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On Virtual Network Reconfiguration in Hybrid
Optical/Electrical Datacenter Networks
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Abstract—Hybrid optical/electrical datacenter networks
(HOE-DCNs) build inter-rack networks with both electrical
Ethernet switches and optical cross-connects (OXCs), and have
been considered as a promising DCN architecture. However, to
adapt to the dynamic network environment, the reconfiguration
of virtual networks (VNTs) in an HOE-DCN still faces the
unique difficulty that the HOE-DCN’s topology can change
because of the one-to-one connectivity of OXCs. To the best of
our knowledge, this problem still has not been fully explored.
In this paper, we address this problem, and consider how to
achieve effective VNT reconfiguration in an HOE-DCN such
that the IT resource usages in racks can be re-balanced with
the migration of virtual machines (VMs). We first formulate a
mixed integer linear programming (MILP) to describe the VNT
reconfiguration. Then, we solve the problem with two steps, 1)
obtaining the VM migration schemes to balance the loads on
racks, and 2) determining the reconfiguration schemes of related
virtual links (VLs) and the OXC. For the first step, we propose
a polynomial-time approximation algorithm by leveraging linear
relaxation. Then, we tackle the optimization of the second
step by developing an algorithm that involves a linear-time
dynamic programming and an integer linear programming
(ILP). To solve the ILP time-efficiently, we propose another
polynomial-time approximation algorithm based on Lagrangian
relaxation. Our simulations confirm the effectiveness of the
proposed approximation algorithms, and verify that the overall
procedure including them outperforms the existing approach.

Index Terms—Hybrid optical/electrical datacenter network
(HOE-DCN), Network virtualization, Virtual network recon figu-
ration, VM migration, Approximation algorithm.

I. I NTRODUCTION

NOWADAYS, datacenters (DCs) have already become the
biggest contributor to Internet traffic, and the traffic in

DCs has being increasing rapidly with an annual rate close
to 30% [1, 2]. Hence, considering the fast development of
data-intensive network services such as Big Data and video
streaming [3–5], we can estimate that the infrastructure ofDC
networks (DCNs) will face increasing challenges from archi-
tecture scalability, energy efficiency, and management agility
[6], due to the pressure from enormous amounts of traffic. To
address these challenges, people have proposed to add optical
circuit switching (OCS) into inter-rack networks and integrate
it with the conventional electrical packet switching (EPS)[7,
8]. By doing so, one realizes a hybrid optical/electrical DCN
(HOE-DCN), which can be more scalable and energy-efficient
[9, 10]. Compared with EPS, OCS provides larger switching
capacity and higher energy efficiency, while its downside is
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Fig. 1. (a) Architecture of HOE-DCN, and (b) Reconfigurationof OXC.

longer setup and reconfiguration latency [11–16]. Therefore,
it would be interesting to study how to operate HOE-DCNs
in consideration of the pros and cons of EPS and OCS [17].

The typical network architecture of an HOE-DCN can be
seen in Fig. 1(a), where the top-of-rack (ToR) switches are
interconnected with two types of inter-rack networks. In the
figure, the EPS-based one is on the top, which consists of
electrical Ethernet switches organized in a hieratical topol-
ogy, while the optical cross-connect (OXC) at the bottom
represents the OCS-based inter-rack network. Therefore, the
DCN operator can route traffic flows over the two inter-
rack networks, according to their characteristics. However,
the network control and management (NC&M) for a DCN
is actually much more complicated than traffic routing. This
is because a network service handled by a DCN normally
deploys multiple virtual machines (VMs), and relies on the
VMs’ collaboration to accomplish service tasks. For example,
Hadoop MapReduce [18] usually relies on VM clusters, each
of which includes both name- and data-nodes, to run its tasks.

Hence, each network service actually forms a virtual net-
work (VNT) [9], where the VMs are the virtual nodes (VNs)
and the routing paths to bridge the communications among
the VMs are the virtual links (VLs). This motivates us to
leverage the well-known virtual network embedding (VNE)
[19, 20] for deploying network services in a DCN,i.e., the
DCN is treated as the substrate network (SNT) shared by
the VNTs for network services. However, VNE is just for
the initial deployment, while each network service needs to
be maintained throughout its lifetime. This is because the
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network environment of a DCN is usually highly dynamic,
i.e., the usages of IT and bandwidth resources are time-variant,
and network services can arrive, change and leave on-the-
fly [21]. Therefore, the optimality of initial VNE results can
be progressively degraded over time. This suggests that VNT
reconfiguration [22–24] has to be considered to re-optimizethe
resource allocation in the DCN from time to time. However,
VNT reconfiguration is more complex than VNE because it
needs to select the VNTs to reconfigure, which does not exist
in VNE. Moreover, to limit the operational complexity of VNT
reconfiguration, we should only reconfigure a restricted num-
ber of VMs and VLs, which brings in additional constraints.

Note that, even though VNT reconfiguration in generic
packet networks [24] and DCNs [22] has already been investi-
gated, the VNT reconfiguration in HOE-DCNs is a brand-new
problem that is intrinsically more complex. This is because
all the existing studies on this topic [22–24] are based on the
assumption that the SNT’s topology will not change after each
reconfiguration operation, while this assumption is not valid
in HOE-DCNs. As shown in Fig. 1(b), the operation principle
of OXCs determines that they can only achieve one-to-one
connectivity between inputs and outputs. Hence, if the VNT
reconfiguration in an HOE-DCN wants to remap one or more
VLs on an optical connection through the OXC, the SNT’s
topology might be changed. In other words, after the OXC
has been reconfigured, the OCS-based inter-rack network will
have different physical connections among the ToR switches,
which will not happen in a conventional DCN.

Previously, in [25], we have conducted a preliminary study
on how to realize effective VNT reconfiguration in an HOE-
DCN, such that the IT resource utilizations in racks can be re-
balanced with VM migration. The network model was based
on our implementations of network orchestration systems for
HOE-DCNs in [9, 10], and thus practical assumptions were
used to ensure that algorithms developed based on them can
be deployed in a real-world HOE-DCN without any difficulty.
First of all, we selected the VMs, which are running on heavy-
loaded racks and thus should be migrated, with a trivial greedy
algorithm based on empirically-determined parameters. Then,
we designed an algorithm to calculate new VNE schemes
of the VNTs, which have VMs that have been selected for
migration. More specifically, the problem solving was divided
into two steps, 1) calculating VM migration schemes for the
VNTs to balance the loads on racks, and 2) determining re-
configuration schemes of the related VLs and OXC, and time-
efficient heuristics were designed to tackle them. However,the
heuristics developed in [25] cannot get near-optimal solutions
whose performance gaps to the optimal ones are bounded.

The aforementioned dilemma motivates us to extend the
study in this work. Specifically, for the problem of VNT
reconfiguration in HOE-DCNs, we still focus on the algorithm
design to obtain new VNE schemes of the VNTs that have
VMs to migrate, but design approximation algorithms for thet-
wo steps mentioned above. The new contributions made in this
work are explained as follows. Firstly, we formulate a mixed
integer linear programming (MILP) model to describe the
overall optimization for calculating new VNE schemes based
on preselected VMs. Secondly, to determine where to migrate

the selected VMs such that the loads on the racks can be re-
balanced, we propose a polynomial-time approximation algo-
rithm by leveraging linear relaxation. Thirdly, once the racks
that the selected VMs migrate to are determined, we solve
the subproblem of calculating the reconfiguration schemes of
related VLs and the OXC with an algorithm that involves
a linear-time dynamic programming and an integer linear
programming (ILP) model. In order to solve the ILP time-
efficiently, we propose another polynomial-time approximation
algorithm based on Lagrangian relaxation. Therefore, the study
in this work greatly improves the algorithm designs in [25],
because it ensures optimization gaps of the obtained solutions.
Performance evaluations with extensive simulations confirm
the effectiveness of the proposed approximation algorithms.

The rest of the paper is organized as follows. We survey
the related work briefly in Section II. Section III provides the
problem description. The overall optimization model of VNT
reconfiguration in an HOE-DCN is presented in Section IV.
In Section V, we propose the approximation algorithms, and
the simulations for performance evaluations are discussedin
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Since the inception of network virtualization, the problem
of VNE has been studied intensively for various types of
networks [20, 26–31]. Specifically, the studies in [30, 31] have
addressed the VNE in DCNs, which leveraged the IT and
bandwidth resources on servers and network links, respective-
ly, to deploy the VMs and VLs of VNTs. One can refer to [32]
for a comprehensive survey on the existing VNE algorithms.
Meanwhile, the network virtualization technologies have been
reviewed in [33]. To address the dynamic nature of DCNs,
network reconfiguration schemes should be considered to re-
balance the usages of IT and bandwidth resources frequently
[34]. Note that, in DCNs, re-balancing resource usages, espe-
cially the IT resource usages, is a commonly-used mechanism
to avoid overloaded hot-spots (i.e., resource contentions) [35],
and it can bring in a few benefits, such as reducing job
completion time [36], and saving power consumption [37].

Without considering HOE-DCNs as SNTs, the studies in
[22, 24] studied how to realize VNT reconfiguration. The au-
thors of [22] considered how to leverage VNT reconfiguration
to realize load balancing in a conventional DCN built with
EPS-based Ethernet switches. In [24], we studied the problem
of reconfiguring virtual software-defined networks (vSDNs)to
balance the flow-table installations in an SNT that consistsof
programmable data plane switches. On the other hand, the
network virtualization systems, which can realize VNT re-
configuration, have been experimentally demonstrated in [38–
40] for load balancing and addressing physical-layer issues.
As none of the existing studies on VNT reconfiguration used
an HOE-DCN as the SNT, they all assumed that the SNT’s
topology will not change through the reconfiguration. This,
however, is invalid for the problem considered in this work,
because in an HOE-DCN, the reconfiguration of OXCs results
in different physical connections among the ToR switches.

The architecture of HOE-DCN has been proposed in [7,
8] to integrate the advantages of EPS and OCS for making
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DCNs more scalable and energy-efficient. Recently, the studies
in [6, 9, 10] suggested that by utilizing artificial intelligence
technologies such as deep reinforcement learning (DRL), one
can effectively improve the management agility of HOE-
DCNs and stimulate EPS and OCS to cooperate seamlessly
for application-aware service provisioning. Nevertheless, these
studies were focused on the DRL-assisted network orchestra-
tion and related experimental demonstrations, but did not ad-
dress how to solve the VNT reconfiguration in an HOE-DCN.
As we have explained before, the major difficulty of solving
VNT reconfiguration for HOE-DCNs is the unique operation
principle of OXCs, which restricts one-to-one connectivity for
ToR switches. This implies that the VNT reconfiguration in
an HOE-DCN can change the SNT’s topology from time to
time. To address this new problem, we conducted a preliminary
study in [25], and developed several heuristics that cannot
ensure bounded performance gaps to optimal solutions. How-
ever, as the heuristics do not have performance guarantees,the
problem is still not fully explored.

III. PROBLEM DESCRIPTION

In this section, we explain the network model, procedure,
and preprocessing of VNT reconfiguration in HOE-DCNs.

A. Network Model

We model the SNT (i.e., an HOE-DCN) asG(Vs, Es),
whereVs andEs are the sets of substrate nodes (SNs) and
substrate links (SLs), respectively. In our problem, each SN
vs ∈ Vs is a server rack, which includes a ToR switch, and
a server pool whose total IT and I/O capacities are denoted
as Cvs and Bvs , respectively. Before VNT reconfiguration,
the IT and I/O resource utilizations on rackvs are cvs and
bvs , respectively. For each rack, its ToR switch has SLs
connecting to the OXC and the EPS-based inter-rack network
simultaneously as shown in Fig. 2. Hence, an SLes ∈ Es can
be either an Ethernet link for EPS or an optical connection for
OCS (i.e., to/from the OXC). At any given time, due to the
one-to-one connectivity of the OXC, each ToR switch can only
communicate with one other ToR switch using OCS, while
who to talk with is determined by the OXC’s configuration.

We model the topology of a VNT asGr(Vr, Er), whereVr

andEr are the sets of VNs and VLs, respectively. Here, each
VN vr ∈ Vr represents a VM that runs the network service
of the VNT, and its IT resource demand is denoted ascvr . A
VL er = (vr, ur) ∈ Er connects two VMs (vr andur), and
has a bandwidth requirement ofb(vr,ur).

In this work, we assume that the EPS-based inter-rack
network is architected based on a non-blocking topology,e.g.,
the well-known fat-tree topology in Fig. 1(a). Hence, the
bandwidth capacity between any two racks in the HOE-DCN
will be enough to route all the flows between the servers
in them, provided that there is no congestion on the intra-
rack links between the servers and their ToR switches. We
denote the I/O resource demand of a VMvr as bvr , which
equals the total bandwidth demand of all the VLs that end
at it. In addition, we assume that each VL can be either
“optical-preferred” or “do-not-care”. Note that, this attribute

is predetermined based on the traffic condition on the VL
[25], and will not change afterwards. For instance, in a VNT
for Hadoop applications, the traffic volume between two data-
node VMs is much higher than that between data-node and
name-node VMs [9, 10]. Hence, a VL between two data-node
VMs should be predetermined as an “optical-preferred” one.

B. VNT Reconfiguration in HOE-DCNs

The overall procedure of the VNT reconfiguration in an
HOE-DCN is explained withAlgorithm 1 [25]. The basic
idea of our VNT reconfiguration is to balance the IT resource
utilizations in racks with VM migration. Note that, the VNT
reconfiguration does not try to balance the bandwidth usages
on SLs. The rationale behind this consideration is two-fold.
Firstly, in DCNs, compared with the IT resource usages in
racks, bandwidth usages on SLs actually vary much faster, and
thus using VNT reconfiguration to balance them would induce
much more frequent reconfigurations and complicate NC&M
to an unbearable level. Secondly, we have other options to
balance the bandwidth usages in much simpler ways,e.g.,
applying traffic engineering techniques in each VNT [41].

Line 1 of Algorithm1 is for preprocessing, and it selects the
VMs that are running on heavy-loaded racks and thus should
be migrated. Here, the VM selection can be achieved with a
trivial greedy algorithm based on an empirically-determined
selection ratio. For instance, the selection algorithm designed
in [25] first sorts the racks in descending order of their IT
resource usages, then sequentially selects the most “critical”
VMs to reconfigure such that migrating them away from their
current racks can push the racks’ IT resource usages close to
the average value, and stores all the selected VMs in setV s

R

when the selection ratio is reached. Actually, the VM selection
algorithm should be customized according to the HOE-DCN
operator’s expectation on the VNT reconfiguration,e.g., the
operator can use different selection scenarios and/or selection
ratios to balance the tradeoff between the complexity and
effectiveness of VNT reconfiguration. Therefore, we leave it
open1, and make sure that our algorithm design forLines2-4
can accomplish the optimization based on the selected VMs
provided by the preprocessing.

In this work, we focus on designing approximation algo-
rithms to accomplish the tasks described inLines2-4. Specifi-
cally, by migrating the selected VMs inV s

R and remapping
the related VLs, our VNT reconfiguration has the primary
objective as to balance the IT resource usages in the HOE-
DCN. We also consider the OXC reconfiguration’s impact on
optical-preferred VLs, and thus set the secondary objective as
to maximize the number of optical-preferred VLs that are em-
bedded on optical connections after the VNT reconfiguration.

In VNT reconfiguration, the VMs and VLs are the basic
network elements that need to be remapped in the HOE-
DCN. For load balancing, a VM can be migrated to any
rack whose IT and I/O resources are enough for it, while the
consequent VL remapping needs to consider the one-to-one
connectivity of the OXC, if optical connections are involved.
More specifically, we can reconfigure two types of VLs,i.e.,

1The simulations in Section VI still use the VM selection algorithm in [25].
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Algorithm 1: Overall Procedure of VNT Reconfigura-
tion in an HOE-DCN

1 perform preprocessing to select VMs to migrate and
store the selected VMs in setV s

R;
2 determine the remapping schemes of VMs inV s

R;
3 calculate the reconfiguration schemes of related VLs

and the OXC;
4 remap VMs inV s

R accordingly and reconfigure all the
affected VLs;

a b

1 2 3 4

(a) Before Reconfiguration (b) After Reconfiguration

Flow a-b:

a b

1 2 3 4

Optical link:
OXC OXC

Fig. 2. Example on remapping “VLs without VM migration” to adapt to an
OXC reconfiguration.

VLs with VM migration, and VLs without VM migration [25].
Here, “VLs with VM migration” refer to the VLs that have to
be reconfigured to adapt to the migration of their end VMs,
while “VLs without VM migration” means that the VLs need
to be reconfigured purely because of an upcoming OXC recon-
figuration. For example, Fig. 2 provides an illustrative example
on the remapping of VLs without VM reconfiguration. Before
the VNT reconfiguration (as in Fig. 2(a)),ToR Switches1 and
3 can talk with each other using an optical connection through
the OXC, which means that the VL(a, b) betweenVMsa and
b is mapped onto the SL that represents the optical connection.
Then, we reconfigure the OXC to makeToR Switches1 and 2
mutually connected through it (as in Fig. 2(b)). This removes
the optical connection betweenToR Switches1 and 3, and
affects the operation of VL(a, b). Therefore, we have to remap
the VL in the EPS-based inter-rack network.

IV. MILP M ODEL FORVNT RECONFIGURATION

After the preprocessing, we need to determine the reconfig-
uration schemes of the selected VMs, related VLs and OXC,
which can be described with the following MILP model.

Notations:
• Vs: set of racks in the SNT.
• R: set of VNTs in the SNT.
• Vr: set of VMs in a VNTr ∈ R.
• Rs: set of rack pairs in the SNT.
• Cvs : total IT capacity of servers in rackvs ∈ Vs.
• Bvs : total I/O capacity of servers in rackvs ∈ Vs.
• B(us,vs): total bandwidth capacity of the optical connec-

tion between a rack pair(us, vs) ∈ Rs.
• cvs : IT utilization in rackvs ∈ Vs before reconfiguration.

• bvs : I/O utilization in rackvs ∈ Vs before reconfiguration.
• V s

R: set of VMs that are chosen for reconfiguration.
• mvr : boolean that equals 1 if VMvr is selected for

reconfiguration, and 0 otherwise.
• Eo

r : set of optical-preferred VLs.
• cvr : IT usage of VMvr ∈ V s

R.
• bvr : I/O usage of VMvr ∈ V s

R.
• δvrvs : boolean that equals 1 if VMvr is embedded on rack
vs before reconfiguration, and 0 otherwise.

• f(us,vs): boolean that equals 1 if the OXC connects racks
us andvs before reconfiguration, and 0 otherwise.

Variables:
• c̃vs : IT utilization in rackvs ∈ Vs after reconfiguration.
• δ̃vrvs : boolean that equals 1 if VMvr is embedded on rack
vs after reconfiguration, and 0 otherwise.

• f̃(us,vs): boolean that equals 1 if the OXC connects racks
us andvs after reconfiguration, and 0 otherwise.

• l̃
(ur,vr)
(us,vs)

: boolean that equals 1 if optical-preferred VL
(ur, vr) ∈ Eo

r is embedded on the optical link between
racksus andvs after reconfiguration, and 0 otherwise.

• q̃(ur ,vr): boolean that equals 1 if optical-preferred VL
(ur, vr) ∈ Eo

r is embedded on an optical connection after
reconfiguration, and 0 otherwise.

• cmax: the maximum ratio of IT utilization on a rack after
reconfiguration.

Objective:
The primary objective is to balance the IT resource usages

in the HOE-DCN, which can be realized by minimizing the
maximum ratio of IT utilization on a rack after reconfiguration
(cmax). For the second objective, we can obtain the number of
optical-preferred VLs that are embedded on optical connec-
tions after reconfiguration as

ñ =
1

2

∑

(ur,vr)∈Eo
r

q̃(ur ,vr). (1)

Hence, the overall optimization objective is defined as

Minimize (α · cmax − β · ñ), (2)

whereα andβ are positive coefficients to weight the impor-
tance of the two objectives, and we haveα ≫ β.

Constraints:
• VM Mapping Constraints:

∑

vs∈Vs

δ̃
vr
vs = 1, ∀vr ∈ V

s
R. (3)

Eq. (3) ensures that each VM still gets mapped onto one and
only one rack after reconfiguration.

δ̃
vr
vs · (1−mvr )− δ

vr
vs · (1−mvr ) = 0,

∀vr ∈ Vr, ∀vs ∈ Vs, r ∈ R.
(4)

Eq. (4) ensures that after reconfiguration, the VM that does
not need to be migrated is still mapped on its original rack.

• Optical-preferred VL Mapping Constraints:

l̃
(ur ,vr)
(us,vs)

≤
f̃(us,vs) + δ̃ur

us
+ δ̃ur

us

3
,

∀(us, vs) ∈ Rs, ∀(ur, vr) ∈ E
o
r .

(5)
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Eq. (5) ensures that if an optical-preferred VL needs to be
embedded between a rack pair that is connected with an optical
connection, the VL can be mapped on the optical connection.

q̃(ur ,vr) ≤
∑

(us,vs)∈Rs

l̃
(ur,vr)

(us,vs)
, ∀(ur, vr) ∈ E

o
r . (6)

Eq. (6) ensures that if an optical-preferred VL is mapped on
an optical connection, it is denoted correctly.

• OXC Reconfiguration Constraints:

∑

{vs:(us,vs)∈Rs}

f̃(us,vs) = 1, ∀us ∈ Vs, (7)

∑

{us:(us,vs)∈Rs}

f̃(us,vs) = 1, ∀vs ∈ Vs, (8)

f̃(us,vs) = f̃(vs,us), ∀(us, vs) ∈ Rs. (9)

Eqs. (7)-(9) ensure that each rack can only talk with only one
other rack through the OXC.

|Vs| −
∑

(us,vs)∈Rs

f̃(us,vs) · f(us,vs) ≤ η. (10)

Eq. (10) ensures that the total number of reconfigured ports in
the OXC cannot exceed the preset non-negative thresholdη.

• Resource Constraints:

cvs +
∑

vr∈V s
R

cvr · (δ̃vrvs − δ
vr
vs ) ≤ Cvs , ∀vs ∈ Vs. (11)

Eq. (11) ensures that the IT resource utilization on each rack
does not exceed its IT capacity after reconfiguration.

bvs +
∑

vr∈V s
R

bvr · (δ̃vrvs − δ
vr
vs ) ≤ Bvs , ∀vs ∈ Vs. (12)

Eq. (12) ensures that the I/O resource utilization on each rack
does not exceed its I/O capacity after reconfiguration. Note
that, the I/O usage of a VM is the total bandwidth usage of
all the VLs that end at it.

c̃vs = cvs +
∑

vr∈V s
R

cvr · (δ̃vrvs − δ
vr
vs ), ∀vs ∈ Vs. (13)

Eq. (13) calculates the IT resource utilization on each rack
after reconfiguration.

∑

(us,vs)∈Eo
r

b(ur,vr) · l̃
(ur,vr)

(us,vs)
≤ B(us,vs), ∀(us, vs) ∈ Rs. (14)

Eq. (14) ensures that bandwidth usage of each optical connec-
tion through the OXC does not exceed its bandwidth capacity
after reconfiguration.

cmax ≥
c̃vs
Cvs

, ∀vs ∈ Vs, (15)

Eq. (15) calculates the value ofcmax.
Complexity Analysis:

Lemma 1. The VNT reconfiguration described by the afore-
mentioned MILP model is anNP-hard problem.

Proof: We prove theNP-hardness of the problem by
restriction, i.e., restricting away some of its aspects until a
knownNP-hard problem shows up [42].

First of all, we apply the restriction that the preset threshold
on the total number of reconfigured ports in the OXC should
be η = 0 in Eq. (10). This means that we do not allow any
OXC reconfiguration. Then, we divide the problem solving
into two steps, 1) calculating the VM migration schemes for
re-balancing the loads on the racks, and 2) determining the
reconfiguration schemes of related VLs. By treating each rack
as a bin and each VM as an item, we can easily verify
that the optimization in the first step is the general case of
the load-balanced bin packing problem, which is known to
be NP-hard [43]. For the second step, if we consider each
optical connection through the OXC as a knapsack and the
optical-preferred VLs that can be embedded on the optical
connection as items, the optimization is transformed into the
general case of the knapsack problem, which is alsoNP-hard
[42]. Because a special/restricted case of the optimization in
the MILP model is a combination of the general cases of two
knownNP-hard problems, we prove itsNP-hardness.

V. A PPROXIMATION ALGORITHMS

As the problem of VNT reconfiguration in HOE-DCNs is
NP-hard, we try to solve it time-efficiently with polynomial-
time approximation algorithms. We divide the problem solving
into two steps [25], 1) calculating the migration schemes of
selected VMs, and 2) obtaining the reconfiguration schemes
of related VLs and the OXC2.

A. Determining VM Migration Schemes

For the first step, the optimization to determine the migra-
tion schemes of selected VMs can be formulated as follows.

Minimize cmax,

s.t. Eqs. (3), (11)-(13), and (15).
(16)

In the proof of Lemma 1, we have already verified the
NP-hardness of this optimization. Therefore, we design an
approximation algorithm for it as explained inAlgorithm 2.

The approximation algorithm leverages linear relaxation
with randomized rounding. We first obtain a linear program-
ming (LP) model by relaxing all the boolean variables to real
ones in[0, 1] (Line 1). Then,Line 2 solves the LP and gets the
objectiveZLP. With the LP’s solution, we calculate the ratio of
IT resource usage of each rackvs ∈ Vs as c̃vs

Cvs
, and store the

racks in setV in ascending order of their ratios (Line 3). The
while-loop coveringLines5-14 performs randomized rounding
on the LP’s solution (forM1 iterations at most). Here, we first
perform randomized rounding on the real variables in{δ̃vrvs}
with Algorithm 3, and obtain an integer solutionF (Line 6).
Then, in Line 7, we get the objectiveZ∗ with F. If F is a
feasible solution to the original ILP, we check whetherZ∗

satisfied the condition ofZ
∗

ZLP
≤ 1+γ1 (Line 9), where(1+γ1)

is the pre-defined approximation ratio withγ1 > 0. If yes, we
stop the iterations and outputF as the solution of the ILP.

The detailed procedure of the randomized rounding inLine
6 of Algorithm 2 is explained inAlgorithm 3. Lines 1-4 are

2As we solve the problem in two sequential steps, the final result provided
by the approximation algorithms designed in this Section might not ensure
a strict gap to the exact solution from the MILP model. The approximation
algorithm for the overall optimization will be studied in our future work.
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Algorithm 2: Approximation Algorithm for Determin-
ing VM Migration Schemes

1 relax ILP in Eq. 16 to obtain an LP;
2 solve the LP to obtain{δ̃vrvs} and its objectiveZLP;
3 store racks inVs in setV in ascending order of their

ratios of IT resource usages;
4 m = 1;
5 while m ≤ M1 do
6 useAlgorithm 3 to perform randomized rounding

on {δ̃vrvs} (based on the sorted order inV ) and
obtain an integer solutionF;

7 calculate objectiveZ∗ with F;
8 if F is a feasible solution of original ILPthen
9 if Z∗

ZLP
≤ 1 + γ1 then

10 break;
11 end
12 end
13 m = m+ 1;
14 end
15 return F andZ∗;

for the initialization. In the for-loop that coversLines 5-10,
we check all the racks in setV in ascending order of their
ratios of IT resource usages. For each rackvs, we find all
the VMs that satisfyxvr = 1 and δ̃vrvs ≥ p (Line 6), round
the corresponding variables ({δ̃vrvs}) to 1 and insert them inF
(Line 7), and label these VMs withxvr = 0 to denote that
their integer solutions have been obtained (Line 8). Next, the
integer solutions for the remaining VMs (i.e., those still with
xvr = 1) are obtained with the for-loop coveringLines11-15.

The time complexity ofAlgorithm 3 is O(|V | · |V s
R|). For

Algorithm 2, the LP can be solved in polynomial-time,e.g.,
the time complexity isO(X3.5 · Y ) when we use the interior
point method [44], whereX is the number of variables in the
LP andY is the total number of bits of the input. Hence, the
complexity of Algorithm 2 is O(M1 · |V | · |V s

R| +X3.5 · Y ),
which indicates that it is a polynomial-time algorithm.

Meanwhile, we can easily verify that the approximation
ratio of Algorithm2 is upper-bounded by(1+ γ1) as follows.
Since the ILP in Eq. 16 is for minimization, theZLP andZ∗

obtained withAlgorithm2 are the lower- and upper-bounds of
its optimal solution (denoted asZILP), respectively. Hence, we
can calculate the approximation ratio ofAlgorithm 2 as

ǫ =
Z∗

ZILP
≤

Z∗

ZLP
≤ 1 + γ1. (17)

Finally, we would like to explain that according to the principle
of linear relaxation with randomized rounding and the well-
known Chernoff-Bound [45], the probability ofAlgorithm 2
finding a qualified feasible solution can approach to 1, as long
as the values ofM1 andγ1 are properly selected. We will show
the convergence performance ofAlgorithm 2 in Section VI.

B. Obtaining Reconfiguration Schemes of OXC and VLs

In the second step, we need to obtain the reconfiguration
schemes of the OXC and related VLs based on the VM

Algorithm 3: Randomized Rounding

Input : {δ̃vrvs }, V
Output : F.

1 F = ∅;
2 set variablexvr = 1 for each selected VMs;
3 generate a random numberp within (0, 1);
4 calculate the IT usagẽctus

on eachus ∈ Vs by
removing all the VMs selected to migrate;

5 for eachvs ∈ V in sorted orderdo
6 for each VMvr with (xvr = 1 and δ̃vrvs ≥ p) do
7 insert δ̃vrvs = 1 in F;
8 xvr = 0;
9 end

10 end
11 for each VMvr with (xvr = 1) do

12 vs = argmin
{ us∈Vs}

(
c̃tus

Cus

)
;

13 insert δ̃vrvs = 1 in F and updatẽctus
;

14 xvr = 0;
15 end

migration schemes determined above, to maximize the number
of optical-preferred VLs that are embedded on optical con-
nections after reconfiguration. This problem can be solved
with Algorithm 4 [25]. Since we already know the VM
migration schemes at this moment, all the rack pairs that will
be connected with inter-rack VLs after reconfiguration should
also be known. We store these rack pairs in setRs.

Algorithm 4: Obtaining Reconfiguration Schemes of
OXC and Related VLs

1 for each rack pair(us, vs) ∈ Rs do
2 use dynamic programming in [25] to get the

largest number of optical-preferred VLs (nus,vs)
that optical connection forus↔vs can carry;

3 obtain the corresponding VL mapping schemes;
4 end
5 useAlgorithm 6 to get the reconfiguration schemes of

OXC and related VLs;

Lines1-4 check the rack pairs inRs. Specifically, for each
rack pair(us, vs), we assume that the two racks have an optical
connection through the OXC, calculate the largest number of
optical-preferred VLs that the optical connection can accom-
modate (i.e., nus,vs), and determine the remapping schemes
for the VLs accordingly. Here, the optical-preferred VLs,
which should be mapped on the optical connection between a
rack pair(us, vs) ∈ Rs to ensure that the optical connection
carries the largest number of optical-preferred VLs, can befind
with the linear-time dynamic programming developed in [25].
Finally, based on the results from the dynamic programming,
we leverageAlgorithm6 to obtain the reconfiguration schemes
of the OXC and related VLs (Line 5).

The optimization that should be tackled withAlgorithm 6
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can be summarized as the following ILP model.

Maximize
1

2

∑

(us,vs)∈Rs

nus,vs · f̃(us,vs),

s.t. Eqs. (7)-(10).

(18)

We utilize Lagrangian relaxation to propose a polynomial-time
approximation algorithm for this ILP model as follows.

1) Constructing Lagrangian Dual Problem:We first dual-
ize the constraint in Eq. (10) and construct the following dual
problem, whose solution gives an upper-bound on the optimal
solution of the ILP in Eq. (18).

Minimize Zdual(λ) = max
{f̃(us,vs)}







1

2

∑

(us,vs)∈Rs

nus,vs · f̃(us,vs)





+λ ·



η − |Vs|+
∑

(us,vs)∈Rs

f̃(us,vs) · f(us,vs)







 ,

s.t. Eqs. (7)-(9),
(19)

where λ ≥ 0 is the Lagrangian multiplier. As we need to
maximizeZdual(λ) for a specificλ, the dual problem becomes

Minimize Zdual(λ) = max
{f̃(us,vs)}







1

2

∑

(us,vs)∈Rs

n̄us,vs · f̃(us,vs)





+λ · (η − |Vs|)] ,

s.t. Eqs. (7)-(9),
(20)

where n̄us,vs is the Lagrangian-modified number of optical-
preferred VLs that are embedded on the optical connection
between the rack pair(us, vs).

n̄us,vs = nus,vs + 2λ · f(us,vs). (21)

We further modify the optimization in Eq. (20) by deleting the
last constraint (Eq. (9)), and because the termλ · (η − |Vs|)
in Eq. (20) is independent of{f̃(us,vs)}, they can be removed
too. Then, the optimization is modified to

Maximize
1

2

∑

(us,vs)∈Rs

n̄us,vs · f̃(us,vs),

s.t
∑

{vs:(us,vs)∈Rs}

f̃(us,vs) ≤ 1, ∀us ∈ Vs,

∑

{us:(us,vs)∈Rs}

f̃(us,vs) ≤ 1, ∀vs ∈ Vs.

(22)

Lemma 2. The problem in Eq.(22) is equivalent to that of
finding the maximal weight matching in a bipartite graph.

Proof: We first construct a bipartite graph that consists
of two setsA andB, each of which includes|Vs| elements.
Then, we defineai and bi as the i-th elements inA and
B, respectively. Next, we set the weight of the connection
betweenai and bj as wi,j . The booleanx(i,j) is defined to
be 1 if ai and bj are connected in the bipartite graph, and
0 otherwise. Therefore, the ILP model to obtain the maximal

weight matching in the bipartite graph can be formulated as

Maximize
∑

i,j∈[1,|Vs|]

wi,j · x(i,j),

s.t
∑

i∈[1,|Vs|]

x(i,j) ≤ 1, ∀j ∈ [1, |Vs|],

∑

j∈[1,|Vs|]

x(i,j) ≤ 1, ∀i ∈ [1, |Vs|],

(23)

which shares the same formulation of Eq. (22) if we replace
wi,j andx(i,j) with 1

2 · n̄us,vs and f̃(us,vs), respectively.
Note that, the maximal weight matching in a bipartite graph

can be found with the Kuhn-Munkres algorithm [46], whose
complexity isO(|Vs|3) to solve the optimization in Eq. (22).

We take the maximal value of the problem depicted in Eq.
(22), addλ · η − λ · |Vs| to it to getZ∗

dual(λ), and finally get
the following dual problem

Minimize Z
∗
dual(λ) = max

{f̃(us,vs)}




1

2

∑

(us,vs)∈Rs

nus,vs · f̃(us,vs)




+λ ·


η − |Vs|+

∑

(us,vs)∈Rs

f̃(us,vs) · f(us,vs)




 ,

s.t
∑

{vs:(us,vs)∈Rs}

f̃(us,vs) ≤ 1, ∀us ∈ Vs,

∑

{us:(us,vs)∈Rs}

f̃(us,vs) ≤ 1, ∀vs ∈ Vs.

(24)
Although the one in Eq. (24) is not the strict Lagrangian
dual problem of the original problem in Eq. (18), we always
haveZdual(λ) ≤ Z∗

dual(λ) due to the expanded solution space.
Hence,Z∗

dual(λ) still provides an upper-bound on the optimal
solution of the original problem.

2) Solving Lagrangian Dual Problem:The optimization in
Eq. (24) is a piecewise LP, which can be solved by leveraging
the sub-gradient method in [47] to updateλ iteratively until
Z∗

dual(Λ) converges to the minimum. We updateλ as follows.

λk+1 = λk − µk · f(λk), (25)

whereµk andf(λk) are the step-size and sub-gradient vector
of Z∗

dual(λ) regardingλ, respectively, for thek-th iteration. The
sub-gradient vector can be obtained as

f(λ) =
∂Z∗

dual

∂λ
= η − |Vs|+

∑

(us,vs)∈Rs

f̃(us,vs) · f(us,vs). (26)

As the value of step-sizeµk affects the convergence perfor-
mance, we determine it as follows, according to [48].

µk =
ν · (Zdual(λk)− Z∗)

||f(λk)||2
, (27)

whereZdual(λk) is obtained by solving the problem in Eq. (22)
with a specific Lagrangian multiplierλk, Z∗ is the maximal
feasible solution until thek-th iteration, andν is a variable
whose initial value is2. Note that, if the value ofZdual(λk)
does not reduce after a fixed number of iterations, we divideν
by 2. To ensure thatZdual(λ) is an upper-bound on the optimal
solution, we need to haveλ ≥ 0, which is achieved with

λk+1 = max{0, [λk − µk · f(λk)]}. (28)



8

3) Obtaining Feasible Solution:Then, we design a heuristic
to find a feasible solution of the original problem in the ILP
in Eq. (18), and the solution provides a lower-bound on the
exact solution in each iteration. The heuristic is shown in
Algorithm 5, which obtains a feasible solution{f̃k

(us,vs)
} and

updatesZ∗ in the k-th iteration. InLine 1, we initialize the
counterx as 0, and the temporary variables{f̃ t

(us,vs)
} as the

solution obtained in the(k − 1)-th iteration, i.e., {f̃k−1
(us,vs)

}.
The while-loop coveringLines2-26 tries to obtain a solution
that is better than{f̃k−1

(us,vs)
}. The while-loop runs forQ times

at most, and we will study the effect of the value ofQ with
simulations in Section VI. Specifically, inLines6-15, we check
the connection scheme of four OXC ports each at a time, and
determine that whether reconfiguring their connection scheme
leads to a better solution or not. Then,Lines16-25 update the
OXC reconfiguration scheme to include the connection scheme
of four OXC ports, which results in the largest increase over
the previous feasible solution{f̃k−1

(us,vs)
}. At last, in Line 27,

we get a better lower-boundZ∗ with the new feasible solution
{f̃k

(us,vs)
}. The time complexity ofAlgorithm5 isO(Q·|Vs|2).

4) Overall Procedure:Finally, the proposed approximation
algorithm that leverages Lagrangian relaxation to solve the
ILP in Eq. (18) is explained inAlgorithm 6. Specifically,
by solving the Lagrangian dual problem (i.e., the upper-
bound) and obtaining feasible solutions with the heuristicin
Algorithm 5 (i.e., the lower-bound), we optimize the solution
iteratively.Line 1 is for the initialization, whereub andlb are
for the upper- and lower-bounds obtained in each iteration,
respectively, andn is the counter to monitor the convergence
condition ofZ∗

dual(λ). Then, the while-loop that coversLines
2-20 optimizes the solution until its approximation ratio is
greater than a preset threshold(1−γ2) (Lines14-16). InLines
5-11, we update the upper-boundub with Z∗

dual(λ), and if ub
stays as unchanged forTh iterations, we dividev by 2. Lines
17-18 calculateµk andλk+1 to prepare for the next iteration.
The while-loop will run forM2 iterations at most, and thus the
time complexity ofAlgorithm 6 is O(M2 · |Vs|2 · (Q+ |Vs|)).

As the original problem in the ILP in Eq. (18) is for
maximization, we can prove that the approximation ratio of
Algorithm 6 is lower-bounded byγ2 ∈ (0, 1) as follows.
We still define the optimal solution asZILP, and then the
approximation ratio for the maximization problem is

ǫ =
Z∗

ZILP
≥

Z∗

Z∗
dual(λ)

≥ 1− γ2. (29)

This is because theZ∗
dual(λ), which is obtained by solving

the dual problem, provides the upper-bound onZILP. We also
want to point out that according to the principle of Lagrangian
relaxation [47],Algorithm6 can converge and find a qualified
feasible solution as long as the values ofM2 and γ2 are
properly selected. The actual convergence performance of the
algorithm will be discussed in the next section.

VI. PERFORMANCEEVALUATIONS

In this section, we perform numerical simulations to evalu-
ate the performance of our proposed algorithms.

Algorithm 5: Obtaining Feasible Solution

Input : η, Q, {f̃k−1
(us,vs)

}, {nus,vs}.
Output : Z∗.

1 x = 0, {f̃ t
(us,vs)

} = {f̃k−1
(us,vs)

};
2 while x ≤ Q do
3 x = x+ 1, y = 0, κ1 = κ2 = 0;
4 assign indices of existing optical connections in

{f̃ t
(us,vs)

} as{li, i ∈
[
1, |Vs|

2

]
};

5 store the optical connections in setL;

6 for i ∈
[
1, |Vs|

2 − 1
]

do

7 for j ∈
[
i+ 1, |Vs|

2

]
do

8 sori = ni + nj ;
9 get the four OXC ports ofli and lj ;

10 find the OXC ports’ connection scheme
that the largest number of optical-
preferred VLs (smax) can be embedded
on the resulting optical connections;

11 if smax − sori > y then
12 y = smax − sori, κ1 = i, κ2 = j;
13 end
14 end
15 end
16 if y > 0 then
17 reconfigure the OXC ports oflκ1 and lκ2 and

update{f̃ t
(us,vs)

} accordingly;

18 if |Vs| −
∑

(us,vs)∈Rs

f̃ t
(us,vs)

· f(us,vs) ≤ η then

19 {f̃k
(us,vs)

} = {f̃ t
(us,vs)

};
20 else
21 break;
22 end
23 else
24 break;
25 end
26 end
27 calculateZ∗ according to{f̃k

(us,vs)
};

A. Simulation Setup

The simulations architect the EPS-based inter-rack network
in the HOE-DCN with the well-knownk-ray fat-tree topology
[49], where there arek

2

2 racks/ToR switches evenly distributed
in k points-of-delivery (PoDs). Each ToR switch is equipped
with k

2 Ethernet ports, which are connected to its aggregation
switches, and one optical port that is connected to the OXC. To
evaluate our approximation algorithms in depth, we surveyed
commercially-available large-scale OXCs, and found that those
with the configuration of384×384 ports are commonly used
(e.g., the Polatis Series 7000 [50]). Hence, the largest HOE-
DCN considered in the simulations uses the 28-ray fat-tree
topology that includes392 racks. The simulation parameters
are either adopted from real-world DCNs or based on the
observations in our experimental demonstrations in [9, 10],
and thus the choices are practical and can represent the cases
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Algorithm 6: Approximation Algorithm for Obtaining
Reconfiguration Schemes of OXC and Related VLs

1 k = 1, λk = 0, ν = 2, ub = +∞, lb = 0, n = 0;
2 while k ≤ M2 do
3 calculate{n̄us,vs} with Eq. (21) andλk;
4 solve optimization in Eq. (22) with Kuhn-

Munkres algorithm forZ∗
dual(λk) and{f̃(us,vs)};

5 if Z∗
dual(λk) < ub then

6 ub = Zdual(λk), n = 0;
7 else if n > Th then
8 ν = ν/2, n = 0;
9 else

10 n = n+ 1;
11 end
12 get a feasible solution andZ∗ with Algorithm 5;
13 lb = Z∗;
14 if lb

ub
≥ 1− γ2 then

15 break;
16 end
17 calculateµk with Eq. (27);
18 calculateλk+1 with Eqs. (25)-(28);
19 k = k + 1;
20 end

in realistic HOE-DCNs. We set the bandwidth capacity of each
Ethernet port on a ToR switch as1000 units, while that of its
optical port is assumed to be10000 units. For thek-ray fat-
tree topology used in the simulations, we assume that the IT
resource capacity of each rack in it is1000 · k

2 units.
We use the Poisson model to generate VNTs dynamically

with random topologies3. The number of VMs in each VNT
are selected within[2, 40] and [2, 60] for HOE-DCNs with
20-ray and 28-ray fat-trees, respectively, and the connectivity
ratio of the VMs in each VNT is set as0.5. Both the IT and
I/O resource demands of a VM are selected randomly within
[250, 1000] units. In the VNTs, we randomly select50% of
the VLs and label them as “optical-preferred” ones. At each
simulation time, we use the VNE algorithm developed in [27]
to serve new VNTs, and release the resources occupied by
the expired ones. Then, we pause the VNT provisioning to
invoke a VNT reconfiguration, when the IT resource usages
in the HOE-DCN become unbalanced,i.e., the number of “hot-
spot” racks whose IT resource usages are above the average
value exceeds a preset threshold. In order to maintain sufficient
statistical accuracy, our simulations average the resultsfrom 5
independent runs to obtain each data point.

B. Feature Verification

We first conduct simulations to confirm the features of our
proposed approximation algorithms. Since the problem solving
of VNT reconfiguration is divided into two steps, we evaluate

3As the design of our algorithm does not apply any assumption on the
traffic model of dynamic VNTs, it should also work well when the VNTs are
generated according to realistic traces measured in working DCs. Due to the
page limit of the journal, we will verify this claim in our future work.
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Fig. 3. Maximum IT usage on racks after VM migration.

the algorithms designed for them one by one. In the following,
we refer to the ILP models defined with Eqs. (16) and (18) as
ILP-1 and ILP-2, respectively.

1) Determining VM Migration Schemes:To evaluate the
performance ofAlgorithm 2, we invoke VNT reconfiguration
in network environments where the average IT usages on
the racks in an HOE-DCN are within[0.4, 0.7], and set the
approximation ratio asγ1 ∈ {0.1, 0.2, 0.3}. Fig. 3 shows the
results on the maximum IT usage on racks after the VM
migration. We can see that for both the HOE-DCNs (with
200 and 392 racks), our VM migration algorithm effectively
reduces the maximum IT usage on racks, and thus the IT
resource utilizations have been re-balanced effectively.As
expected, the maximum IT usage on racks can be pushed
down to a lower value, if the average IT usage is smaller.
It is promising to observe that our algorithm can achieve an
approximation ratio of(1+γ1) = 1.1 for the large-scale HOE-
DCNs. This means that for the HOE-DCN that consists of
392 racks, the results from our approximation algorithm are
at most10% larger than the exact solutions of the minimization
in Eqs. (16). We also notice that the quality of the solutions
from Algorithm 2 improves when the value ofγ1 decreases.

Fig. 4 illustrates the worst-case convergence performance
of Algorithm 2 (i.e., the average IT usage is set as0.7),
where the relative gap is calculated asZ∗−ZLP

ZLP
based on Eq.

(17). We observe that for both scenarios,Algorithm 2 reduces
the relative gap to less than0.06 within only 8 iterations.
Table I lists the average running time ofAlgorithm 2 for
calculating the migration scheme of each VM. Note that, due
to the fact that solving ILP-1 for the large-scale HOE-DCNs
is intractable, we do not list its running time here. The results
in Table I indicate that the running time increases with the
average IT usage. This is because we need to determine the
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Fig. 4. Worst-case convergence performance ofAlgorithm 2.

TABLE I
AVERAGE RUNNING T IME OF Algorithm2 PERVM M IGRATION (MSEC)

Average IT usage on racks 0.4 0.5 0.6 0.7

γ1 20-ray Fat-tree
0.1 4.64 5.45 6.75 7.60
0.2 4.62 5.42 6.73 7.58
0.3 4.62 5.42 6.72 7.57

γ1 28-ray Fat-tree
0.1 21.48 23.57 27.65 36.11
0.2 21.41 23.58 27.54 35.98
0.3 21.40 23.58 27.53 35.97

migration schemes for more VMs when the average IT usage
is larger. Meanwhile, the running time stays almost unchanged
whenγ1 reduces. This is becauseAlgorithm2 spends most of
its running time on solving the LP, while it only runs very few
more iterations to satisfy a smallerγ1. This further confirms
the superior convergence performance of our algorithm.

2) Determining Reconfiguration Schemes of OXC and Re-
lated VLs: Next, we evaluate the performance ofAlgorithm6
on determining the reconfiguration schemes of the OXC and
related VLs. Here, we set the threshold on the total number
of reconfigured ports in the OXC asη ∈ {50, 100, 150, 200}
and η ∈ {100, 200, 300, 392} for the HOE-DCNs with 20-
ray and 28-ray fat-trees, respectively. The approximationratio
γ2 is chosen from{0.2, 0.4, 0.6}. Since ILP-2 is relatively
simple and can be solved within reasonable time, we also
solve it to obtain the optimal solutions. Fig. 5 shows the
results on the number of successful optical embeddings. Here,
a successful optical embedding means that an optical-preferred
VL gets mapped on an optical connection through the OXC
successfully. We can see that the number of successful optical
embeddings increases with the preset threshold on reconfig-
urable OXC ports (η). This is because a greaterη provides a
larger solution space. Meanwhile, the results also indicate that
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Fig. 5. Embeddings of optical-preferred VLs.

TABLE II
AVERAGE RUNNING T IME OF Algorithm6 AND ILP-2 (SEC)

γ2 0.2 0.4 0.6

20-ray Fat-tree
ILP-2 12.194

Q = 5 1.360 0.507 0.236
Q = 10 1.178 0.329 0.155
Q = 15 1.183 0.213 0.155

28-ray Fat-tree
ILP-2 69.672

Q = 10 7.192 3.804 1.901
Q = 20 6.524 2.769 0.940
Q = 30 5.997 2.456 0.701

we can improve the quality of solutions fromAlgorithm 6 by
reducing the approximation ratioγ2.

The value ofQ in Algorithm 5 impacts the quality of
feasible solutions and in turn affects the convergence perfor-
mance ofAlgorithm6. Fig. 6 illustrates the effect ofQ on the
convergence performance ofAlgorithm6, which indicates that
the algorithm converges faster with a largerQ. Meanwhile,
for all the scenarios, the relative gap ofAlgorithm6, which is
calculated asZ

∗

dual(λ)−Z∗

Z∗

dual(λ)
based on Eq. (29), can be reduced to

less than0.1 within 20 iterations. The results on the average
running time ofAlgorithm 6 and ILP-2 are listed in Table II.
We can see thatAlgorithm6 is much more time-efficient than
ILP-2, and the running time ofAlgorithm6 decreases withγ2
but increases whenQ decreases. This is because a smallerQ
can makesAlgorithm 6 converge slowly as shown in Fig. 6.

C. Performance Benchmarking

Finally, we benchmark the performance of the overall pro-
cedure for VNT reconfiguration in HOE-DCNs. Specifically,
by integratingAlgorithms 2 and 6 inAlgorithm 1, we have
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Fig. 6. Convergence Performance ofAlgorithm 5.

the complete procedure and the maximum iteration numbers
are set asM1 = M2 = 20. Then, we compare it with both
the MILP in Section IV and the heuristic developed in [25].
Here, for the overall objective in Eq. (2), we defineα = 1
andβ = |Vs|

|Eo
r |·

∑
vs∈Vs

Cvs
, to ensure that minimizingcmax is the

primary objective. The simulations use the 4-ray and 20-ray
fat-trees for the HOE-DCNs, while we only evaluate the MILP
with the 4-ray fat-tree due to its time complexity.

Fig. 7 shows the results on the overall optimization objec-
tive, where “Ours” refers to theAlgorithm 1 that uses our
proposed approximation algorithms, and “Benchmark” is for
the heuristic developed in [25]. In Fig. 7(a), we can see that
the MILP provides the best solution while the optimization
gap of Ours is smaller than that of Benchmark. We also
measure the running time of the three algorithms and list the
results in Table III, which indicates that Ours uses comparable
running time as Benchmark, and both of them are much more
time-efficient than the MILP. Meanwhile, for the large-scale
HOE-DCN with 20-ray fat-tree (i.e., 200 racks), the results
in Fig. 7(b) still confirm that Ours outperforms Benchmark.
Moreover, the simulation results also confirm that our proposal
can be implemented in a real-world HOE-DCN and adapt
to the dynamic network environment in it. For instance, the
results on running time in Table III suggest that Ours only
uses a few milliseconds to obtain the reconfiguration schemes
of tens of VNTs in an HOE-DCN with 4-ray fat-tree. In
our future work, we will implement Ours in the network
orchestration systems developed in [9, 10], to further verify its
practicalness and evaluate its performance with experiments.

VII. C ONCLUSION

We studies how to realize effective VNT reconfiguration
in an HOE-DCN such that the IT resource usages in racks
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Fig. 7. Overall optimization objective.

TABLE III
RUNNING T IME OF ALGORITHMS FORHOE-DCNWITH 4-RAY FAT-TREE

(SEC)

Average IT usage 0.4 0.5 0.6 0.7

MILP 0.302 1.626 10.406 267.002
Ours 5.403e-3 5.911e-3 6.842e-3 7.713e-3

Benchmark 3.306e-3 3.924e-3 4.723e-3 5.301e-3

can be re-balanced with VM migration. We first formulated
an MILP to present the overall optimization for computing
the new VNE schemes of VNTs based on preselected VMs.
Then, the problem solving was into two steps, 1) calculating
the VM migration schemes for the VNTs to balance the loads
on racks, and 2) determining the reconfiguration schemes of
related VLs and the OXC. For the first step, we proposed
a polynomial-time approximation algorithm by leveraging
linear relaxation. The optimization of the second step was
solved by an algorithm that involves a linear-time dynamic
programming and an ILP. To solve the ILP time-efficiently, we
proposed another polynomial-time approximation algorithm
based on Lagrangian relaxation. Our performance evaluations
with extensive simulations confirmed the effectiveness of the
proposed approximation algorithms, verified that they can get
near-optimal solutions whose performance gaps to the optimal
ones are bounded, and demonstrated that the overall procedure
including them outperforms the existing approach.
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