Model

that of edge SNs|{'?|) in a mesh subgraph.
The principle of DRL is about letting an intelligent agént

Definition 1. In an SNT, we define aubstrate cluster (SC) @S jpteract with a dynamic environment and choose proper mstio
a tree-type structure, which is rooted in an edge SN and Mgy »qqress different environment states, such that thetagen
also have branches that include SLs and intermediate SNS.q\\ard from the environment can be maximized [43]. Hence

We obtain SCs by partitioning the SNT topology (as showgach DRL model involves four basic elements,, the agent,
in Fig. 4(a)). SCs do not overlap with each other, and an Sttate, action, and reward. We design the DRL model for the
between two SNs is randomly assigned to one of their S@gsource pricing and management modules based on DDPG
Hence, an SC might only contain one SN but zero SL. 1d7], which is known to be powerful for optimizing actions
optimize the actions of the pricing module, we make it changéth continuous values to tackle high-dimensional stakes.
the prices of the substrate resources in each SC simultalyeotthe two modules, their DRL models use the same neural
This is because the resource usages of the substrate eteme@iwork structure, observe the same network state, aneictoll
in an SC are normally highly-correlated [7]. Hence, we redudhe same reward. The only difference is that their actiocepa
the DRL's outputs from{V¥| 4 |E| to |V#|. Then, the actual are defined differently. Therefore, we use the resourcengric
pricing model is defined as follows. We first normalize thgodule as an example to explain the DRL models’ design.
resource capacity of each substrate elemeat @n SN/SL) Fig. 4(b) shows the operation principle of the DRL model
to one, and then let the DRL price the unit usagey{ 1%) for resource pricing. The environment is just a subgrapheén t
of the resources on each substrate element in an SC as SNT, and thus its state includes the information about both
the subgraphif. the topology and resource usage on each
substrate element) and the pending VNT requests. Note that,
wherej is the global index of the substrate elementandd;  to generalize the DRL's operation, we abstract the infoiomat
are the empirically-selected constants to denote its bade af VNT requests with AE-based VNT compression, which will
incremental resource costs, respectively, andc [0, 1] is @ be introduced in the next subsection. The DRL model consists
ratio whose value is determined by the DRL's actions. Hencgf two neural networks, which are the actor neural network (A
the DRL changes the unit pritef the resources on a substrateyN) and the critic neural network (C-NN), and leverages them
to optimize its decision making. Specifically, at edclhe A-

wj = ¢j +a; -9, )

2Here, the “price” might not be the real unit price of substre¢sources.
It should be understood as a weight of the resources, whighnogided by
the InP to the tenants to guide their VNE calculations, st the overall 3The agent here refers to the DRL agent in each DRL model, buamo
blocking probability of VNT requests can be minimized. agent of the InP for network slicing.
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Fig. 4. (a) Example on partitioning an SNT into SCs, (b) DDP&&ed DRL model for resource pricing and advertising, afjdad (d) Architectures of
A-NN and C-NN, respectively.

NN selects an actiotd; based on its learned pricing strategypbserved from the environment as the input, and outputs an
m(A+|S:), while the C-NN evaluates the selected action.  action A; to price the substrate resources in each SC. Hence,
As the action space is continuou®(, eacha; € A, isareal the dimensions of the A-NN’s input and output layers are

number), the A-NN gets a deterministic action with the prici |V Z|+|E|+|Fr| and|VE|, respectively, whereF | refers to
function A; = u(S:10%), where§* denotes its parameters.the number of features that the AE-based VNT compression
After applying actionA; to the environment, the DRL agentobtains from VNTs. Meanwhile, we allocate two hidden layers
gets an instant rewand to evaluate the performance g@f, in in the A-NN, to map its inputs to outputs.€., S; — A;)
stateS;. Here,r; is defined as the acceptance ratio of the VNWith fully-connected neural networks. The structure of Ge
requests considered at Then, the environment proceeds tdNN is similar to that of the A-NN, but the dimensions of
stateS; 1, and the aforementioned procedure gets repeated.itinput and output layers are- |V¥| + |E| + |Fg| and 1,
eacht, the agent gets a tupleS;, A;, 1+, S¢+1> and stores it respectively. The C-NN's input layer takes both the stSite
as an entry of experience, which is used in the online trginiand the action4; provided by the A-NN, while its output
of A-NN and C-NN to update their parametef$ @nd#°).  layer is one-dimensional, which represents the evaluation
The C-NN uses a value functia@(S;, A4;|0¢) to evaluate the actionA; in the stateS; (i.e., Q(S:, A:]6°)).
the actions taken by the A-NN, which is also optimized in The design of the DRL model for the resource management
online training. The training happens when the agent aceunmodule is similar, except that it utilizes the A-NN and C-
lates enough entries of experience, and the C-NN replays il to learn the resource shutting down strated;|S;) in
entries to get the long-term reward at st&te online training. As the operations of the resource pricind a
c management modules are correlated, we train them altéynate
R = Q(S:, A6, @ e, thge parameters of one module keep unchanged whgn those
Meanwhile, with the instant reward; stored in the corre- of the other one are being updated in online training.
sponding entry, we can get another estimated long-termrcewa )
using the Bellman equation C. AE-based VNT Compression
;L / ¢ As the environmental stat® includes the information about
Ri = re - QS A l67), @ both the subgraph and pending VNT requests, the state space
where A}, is the new action provided by the updated A-NNvould be extremely large if we directly put the VNT requests
with S;+1 as the input, andy is the discount factor, which in S;. This will make the DRL models converge very slowly
is a constant withirff0, 1]. As the C-NN's training is to learn or even not converge in training, and thus would seriously
how to evaluate the A-NN’s actions more accurately, its logsifect the performance of our service framework. Therefore
function is defined as we design a VNT compression method by leveraging AE [18].
1 p 2 Fig. 5(a) explains the principle of AE, which uses self-
7= 2 (R = Re)”, “) supervised learning to characterize high-dimensionah,dat
t . .

. . . ., with an encoder and a decoder. The encoder maps the input
wh_er_eN IS the _ngmber of experience ?ntrles used in tl?amplesX to feature spaceZ with an encoding function
trqlr)lng. The training updates thg C-NN's pararpet@“r.stg g : X — Z, while the decoder reverts the process to obtain the
minimize the Ios_&r_. In the meantime, the_ A'N.N.S training e constructed sampleld’ based orZ with a decoding function
gontlnuousaly °p“m'z?s the parametérfsof Its pricing func- f: Z — X'. To optimize the encoder/decoder, AE leverages
tion 1(S¢|6*), according 20 the evauation prowded by the Cé DNN to minimize the reconstruction errors betwe€rand
NN. The A-NN updateg® with the sampled policy gradient X’. Although AE has already demonstrated its effectiveness

Vo ~ 1 [VAQ(S,AIGC)ISZ&,A:A; Vga AL, G) I the compression and_ reconstruction of. Euclidean da_t's‘n su
as images, texts and videos, we are facing the following two
where A} is new action withS;. challenges when trying to utilize it for VNT compression.
Figs. 4(c) and 4(d) lay out the architectures of the A-NN Firstly, the high-dimensional graph-structured data réga
and C-NN, respectively. Here, the A-NN takes the stdte ing VNT requests is non-Euclidean and irregular. For instan
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Fig. 5. (a) Generic principle of AE, and (b) AE-based VNT caogegsion.

each VNT has a variable number of unordered VNs, and th@atrices, each of which has a sizelf.. X Vimax. The matri-
VNs can have different numbers of adjacent nodes. This woudds can be shaped ag B ax © Vinaxs Vmax) t€nsor, which is
make certain important operations.@, convolution), which used as the input of the AE’s neural network. Specificallg, th
can be easily done on Euclidean data, not directly appkcabbperation of the VNT compression based on AE is explained in
Secondly, how to organize the unordered VNTs and input thdfig. 5(b). We first apply a 2-dimensional convolutional laye
in the DNN of AE is also challenging. Hence, inspired by theith receptive field(Vimax, Vinax) and stride(Viax, 1). The
work in [44], we first design the preprocessing to transfdnm t setting on the sizes of the receptive field and stride meaats th
graph-structured data regarding VNT requests into a strectthe convolution kernel only moves laterally, and every titne
that can be processed by convolutions, and then design ji& jumps from one adjacency matrix to another. For example

DNN to extract the important features with AE. the blue square in Fig. 5(b) represents a convolution kernel
which will move from left to right and perform a convolution
Algorithm 1: Preprocessing of VNT Requests operation on the input tensor. As the first layer of the AE
Input: K VNT requests{G%(V{, EL)}, Kmax: Vmax. only hgs one input channel, the actugl size of the convalutio
Output: A list of regular Euclidean daté . kernel is(Vimax; Vmax, 1). The convolution kernel sweeps over
the input tensor, makes multiplication summation of therirat
1Gp =0; i . A , elements in the receptive field, and superimposes the dmvjat
2 sort VNT requests in descending order|®f | (primary)
and |E}| (secondary); Lo(i) = [Li P wl(i) +b
3 for each VNT request/j (V,", E,) in sorted orderdo Vinax—1 Vinax—1
4 | sortits VNs in descending order of node degree; = > > [LiWmaxita,y) w@y)]+b, 6
5 representy), as a|V;|x|V,| adjacency matrixA; e=0  y=0
6 | updateAj to Viax X Vimax Matrix with zero padding; i €10, Kmax — 1],
7 | insertAy in Gg; where £; and £, are the input and output of the first layer,
8 end respectively, andv and b denote the weight and bias of the
9 if K < Kpax then convolution kernel, respectively. We obtairf &, 1) tensor
10 | insert(Kmax — K) Vinax X Vmax 0-matrices inGg; with the convolution in Eq. (6), where each element is the
11 end aggregated information of a VNT request.

The first layer of the AE usek/ convolution kernels for the

1) Preprocessing of VNT Requests: Algoritiirshows the aforementioned operation, and thus the number of its ositput
procedure of VNT preprocessing. Here, in additioriio/NT (-8 the inputs to the second layer) /&. Hence, the size
requests, the algorithm also needs to krisw,.. as the upper- Of the tensor obtained by the first layer(&max, 1, M). The
bound of K and V,,.. as the maximum number of VNs in a®Peration in the second layer is the same as that in a classica
VNT. As the preprocessing is conducted by an agent of the I/gfi€-dimensional convolutional neural network. In our s&v
it should not be difficult to set or estimat,,., and V.. framework, the AE is trained in advance to minimize recon-
The basic idea oflgorithm 1 is to organize the VNT requestsStruction errors. Then, during operation, it compresse§ VN
in a fixed-sized data structure where the data of each VNTTRAUeSts before inputting them to the DRL-based resource
ordered uniquely. Therefore, the feature extraction wits APricing and management modules. The AE-based classifier in

would provide a unique mapping fot — Z. The sorting Fig. 2 uses the same operation principle. Specifically,gb al
of VNT requests has a time complexity 6i(K2..) , and leverages AE to extract and characterize the high-dimeasio

max

the number of operations to construct an adjacency matrixd@ta regarding VNT requests, and will send VNTs with similar
proportional tovmax~(1§mx—1)_ Hence, the time complexity of characteristics to different agents of the InP.
Algorithm 1 is O(K 2, + Kmax - Vaay)-

2) Design of AE for VNT Compressio@ur AE for VNT V. SELECTING CONFLICT-FREEVNE SCHEMES
compression considers the adjacency matrix of each VNT asThe AE-based VNT classification and the DRL-assisted
a receptive field Algorithm 1 provides us withK,,,x sparse resource pricing and advertising modules cannot eliminate



resource conflicts. Therefore, each agent of the InP stidtiae and M3 in the SNT simultaneously will lead to a resource

an algorithm to select conflict-free VNE schemes to provisioconflict on SN 8, and thus the nodes for the three VNE

The VNE selection should be done in a time-efficient ansthemes are all connected in the CG in Fig. 6(b). Nevertheles

cost-effective manner, since it directly affects the perfance if we reject M3, there will be no resource conflict d8N 8,

of the InP. In this section, we transform it into a classiand thenM; and M5 can be provisioned simultaneously. To

optimization problem, and leverage the approach in [45] this end, we can see that the VNE selection problem becomes

design a polynomial-time approximation algorithm to sdlve to find the maximum weighted independent set (MWIS) in the
CG, after removing certain VNE schemése( nodes in the

A. Problem Definition CG) and the potential resource conflicts due to thee (inks

The VNE scheme of each VNT request (V" E7) can be in \t/r\;e CG). Fig. 6(c) illgstrates. an example of the MWIS.

represented by two sets of variables, . ith the CG, we deS|gAIgor|fthm2 based.on the approach
in [45] to solve the VNE selection problernines1-3 are for

My = {xfa, yEo, Yoi, €V, e € B}, (7) the initialization. In each iteration, the while-loop digle a

node from the CG in the greedy manner, and updates it from

Gf to Gf,, (Lines4-9). InLine 5, w(v) returns the weight of

the VNE scheme that is represented by nodethe CG, while

d(G¢,v) gives the degree of nodein graphG¢. Note that,

when updating the CG ihine 7, we remove not only node;

but also the potential resource conflicts due to it. For examp

where the variables are defined as:

« zf,: the boolean variable that equals 1 if théh VN in
Vi (vi,) is mapped on the'-th edge SN inV" (v]),
and 0 otherwise.

« yr . the boolean variable that equals 1 if W.e Ej,

goes through Sk’ € £, and 0 otherwise. in the CG in Fig. 6(b), if we remove the node o115, the link
The optimization of VNE selection can be modeled as followgetween the nodes fahM; and M, should also be deleted
Parameters: because they will not have resource conflicts anymore. The

« wy: the positive weight of the VNE schemee(, M)) time complexity ofAlgorithm 2 is O(K? - ([VE| + | E|)).
of the k-th VNT requestG}, (V[ E},).

Variables: Algorithm 2: Selection of Conflict-free VNE Schemes
o & the boolean variable that equals 1 if the VNE scheme Input: Subgraph of SNTG(V, E), VNT requests and
Mk .|s selected, and O otherwise. their VNE schemegG1(Vy, EL), My, Vk}.

Objective: Output: Index set of selected VNE schemas.

The objective of the VNE selection is to maximize the total hvpothetically embed all the VNE schemes in

weight of the selected VNE schemes. Here, the weight of eath Xﬂ Vk 31/ % find ol flicts:
VNE scheme is defined by the InP to guide the optimization.l{) '|§7CG gc[‘}c gctobm dpotert1rt1|a retSOLi.rCIe corf1|.|ct:t§,
For instance, if the InP defines the weights{as, = 1, Vk € 2 bl (V%, E¢) based on the potential conflicts;

iactive Wi inimi - 31=0, Gi(V, Ef) = G(V©, E%);
[1, K1}, the objective will be to minimize VNT blockings. ~~ .~ B £0 do

- K _ . w(v) .

Maximize ;519 C Wk 8 5 | ui= af)%r‘r/?m{m },
delete nodey; from G¢(V,©, EY);
updateG§ accordingly to obtairGs, ;;
1=1+1;

end

10 get index setK” based onG¢(Ve, ES);

Constraints:

K
Z@«( > x’“&) <Ry, i eVE o (9)
k=1

- -
vk, €V

© 0 N O

K
ka (Z yf,e/ -R;e) < RS/, Ve' € E. (10)

o1 ceBy Meanwhile, we hope to point out that our VNE selection

is_still different from the problem of finding MWIS in [45],
E;jsé?n(yl?% /sgsg\:\i dttma:etshc?ursceeleccc:i(fjlic\QE schemes do giause the conflicts in the CG are not necessarily mutually
' exclusive. HenceAlgorithm 2 can operate differently from
that in [45], especially for how to update the CG in each
B. Algorithm Design iteration (ines 6-7). More importantly, the difference makes
With all the VNE schemes calculated by the tenants, dhe approximation ratio proved in [45]g.,
agent of the InP can build a conflict graph (CGj(V¢, E°),
where each node in s&t© corresponds to a VNE schemie
and thus associates with a weighy, and two nodes iV ¢ are
connected by a link in seE“ if there are potential resourcewhere d,,,.x(G*) returns the maximum node degree of CG
conflicts between their VNE schemes. Here, we refer to tli¢’, only provide a relatively loose lower-bound. We can
resource conflicts as “potential” because the connectedsodasily verify that the actual approximation ratio achiewsd
in the CG might not be mutually exclusive. For instance, th&lgorithm 2 could be much higher. Also, the approximation
VNE schemes in Fig. 6(a) suggest that embeddifg, M, ratio in Eq. (11) is still not a constant factor, becadgsg. (G¢)

1

U N COFSE (11)



is not upper-bounded in an arbitrary CG. However, as we have

TABLE Il

KEY SIMULATION PARAMETERS

c c _ _
dmax(G°) < [V = 1=K — 1, 12) Number of SNs [14,112]
where K is the total number of VNE schemes that the  gach syt | Numberof Sts [22, 248)
ived intain the apbroximation ratio of IT resource capacity of an edge SN | [20, 30] units
agent_ receive ' We can maintain - pproxi I I Bandwidth resource capacity of an S| [20, 30] units
Algorithm 2 by limiting the value ofK with an upper-bound Number of VNs 2, 4]
Knax, Which is a reasonable approach to take in real NC&M. Connectivity of VN pairs 0.5
Each VNT .
IT resource demand of a VN [0.5, 1] unit
Bandwidth demand of a VL [0.2, 1] unit

VI. PERFORMANCEEVALUATION

In this section, we perform extensive simulations to ev@ua
the performance of our proposed service framework. words, if the tenants in our distributed service framework
and the InP in the centralized one use similar VNE algo-
rithms, our service framework should provision VNT regsest

A. Simulation Setup
a\gfh significantly shorter computation time and comparable
al

The simulations consider SNTs and VNTs whose sizes
various. Each VNT uses a random topology in which each V
pair is directly connected with a probability 0f5. Meanwhile,
to mimic the situation in real DCls, we obtain the topology 0
an SNT by extending and combining the famous topologies 3
wide-area networks(g, the NSFNET topology [26]). In each
SNT, we randomly seleci0% SNs as edge SNs and allocatd. Performance of Conflict-free VNE Selection
certain IT resources in the DCs attached to them. The VNT We first verify the performance of the approximation algo-
requests are generated dynamically with the Poisson traffi;hhm for conflict-free VNE selection. The subgraph of SNT
model, where the number of requests arriving in each servigtkes the NSFNET topologyl4 SNs and22 SLs), and the
cycle follows the Poisson distribution with an average/of tenants use a modified version of the global resource cgpacit
while the holding time of each request obeys the negatit8 RC) based VNE (GRC-VNE) in [7]. To select conflict-
exponential distribution with an average #f service cycles. free VNE schemes from those provided by the tenants, we
Therefore, the traffic load of VNT requests can be quantifigilst solve the ILP model defined by Egs. (7)-(10) to get
asK - t. We assume that each VNT can conti¥p.x = 6 exact solutions, and then obtain approximation solutioitls w
VNs at most, while the largest number of VNT requests thafigorithm 2. Fig. 7 compares the solutions from the ILP
can be processed in a batch actually changes accordingai@ approximation algorithm, which indicates that theelatt
simulation scenarios, ak',.x € [10,40]. In the DRL of the approximates the exact solutions well. Meanwhile, the ign
pricing module, the two hidden layers of the A-NN consist
of 50 and 40 neurons, respectively, while the numbers of 4The sir_nulations assume that the InP’s objective is to m'm_mi/NT

. . blockings, i.e, we have{w, = 1, Vk} in Eq. (8). We also confirm that
neurons in those of the C-NN a@® and 30, respectively. the service framework performs similarly even{i; } take different values.
For the management module, the A-NN and C-NN use the
same numbers of neurons in their hidden layer$,0aand20,
respectively. The rest of the key parameters are listed lleTa
II. Simulations average the results frdirindependent runs to

ocking performanck Note that, we need to change a VNE
gorithm slightly when adapting it in our service frametkor
pecifically, we replace the capacity of SNs/SLs used in the
Figinal algorithm with operators related to resource gsic

TABLE IlI
RESULTS ONRUNNING TIME (SECONDY

get each data point, for ensuring sufficient statisticaligacy. # of VNE Schemes 10 15 20 25
As we have explained before, our service framework is ILP 0.00012  0.00292 0.00332  2.2265
agnostic to the actual VNE algorithm used by the tenants, Approximation Algorithm | 0.00019  0.00031  0.00035 0.00072
due to the adaptivity provided by the DRL model. In other # of VNE Schemes 30 35 40
ILP 17.575 1519.7 26289
Approximation Algorithm | 0.00116  0.00352  0.00843

N
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Fig. 6. Example on solving VNE selection, (a) SNT, VNTs and B/N

schemes, (b) building CG for VNE schemes, and (c) finding MMMIEG. Fig. 7. Performance of conflict-free VNE selection.



time of the algorithms is listed in Table Ill. We can see that
approximation algorithm is much more time-efficient.

C. Benchmarking with Centralized VNE Algorithms

Next, we perform dynamic simulations to compare our
distributed service framework with the centralized one.

1) Sensitivity to Tenants’ VNE AlgorithnWe consider an
SNT topology that include$6 SNs, and allocatel agents
to manage the DCI. To test our framework’s sensitivity to
tenants’ VNE algorithm, we consider two VNE algorithms,
i.e, the GRC-VNE [7] and improved closeness (IC) based
VNE (IC-VNE) [46]. Using each VNE algorithm, the simu-
lations compare the centralized framework with our prodose
one. Specifically, the InP in the centralized framework ume t
algorithm to calculate VNE schemes for all the VNT requests,
while in our proposal, the tenants use a slightly modified
version of the algorithm to obtain their own VNE scheme
independently. We put “DRL-" in front of an algorithm’s name
to refer to its usage in our DRL-assisted distributed fraoréyw
e.g, “DRL-GRC-VNE". To justify the effectiveness of our
DRL models, we also consider a framework that uses the same
VNT provisioning procedure as our DRL-assisted distridute
framework but replaces the DRL models with a deterministic
algorithm for adjusting the policy of resource pricing arttt a

Blocking Probability

Blocking Probability

104k

104k

—A— GRC-VNE
—-©- DRL-GRC-VNE | ]
--*-- DRP-GRC-VNE

25‘0 3[;0 35;0 4(;0
Traffic Load (Erlangs)
(a) GRC-VNE

—A— |IC-VNE
-© - DRL-IC-VNE | }
--%--= DRP-IC-VNE

25‘0 3[;0 35;0 4(;0
Traffic Load (Erlangs)
(b) IC-VNE

10

vertising. Specifically, the algorithm makes the unit poot¢he

resources on each substrate element decrease in propbrtiEH' 8. Blocking probability from centralized and distribd frameworks.
with the resources’ availability, and fixes the probabildfy
hiding a DC in resource advertising. For fair comparisons, w
adjust the settings of the deterministic algorithm to miizien
its blocking probability, and it is referred to as deterrstit
resource pricing (DRP). We put “DRP-" in front of a VNE
algorithm’s name if it is used with the DRP algorithm.

Fig. 8 shows the results on blocking probability. In Fig.
8(a), we observe that the blocking probability from DRL-
GRC-VNE is higher than that from GRC-VNE, which can b&NT requests to the subgraphs adeps 1-4in Fig. 2).
explained as follows. GRC-VNE is good at distributing VNT#&Vith both VNE algorithms, our distributed framework is much
evenly in the SNT with the help of the global resource informore time-efficient than the centralized one, and the adggnt
mation, and thus the blocking performance of DRL-GRC-VNEBecomes more significant as the traffic load increases. This
can be slightly worse due to the occasional resource canflict because the centralized framework lets the InP calculate
among distributed-calculated VNE schemes from tenants. THNE schemes for all the VNT requests, while our distributed
results in Fig. 8(b) indicate that DRL-IC-VNE and IC-VNEframework makes tenants compute their own VNE schemes
have similar blocking performance, but this time, the blogk independently and in parallel€., in Step 3. Meanwhile, with
probability from DRL-IC-VNE is lower than that from IC- IC-VNE, our proposal achieves larger reduction on running
VNE. This is because IC-VNE cannot distribute VNTs evenliime. This is because our resource pricing can distinguigje e
in the global manner, while the resource pricing in our DRLSNs better in node mapping, and thus it reduces the number
assisted framework can overcome this issue. Therefore, tifecandidate edge SNs to check for embedding each VN.
disadvantage due to resource conflicts gets compensated. Weurthermore, to confirm that our DRL-assisted distributed
also notice that with both VNE algorithms, the DRP-basefdlamework operates more stably, we fix the traffic loa@t
framework performs much worse than our DRL-assisted on&slangs and plot the how the blocking probability changesrov
This actually confirms the effectiveness of our DRL modelsime in the centralized and distributed frameworks in Fig. 9
i.e, they can price and advertise resources intelligentlyh suEor both VNE algorithms, the instant blocking rate from our
that the tenants are motivated to ask for substrate resmurceframework changes within much smaller ranges than that from
the way that resource conflicts can be minimized. the centralized framework, even though the two frameworks

Table IV lists the ratio of the running time of the centratize perform similarly in terms of long-term blocking probabjli
framework to that of our distributed framework. For faiWe also try different traffic loads and can always observe
comparisons, the running time of our distributed framewosimilar trends in the results. These results further verifie
covers the time taken by its overall procedure.(delegating adaptivity of our DRL-based approach.

TABLE IV
RUNNING TIME RATIO OF CENTRALIZED VERSUSDISTRIBUTED

204
10.5
36.2

264
13.5
42.0

300
14.6
44.6

360
16.9
55.8

420
19.7
60.9

Traffic Load (Erlangs)
GRC-VNE/DRL-GRC-VNE
IC-VNE/DRL-IC-VNE
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2) Scalability Analysis:To analyze the scalability of our Zii e e ]
DRL-assisted distributed framework, we change the sizheft 013 |~©- wio AE-based Classifier 2
SNT to includel4 to 112 SNs and increase the traffic load oz
proportionally (.e., from 75 to 600 Erlangs), while the number go.u //g
of agents changes within, 8] accordingly. Fig. 10 shows the S 0L
results on blocking probability in SNTs with different size g0
We can see similar trends as those in Figi.8, GRC-VNE moar =@
performs slightly better than DRL-GRC-VNE, while DRL-IC- oy ]
VNE provides lower blocking probability than IC-VNE. The os
running time ratios in Table V suggest that for the SNTs with O raportion of Similar VNT Requests (00

different sizes, our DRL-assisted service framework i sti
much more tlme_efflC'ent’ and |ts advantage on tlme_eﬁ:myen Flg 11. Performance comparison of DRL-GRC-VNE with anchwitt AE-

increases with the SNT’s size. We also confirm that as long

tg\ssed classifier56 SNs in4 subgraphs, and traffic load 800 Erlangs).

the traffic load changes in proportional with the SNT's size,
the trends in Fig. 10 and Table V can always be observed.

D. Effects of AE-based Classifier

We also perform simulations to verify the effectiveness afe scheme with the AE-based classifier always outperforms
the AE-based classifier. The simulations use an SNT ¥6th the one without it, and the performance gap increases with
SNs, which is divided intd subgraphs, and fix the traffic loadthe ratio of similar VNT requests in each batch. This confirms
as 300 Erlangs. With this setting, the blocking probability ofthe effectiveness of the AE-based classifier. We also parfor
our DRL-GRC-VNE is a few percent in Fig. 8(a), which is inmore simulations with different settings, and verify thaet
the range of practical operation. Then, we try to remove thgsults always follow the same trend as shown in Fig. 11.

TABLE V
RUNNING TIME RATIO OF CENTRALIZED VERSUSDISTRIBUTED
Number of SNs 14 42 70 98 112
Traffic Load (Erlangs) 75 225 375 525 600
GRC-VNE/DRL-GRC-VNE | 4.0 9.6 21.6 49.8 70.7
IC-VNE/DRL-IC-VNE 40 195 837 209.8 289.2

AE-based classifier from the service framework, and change
the ratio of similar VNT requests in each batch. The resuits o
blocking probability are shown in Fig. 11, which indicathatt

VIlI. CONCLUSIONS

In this work, we proposed a DRL-assisted distributed and
tenant-driven service framework to realize VNT slicing in
DCls, such that the tradeoff between cost-effectiveness an
time-efficiency can be better balanced. The main idea was to
get tenants involved in VNE calculation. Extensive simiolas



verified that compared with the centralized service franré&wo [22]
our proposal provisions VNT requests with significantly tho
er computation time and comparable blocking performancey,g;
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