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Abstract—Recently, the combination of artificial intelligence plored without an effective network control and management
(Al) _and software_—deflned networkln_g (SD_N) has attracted in (NC&M) scheme [10, 11], which can groom and route IP flows
tensive research interests because it realizes and promsté\l- over the lightpaths cost-efficiently to realize high resmur

assisted network automation (AlaNA). Despite the initial sic- e . . .
cesses of AlaNA, its vulnerabilities,i.e., the downside of the utilization and good quality-of-service (QoS) simultaosly.

reduction of human involvement achieved by it, have not been The requirements on NC&M can be satisfied by leveraging
carefully explored. In this work, we use software-defined IPover the symbiosis of software-defined networking (SDN) [12—
elastic optical networks (SD-IPOEONs) as the background,radl  15] and deep learning (DL) based artificial intelligence)(Al
study how to mislead the AlaNA system in them. Specifically, @ achanisms [16] to realize Al-assisted network automation
target our attack on the deep neural network (DNN) based trafic AlaNA) [171. S ificall h in Eig. 1. by i i
predictor in the AlaNA system, and design an adversarial modle (AlaNA) [17]. _peC| ically, a_s shown in Fg. 1, Dy Inserting
(ADVM) that can craft and inject adversarial traffic samples an Al module in the centralized control plane of a software-
adaptively to disturb its operation. We consider two approzhes defined IPOEON (SD-IPOEON), we can realize the AlaNA
to design the ADVM, i.e,, the deep reinforcement learning (DRL)  to orchestrate the network elements in both IP and optical
based on deep deterministic policy gradient (DDPG), and the |avars in g coordinated and intelligent manner [18]. Thioug
generative adversarial network (GAN) model. Our proposed dat Ivti the Al dule first | df &s th
ADVM can monitor and interact with a dynamic SD-IPOEON a a_ anay_'(_:s’ . e module Tirst analyzes and Torecasts

to train itself on-the-fly. This enables it to generate and iject traffic condition in the SD-IPOEON, and then makes accurate
adversarial samples in the most disturbing and hard-to-detct and timely NC&M decisions. Hence, bandwidth resources can
way and to severely affect the AlaNA's performance on mul- pe automatically allocated/adjusted in advance to make the
tilayer service provisioning. Specifically, IP flows will beserved network operation significantly more cost-efficient [19].

incorrectly to result in unnecessary congestions/underdilizations
on lightpaths, and erroneous network reconfigurations will be Nevertheless, the advances/successes on AlaNA should not

invoked frequently. Simulation results confirm the effectveness glamor us to overlook its vulnerabilities, especially whatk-
of our ADVM designs, and show that the GAN-based ADVM ing about the implementation in production networks. Ineoth

achieves better attack effects with smaller perturbation gength. words, the downside of the reduction of human involvement
achieved by AlaNA should be carefully analyzed to identify a
Index Terms—Artificial Intelligence (Al), Deep reinforcement  the reliability and security issues, such that importamsgions
learning (DRL), Network Automation, Software-defined IP ower  gych as whether we can trust AlaNA in production networks,
elastic optical networks (SD-IPOEONS), Generative Advedial  , \hat extent it can be trusted, and how to replace a human
Network (GAN), Adversarial samples. o
operator with it, can be properly answered. However, most of
the existing studies on AlaNA did not pursue the research in
|. INTRODUCTION this direction. This motivates us to investigate how to easl
OWADAYS, the fast-emerging network services havéhe AlaNA system for SD-IPOEONS in this work.
dramatically changed the characteristics of Internet traf Specifically, we target the attack on the deep neural network
fic in backbone networks,e., not only pushing the traffic (DNN) based traffic predictor in the AlaNA system developed
volume to grow rapidly but also making the traffic conditiorin [18]. This is because the operation of a DNN can be quietly
to vary more burstily [1, 2]. Therefore, considering thelagi disturbed with data poisoning [20]e., a malicious party can
optical layer achieved with the flexible-grid elastic optic mislead the DNN to generate incorrect outputs by mixing well
networks (EONs) [3-7], we expect that a rational combgraft adversarial samples in its inputs. Here, we hope tatpoi
nation of IP and EON technologies would be promising teut that data poisoning works for a wide range of DNNs in
architect future backbone networks. The resulting netwoggdition to those for time series predicti@ng, the DNNs for
architecture, namely, IP-over-EON (IPOEON) [8, 9], will beclassification can be misled too [21]. Therefore, the prafsos
able to adaptively allocate spectrum resources in the @pti@nd conclusions in this work could be generalized to and
layer to bandwidth-variable lightpaths, for supportingpap across other AlaNA systems that use DNNs for quality-of-

layer applications. However, this advantage cannot bg & transmission (QoT) prediction, anomaly detection, exoept
localization, resource orchestraticgtc
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the AlaNA system of an SD-IPOEON. Two approaches ar¢ g™ !.1'—' |
considered to design the ADVM: 1) the deep reinforcemen; / : P ‘
learning (DRL) based on the deep deterministic policy gradii ‘ P
ent (DDPG) [22], and 2) the generative adversarial networ} !:-ﬂ._. | Al Module |
(GAN) model [23]. Note that, although our preliminary study; { P <On %
in [24] addressed the DRL-based ADVM, this work expands Controller I
the analysis to make the problem-solving more comprehensiy
and proposes the GAN-based ADVM for the first time. | i

We demonstrate that our proposed ADVM can monitor ang S—& ;
interact with a dynamic SD-IPOEON to train itself on—the-im[»:acketsm &3evoxcs | Bv-Ts [Host | ‘
fly, which enables it to generate and inject adversariafitraf <->PRoue <>Ugpah —pberun 1 |
samples in the most disturbing and hard-to-detect way. élenc
it can successfully mislead the AlaNA system in the SD-9: 1. Architecture of SD-IPOEON with AlaNA, BV-OXC: Bandeith-

. variable optical cross-connect, BV-T: Bandwidth-vareaiiansponder.
IPOEON to severely affect the performance of multilayer ser
vice provisioning. Specifically, IP flows will be groomed and
routed incorrectly to result in unnecessary congestio#t+ for various networks too [36—38]. Furthermore, other AlaNA
utilizations on lightpaths, and erroneous network recamfig systems also utilized DNNs for QoT prediction [39], seaurit
tions will be invoked frequently to lead to waste on opernadio monitoring [40], anomaly detection and fault managemehf [4
complexity and costs. More importantly, our simulationules  42], network function virtualization [43], datacenter wetk
indicate that compared with the DRL-based one, the GAMianagement [44, 45¢tc. Nevertheless, none of the aforemen-
based ADVM achieves better attack effects with smalleéioned studies has considered the downside of the reduction
perturbation strength, and this can be realized autontigticchuman involvement achieved by AlaNAg., whether or not
with less empirical parameter adjustments. AlaNA can be fully trusted without human presence.

The rest of the paper is organized as follows. Section Il Unfortunately, it is known that DNNs are vulnerable to
briefly reviews the related work. We describe the SD-IPoEOMe data poisoning with well-crafted adversarial sampled a
with AlaNA and the operation principle of ADVM in it in can be easily misled to generate incorrect outputs [20, 21].
Section IIl. The designs of the DRL- and GAN-based ADVM#oreover, using visual classification as the background, th
are then presented in Sections IV and V, respectively. Next, survey in [46] showed that an attacker can even force DNN
discuss the numerical simulations for performance eviminat models to produce pre-selected outputs using hard-t@ilete
in Section VI. Finally, Section VII summarizes the paper. adversarial samples. To this end, the vulnerability of DNN-
based AlaNA systems should not be overlooked.

Previously, we studied how to mislead the AlaNA for inter-
datacenter networks with manually-crafted adversarafitr

The NC&M of an SD-IPOEON essentially covers at leasgtamples in [47]. However, as the adversarial samples were
two aspects [8]j.e., normal service provisioning and failuregenerated in a static manner, they would not be effective
protection/restoration. Because its data plane considt®th when traffic condition changed. The authors of [48] propased
IP and optical layers, the service provisioning in an SDdeterministic algorithm to launch black-box adversaritdeks
IPOEON operates in the multilayer scenario. Specifically, von a DNN-based network traffic classifier. Nevertheless, the
need to first set up lightpaths in the optical layer by solvingdversarial sample generation was not adaptive, which snean
the famous routing and spectrum assignment (RSA) problehat the attacks could be easily detected with anothermater
[25-27], and then groom and route IP flows with time-varyingtic algorithm €.g, the one in [49]). Therefore, it would be
traffic over the lightpaths [18, 28]. As a complex systeninteresting to consider how to leverage Al-based methods to
an SD-IPOEON can have numerous failure cases [29], acft the adversarial samples adaptively [50]. Howeveth&o
thus multilayer protection/restoration schemes are rsacg$o best of our knowledge, none of the existing studies on AlaNA
guarantee reliable operations. Previously, considerargpus has pursued the research in this direction, except for our
failure scenarios, the studies in [30—34] have designedrakv previous work [24]. Although the DRL-based ADVM designed
protection/restoration algorithms, while the SDN-basestesn in [24] could disturb the operation of the AlaNA system for
demonstrations have been mentioned in [18, 35]. SD-IPOEONSs, the study was still preliminary, because the

Due to the dynamic nature of IP flows, the NC&M decisionsadeoff between perturbation strength and attack effext w
that are made based on current network status might not s optimized and GAN-based approach was not considered.
able to handle future traffic demands well. For instance &f w
groom the bursty IP flows whose traffic fluctuations are syn- !ll. NETWORK ARCHITECTURE AND OPERATION
chronized over one lightpath, congestions/under-utitize PRINCIPLE
could happen in the future even though the current statudn this section, we show the architecture of an SD-IPOEON
of the lightpath shows no issues. This dilemma suggests thizdt leverages DNN-based traffic predictor to realize AlaNA
traffic prediction would be necessary for the AlaNA in SDand describe the operation principle of our proposed ADVM,
IPOEONS [18]. In addition to SD-IPOEONs, DNN-based traffisvhich can disturb the AlaNAs operation with well-crafted
predictions have been widely used in the AlaNA systenalversarial traffic samples.

Optical
Layer

IIl. RELATED WORK



A. Network Architecture DL
Local Traffic

Fig. 1 illustrates the network architecture of an SD-IPOEON Legitimate Traffic | Predictor Advbrearial Traffic
with AlaNA [18]. The data plane consists of the IP and Samples Advercarial Samples
optical layers, both of which are managed by the centralized Sample Generator

control plane. The optical layer is essentially an EON that

is built with a few bandwidth-variable optical cross-contse Qut-ofband Attack

n-band Attack

(BV-OXCs) and fiber links. Following the instructions from Data Plane ContioliRianchy
the SDN controller, each BV-OXC can transparently switch %] o b iy
lightpaths with flexible-grid spectrum allocations, and edso ®|  [Plaver 0% | son %
insert/terminate lightpaths to/from fiber links if the liglaths . Control Channel  Controller — ~ +_¥ 2.
use it as an end-node. Therefore, lightpaths can be estad)is Optical Layer

reconfigured, and torn down to adapt to IP traffic. The packet ¥ Hijacked Host

switches in the IP layer are also managed by the SDN
controller, which can install flow tables in them to groonfrig. 2. Operation principle of ADVM to mislead the AlaNA in SIPOEON.
and route dynamic IP traffic generated by the hosts over the
lightpaths in the optical layer. Each packet switch conséat

a BV-OXC locally via several bandwidth-variable transpersd grooming [30]. Then, the packet switch records historical
traffic samples of an IP flow by leveraging the counters

(BV-Ts), which can generate/terminate lightpaths. asociated with the corresponding flow tables, and indices

The SDN controller monitors the status of the data plane aﬁ_l . ; 2
manages all the data plane elements accordingly. Spelsifica e results with the IP flow's switching label. Next, the SDN

it models the IP layer as a gragh(V, E), where V' is the controller can poll the packet switch periodically to cotléhe

set of packet switches anfl denotes all the logic links for traffic samples, and use them fo_r AlaNA. . .
. . . . As the IP flows have time-varying bandwidth requirements,
interconnecting the switches. Here, each logic ljnkv) € E

is actually a lightpath between the BV-OXCs that are local tglr):/ iigrggrlggtiizg /l:?ég?% t(ijlifzg';iir:scsr?libitm;[:\es ﬁif;i‘t:ze to
switchesu andwv, and the BV-OXCs might not be adjacent in 9 ghtp '

the optical layeri.e., the lightpath can bypass certain switcheIf we leverage a DNN-based traffic predictor to forecastfeiu

. o . . Bandmdth demands accurately. This actually realizes AlaN
in the IP layer. Similar to the work in [18], we still assumath .

. . in the SD-IPOEON. In other words, the control plane accom-
when setting up a new lightpath, the SDN controller alway

assigns the highest line-rate that the lightpath's traasiom ﬁchshesf the.cycle of “observe-analyze-act” to adjust_ru
; ; . o allocations in the data plane, such that the cost-effeutige of
distance permits Hence, the capacity of a logic link, v) network operation can be improved significantly. We buile th
is determined at the time when its lightpath is set up, ang P! P 9 Y-
. . . traffic predictor based on the long/short-term memory based
G(V, E) is a dynamic topology whose links can change ov NN (LSTM-DNN) [52], because it is one of the most widely-
time. Then, based on the traffic condition in the data plane ' y

the controller manages the lightpaths in the optical layer sed DNN models for forecasting time series. In [18], we

updateG(V, E), and grooms and routes IP flows GV, E) ave demonstrated a traffic predictor based on LSTM-DNN,

top not onl 7me;ximizg overall bandwidth utilization bijt als which can produce highly-accurate predictions when being
_not onty . Qested with the realistic traffic traces taken by Internetise

minimize lightpath congestions.

providers (ISPs) in different countries.

, Then, based on the accurate traffic predictions and current
B. Operation of AlaNA network status, the AlaNA system calculates and implements
The cross-layer orchestration in the controller managssitable multilayer provisioning schemes for the IP flows, t

dynamic IP traffic in units of IP flows. Here, because weealize proactive cross-layer orchestration in the SDEIBN.
consider the SD-IPOEON as a backbone network, each IP flgle AlaNA system can utilize the congestion-relieving ealu
(u—v, u,v € V) is actually an aggregated one that include@RV) algorithm developed in [18] to achieve the proactive
the traffic of many socket connections from the hosts athchéross-layer orchestration. Specifically, based on trafféie-

on Switchu to those onSwitchv. Therefore, even thoughtions provided by the DNN-based traffic predictor, the CRV
the traffic on each flow is still highly dynamic, it fluctuatesalgorithm generates intelligent on-line NC&M decisions to
according to a predictable pattern and lasts for a relativele-groom and reroute IP flows and to reconfigure lightpaths
long period of time €.g, tens of hours or even days) [51].such that the performance tradeoff among lightpath utitra
Meanwhile, because traffic from different network servicesongestion probability, and reconfiguration frequency ban
should be handled independently, we assume that differ@ajanced well. The algorithm determines how to re-groom
IP flows can share the same source-destination switch p@i¢ IP flows by comparing their future traffic fluctuations and
[18]. In this case, each packet switch identifies the IP flowoiding the cases that those whose peak time overlaps with

by checking their switching labels instead of IP addressesach other are groomed on the same lightpath.
by using the multi-protocol label switching (MPLS) protdco

which is commonly-used in backbone networks for traffic. Operation of ADVM

IEach BV-T supports a set of line-rates, each of which has airmam In no_rmal operat_ion of _the AlaNA system, the accuracy of
transmission reach according to the QoT constraint [3]. the traffic predictor is crucial. Specifically, the AlaNA dywes



traffic predictions to obtain future network status, and wheadge about the legitimate one. Next, the trained local traffi
it foresees congestions/under-utilizations on certghtpaths, predictor generates an emulated network environment, and
it will invoke the corresponding network reconfiguratioms tthen the adversarial sample generator interacts with itdaé c
maintain the performance and cost-effectiveness of né&twand inject adversarial traffic samples adaptively, forudlsing
operation. That is to say, the AlaNA relies on accurate traffthe legitimate traffic predictor. As the whole process does
predictions to properly balance the tradeoff among overalbt count on any information about the legitimate traffic
bandwidth utilization, number of lightpath congestioneda predictor, the ADVM realizes the “black-box” adversarial
times of network reconfigurations. attack. Moreover, the ADVM only needs to collect and inject
However, LSTM-DNNs are vulnerable to data poisoningaffic samples in an SD-IPOEON to launch the adversarial-
and can be easily misled to generate incorrect predictiosample-based attacks, and its operation does not countyon an
with well-crafted adversarial samples [20, 21]. In order tother network information regarding the SD-IPOEON.
investigate how badly the traffic predictor can be misled andWith the trained local traffic predictor, the adversariahsa
what the harmful effects are, we design an ADVM to disturple generator modifies legitimate samples to adversarias,on
the AlaNA system in the most devastating and hard-to-detégputs the results to the local traffic predictor to see how th
manner. We assume that the ADVM has the capability fredictions will change, and optimizes the results to achie
monitor the traffic conditions on certain lightpaths in thHe-S the largest attack effect with the smallest perturbaticengjth.
IPOEON, which can be achieved with a few well-known meth-

ods [53]. Based the traffic conditions, the ADVM generate efinition 1. Thepertl{r.bation strength refers _to not only _the
and injects adversarial traffic samples adaptively to malke tpercentage of the legitimate samples that will be modified bu

traffic predictor malfunction. As shown in Fig. 2, the ADVMaISO the maximum relative error (MRE) made on each modified

has the options to launch the adversarial-sample-basatkatt sample, and both of them should be kept as small as possible
in the in-band and out-of-band manners. to make the attacks hard-to-detect.

To launch the in-band attacks, the ADVM hacks into We denote the traffic predictions with legitimate and adver-
the control channels between the control and data planearial samples a8 = {py,--- ,pa} andP = {p1,--- , par},
eavesdrops legitimate traffic samples, produces advatsarespectively, wheré/ is the number of predicted samples in
samples based on them, and injects the adversarial samplgsh series Their mean squared error (MSE) is
back. This is feasi.ble, because OpenFlow usgally sets up v
control channels with the transport_ layer sgcunty (TLS) or MSE(P, P) — LZ(@: — )2, )
secure socket layer (SSL) connections, which are known to M —

be susceptible to the man-in-the-middle attack [54], esfigc . , . :
by using the technique of padding oracle on downgradéfiere pi and p; are thei-th samples in the corresponding

legacy encryption (POODLE) [55]. Regarding the out-ofta redictions, and Fhe_y both haye been normalized. Hence, the
manner, the I?’:ﬂtacker deploys[a 1‘ew probes in the data pI’%@E changes within0, 1], Wh'le a Iarge_r MSE sugge_sts a
to collect traffic samples quietly [53], generates advéasar _ette,r attack_effect. Me_tanwhlle, the S|m_|l_ar|ty 0 f the poed
samples accordingly, and instructs several hijacked htmnzs.tst'onS flgctuatlong pvertlme can be quantified with the Pears
pump traffic into the targeted lightpaths for adversariahgiz correlation coefficient (PCC) as

injection. Note that, host-hijacking is widely used by madus . cov(P, P)

parties to launch various attaclesg, the well-known distribut- PCQP, P) = ————, @)

ed denial of service (DDoS) attack. However, compared with var(P) - var(P)

DDoS, our ADVM needs to hijack fewer hosts and use them ohere coyP 15) calculates the covariance & and 2. and

p;dep much_ IT’SS tra1|°f|c Into thg netvr:or!(. I;rorg thedpersp%%t%gr(.) obtains the standard deviation of a series. The PCC in
of adversarial sample generation, the in-band and outg g. (2) varies within[—1,1], and its value increases when

manners do not have fundamental differences, except for t and P fluctuate more similarly. We have PCE, ]5) _
the adversarial samples generated in the out-of-band manng ¢ they fluctuate oppositelyi.e., having the total negative

are always greater th"’?” the corresponding .Iegitimate ONfifear correlation). Note that, if the adversarial samptes
I;ence, we will n(;)t spet_:lfy tr:]e a’;]tackdscenarl_olln the ff"?gﬁ make the traffic predictor to produce inaccurate predistion
Iscussions, and restrict that the a versarial SamplesiGnGy, ¢ pave the opposite fluctuation of the actual traffic trend
alwz_ays be greater t_han the correspondmg legitimate ones. (e.g. those in Fig. 3), the ADVM can mislead the AlaNA to the
Fig. 2 also explains how the adversarlql sgmples ar€ 9¢flaximum extend. This is because the AlaNA can mistakenly
erate.d_ in .the ADVM. First of all, by monitoring the,t_raﬁ'cconsider future traffic valleys as peaks,\dce versa which
condition in the SD-IPOEON, the ADVM collects legitimate degrade its performance in all the three aspeicts, the

traffic sa_mples, and uses ther_n fo train ts local traffic predi overall bandwidth utilization, number of lightpath contiess,
for making accurate predictions, such that the local traffic

pred!Ctor can imitate the operation of the legitimate teaffi 2Note that, to facilitate precise traffic prediction, we nalire the input
predictor attached to the SDN controller. Note that, as themples to the traffic predictors used in this work with respe their
two predictors are trained independently, they do not hay@ximum valuei(e, the throughput of the lightpath that carries them). Hence,
. . th the collected and predicted traffic samples discussdtiis paper are
to use the same architecture. This means that the AD rmalized ones that vary with{®, 1], except for those in Section VI, because

can architect its local traffic predictor without any knowlihe simulations restore traffic samples to their actual eslafter prediction.



adversarial samples. As shown in Fig. 4, the local traffic
predictor first takesS, as the input and forecastt/s
legitimate traffic samples aB,, and when the observed
state transferred t8; at times, the local predictor obtains

a new predictionP; (also with M3 samples). We take
the parts of Py and P;, which cover the overlapped
time duration, denote them & and P (i.e., the traffic
predictions with legitimate and adversarial samples), and
calculate the rewar®;_; = R(So, Si, Po, Pi, A;—1) as

My
Sj — 85

Predicted Traffic

Actual Future Traffic

—Traffic Predicted w/ Adversarial Samples

R._1 = [MSE(P, P) - PCQP, P)] - M% >

=1

Time > ()

Sj

Fig. 3. Example on attack effect of adversarial traffic saapl where we redefine the overlapped partsfpfand P; as

P = {pla e 7pM} andp = {f)lv e 7ﬁM}! respeCtiveIY'
We useSy = {s1, - ,sm,} to denote the legitimate
samples, and defing; = {31,--- , 8 } as the adversar-
ial samples generated based$nby actionA;_;, where
Definition 2. If the traffic predictions with legitimate and M, is the number of concerned samples. The first term
adversarial samples aré® and P, respectively. Theattack in Eq. (4) is the attack affect defined in Eq. (3), and the
effect of the adversarial samples is quantified as second one is the perturbation strength.

1 = MSEP, P) — PCO(P, P). 3) Because the aforementioned [?RL.modeI has rglatively large
state and action spaces, we design it by leveraging the DDPG
In the next two sections, we will design the adversarigtheme, which is known to be powerful on optimizing actions

sample generator for ADVM based on two approachies, in states while both of their spaces are high-dimensiondl an
a DRL model using DDPG and a GAN model, respectivelgontinuous [22]. Specifically, as shown in Fig. 4, the DRL-
Both approaches can interact with the dynamic SD-IPOEOhsed adversarial sample generator adopts the advantage ac
to train their models on-the-fly. Through the online tramin critic (A2C) learning strategy to avoid the difficulty of &m

they can generate and inject adversarial samples adaptivgdlection due to the need of traversing the entire action and
such that the attack effect in Eq. (3) can be maximized whigate spaces. Here, the DRL agent has a double network

and times of network reconfigurations. To this end, the kttac
effect becomes better when PCC decreases.

the perturbation strength is kept as small as possible. architecture, which consists of an actor neural networkipd
for outputting specific actions based on states and a dritica
IV. DESIGN OFDRL-BASED ADVM neural network (C-NN) for evaluating the selected actions.

In this section, we design the adversarial sample generatof he A-NN directly selects an actioA; based on stat8;
for ADVM based on a DRL model that uses DDPG [22]with the deterministic policy selection functiqr(S;[0¢) as
The DRL model utilizes an intelligent agent to interact with A: = u(Si]6%) ®)
the time-varying environment emulated by the local traffic ’
predictor, and selects proper actions based on the obserwdgred® denotes the A-NN's parameters. The C-NN uses an
states to generate adversarial traffic samples adaptively action-state value functiong., the@ function @Q(S;, A;(6°)),
inject them in the data plane of the SD-IPoEON. Consequently evaluate the quality of actioA; on stateS;.
the traffic predictor attached to the SDN controller can be ALY TR , , AL
misled to output incorrect predictions, and the AlaNA in QS Adl0) = Ri + Q(Sicr, Ai)ISi, Asy ©)
the SD-IPOEON will be disturbed with the maximized attaclwheref© is the C-NN's parameters. The C-NN then sends the

effect. We design the DRL model as follows. action gradientV a,Q(S;, A;|0°)) to the A-NN for increasing
. State stateS; refers to the state of the historical trafficits probability of selecting the action with a larg@r
samples collected at time instant We haveS; = In online training, the A-NN continuously optimizes its
{si—a+1,- -, 5i}, wheres; is the instant traffic volume policy selection functionu(S;[6) using the policy gradient
on a monitored lightpath at timg and M; is the number N
of historical samples collected for traffic prediction. We Voad = L ngau(siwa) - Va,Q(S:, A;]0°), 7
defineSy as the initial state, which refers to the historical N

samples collected by the ADVM when it first starts.  where J denotes its overall performance metrigs, is the

« Action: action A; is the action taken at timé which umber of iterations in training, ardg. u(S;]0%) is the gradi-
indicates how to modify the legitimate traffic samples (thgnt of 11(S;]6%). Meanwhile, the C-NN optimize§(S;, A;|6°)
location and magnitude of perturbations) within a presgf; minimizing the squared loss between the expected and
look-ahead timeij.e, time instancej € [i +1,i + M2], estimated) values, which is defined as
where M; is the look-ahead duration. .

« Reward: rewardR,; of action A; is calculated by com- 1 c c\72

¢ v L=— R; - Q(Siv1,Ai+1|0°) — Q(Ss, Ai|09)]", (8

paring the traffic predictions based on legitimate and N;[ - Qi A7) = Q( il ®)
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Fig. 4. Architecture and operation principle of DRL-baseB\AVl.
wherex € (0,1) is a constant for the discount factor. Algorithm 1: DRL-based Adversarial Sample Generation

The operation of the DRL-based adversarial sample geépqnitialize parameters of A-NN and C-NN){ and )
erator is explained inAlgorithm 1. Lines 1-2 is for the randomly:

initialization. Next, in the for-loop that covetsnes3-15, the empty the experience buff@&B:

DRL model trains its A-NN and C-NN in the online manner, ¢ each episode of online operatiaio

which means that it interacts the time-varying environment obtain initial stateS,:
of the SD-IPOoEON contmqogsly and optimizes its decision: get original traffic predictionP, with local predictor;
making on-the-fly to maximize the attack effect. Here, tqQ for i = 1to K do
ensure that the DRL can handle relatively long traffic series A-NN selects actiom; based orS; with Eq. (5);
we divide its operation into episodes, each of which covers executeA; and obtain new stat8, 1 ;
time instantd. In each episode of online operatidrines4-5 get rewardR,; with Eq. (4):
are for the initialization. Then, the while-loop coverihges |, store{S;, A;,R;,S; 1} as an entry irEB;
6-14 explains the operation of the DRL at each time instgnt selectN continuous entries iEB randomly;
in an episode, wherkines11-13 explain how the A-NN and , C-NN uses the batch of entries to updétesuch
C-NN conduct the online training to optimize themselveswit that the loss in Eq. (8) is minimized:
the entries stored in the experience buffs. 13 A-NN optimizes:(S;|6%) by applying Eq. (7) on
the batch of entries;
V. DESIGN OFGAN-BASED ADVM 14 end

In this section, we propose the adversarial sample gerreré?oe”d
for ADVM based on GAN [23]. The benefit of this approach is
that the GAN can automatically balance the tradeoff between

perturbation strength and attack effect. consists of two neural networks, which are the generatorateu
network (Gen-NN) for crafting the adversarial samples, and
A. Architecture of GAN-based ADVM the discriminator neural network (Dis-NN) for ensuring ttha

As we have explained in Section 1lI-C, the ADVM shoulqIhe pe_rtu_rbatlon strength of the generated_adve_rsanqblml_|
Is minimized. The GAN model is also trained in the online

have the capability to optimize the tradeoff between pbetr fanner. Specifically, the Gen-NN gets trained to capture the

tion strength and attack effect. However, for the DRL model . =" o . i
designed in the previous section, the size of its action e;pa%'smbu“on (.)f Iegltl.mate.samples fo.r crafting adverahc_mes,
' Wwhile the Dis-NN is trained to estimate the probability that

increases dramatically if we do not apply an empiricallys sample is legitimatei.€., unmodified). We train the Gen-

determined upper-bound on the percentage of the Iegltlm%ﬁ and Dis-NN simultaneously, until the adversarial saraple

Zizgl)otliﬁytg?tthvevné)gﬁ-tg ZZZ'T[')JMNS’ however, restricts thg(_:'enerated by the Gen-NN can maximize the Dis-NN’s error

. rate. Hence, the tradeoff between perturbation strength an
Therefore, we leverage the GAN model to design anothe K off imized callv in th e
adversarial sample generator. As shown in Fig. 5, the GA tack effect gets optlmllze autqr_natlca y |n_t € training
' T We denote the predicted legitimate traffic samplesSas
SNote that, the value of< should be selected empirically according towhich is Obta_'ned_ V‘_/'th the local traffic predictor using the
traffic dynamics, and we sét” = 240 in our simulations in Section VI. scheme that is similar to the one used for the DRL-based



GIOLL adversarial samples accurately), and then we train the Gen-
NN with Lines 11-13 to guarantee that it can generate the

Adversarial Traffic

Samples adversarial samples whose attack effect is maximized under
e S5 the current perturbation strength. Therefore, througtotiime
it |1 training, we optimize the Gen-NN and Dis-NN simultaneously
it until they both cannot be improved anymore. At this moment,

(emulated)

st e the adversarial samples generated by the Gen-NN can mislead
P D - i the traffic predictor to obtain the maximum attack effectjlesh
% “+  the Dis-NN has the smallest success rate to distinguish the
1 9 | generated adversarial samples from the legitimate oines (
—— “ the adversarial-sample-based attacks become hardotjet

IS +AS
oy

~

UOJouNy SSO7

Fig. 5. Architecture and operation principle of GAN-baseB\A. Algorithm 2: GAN-based Adversarial Sample Generation
1 initialize parameters of Gen-NN and Dis-NM9(and 6¢)

: : randomly;
ADVM. Taking S as the input, the Gen-NN produces a per- ' ' )
turbationAS. Hence, the adversarial samples will $g- AS, 2 emply the traffic databaseD;

o . . L 3 while the ADVM is operationatio
which is sent to the Dis-NN together wish for obtaining 4 collect historical legitimate traffic samples and store

Lean = avg(S) - log{Dis(S) - [1 — Dis(S + AS)]},  (9) them inTD;

if it is the time for online traininghen

for i=1to M do

for j =1to K do
selectN continuous historical samplés
from TD randomly;
update Dis-NN §¢) according to
stochastic gradien@,, L p(S|0%);

(6]

where Lgan is the adversarial loss, agg returns the average
value of a time series, anBis(-) denotes the output of the
Dis-NN after taking a time series as the input. Meanwhiléhbo
the legitimate and adversarial samples are fed into the loca
traffic predictor to get the traffic predictions based on them
namely, P and P, respectively. Then, the ADVM calculates®
the loss caused by the adversarial-sample-based attack as

~N o

end
Lady = avg(S) -, (10) 11 selectN continuous historical samples
wheren is the attack effect computed wit and P using Eq. b frgmr’;‘f]ﬁ)c rarne%?gtn:gr;\P by inputingS in
(3). Next, we add a soft hinge loss [23] based on#h@orm I%cal trafficf)predictor' y inp 9
of AS to restrict the perturbation strength ’ . .
st perturbation streng 13 update Gen-NN#&Y) according to stochastic
Lper = avg(S) - max(0, [[AS||2 — 1). (11) gradientVy, L (S[69);

Finally, we obtain the overall loss function as i: en dend

L = Lean + Lper — Ladv, (12) 16 | generate and inject adversarial samples;
which measures the GAN’s performance in the online training end
i.e., a smaller overall losd. indicates that it performs better.
B. Online Training of GAN VI. PERFORMANCEEVALUATIONS

The online training updates the parameters of the Gen-NNIn this section, we perform numerical simulations to com-
and Dis-NN (.e, 89 and#?, respectively) simultaneously topare the DRL- and GAN-based ADVMs.
see the convergence of the overall loss in Eq. (12). We define
the loss functions of the Gen-NN and Dis-NN as A. Simulation Setup

L(S]09) = avg(S) - log[1l — Dis(S + AS)] + Lper — Lagy, (13) The simulations use the 14-node NSFNET in Fig. 6 as the
dy , , topology of the optical layer in the SD-IPOEON. We assume
Lp(8[6%) = avgS) - log{Dis(S) - [1 = Dis(S + AS)}}. (14) thgt each BV-T ?n the SD-IPOEON can support the line-
Algorithm 2 explains the procedure of the GAN-based adates within{10, 25, 40, 50, 75,100} Gbps, whose maximum
versarial sample generatidrines1-2 are for the initialization, transmission reaches af8732,2995,2671,2438,2112, 1880}
and the subsequent while-loop describes the GAN’s operatiim, respectively [18]. The simulations consider dynamit ne
Here, Lines5-15 are for the online training. Specifically, wework environments, where the number of initial lightpaths
train the GAN model repeatedly during network operation tig distributed within [44,50]. Then, dynamic IP flows are
ensure its adaptivity. Each training runs fafiterations Lines generated according to the Poisson model, where the traffic
6-14). In each iteration, the Dis-NN first gets trained for fluctuation of each flow follows a realistic trace taken from
times Lines7-10) to minimize its loss function defined in Eqthe data set in [56]. Here, the sampling interval of eachetrac
(14) (.e., making sure that it can distinguish the legitimate anid 5 minutes, and the peak rate of each flow is randomly select
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within [4, 10] Gbps. We denote one traffic sampling interval as
a time slot (TS) i(e., each TS isH5 minutes), and leverage the
CRV algorithm developed in [18] to calculate the multilayer
provisioning schemes of the dynamic IP flows.

Loss of Dis-NN
N N
N in ) 2

o
I

o

100 200 300 400 500
Iterations

(a) Loss value of Dis-NN

N

N

Fig. 6. NSFNET topology with link lengths marked in kilomete

Loss of Gen-NN

o
o

The traffic predictor in the AlaNA system and the local
traffic predictor in the ADVM are trained independently,aals
with the realistic traces in [56], and we confirm that both of
them can achieve a higher th@3.9% prediction accuracy 0 Perations.
on testing data sets. Similar to the setting in [24], we still (b) Loss value of Gen-NN
assume that, the DRL-based ADVM Ce}n only mOdi,fy at mng'-tlg. 8. Training performance of GAN-based ADVM.
40% of legitimate samples to launch its adversarial-sample-
based attacks. Note that, the actual portion of samples to
modify is determined by its DRL agent and could be much
less thant0%. For the GAN-based ADVM, we do not set this 1) DRL-based ADVM:Fig. 7 shows the training perfor-
percentage upper-bound because it can minimize the portfance of the DRL-based ADVM, which suggests that the
of adversarial samples automatically. In the simulatioms, training converges quickly after20,000 iterations. Specif-
average the results frono independent runs to get each dati¢ally, after having been trained fan, 000 iterations, the loss

o
@

I

500

point, for ensuring sufficient statistical accuracy. value (defined in Eq. (8)) in Fig. 7(a) approached)favhile
its @ value (in Eq. (6)) in Fig. 7(b) starts to increase slowly.
02 2) GAN-based ADVMThe training performance of GAN-
based ADVM is in Fig. 8. The training converges quickly
oA within ~100 iterations, and specifically, the loss value of Dis-
8.l NN_ (def.med in Eq. (14)) in Fig. 8(a) approaches_otcaft_er
50 iterations, while the loss value of Gen-NN (defined in Eq.
0.05 (13)) in Fig. 8(b) has also converged aftr iterations.
’ 0 4\terationg 8 X 1(1J‘(‘) < 80
(a) Loss value ;ﬁ’eo
500 IS
840
400 _r_é
$300 220
2 <
200 % 8 12 16
Relative Error (%)
100 (a) DRL-based ADVM
06 2 4Iterat\ong 8 X11)9‘ .
(b) Q value 60

Fig. 7. Training performance of DRL-based ADVM.
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B. Online Training Performance of ADVMs

We first leverage a lightpath whose traffic Ha$), 000 time-
varying samples to explain the performance of the ADVMs’
online training. Here, when generating adversarial sas) e
ADVMs limit the maximum relative error (MRE) a20%. Fig. 9. Distribution of relative errors on adversarial sésp

o
o

8 12 16 20
Relative Error (%)

(b) GAN-based ADVM
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Fig. 10. Adverse effects of ADVMs on AlaNA system in SD-IPoRO

Fig. 9 compares the distributions of the relative erromdversarial traffic that needs to be injected for launchimg t
introduced by the ADVMs to generate adversarial samples. dadversarial-sample-based attacks, and thus it can alsuifyua
Fig. 9(a), we notice thei0.9% of the adversarial samples fromthe potential cost of the attacks. We observe that the actual
the DRL-based ADVM have their relative errors bel®#, ratios of adversarial samples generated by the DRL-based
and the average relative error of themBi&1%. On the other ADVM can be far below the preset upper-limio%, while
hand, the results regarding the GAN-based ADVM in Fig. 9(lthose from the GAN-based ADVM are even less. This verifies
indicate that the ratio of the adversarial samples whosdivel that the ADVMs are adaptive and effective, and the GAN-
errors are less thab% is 91.2%, while the average relative based one is more intelligent such that it can modify even
error is2.90%. Hence, the GAN-based approach introducesless traffic samples in its adversarial-sample-basediattac
smaller perturbation strength, and thus its adversariapsss
would be harder to be detected.

DRL
JGAN

%
w
S

N}
@

C. Adverse Effects of ADVMs on AlaNA in SD-IPOEON

We insert the ADVMs in the SD-IPOEON, let them
launch adversarial-sample-based attacks with MREs within
[5%,20%], and check their adverse effects on the AlaNA
system. Specifically, in the simulations, the ADVMs monitor
the traffic condition in the SD-IPOEON and leverage their

N N
EN )

Ratio of Adversarial Samples (%)
N
N

IN)
o

DRL/GAN models to determine when and how to inject adver- MERE of Adversarial Samples (%)
sarial traffic samples in targeted lightpaths. Each sinriat (2) Actual ratio of adversarial samples

runs for4,500 TS’, and we compare the scenarios with and
without the ADVMs. As the ADVMs disturb the operation of
the AlaNA to make NC&M decisions based on incorrect traffic
predictions, they can cause additional lightpath congesti
bandwidth allocations, and network reconfigurations, Wwhic
can quantify their adverse effects.

Fig. 10 summarizes the ADVMs' adverse effects. It can
be seen that the ADVMs induce substantial increases on all
the three metrics, and this confirms that the operation of the
AlaNA system can be disturbed significantly. As expected, th
adverse effects become larger when the MRE of the advelrsaria
samples increases. The results in Fig. 10 also suggesthtnat t
adverse effects of the GAN-based ADVM are larger than theify 17 perturbation strengths of ADVMs on AlaNA system.
counterparts caused by the DRL-based ADVM.
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w

Relative Perturbation Strength (%)
N

0 IH
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MRE of Adversarial Samples (%)

(b) Relative perturbation strength

In Fig. 11(a), it is also interesting to notice that the attua
ratio of adversarial samples always decreases with the MRE
of adversarial samples. This is because if a larger MRE
is permitted, less samples can be modified to achieve the
targeted attack effect, which further confirms the effemiess

Fig. 11 compares the perturbation strengths from the DRbf our ADVMs. Fig. 11(b) shows that both ADVMs introduce
and GAN-based ADVMs, which not only shows the actudéss than4% relative perturbation strength, suggesting that
ratios of adversarial samples in Fig. 11(a) but also congpatbe magnitudes of the adversarial-sample-based attaeks ar
their relative perturbation strengths in Fig. 11(b). Héhe, rel-  sufficiently small (.e. the potential cost of the attacks would
ative perturbation strength actually quantifies the volafithe be very low), and the relative perturbation strength of the

Definition 3. For legitimate traffic samples, if an ADVM
generates the adversarial samplesSs AS, then therelative
perturbation strength is defined asS:l’](n{ASS)), where surf)
returns the summation of a time series.
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GAN-based ADVM is also smaller. Hence, the results in Figi the ADVMs is still based on a three-layer LSTM-DNN. This
10 and 11 confirm that the GAN-based ADVM can leveragmeans that the designs of the DRL- and GAN-based ADVMs
smaller perturbation strength to induce larger adversecesff stay unchanged, and thus the training time and amounts of
to the AlaNA systemi.e, it balances the tradeoff betweertraining samples required by the DRL and GAN models do
perturbation strength and attack effect better. not change either. The results in Fig. 14 show that even
when the legitimate traffic predictor in the AlaNA system
WoR. uses a more sophisticated architecture, our ADVMs can still

e successfully disturb the operation of the AlaNA system, to
cause additional lightpath congestions, bandwidth ations,
and network reconfigurations. The general trends of thdtsesu

10H 20

w
S

N
a

in Fig. 14 are similar to those in Fig. 10.

The results on the perturbation strengths are shown in Fig.
15, which indicates that the ADVMs still introduce less than
4% relative perturbation strengths. The results’ trends are
similar to those in Fig. 11 too. Hence, Fig. 15 suggests that
the magnitudes of the adversarial-sample-based attaelssithr
(@) Actual ratio of adversarial samples small, and do not change much when the AlaNA system uses
WoRL a more sophisticated traffic predictor. To this end, we verif
oA that our ADVMs achieve the black-box attacks.

Ratio of Adversarial Samples (%)
N
o

5

MRE of Adversarial Samples (%)

IS

w

VIl. CONCLUSION

] In this paper, we proposed an ADVM that can generate
H and inject adversarial traffic samples adaptively to distar
10

DNN-based traffic predictor, and in turn mislead the AlaNA
system of an SD-IPOEON to make incorrect NC&M decisions.
We designed the architecture and operation principle of the

Relative Perturbation Strength (%)
N

=]

20

MRE of Adversarial Samples (%) ADVM, and architected the adversarial sample generatar in i
(b) Relative perturbation strength with two approaches,e., the DRL model based on DDPG
and the GAN model. We demonstrated that our proposed

Fig. 12. Perturbation strengths of ADVMs on AlaNA system wheaffic . . . .
Ch%racteristics are time_varyi%g_ Y ADVM can monitor and interact with a dynamic SD-IPOEON

to train itself on-the-fly, such that adversarial traffic gp@s
can be generated and injected in the most disturbing and
- hard-to-detect way. The simulation results showed that the
D. Adaptivity of ADVMs AlaNA system was successfully misled, and its performance
Finally, we try to verify the adaptivity of DRL/GAN based on multilayer service provisioning was affected severelye-
ADVMs. The simulations first check how the ADVMs wouldsylt in additional lightpath congestions, bandwidth adidens,
perform when the characteristics of traffic can be time-w&yy and network reconfigurations. Compared with the DRL-based
Note that, the simulations in the previous subsectionsdire one, the GAN-based ADVM achieved better attack effects
use time-varying traffic samples, but the samples for eagfith smaller perturbation strength, which can be realized
lightpath fluctuate according to a single traffic trace in][56automatically with less empirical parameter adjustmews.
Therefore, to further verify the adaptivity of our proposdd-  also confirmed the adaptivity of the ADVMise,, they are still
VMs, we make the traffic of each lightpath randomly switclaffective when the characteristics of traffic are time-wagyor

among multiple traces whose characteristics are diffefléns the AlaNA system uses a more sophisticated traffic predictor
time, we choose the MREs of the adversarial-sample-based

attacks from{10%,20%}. The results in Figs. 12 and 13 ACKNOWLEDGMENTS
indicate that under such a more dynamic setting, our ADVMS this work was supported in part by the NSFC

are still smart enough to induce significant adverse eﬁecbcrojects 61871357. 61771445 and 61701472. ZTE Research
and the GAN-based approach continues to perform bettef,ny pa_Q-20190925001J-1, Zhejiang Lab Research Fund

However, compared with those in Fig. 10, the adverse eﬁe%lgLEOABm CAS Key Project (QYZDY-SSW-JSC003)
in Fig. 13 become smaller. This is because the ADVMs need 4 spr Prog,ram of CAS (XDC02070300). '
to adjust their parameters to adapt to traffic condition glean
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