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Abstract—Recently, the combination of artificial intelligence
(AI) and software-defined networking (SDN) has attracted in-
tensive research interests because it realizes and promotes AI-
assisted network automation (AIaNA). Despite the initial suc-
cesses of AIaNA, its vulnerabilities, i.e., the downside of the
reduction of human involvement achieved by it, have not been
carefully explored. In this work, we use software-defined IPover
elastic optical networks (SD-IPoEONs) as the background, and
study how to mislead the AIaNA system in them. Specifically, we
target our attack on the deep neural network (DNN) based traffic
predictor in the AIaNA system, and design an adversarial module
(ADVM) that can craft and inject adversarial traffic samples
adaptively to disturb its operation. We consider two approaches
to design the ADVM, i.e., the deep reinforcement learning (DRL)
based on deep deterministic policy gradient (DDPG), and the
generative adversarial network (GAN) model. Our proposed
ADVM can monitor and interact with a dynamic SD-IPoEON
to train itself on-the-fly. This enables it to generate and inject
adversarial samples in the most disturbing and hard-to-detect
way and to severely affect the AIaNA’s performance on mul-
tilayer service provisioning. Specifically, IP flows will beserved
incorrectly to result in unnecessary congestions/under-utilizations
on lightpaths, and erroneous network reconfigurations will be
invoked frequently. Simulation results confirm the effectiveness
of our ADVM designs, and show that the GAN-based ADVM
achieves better attack effects with smaller perturbation strength.

Index Terms—Artificial Intelligence (AI), Deep reinforcement
learning (DRL), Network Automation, Software-defined IP over
elastic optical networks (SD-IPoEONs), Generative Adversarial
Network (GAN), Adversarial samples.

I. I NTRODUCTION

NOWADAYS, the fast-emerging network services have
dramatically changed the characteristics of Internet traf-

fic in backbone networks,i.e., not only pushing the traffic
volume to grow rapidly but also making the traffic condition
to vary more burstily [1, 2]. Therefore, considering the agile
optical layer achieved with the flexible-grid elastic optical
networks (EONs) [3–7], we expect that a rational combi-
nation of IP and EON technologies would be promising to
architect future backbone networks. The resulting network
architecture, namely, IP-over-EON (IPoEON) [8, 9], will be
able to adaptively allocate spectrum resources in the optical
layer to bandwidth-variable lightpaths, for supporting upper-
layer applications. However, this advantage cannot be fully ex-
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plored without an effective network control and management
(NC&M) scheme [10, 11], which can groom and route IP flows
over the lightpaths cost-efficiently to realize high resource
utilization and good quality-of-service (QoS) simultaneously.

The requirements on NC&M can be satisfied by leveraging
the symbiosis of software-defined networking (SDN) [12–
15] and deep learning (DL) based artificial intelligence (AI)
mechanisms [16] to realize AI-assisted network automation
(AIaNA) [17]. Specifically, as shown in Fig. 1, by inserting
an AI module in the centralized control plane of a software-
defined IPoEON (SD-IPoEON), we can realize the AIaNA
to orchestrate the network elements in both IP and optical
layers in a coordinated and intelligent manner [18]. Through
data analytics, the AI module first analyzes and forecasts the
traffic condition in the SD-IPoEON, and then makes accurate
and timely NC&M decisions. Hence, bandwidth resources can
be automatically allocated/adjusted in advance to make the
network operation significantly more cost-efficient [19].

Nevertheless, the advances/successes on AIaNA should not
glamor us to overlook its vulnerabilities, especially whentalk-
ing about the implementation in production networks. In other
words, the downside of the reduction of human involvement
achieved by AIaNA should be carefully analyzed to identify all
the reliability and security issues, such that important questions
such as whether we can trust AIaNA in production networks,
to what extent it can be trusted, and how to replace a human
operator with it, can be properly answered. However, most of
the existing studies on AIaNA did not pursue the research in
this direction. This motivates us to investigate how to mislead
the AIaNA system for SD-IPoEONs in this work.

Specifically, we target the attack on the deep neural network
(DNN) based traffic predictor in the AIaNA system developed
in [18]. This is because the operation of a DNN can be quietly
disturbed with data poisoning [20],i.e., a malicious party can
mislead the DNN to generate incorrect outputs by mixing well-
craft adversarial samples in its inputs. Here, we hope to point
out that data poisoning works for a wide range of DNNs in
addition to those for time series prediction,e.g., the DNNs for
classification can be misled too [21]. Therefore, the proposals
and conclusions in this work could be generalized to and
across other AIaNA systems that use DNNs for quality-of-
transmission (QoT) prediction, anomaly detection, exception
localization, resource orchestration,etc.

In this work, we design an adversarial module (ADVM) that
can craft and inject adversarial traffic samples adaptivelyto
disturb the DNN-based traffic predictor, and in turn mislead
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the AIaNA system of an SD-IPoEON. Two approaches are
considered to design the ADVM: 1) the deep reinforcement
learning (DRL) based on the deep deterministic policy gradi-
ent (DDPG) [22], and 2) the generative adversarial network
(GAN) model [23]. Note that, although our preliminary study
in [24] addressed the DRL-based ADVM, this work expands
the analysis to make the problem-solving more comprehensive
and proposes the GAN-based ADVM for the first time.

We demonstrate that our proposed ADVM can monitor and
interact with a dynamic SD-IPoEON to train itself on-the-
fly, which enables it to generate and inject adversarial traffic
samples in the most disturbing and hard-to-detect way. Hence,
it can successfully mislead the AIaNA system in the SD-
IPoEON to severely affect the performance of multilayer ser-
vice provisioning. Specifically, IP flows will be groomed and
routed incorrectly to result in unnecessary congestions/under-
utilizations on lightpaths, and erroneous network reconfigura-
tions will be invoked frequently to lead to waste on operational
complexity and costs. More importantly, our simulation results
indicate that compared with the DRL-based one, the GAN-
based ADVM achieves better attack effects with smaller
perturbation strength, and this can be realized automatically
with less empirical parameter adjustments.

The rest of the paper is organized as follows. Section II
briefly reviews the related work. We describe the SD-IPoEON
with AIaNA and the operation principle of ADVM in it in
Section III. The designs of the DRL- and GAN-based ADVMs
are then presented in Sections IV and V, respectively. Next,we
discuss the numerical simulations for performance evaluations
in Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

The NC&M of an SD-IPoEON essentially covers at least
two aspects [8],i.e., normal service provisioning and failure
protection/restoration. Because its data plane consists of both
IP and optical layers, the service provisioning in an SD-
IPoEON operates in the multilayer scenario. Specifically, we
need to first set up lightpaths in the optical layer by solving
the famous routing and spectrum assignment (RSA) problem
[25–27], and then groom and route IP flows with time-varying
traffic over the lightpaths [18, 28]. As a complex system,
an SD-IPoEON can have numerous failure cases [29], and
thus multilayer protection/restoration schemes are necessary to
guarantee reliable operations. Previously, considering various
failure scenarios, the studies in [30–34] have designed several
protection/restoration algorithms, while the SDN-based system
demonstrations have been mentioned in [18, 35].

Due to the dynamic nature of IP flows, the NC&M decisions
that are made based on current network status might not be
able to handle future traffic demands well. For instance, if we
groom the bursty IP flows whose traffic fluctuations are syn-
chronized over one lightpath, congestions/under-utilizations
could happen in the future even though the current status
of the lightpath shows no issues. This dilemma suggests that
traffic prediction would be necessary for the AIaNA in SD-
IPoEONs [18]. In addition to SD-IPoEONs, DNN-based traffic
predictions have been widely used in the AIaNA systems
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Fig. 1. Architecture of SD-IPoEON with AIaNA, BV-OXC: Bandwidth-
variable optical cross-connect, BV-T: Bandwidth-variable transponder.

for various networks too [36–38]. Furthermore, other AIaNA
systems also utilized DNNs for QoT prediction [39], security
monitoring [40], anomaly detection and fault management [41,
42], network function virtualization [43], datacenter network
management [44, 45],etc. Nevertheless, none of the aforemen-
tioned studies has considered the downside of the reductionof
human involvement achieved by AIaNA,i.e., whether or not
AIaNA can be fully trusted without human presence.

Unfortunately, it is known that DNNs are vulnerable to
the data poisoning with well-crafted adversarial samples and
can be easily misled to generate incorrect outputs [20, 21].
Moreover, using visual classification as the background, the
survey in [46] showed that an attacker can even force DNN
models to produce pre-selected outputs using hard-to-detect
adversarial samples. To this end, the vulnerability of DNN-
based AIaNA systems should not be overlooked.

Previously, we studied how to mislead the AIaNA for inter-
datacenter networks with manually-crafted adversarial traffic
samples in [47]. However, as the adversarial samples were
generated in a static manner, they would not be effective
when traffic condition changed. The authors of [48] proposeda
deterministic algorithm to launch black-box adversarial attacks
on a DNN-based network traffic classifier. Nevertheless, the
adversarial sample generation was not adaptive, which means
that the attacks could be easily detected with another determin-
istic algorithm (e.g., the one in [49]). Therefore, it would be
interesting to consider how to leverage AI-based methods to
craft the adversarial samples adaptively [50]. However, tothe
best of our knowledge, none of the existing studies on AIaNA
has pursued the research in this direction, except for our
previous work [24]. Although the DRL-based ADVM designed
in [24] could disturb the operation of the AIaNA system for
SD-IPoEONs, the study was still preliminary, because the
tradeoff between perturbation strength and attack effect was
not optimized and GAN-based approach was not considered.

III. N ETWORK ARCHITECTURE ANDOPERATION

PRINCIPLE

In this section, we show the architecture of an SD-IPoEON
that leverages DNN-based traffic predictor to realize AIaNA,
and describe the operation principle of our proposed ADVM,
which can disturb the AIaNA’s operation with well-crafted
adversarial traffic samples.
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A. Network Architecture

Fig. 1 illustrates the network architecture of an SD-IPoEON
with AIaNA [18]. The data plane consists of the IP and
optical layers, both of which are managed by the centralized
control plane. The optical layer is essentially an EON that
is built with a few bandwidth-variable optical cross-connects
(BV-OXCs) and fiber links. Following the instructions from
the SDN controller, each BV-OXC can transparently switch
lightpaths with flexible-grid spectrum allocations, and can also
insert/terminate lightpaths to/from fiber links if the lightpaths
use it as an end-node. Therefore, lightpaths can be established,
reconfigured, and torn down to adapt to IP traffic. The packet
switches in the IP layer are also managed by the SDN
controller, which can install flow tables in them to groom
and route dynamic IP traffic generated by the hosts over the
lightpaths in the optical layer. Each packet switch connects to
a BV-OXC locally via several bandwidth-variable transponders
(BV-Ts), which can generate/terminate lightpaths.

The SDN controller monitors the status of the data plane and
manages all the data plane elements accordingly. Specifically,
it models the IP layer as a graphG(V,E), whereV is the
set of packet switches andE denotes all the logic links for
interconnecting the switches. Here, each logic link(u, v) ∈ E

is actually a lightpath between the BV-OXCs that are local to
switchesu andv, and the BV-OXCs might not be adjacent in
the optical layer,i.e., the lightpath can bypass certain switches
in the IP layer. Similar to the work in [18], we still assume that
when setting up a new lightpath, the SDN controller always
assigns the highest line-rate that the lightpath’s transmission
distance permits1. Hence, the capacity of a logic link(u, v)
is determined at the time when its lightpath is set up, and
G(V,E) is a dynamic topology whose links can change over
time. Then, based on the traffic condition in the data plane,
the controller manages the lightpaths in the optical layer to
updateG(V,E), and grooms and routes IP flows inG(V,E)
to not only maximize overall bandwidth utilization but also
minimize lightpath congestions.

B. Operation of AIaNA

The cross-layer orchestration in the controller manages
dynamic IP traffic in units of IP flows. Here, because we
consider the SD-IPoEON as a backbone network, each IP flow
(u→v, u, v ∈ V ) is actually an aggregated one that includes
the traffic of many socket connections from the hosts attached
on Switch u to those onSwitch v. Therefore, even though
the traffic on each flow is still highly dynamic, it fluctuates
according to a predictable pattern and lasts for a relatively
long period of time (e.g., tens of hours or even days) [51].
Meanwhile, because traffic from different network services
should be handled independently, we assume that different
IP flows can share the same source-destination switch pair
[18]. In this case, each packet switch identifies the IP flows
by checking their switching labels instead of IP addresses,
by using the multi-protocol label switching (MPLS) protocol,
which is commonly-used in backbone networks for traffic

1Each BV-T supports a set of line-rates, each of which has a maximum
transmission reach according to the QoT constraint [3].
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Fig. 2. Operation principle of ADVM to mislead the AIaNA in SD-IPoEON.

grooming [30]. Then, the packet switch records historical
traffic samples of an IP flow by leveraging the counters
associated with the corresponding flow tables, and indices
the results with the IP flow’s switching label. Next, the SDN
controller can poll the packet switch periodically to collect the
traffic samples, and use them for AIaNA.

As the IP flows have time-varying bandwidth requirements,
the grooming and routing of them can be more effective to
avoid congestions/under-utilizations on lightpaths in advance,
if we leverage a DNN-based traffic predictor to forecast future
bandwidth demands accurately. This actually realizes AIaNA
in the SD-IPoEON. In other words, the control plane accom-
plishes the cycle of “observe-analyze-act” to adjust resource
allocations in the data plane, such that the cost-effectiveness of
network operation can be improved significantly. We build the
traffic predictor based on the long/short-term memory based
DNN (LSTM-DNN) [52], because it is one of the most widely-
used DNN models for forecasting time series. In [18], we
have demonstrated a traffic predictor based on LSTM-DNN,
which can produce highly-accurate predictions when being
tested with the realistic traffic traces taken by Internet service
providers (ISPs) in different countries.

Then, based on the accurate traffic predictions and current
network status, the AIaNA system calculates and implements
suitable multilayer provisioning schemes for the IP flows, to
realize proactive cross-layer orchestration in the SD-IPoEON.
The AIaNA system can utilize the congestion-relieving value
(CRV) algorithm developed in [18] to achieve the proactive
cross-layer orchestration. Specifically, based on traffic predic-
tions provided by the DNN-based traffic predictor, the CRV
algorithm generates intelligent on-line NC&M decisions to
re-groom and reroute IP flows and to reconfigure lightpaths
such that the performance tradeoff among lightpath utilization,
congestion probability, and reconfiguration frequency canbe
balanced well. The algorithm determines how to re-groom
the IP flows by comparing their future traffic fluctuations and
avoiding the cases that those whose peak time overlaps with
each other are groomed on the same lightpath.

C. Operation of ADVM

In normal operation of the AIaNA system, the accuracy of
the traffic predictor is crucial. Specifically, the AIaNA analyzes
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traffic predictions to obtain future network status, and when
it foresees congestions/under-utilizations on certain lightpaths,
it will invoke the corresponding network reconfigurations to
maintain the performance and cost-effectiveness of network
operation. That is to say, the AIaNA relies on accurate traffic
predictions to properly balance the tradeoff among overall
bandwidth utilization, number of lightpath congestions, and
times of network reconfigurations.

However, LSTM-DNNs are vulnerable to data poisoning
and can be easily misled to generate incorrect predictions
with well-crafted adversarial samples [20, 21]. In order to
investigate how badly the traffic predictor can be misled and
what the harmful effects are, we design an ADVM to disturb
the AIaNA system in the most devastating and hard-to-detect
manner. We assume that the ADVM has the capability to
monitor the traffic conditions on certain lightpaths in the SD-
IPoEON, which can be achieved with a few well-known meth-
ods [53]. Based the traffic conditions, the ADVM generates
and injects adversarial traffic samples adaptively to make the
traffic predictor malfunction. As shown in Fig. 2, the ADVM
has the options to launch the adversarial-sample-based attacks
in the in-band and out-of-band manners.

To launch the in-band attacks, the ADVM hacks into
the control channels between the control and data planes,
eavesdrops legitimate traffic samples, produces adversarial
samples based on them, and injects the adversarial samples
back. This is feasible, because OpenFlow usually sets up
control channels with the transport layer security (TLS) or
secure socket layer (SSL) connections, which are known to
be susceptible to the man-in-the-middle attack [54], especially
by using the technique of padding oracle on downgraded
legacy encryption (POODLE) [55]. Regarding the out-of-band
manner, the attacker deploys a few probes in the data plane
to collect traffic samples quietly [53], generates adversarial
samples accordingly, and instructs several hijacked hoststo
pump traffic into the targeted lightpaths for adversarial sample
injection. Note that, host-hijacking is widely used by malicious
parties to launch various attacks,e.g., the well-known distribut-
ed denial of service (DDoS) attack. However, compared with
DDoS, our ADVM needs to hijack fewer hosts and use them to
pump much less traffic into the network. From the perspective
of adversarial sample generation, the in-band and out-of-band
manners do not have fundamental differences, except for that
the adversarial samples generated in the out-of-band manner
are always greater than the corresponding legitimate ones.
Hence, we will not specify the attack scenario in the following
discussions, and restrict that the adversarial samples should
always be greater than the corresponding legitimate ones.

Fig. 2 also explains how the adversarial samples are gen-
erated in the ADVM. First of all, by monitoring the traffic
condition in the SD-IPoEON, the ADVM collects legitimate
traffic samples, and uses them to train its local traffic predictor
for making accurate predictions, such that the local traffic
predictor can imitate the operation of the legitimate traffic
predictor attached to the SDN controller. Note that, as the
two predictors are trained independently, they do not have
to use the same architecture. This means that the ADVM
can architect its local traffic predictor without any knowl-

edge about the legitimate one. Next, the trained local traffic
predictor generates an emulated network environment, and
then the adversarial sample generator interacts with it to craft
and inject adversarial traffic samples adaptively, for disturbing
the legitimate traffic predictor. As the whole process does
not count on any information about the legitimate traffic
predictor, the ADVM realizes the “black-box” adversarial
attack. Moreover, the ADVM only needs to collect and inject
traffic samples in an SD-IPoEON to launch the adversarial-
sample-based attacks, and its operation does not count on any
other network information regarding the SD-IPoEON.

With the trained local traffic predictor, the adversarial sam-
ple generator modifies legitimate samples to adversarial ones,
inputs the results to the local traffic predictor to see how the
predictions will change, and optimizes the results to achieve
the largest attack effect with the smallest perturbation strength.

Definition 1. Theperturbation strength refers to not only the
percentage of the legitimate samples that will be modified but
also the maximum relative error (MRE) made on each modified
sample, and both of them should be kept as small as possible
to make the attacks hard-to-detect.

We denote the traffic predictions with legitimate and adver-
sarial samples asP = {p1, · · · , pM} andP̂ = {p̂1, · · · , p̂M},
respectively, whereM is the number of predicted samples in
each series2. Their mean squared error (MSE) is

MSE(P, P̂ ) =
1

M

M
∑

i=1

(p̂i − pi)
2
, (1)

where pi and p̂i are thei-th samples in the corresponding
predictions, and they both have been normalized. Hence, the
MSE changes within[0, 1], while a larger MSE suggests a
better attack effect. Meanwhile, the similarity of the predic-
tions’ fluctuations over time can be quantified with the Pearson
correlation coefficient (PCC) as

PCC(P, P̂ ) =
cov(P, P̂ )

√

var(P ) · var(P̂ )
, (2)

where cov(P, P̂ ) calculates the covariance ofP and P̂ , and
var(·) obtains the standard deviation of a series. The PCC in
Eq. (2) varies within[−1, 1], and its value increases when
P and P̂ fluctuate more similarly. We have PCC(P, P̂ ) =
−1, if they fluctuate oppositely (i.e., having the total negative
linear correlation). Note that, if the adversarial samplescan
make the traffic predictor to produce inaccurate predictions
that have the opposite fluctuation of the actual traffic trend
(e.g., those in Fig. 3), the ADVM can mislead the AIaNA to the
maximum extend. This is because the AIaNA can mistakenly
consider future traffic valleys as peaks, orvice versa, which
will degrade its performance in all the three aspects,i.e., the
overall bandwidth utilization, number of lightpath congestions,

2Note that, to facilitate precise traffic prediction, we normalize the input
samples to the traffic predictors used in this work with respect to their
maximum value (i.e., the throughput of the lightpath that carries them). Hence,
both the collected and predicted traffic samples discussed in this paper are
normalized ones that vary within[0, 1], except for those in Section VI, because
the simulations restore traffic samples to their actual values after prediction.
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and times of network reconfigurations. To this end, the attack
effect becomes better when PCC decreases.

Definition 2. If the traffic predictions with legitimate and
adversarial samples areP and P̂ , respectively. Theattack
effect of the adversarial samples is quantified as

η = MSE(P, P̂ )− PCC(P, P̂ ). (3)

In the next two sections, we will design the adversarial
sample generator for ADVM based on two approaches,i.e.,
a DRL model using DDPG and a GAN model, respectively.
Both approaches can interact with the dynamic SD-IPoEON
to train their models on-the-fly. Through the online training,
they can generate and inject adversarial samples adaptively
such that the attack effect in Eq. (3) can be maximized while
the perturbation strength is kept as small as possible.

IV. D ESIGN OFDRL-BASED ADVM

In this section, we design the adversarial sample generator
for ADVM based on a DRL model that uses DDPG [22].
The DRL model utilizes an intelligent agent to interact with
the time-varying environment emulated by the local traffic
predictor, and selects proper actions based on the observed
states to generate adversarial traffic samples adaptively and
inject them in the data plane of the SD-IPoEON. Consequently,
the traffic predictor attached to the SDN controller can be
misled to output incorrect predictions, and the AIaNA in
the SD-IPoEON will be disturbed with the maximized attack
effect. We design the DRL model as follows.

• State: stateSi refers to the state of the historical traffic
samples collected at time instanti. We haveSi =
{si−M1+1, · · · , si}, wheresi is the instant traffic volume
on a monitored lightpath at timei, andM1 is the number
of historical samples collected for traffic prediction. We
defineS0 as the initial state, which refers to the historical
samples collected by the ADVM when it first starts.

• Action: action Ai is the action taken at timei, which
indicates how to modify the legitimate traffic samples (the
location and magnitude of perturbations) within a preset
look-ahead time,i.e., time instancej ∈ [i + 1, i + M2],
whereM2 is the look-ahead duration.

• Reward: rewardRi of actionAi is calculated by com-
paring the traffic predictions based on legitimate and

adversarial samples. As shown in Fig. 4, the local traffic
predictor first takesS0 as the input and forecastsM3

legitimate traffic samples asP0, and when the observed
state transferred toSi at timei, the local predictor obtains
a new predictionPi (also with M3 samples). We take
the parts ofP0 and Pi, which cover the overlapped
time duration, denote them asP and P̂ (i.e., the traffic
predictions with legitimate and adversarial samples), and
calculate the rewardRi−1 = R(S0, Si, P0, Pi, Ai−1) as

Ri−1 =
[

MSE(P, P̂ )− PCC(P, P̂ )
]

−
1

M1

M1
∑

j=1

ŝj − sj

sj
, (4)

where we redefine the overlapped parts ofP0 andPi as
P = {p1, · · · , pM} andP̂ = {p̂1, · · · , p̂M}, respectively.
We useS0 = {s1, · · · , sM1

} to denote the legitimate
samples, and defineSi = {ŝ1, · · · , ŝM1

} as the adversar-
ial samples generated based onS0 by actionAi−1, where
M1 is the number of concerned samples. The first term
in Eq. (4) is the attack affect defined in Eq. (3), and the
second one is the perturbation strength.

Because the aforementioned DRL model has relatively large
state and action spaces, we design it by leveraging the DDPG
scheme, which is known to be powerful on optimizing actions
in states while both of their spaces are high-dimensional and
continuous [22]. Specifically, as shown in Fig. 4, the DRL-
based adversarial sample generator adopts the advantage actor-
critic (A2C) learning strategy to avoid the difficulty of action
selection due to the need of traversing the entire action and
state spaces. Here, the DRL agent has a double network
architecture, which consists of an actor neural network (A-NN)
for outputting specific actions based on states and a critical
neural network (C-NN) for evaluating the selected actions.

The A-NN directly selects an actionAi based on stateSi

with the deterministic policy selection functionµ(Si|θ
a) as

Ai = µ(Si|θ
a), (5)

whereθa denotes the A-NN’s parameters. The C-NN uses an
action-state value function,i.e., theQ function (Q(Si,Ai|θ

c)),
to evaluate the quality of actionAi on stateSi.

Q(Si,Ai|θ
c) = Ri +Q(Si+1,Ai+1)|Si,Ai, (6)

whereθc is the C-NN’s parameters. The C-NN then sends the
action gradient (∇Ai

Q(Si,Ai|θ
c)) to the A-NN for increasing

its probability of selecting the action with a largerQ.
In online training, the A-NN continuously optimizes its

policy selection functionµ(Si|θ
a) using the policy gradient

∇θaJ ≈
1

N

N
∑

i=1

∇θaµ(Si|θ
a) · ∇Ai

Q(Si,Ai|θ
c), (7)

where J denotes its overall performance metrics,N is the
number of iterations in training, and∇θaµ(Si|θ

a) is the gradi-
ent ofµ(Si|θ

a). Meanwhile, the C-NN optimizesQ(Si,Ai|θ
c)

by minimizing the squared loss between the expected and
estimatedQ values, which is defined as

L =
1

N

N
∑

i=1

[Ri + κ ·Q(Si+1,Ai+1|θ
c)−Q(Si,Ai|θ

c)]2 , (8)
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whereκ ∈ (0, 1) is a constant for the discount factor.
The operation of the DRL-based adversarial sample gen-

erator is explained inAlgorithm 1. Lines 1-2 is for the
initialization. Next, in the for-loop that coversLines3-15, the
DRL model trains its A-NN and C-NN in the online manner,
which means that it interacts the time-varying environment
of the SD-IPoEON continuously and optimizes its decision-
making on-the-fly to maximize the attack effect. Here, to
ensure that the DRL can handle relatively long traffic series,
we divide its operation into episodes, each of which coversK

time instants3. In each episode of online operation,Lines4-5
are for the initialization. Then, the while-loop coveringLines
6-14 explains the operation of the DRL at each time instant
in an episode, whereLines11-13 explain how the A-NN and
C-NN conduct the online training to optimize themselves with
the entries stored in the experience bufferEB.

V. DESIGN OFGAN-BASED ADVM

In this section, we propose the adversarial sample generator
for ADVM based on GAN [23]. The benefit of this approach is
that the GAN can automatically balance the tradeoff between
perturbation strength and attack effect.

A. Architecture of GAN-based ADVM

As we have explained in Section III-C, the ADVM should
have the capability to optimize the tradeoff between perturba-
tion strength and attack effect. However, for the DRL model
designed in the previous section, the size of its action space
increases dramatically if we do not apply an empirically-
determined upper-bound on the percentage of the legitimate
samples that will be modified. This, however, restricts the
adaptivity of the DRL-based ADVM.

Therefore, we leverage the GAN model to design another
adversarial sample generator. As shown in Fig. 5, the GAN

3Note that, the value ofK should be selected empirically according to
traffic dynamics, and we setK = 240 in our simulations in Section VI.

Algorithm 1: DRL-based Adversarial Sample Generation

1 initialize parameters of A-NN and C-NN (θa andθc)
randomly;

2 empty the experience bufferEB;
3 for each episode of online operationdo
4 obtain initial stateS0;
5 get original traffic predictionP0 with local predictor;
6 for i = 1 to K do
7 A-NN selects actionAi based onSi with Eq. (5);
8 executeAi and obtain new stateSi+1;
9 get rewardRi with Eq. (4);

10 store{Si,Ai,Ri,Si+1} as an entry inEB;
11 selectN continuous entries inEB randomly;
12 C-NN uses the batch of entries to updateθc such

that the loss in Eq. (8) is minimized;
13 A-NN optimizesµ(Si|θ

a) by applying Eq. (7) on
the batch of entries;

14 end
15 end

consists of two neural networks, which are the generator neural
network (Gen-NN) for crafting the adversarial samples, and
the discriminator neural network (Dis-NN) for ensuring that
the perturbation strength of the generated adversarial samples
is minimized. The GAN model is also trained in the online
manner. Specifically, the Gen-NN gets trained to capture the
distribution of legitimate samples for crafting adversarial ones,
while the Dis-NN is trained to estimate the probability that
a sample is legitimate (i.e., unmodified). We train the Gen-
NN and Dis-NN simultaneously, until the adversarial samples
generated by the Gen-NN can maximize the Dis-NN’s error
rate. Hence, the tradeoff between perturbation strength and
attack effect gets optimized automatically in the training.

We denote the predicted legitimate traffic samples asS,
which is obtained with the local traffic predictor using the
scheme that is similar to the one used for the DRL-based
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Fig. 5. Architecture and operation principle of GAN-based ADVM.

ADVM. Taking S as the input, the Gen-NN produces a per-
turbation∆S. Hence, the adversarial samples will beS+∆S,
which is sent to the Dis-NN together withS for obtaining

LGAN = avg(S) · log{Dis(S) · [1−Dis(S+∆S)]}, (9)

whereLGAN is the adversarial loss, avg(·) returns the average
value of a time series, andDis(·) denotes the output of the
Dis-NN after taking a time series as the input. Meanwhile, both
the legitimate and adversarial samples are fed into the local
traffic predictor to get the traffic predictions based on them,
namely,P and P̂ , respectively. Then, the ADVM calculates
the loss caused by the adversarial-sample-based attack as

Ladv = avg(S) · η, (10)

whereη is the attack effect computed withP andP̂ using Eq.
(3). Next, we add a soft hinge loss [23] based on theℓ2-norm
of ∆S to restrict the perturbation strength

Lper = avg(S) ·max(0, ‖∆S‖2 − 1). (11)

Finally, we obtain the overall loss function as

L = LGAN + Lper− Ladv, (12)

which measures the GAN’s performance in the online training,
i.e., a smaller overall lossL indicates that it performs better.

B. Online Training of GAN

The online training updates the parameters of the Gen-NN
and Dis-NN (i.e., θg and θd, respectively) simultaneously to
see the convergence of the overall loss in Eq. (12). We define
the loss functions of the Gen-NN and Dis-NN as

LG(S|θ
g) = avg(S) · log[1−Dis(S+∆S)] + Lper− Ladv, (13)

LD(S|θd) = avg(S) · log{Dis(S) · [1−Dis(S+∆S)]}. (14)

Algorithm 2 explains the procedure of the GAN-based ad-
versarial sample generation.Lines1-2 are for the initialization,
and the subsequent while-loop describes the GAN’s operation.
Here,Lines 5-15 are for the online training. Specifically, we
train the GAN model repeatedly during network operation to
ensure its adaptivity. Each training runs forM iterations (Lines
6-14). In each iteration, the Dis-NN first gets trained forK

times (Lines7-10) to minimize its loss function defined in Eq.
(14) (i.e., making sure that it can distinguish the legitimate and

adversarial samples accurately), and then we train the Gen-
NN with Lines 11-13 to guarantee that it can generate the
adversarial samples whose attack effect is maximized under
the current perturbation strength. Therefore, through theonline
training, we optimize the Gen-NN and Dis-NN simultaneously
until they both cannot be improved anymore. At this moment,
the adversarial samples generated by the Gen-NN can mislead
the traffic predictor to obtain the maximum attack effect, while
the Dis-NN has the smallest success rate to distinguish the
generated adversarial samples from the legitimate ones (i.e.,
the adversarial-sample-based attacks become hard-to-detect).

Algorithm 2: GAN-based Adversarial Sample Generation

1 initialize parameters of Gen-NN and Dis-NN (θg andθd)
randomly;

2 empty the traffic databaseTD;
3 while the ADVM is operationaldo
4 collect historical legitimate traffic samples and store

them inTD;
5 if it is the time for online trainingthen
6 for i = 1 to M do
7 for j = 1 to K do
8 selectN continuous historical samplesS

from TD randomly;
9 update Dis-NN (θd) according to

stochastic gradient∇θdLD(S|θ
d);

10 end
11 selectN continuous historical samplesS

from TD randomly;
12 get traffic predictionP by inputtingS in

local traffic predictor;
13 update Gen-NN (θg) according to stochastic

gradient∇θgLG(S|θ
g);

14 end
15 end
16 generate and inject adversarial samples;
17 end

VI. PERFORMANCEEVALUATIONS

In this section, we perform numerical simulations to com-
pare the DRL- and GAN-based ADVMs.

A. Simulation Setup

The simulations use the 14-node NSFNET in Fig. 6 as the
topology of the optical layer in the SD-IPoEON. We assume
that each BV-T in the SD-IPoEON can support the line-
rates within{10, 25, 40, 50, 75, 100} Gbps, whose maximum
transmission reaches are{3732, 2995, 2671, 2438, 2112, 1880}
km, respectively [18]. The simulations consider dynamic net-
work environments, where the number of initial lightpaths
is distributed within [44, 50]. Then, dynamic IP flows are
generated according to the Poisson model, where the traffic
fluctuation of each flow follows a realistic trace taken from
the data set in [56]. Here, the sampling interval of each trace
is 5 minutes, and the peak rate of each flow is randomly select
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within [4, 10] Gbps. We denote one traffic sampling interval as
a time slot (TS) (i.e., each TS is5 minutes), and leverage the
CRV algorithm developed in [18] to calculate the multilayer
provisioning schemes of the dynamic IP flows.
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12
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540

540

14

Fig. 6. NSFNET topology with link lengths marked in kilometers.

The traffic predictor in the AIaNA system and the local
traffic predictor in the ADVM are trained independently, also
with the realistic traces in [56], and we confirm that both of
them can achieve a higher than95.9% prediction accuracy
on testing data sets. Similar to the setting in [24], we still
assume that the DRL-based ADVM can only modify at most
40% of legitimate samples to launch its adversarial-sample-
based attacks. Note that, the actual portion of samples to
modify is determined by its DRL agent and could be much
less than40%. For the GAN-based ADVM, we do not set this
percentage upper-bound because it can minimize the portion
of adversarial samples automatically. In the simulations,we
average the results from10 independent runs to get each data
point, for ensuring sufficient statistical accuracy.
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Fig. 7. Training performance of DRL-based ADVM.

B. Online Training Performance of ADVMs

We first leverage a lightpath whose traffic has170, 000 time-
varying samples to explain the performance of the ADVMs’
online training. Here, when generating adversarial samples, the
ADVMs limit the maximum relative error (MRE) as20%.
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Fig. 8. Training performance of GAN-based ADVM.

1) DRL-based ADVM:Fig. 7 shows the training perfor-
mance of the DRL-based ADVM, which suggests that the
training converges quickly after∼20, 000 iterations. Specif-
ically, after having been trained for20, 000 iterations, the loss
value (defined in Eq. (8)) in Fig. 7(a) approaches to0, while
its Q value (in Eq. (6)) in Fig. 7(b) starts to increase slowly.

2) GAN-based ADVM:The training performance of GAN-
based ADVM is in Fig. 8. The training converges quickly
within ∼100 iterations, and specifically, the loss value of Dis-
NN (defined in Eq. (14)) in Fig. 8(a) approaches to0 after
50 iterations, while the loss value of Gen-NN (defined in Eq.
(13)) in Fig. 8(b) has also converged after80 iterations.
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Fig. 9. Distribution of relative errors on adversarial samples.
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Fig. 10. Adverse effects of ADVMs on AIaNA system in SD-IPoEON.

Fig. 9 compares the distributions of the relative errors
introduced by the ADVMs to generate adversarial samples. In
Fig. 9(a), we notice that90.9% of the adversarial samples from
the DRL-based ADVM have their relative errors below5%,
and the average relative error of them is3.21%. On the other
hand, the results regarding the GAN-based ADVM in Fig. 9(b)
indicate that the ratio of the adversarial samples whose relative
errors are less than5% is 91.2%, while the average relative
error is2.90%. Hence, the GAN-based approach introduces a
smaller perturbation strength, and thus its adversarial samples
would be harder to be detected.

C. Adverse Effects of ADVMs on AIaNA in SD-IPoEON

We insert the ADVMs in the SD-IPoEON, let them
launch adversarial-sample-based attacks with MREs within
[5%, 20%], and check their adverse effects on the AIaNA
system. Specifically, in the simulations, the ADVMs monitor
the traffic condition in the SD-IPoEON and leverage their
DRL/GAN models to determine when and how to inject adver-
sarial traffic samples in targeted lightpaths. Each simulations
runs for 4, 500 TS’, and we compare the scenarios with and
without the ADVMs. As the ADVMs disturb the operation of
the AIaNA to make NC&M decisions based on incorrect traffic
predictions, they can cause additional lightpath congestions,
bandwidth allocations, and network reconfigurations, which
can quantify their adverse effects.

Fig. 10 summarizes the ADVMs’ adverse effects. It can
be seen that the ADVMs induce substantial increases on all
the three metrics, and this confirms that the operation of the
AIaNA system can be disturbed significantly. As expected, the
adverse effects become larger when the MRE of the adversarial
samples increases. The results in Fig. 10 also suggest that the
adverse effects of the GAN-based ADVM are larger than their
counterparts caused by the DRL-based ADVM.

Definition 3. For legitimate traffic samplesS, if an ADVM
generates the adversarial samples asS+∆S, then therelative
perturbation strength is defined assum(∆S)

sum(S) , where sum(·)
returns the summation of a time series.

Fig. 11 compares the perturbation strengths from the DRL-
and GAN-based ADVMs, which not only shows the actual
ratios of adversarial samples in Fig. 11(a) but also compares
their relative perturbation strengths in Fig. 11(b). Here,the rel-
ative perturbation strength actually quantifies the volumeof the

adversarial traffic that needs to be injected for launching the
adversarial-sample-based attacks, and thus it can also quantify
the potential cost of the attacks. We observe that the actual
ratios of adversarial samples generated by the DRL-based
ADVM can be far below the preset upper-limit40%, while
those from the GAN-based ADVM are even less. This verifies
that the ADVMs are adaptive and effective, and the GAN-
based one is more intelligent such that it can modify even
less traffic samples in its adversarial-sample-based attacks.
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Fig. 11. Perturbation strengths of ADVMs on AIaNA system.

In Fig. 11(a), it is also interesting to notice that the actual
ratio of adversarial samples always decreases with the MRE
of adversarial samples. This is because if a larger MRE
is permitted, less samples can be modified to achieve the
targeted attack effect, which further confirms the effectiveness
of our ADVMs. Fig. 11(b) shows that both ADVMs introduce
less than4% relative perturbation strength, suggesting that
the magnitudes of the adversarial-sample-based attacks are
sufficiently small (i.e., the potential cost of the attacks would
be very low), and the relative perturbation strength of the
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GAN-based ADVM is also smaller. Hence, the results in Figs.
10 and 11 confirm that the GAN-based ADVM can leverage
smaller perturbation strength to induce larger adverse effects
to the AIaNA system,i.e., it balances the tradeoff between
perturbation strength and attack effect better.
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Fig. 12. Perturbation strengths of ADVMs on AIaNA system when traffic
characteristics are time-varying.

D. Adaptivity of ADVMs

Finally, we try to verify the adaptivity of DRL/GAN based
ADVMs. The simulations first check how the ADVMs would
perform when the characteristics of traffic can be time-varying.
Note that, the simulations in the previous subsections already
use time-varying traffic samples, but the samples for each
lightpath fluctuate according to a single traffic trace in [56].
Therefore, to further verify the adaptivity of our proposedAD-
VMs, we make the traffic of each lightpath randomly switch
among multiple traces whose characteristics are different. This
time, we choose the MREs of the adversarial-sample-based
attacks from{10%, 20%}. The results in Figs. 12 and 13
indicate that under such a more dynamic setting, our ADVMs
are still smart enough to induce significant adverse effects,
and the GAN-based approach continues to perform better.
However, compared with those in Fig. 10, the adverse effects
in Fig. 13 become smaller. This is because the ADVMs need
to adjust their parameters to adapt to traffic condition changes.

Next, we change the architecture of the legitimate traffic
predictor in the AIaNA system from a three-layer LSTM-
DNN to a six-layer one, and perform simulations to confirm
that our ADVMs can realize the black-box adversarial attacks.
As the local predictor uses a more sophisticated architecture,
its prediction accuracy on the realistic traces gets improved
from 95.9% to 96.3%. Meanwhile, the local traffic predictor

in the ADVMs is still based on a three-layer LSTM-DNN. This
means that the designs of the DRL- and GAN-based ADVMs
stay unchanged, and thus the training time and amounts of
training samples required by the DRL and GAN models do
not change either. The results in Fig. 14 show that even
when the legitimate traffic predictor in the AIaNA system
uses a more sophisticated architecture, our ADVMs can still
successfully disturb the operation of the AIaNA system, to
cause additional lightpath congestions, bandwidth allocations,
and network reconfigurations. The general trends of the results
in Fig. 14 are similar to those in Fig. 10.

The results on the perturbation strengths are shown in Fig.
15, which indicates that the ADVMs still introduce less than
4% relative perturbation strengths. The results’ trends are
similar to those in Fig. 11 too. Hence, Fig. 15 suggests that
the magnitudes of the adversarial-sample-based attacks are still
small, and do not change much when the AIaNA system uses
a more sophisticated traffic predictor. To this end, we verify
that our ADVMs achieve the black-box attacks.

VII. C ONCLUSION

In this paper, we proposed an ADVM that can generate
and inject adversarial traffic samples adaptively to disturb a
DNN-based traffic predictor, and in turn mislead the AIaNA
system of an SD-IPoEON to make incorrect NC&M decisions.
We designed the architecture and operation principle of the
ADVM, and architected the adversarial sample generator in it
with two approaches,i.e., the DRL model based on DDPG
and the GAN model. We demonstrated that our proposed
ADVM can monitor and interact with a dynamic SD-IPoEON
to train itself on-the-fly, such that adversarial traffic samples
can be generated and injected in the most disturbing and
hard-to-detect way. The simulation results showed that the
AIaNA system was successfully misled, and its performance
on multilayer service provisioning was affected severely to re-
sult in additional lightpath congestions, bandwidth allocations,
and network reconfigurations. Compared with the DRL-based
one, the GAN-based ADVM achieved better attack effects
with smaller perturbation strength, which can be realized
automatically with less empirical parameter adjustments.We
also confirmed the adaptivity of the ADVMs,i.e., they are still
effective when the characteristics of traffic are time-varying or
the AIaNA system uses a more sophisticated traffic predictor.
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