On Parallel and Hitless vSDN Reconfiguration

Sicheng Zhao, Xing Wu, and Zuging Zh8enior Member, IEEE

Abstract—The symbiosis of network virtualization and makes network elements operate according to the instngctio
software-defined networking (SDN) enables an infrastructte from the control plane, for ensuring enhanced programiitabil
provider (InP) to build various virtual software defined networks and application-awareness in various networks [10-12].
(VSDNs) over a shared substrate network (SNT). To handle a Network virtualization and SDN are mutually beneficial
dynamic network environment, the InP may need to reconfigure . - y .
the mapping schemes of vSDN's for a variety of reasons. Althgh [13—15]. This makes an InP provision software-defined VNTs,
previous studies have addressed how to calculate the new wial i.e.,virtual software-defined networks (vSDNs), to the SPs that
network embedding (VNE) schemes for vSDN reconfiguration subscribe to its service. To build vSDNs over its SNT, the
under different objectives, the transition to migrate vSDNs from InP needs a VNE algorithm [16] and a network virtualization
their originaI_VNE schemgs to new ones _is still under—explc_frd. hypervisor (NVH) [17]. The VNE algorithm determines how

Hence, this paper studies how to realize parallel and hitles yp : 9 ;
vSDN reconfiguration, by leveraging the “make-before-bre” 10 allocate the memory resources on substrate switches (S-
scenario. We come up with a generic solution to optimize the SWs) to compose virtual switches (vSWs)e(node map-
transmo_n to remap VSDNS.tO new VNE schemes, such that the ping), and how to route virtual links (VLs) over substrate
remappings can be done in the parallel, hitless and resouree jinyg (s 5) and assign bandwidth to thefe(link mapping).
efficient manner, as long as the new VNE schemes are fea5|bIeTh dinth d) I
More specifically, our proposal is the multi-stage parallelvSDN e memory resources concerned in the node mapping usually
reconfiguration based on maximal connected reconfigurableup- refer to the ternary content-addressable memory (TCAM) and
graph (MCRSG). To ensure the efficiency of our proposal, we static random-access memory (SRAM), which store flow-
formulate the optimization for selecting MCRSGs to reconfigire entries/tables in S-SWs. Note that, due to the power consump
in each stage, and prove theV"P-hardness of the problem. Then, o and cost of TCAM and SRAM, their amounts are usually
we design an approximation algorithm based on Lagrangian very limited in an S-SW [18, 19]. For instance, the memor
relaxation to solve it time-efficiently. Extensive simulaions verify y ’ ' s ' y
that the proposed algorithm can obtain near-optimal solutons resource in a start-of-art commercial SDN-based S-SW can
quickly. In addition to the algorithmic study, we also realize our usually only accommodate a few thousands of flow-entries at
multi-stage parallel vSDN reconfiguration in a practical NVH ~ most [18]. The NVH translates the control communications

system, and demonstrate its performance in a real nework penyeen S-SWs and virtual controllers (vCs) of vSDNs [17]
testbed. Our experimental study identifies in what conditio . . .
to implement the node and link mappings.

losing of packets during remapping would be inevitable, stdies

the tradeoff between reconfiguration latency and packet losrate, The algorithmic studies on VNE and the system designs
and reveal an empirical method to adjust key parameters of ou of NVH have already been covered comprehensively in the
NVH system, for adapting to various network environments. literature [16, 17]. However, since an SNT usually possesse

Index Terms—Network virtualization, Software-defined net- dynamic network environment, its InP might need to recon-
working (SDN), Parallel and hitless vSDN reconfiguration, la- figure the VNE schemes of vSDNSs, for a variety of reasons.

grangian relaxation, Approximation algorithm. The first example is for fault tolerance and failure recovery
[20]. Since various failures can happen in a production SNT
|. INTRODUCTION due to random faults, human errors or even malicious attacks

FTER many years of development, the Internet is nothe INnP needs to migrate the affected vSDNs to minimize
A facing numerous challenges, most of which cannot service disruptions. The second example is for serviceagsgr
addressed with traditional network control and managemdn@/downgrading [21] and mobility support [22]. Specifigal
(NC&M) mechanisms [1, 2]. Hence, to prevent the ossific&n SP may request to add/remove vSWs/VLs in its vSDN, and
tion of Internet infrastructure, people turned to develgwn it may also hope to relocate some of its vVSWs/VLs to adapt
network technologies. Among them, the two most-referret the movement of its clients. The last example is for bal-
to ones are network virtualization [3] and software-definedcing the usages of substrate resources [23]. As TCAM and
networking (SDN) [4]. Network virtualization transformset SRAM are very limited hardware resources in S-SWs [18], the
conventional ISPs into infrastructure providers (InPsy arimemory provided by them for storing flow-entries/tablesldou
service providers (SPs). An InP owns one substrate netwd&come the bottleneck resources in vSDN slicing. Therefore
(SNT), and it can slice the SNT into logically-isolated uat Without dynamic load-balancing, the memory capacity of an
networks (VNTSs) with virtual network embedding (VNE) [5,S-SW could be insufficient to accommodate all the active flow-
6], and lease them to the SPs to satisfy their demands [guiries/tables from its vSWs during rush hours.

9]. SDN takes the features of NC&M out of each network To the best of our knowledge, the existing algorithmic stud-

element to build a logically-centralized control planedani€s on VSDN reconfiguration only addressed how to calculate

the new VNE schemes for vSDNs under various objectives,

S. Zhao, X. Wu, and Z. Zhu are with the School of InformatiorieSce ht have not considered the transition to migrate vSDNs from
and Technology, University of Science and Technology ofi@hHefei, Anhui . .

230027, P. R. China (email: zqzhu@ieee.org). their original VNE schemes to the new ones. We argue that

Manuscript received on November 10, 2019. to realize high-performance vSDN reconfiguration in picadti

systems, it is very important for the InP to carefully handlbased on Lagrangian relaxation, for improved time-efficjen
the remapping transition of each vSDN. More specifically, Bimulation results confirm that for problems with relativel
is desired that the InP handles the transition with paralhel large sizes, our approximation algorithm can obtain near-
hitless vSDN reconfiguration. Here, “parallel reconfigimat optimal solutions within reasonable numbers of iteratiohie
means to reconfigure multiple vSWs and VLs simultaneousBlso conduct extensive simulations to evaluate the pedoom
while “hitless reconfiguration” refers to the one whose resf our proposal in dynamic network environments.
sulting packet losses are very few or even zero. The demandis for the system implementation, we expand our NVH
for parallel reconfiguration comes from the fact that the Infystem designed in [27] to facilitate parallel vSDN recoudig
might need to remap a few vSWs and VLs in a vSDN aation, and experimentally demonstrate it in a networkoedt
even multiple vSDNs within a short period of time.g, for that consists of six S-SWs. Experimental results indichés t
failure recovery or load-balancing). Hence, paralleligihe compared with sequential reconfiguration, our parallel MSD
remapping operations would bring in benefits such as shoetonfiguration effectively reduces the reconfiguratidenay.
reconfiguration latency, low operational complexity, ardsl We also conduct experiments to identify in what conditiost lo
disruption to the services of vSDNs. The rationale behired ting of packets during remapping would be inevitable, stundy t
demand for hitless reconfiguration is also obvidies, vSDNs tradeoff between reconfiguration latency and packet los ra
can carry live traffic and thus any service disruptions otirtheand reveal an empirical method to adjust key parametersrof ou
vSWs and VLs would affect their quality-of-service (QoS). NVH system, for adapting to various network environments.
However, since there are complex dependencies amongdhe major contributions of our work can be summarized as:
VSWS, VLS, S-SWs and SLS, it is never easy to achieve pal’allel. To the best of our know'edge, our proposa| is the first
VSDN reconfiguration. For instance, remapping a vSW will work to realize parallel and hitless vSDN reconfiguration
Change the link mapplng schemes of all the VLs that use it in the resource-efficient manner.
as an end'node, which will in turn affect the resource Usages. We propOSe a novel mu|ti_stage para”e| vSDN reconfig_
on many SLs and S-SWsMoreover, if we want the parallel uration scheme based on MCRSG to address the issues
reconﬁguration to be hitleSS, we will need to |eVerage the of One_stage para”e' vSDN reconﬁguration_

“make-before-break” scenario [26]. Specifically, the InBtfi | T ensure the efficiency of our multi-stage parallel vSDN
builds new vSWs and VLs in new locations, then redirects reconfiguration, we design the optimization to select
the traffic passing through original vSWs and VLs to use the \CRSGs in each stage, and prove A&P-hardness.

new ones, and f|na”y removes the Original ones from the SNT. We design an approximation a|gorithm based on La-
[27]. Hence, vSWs and VLs can be remapped in the hitless grangian relaxation to solve the problem of MCRSG se-
way. Nevertheless, make-before-break further complictite lection time-efficiently, and simulation results verifyath
dependencies among vSWs, VLs, S-SWs and SLs, and makes the algorithm can obtain near-optimal solutions quickly.
parallel reconfiguration even more difficult. Last but natde | we realize the multi-stage parallel vSDN reconfiguration
when parallel vSDN reconfiguration is considered, the make- iy an NVH system for experimental demonstrations.
befare-break scenario mi_ght consume {00 many redundantrhe rest of the paper is organized as follows. We survey
resources because the original vSWs and VLs cannot be R o\ated work briefly in Section II. Section Il describes

down before the new ones are up and operational. the problem of parallel and hitless vSDN reconfigurationt Ou

In th|s wqu, we aim o realize par_all.el and h|tless_ .VSD'\&roposed multi-stage parallel vSDN reconfiguration schmme
reconfiguration. Specifically, we optimize the transitiam t.

introduced in Section IV. Since the selection of indetermin
remap VSDNS, regardless of how or for what purpose the N \crsGs to reconfigure, which is a subproblem in our

_VNE schemeshwefre cor_nputed. "} o;h;:l wc_)rds, our propﬁiﬁ posal, isN“P-hard, we leverage Lagrangian relaxation to
IS sobgenen\(;lilst (?]raglvgn sheto v el E’! Ilt can rzmapt €Bive it time-efficiently in Section V. Section VI discusses
to arbitrary schemes in the parallel, hitless and r&sBur e merical simulations for performance evaluation,levhi

efﬂmgnt manner, as long as the schemes_are feaS|b|g_ gexperimental demonstrations and studies are presanted
consider both algqnthm de_3|gn and _system |mpIementat|onSection VII. Finally, we summarize the paper in Section VIl
As for the algorithm design, we first analyze the problem
of parallel and hitless vSDN reconfiguration, and point ot t
issues of one-stage parallel reconfiguration. Then, toesddr
the issues, we propose a multi-stage parallel vSDN reconfigu For network virtualization, VNE is the fundamental problem
ration scheme based on the maximal connected reconfiguradoid it has been studied intensively with various networks as
subgraph (MCRSG). Here, an MCRSG refers to a maximile SNT [3, 5-8]. Compared with the VNE in packet networks,
structure in a vSDN, which is built with connected vSWs anthe VNE in optical networks €.g, the fixed-/flexible-grid
VLs concerned in a reconfiguration. Next, we consider howavelength-division multiplexing networks [28—30]) cdute
to select MCRSGs to reconfigure in each stage, and proveritere complex since the link mapping involves routing and
NP-hardness. Hence, we develop an approximation algorittepectrum assignment, which itself is &4P-hard problem.
The studies in [31-33] proposed algorithms based on decom-
'Each VL consumes bandwidth resources on each of the SLs aleng positions and Lagrangian relaxation to solve the VNE prable
substrate path that it is embedded on, while in addition ed3¥5Ws that carry . .
its two end VSWs, the VL also uses memory resources in allmtezmediate Although the mathematical methods are similar, our problem
S-SWs along its substrate path [24, 25]. is not about VNE and thus it is fundamentally different from

II. RELATED WORK

those studied in [31-33]. For a comprehensive survey on timstantiated in VMs. In our previous work [23, 27], we studlie
existing VNE algorithms, one is suggested to refer to [16]. how to calculate new VNE schemes for vSDNs such that the
The symbiosis of network virtualization and SDN leadmemory resource usages in an SNT can be re-balanced by
to the creation of vSDNs [13], which brings new challengdsveraging sequential vSDN reconfiguration operationthas
to VNE algorithm design. In [24], the authors pointed oubn make-before-break. Nevertheless, the solution wagetreit
that in addition to the S-SWs carrying its end vSWSs, eadeneric nor parallel. Therefore, to the best of our knowéedg
VL in a vSDN also consumes memory resources in all thhe problem of parallel and hitless vSDN reconfiguration has
intermediate S-SWs along the substrate path that it is enot been explored yet, especially when the algorithm design
bedded on. Considering the dependency between the contreéds to be considered together with system implementation
and data planes of vSDNs, the studies in [25, 34] tackled

the problems of correlated data and control plane embedding vC 1 ity
More recently, to address the memory fragmentation in S-SWs

with programmable data plane (PDP), Xeteal.[35] leveraged A VSDN 1 /\ VSDN2
“Big-Switches” to design a three-layer VNE scheme, which SN 7S
could realize resource-efficient vSDN creation. Neveghg|
all these studies are orthogonal to this work, because thtky d
not investigate the transition to realize vSDN reconfigorat

With VNE algorithms, an InP can use an NVH system
to create vVSDNs over its SNT. Due to the benefits of this
approach, numerous studies have been dedicated to develop-
ing effective and powerful NVH systems [17]. Initially, the
development efforts were focused on designing NVH systems
to support the creation of OpenFlow-based vSDélg, the
FlowVisor [36] and OpenVirteX [37]. Later on, the designs
tried to make NVH compatible with PDP. Here, PDP refers
to the packet processing and forwarding elements that have
powerful programmable features to remove the dependence':&?n =
existing protocols, such as P4 [38] and protocol-indepehde
forwarding (POF) [39]. HyPer4 [40] was designed to slice
VSDNs over the S-SWs that are based on P4-based PDP. Ill. PROBLEM DESCRIPTION
Meanwhile, by leveraging famous open-source projects suchn this section, we first introduce the network model of
as OpenVirtex and ONOS [41], people have also come up witffDN reconfiguration, then explain how to remap vSWs and
various NVH systems that support POF [14, 42—44]. HowevéfLs with the make-before-break scenario, and finally define
none of the aforementioned NVHs have been demonstratb@ problem of parallel and hitless vSDN reconfiguration.
to support parallel and hitless vSDN reconfiguration. Thi8ince several abbreviations are frequently used in thipap
is because without a sophisticated algorithm to sort out thé list them here in Table | for the readers’ convenience.

Network system for vSDN creation and reconfiguration

dependencies among vSWSs, VLs, S-SWs and SLs, NVH can TABLE |
hardly make the remapping of vSWs and VLs satisfy the two MAJORABBREVIATIONS
conflicting demandsi.g., parallel and hitless) simultaneously. — — - —
. . - . . rev. u ame rev. u ame
. PFEVIOUS|¥, the StUdIe.S n [45_47] considered how to mcgrat SDN Software-defined networking InP Infrastructure provider
virtual machines (VMs) in SDNs, but these approaches did not VNE \ﬁrtual\;letwlork emhbedding SNT Substrate net\gork
- . vSW irtual switcl SP Service provider
address the vSDN reconfiguration that remaps VLs and vSWS 4,5 Quality-of-service VNT Virtual network
simultaneously. Jiacet al. [48] tackled the online resource s-sw Substrate switch VL Vimljal ””E
. : s P - MtV Move-to-vacancy VM Virtual machine
allchtlon in multl—tller dls_trlbuted cloud networks_, toindy SRAM | static random-access memol SL Substrate link
optimize the reconfiguration cost and the operational cbst o MbB Makle—before—break vC vmuald controller)
- f a1 ILP Integer linear programming DG Dependency grap!
the target conﬂg_uraho_n. However, the backgroun_d was still | Lagrangian relaxation RTT Round-trip-time
not vSDN reconfiguration. The authors of [49] studied how t0 vSDN Virtual software-defined network
- : NC&M Network control and management
cal_cula_lte the new_VNE schemes_ for realizing VNT r_eco_nflgu— TOAM Ternary content-addressable memory
ration in a dynamic network environment. The studies in [50,MCRSG Maximal connected reconfigurable subgraph
. . : . . MKP Multi-dimensional0-1 knapsack problem
51] tried to achieve vSDN reconfiguration with the help of 7, Fully polynomial-time approximation scheme

vSDNs’ vCs. However, since a vC cannot have a global view
of the SNT, it would have difficulty determining when and how

to reconfigure its vSDN. The system developed in [52] could

realize SDN migration, but it did not put network virtualigm A Network Model

into consideration. Loet al. [53] considered vSDN recon- Fig. 1 shows the architecture of the network system con-
figuration based on a network virtualization scenario tisat cerned in this work for vSDN creation and reconfiguration.
different from oursj.e., instead of being created by slicing S-The SNT can be modeled as an undirected gi@pti’;, E;),
SWs, the vSWs were all software-based ones that needed tawhere V, and E, denote the sets of its S-SWs and SLs,

vSDN 1 VvSDN 1 vSDN 1 VvSDN 1 vSDN 1

Reconfiguration T
Reconfiguration (MtV) Reconfiguration,
9/0\@ — 9/0\6 N -

| r3] | 3 | @
65D mv

(a) (b)

Fig. 2. Examples on hitless vSDN reconfiguration with MbBM1)B is feasible, and b) MtV has to be used.

respectively. In this work, we consider two types of sulistra“hitless”, i.e., the resulting packet losses should be very few or
resourcesi.e., the memory resources on S-SWs to store floveven zero. To achieve this, a common practice is to leverage
entries and the bandwidth resources on SLs to carry traffibe “make-before-break” scenario (MbB) [27]. Specifically
The NVH manages the SNT for vSDN creation and recotthis means that to reconfigut& (V;", ET), the InP needs to
figuration. The data plane of a vSDN can also be modeled) set up new vSWs and VLs according.Ad/,
as an undirected grap&y(V;, E}), wherei is its unique 2) switch traffic fromM; to M.,
index, andV;” and E;’ represent the sets of its vSWs and VLs, 3) remove the original vSWs and VLs ;.
respectively. To create a vSDN, the NVH first utilizes a VNE For instance, in F|g 2(3_), we reconfingWb in vSDN
algorithm to calculate the node and link mapping schemes pffrom S-SW2 to S-SW6. Due to the dependency between
G (V{", E}), subject to the resource constrafptas follows. ySWb andVLs a-b andb-¢, the migration olvSWb involves
My: V=V, one node remapping and two link remappings. Specifically,
Mi = { My: E P, (D) the NVH first copies all the flow-entries afSWb to S-SW
. . 6, then steers the traffic passing throu@Wb in vSDN 1 to
whereMN and M.L refer to the node and link mappings,,se s-swe instead ofS—SF\)NZ, ar?d finally removes the flow-
respectlvely, and’; is the set of_pre—calculated substrate IO":"tnesntries ofvSWb on S-SW2. Hence, the transition will not
in the SNT. Then, the NVH |m’plements the_ VNE schemgause noticeable packet losses/BDN 1.
M., and hands over the vSDN's NC&M 1o its VC. At this e might think that the aforementioned procedure is feasi-

moment, the vVSDN is up and operational, and its vC cgfjp g long as\1’, is a feasible VNE scheme fa#: (V;", EY)
install, update, and remove flow-entries in the vSWs to fodvap, ;e o the network status. Unfortunately, this is not, true

application traffic. According toV(;, the NVH performs two- and MbB is infeasible in certain cases wheké; and M’

way translation of the control messages between the.vC _agﬁjare some resource-insufficient S-SWs or/and SLs. Fig. 2(b
the S-SWs that carry the VSDN's vSWs. As shown in F,'gﬂustrates such an example. This time, we assume that the
1, the S'SV.VS and SLs in an SNT can _be shared by multigle yidth usages olLs 1-2 and 3-4 are relatively high,
VSDNSs, while the NVH enforces proper isolation such that thgyie 51 51.3 and 2-4 have abundant bandwidth resources.
VSDN_S operations would nqt mterfere with each.other. . Hence, for the purpose of re-balancing the bandwidth usages
To invoke a vVSDN reconfiguration, the NVH first obta|n§he VSDN reconfiguration wants to remagWsb and ¢ and

the new VNE schema ; O_f GZT(W’E{)' e_md then remaps theihe related VLs from the original VNE scheme (marked in
related vSWs and VLs ta impleme(;. Since the generic VS'Igreen) to the new one (marked in red). However, as shown in

L I‘—:"lg. 2(b), the available memory resources 1 8W<2 and 3
how p_r for th"‘t p“rPPSWi 'S calculated, bUt, focus on theare insufficient to carry the flow-entries/tables of the o)
transition to migratex; (V;7, £7) from M,-_to M;i' Moreover, 4 new VNE schemes simultaneously, which makes MbB
our proposal supports the vSDN reconfiguration that needsiﬁ?easible. Therefore, we consider the move-to-vacandyjM

. first remappingySW9 andc to a third VNE
-SWs and 5, respectively), then tearing down
the original VNE scheme, and finally remapping the vSWs
and related VLs from the third VNE scheme to the new one.
B. Hitless Reconfiguration with Make-before-Break Here, the third VNE scheme is marked in purple in Fig. 2(b).

Since the vSDN reconfiguration is performed during when Finally, with the procedure shown in Fig. 2(b), we accom-
vSDN(s) are in operation, we need to make the transitighish the vSDN reconfiguration with MbB and MtV, and mini-
mize the service disruptions during the vSDN reconfiguratio
2Note that, in a dynamic network environment, each vSDN camgh both Nevertheless. MtV could be infeasible too. and thus it cdy on
the memory usages of its vSWs and the bandwidth usages oh&®M-the- b di H b f# . N di . Id
fly. Hence, its initial VNE scheme can be calculated basechenestimated P€ USed In the best-effort waye., service disruption wou
statistics of the resource usagesg(their mean or maximum values). be inevitable if both MbB and MtV are not possible.

the vSDN creation and reconfiguration are handled solely g}fheme (ont®
the NVH, i.e, they are completely transparent to the vCs.

C. Parallel vSDN Reconfiguration

Ideally, we would like to parallelly remap all the concerned
vSWs and VLs, which could be from multiple vSDNSs, in each
vSDN reconfiguration. Hence, the reconfiguration latenay ca
be reduced significantly, and it would not increase with the
total number of concerned vSWs and VLs anymore. However,
considering the complex dependencies among vSWSs, VLs, S-
SWs and SLs, we can hardly achieve this in one shot, espe-
cially when the vSDN reconfiguration has to leverage MbB
and MtV for hitless operation. Here, the major difficulty of
realizing one-stage parallel and hitless vSDN reconfignmat
comes from the resource constraints.

Fig. 3 shows an example on the conflicts in memory usages
caused by parallel vSDN reconfiguration. Here, we assume
that there are four S-SWs and the vSDN reconfiguration is for
re-balancing the memory usages on the S-SWs. Therefore, to
address the unbalanced usages in Fig. 3(a), the InP needsigos. Conflict in bandwidth usages in parallel reconfigorat
migrate vSWsa, b and ¢ from S-SWsl, 2 and 3 toS-SWs
3, 3 and 4, respectively (as in Fig. 3(c)). However, due to the
insufficient memory capacity 08-SW3 to accept all the flow- V- MULTI-STAGE PARALLEL V SDN RECONFIGURATION
entries fromvSWsz, b ande, one-stage parallel reconfiguration One-stage parallel vSDN reconfiguration can hardly avoid
with MbB will have the conflict in Fig. 3(b). We can see thathe conflicts in resource usages, and thus it can cause severe
the conflicts in memory usages happen in the first step of Mbggrvice disruptions. In this section, we design a multjsta
i.e. setting up new vSWSs and VLs according to the new VNBparallel vSDN reconfiguration scheme. Specifically, we -opti

mize the reconfiguration procedure such that both the stages

i i D of operations and the service disruptions can be minimized.
©

A. Maximal Connected Reconfigurable Subgraph (MCRSG)

! 2 3 4 Intuitively, we would consider vSWs and VLs as the basic

elements in vSDN reconfiguration. Nevertheless, this would

-] not benefit our algorithm design due to the complex depen-

" dencies among vSWs and VLs. Fig. 5 shows an illustrative

i i i i i E I example on why the basic elements should not simply be
1 2 3 4 1 2 3 4

vSWs and VLs. For the reconfiguration scheme in Fig. 5(a),
(b) During reconfiguration (c) After reconfiguration we have the conflict in memory usages in F|g 5(b¢’_'
vSWb cannot be remapped with MbB before the successful
remapping ofvSWa’'. Hence,VL a-b andvSWa' cannot be

Meanwhile, the conflicts in bandwidth usage can also prree_conﬁgured in parallel. But if we treatlSWa as a basic

: . p . .
vent one-stage parallel vSDN reconfiguration. Fig. 4 pregidelemem and remap it together wiiSW o', the intermediate

such an example. This time, the vSDN reconfiguration nee%%lte will be the one in Fig. 5(c), where a temporary substrat

to remap twovLs a-b anda’-b’ from 1-2-3 and 4-5-3 to 1-5-3 path 3-4-2 is set up to support the interW a-b. However,

A A because the remapping eSWb has to be put on hold until
and 4-3, respectively.g., from the mapping in Fig. 4(a) to that 4 S .
in Fig. 4(c)) IOWhile b%fh VLs carry acrii?/e ?raffic?lovés.) Hencevswal has been reconfigured (as in Fig. 5(d)), the remapping

during the one-stage parallel reconfiguration with MbB, thOf vSWa in Fig. 5(c) is apparently redundant. In other words,

new substrate path &fL a-b can shar&L5-3 with the original ! o\rl1v10T;?(itbear:?jo;iszﬁzeflféilorl1r11i tsrrgt];nolusci\grs]g ﬁpv(\a/:f['r%r;
one of VL a/-b’, as shown in Fig. 4(b). In this case, if the tot L F_Jb asya basic eIemegnt and rgma it afEWa! '
throughput of the two flows is larger than the capacitySaf ¢ P @

5-3, there will be a conflict in bandwidth usage. The conflictsI The d!lemma In Fig. 5 INSPIres us o deflne the basic
) i) ; €lement in our vSDN reconfiguration as a maximal connected
in bandwidth usages happen in the second step of NleB,

switching active traffic to new vSWs and VLs. Note thar,econflgurable subgraph (MCRSG).

the conflicts in bandwidth usages are much less devastatidgfinition 1. The maximal connected reconfigurable sub-

than those in memory usages. This is because the traffic gnaph (MCRSG)refers to a connected structure in a vSDN,

original and new substrate paths might not encounter eashich only consists of the vSWs and VLs that need to be
other if path switching is done quickly enough, but accogdinreconfigured and cannot be enlarged anymore by adding in
to MbB, coexistence of flow-entries in original and new vSWeiore such vSWs and VLs. Note that, an MCRSG might not
will certainly happen. Therefore, we should focus more aslways be a graph because the VLs in it can be dangling ones
minimizing the conflicts in memory usages. (i.e., the MCRSG might not include both end vSWs of a VL).

(c) After reconfiguration

(a) Before reconfiguration

Fig. 3. Conflict in memory usages in parallel reconfiguration

“make” operation in MbB), find all the MCRSGs that are
surely moveable, and move the moveable MCRSGs f8&in
N to SG; (Lines10-16). HereSG; gets initialized aSG in Line
9. Secondly, we check whether each remaining MCRSG in
SSW2 SSW4 SSW5 SG; can be remapped while keeping its original resource usage
(Line 18). If this cannot be done, the MCRSG s certainly an
(a) vSDN Reconfiguration Scheme (b) Dependency between vSWs b and a’ unmoveable one and we move it fl’CR@t to SG, (Lines 19-
21). At this moment, we store the moveable and unmoveable
MCRSGs inSG; andSGs, respectively, while the remaining
ones inSG; are indeterministic. Thirdly.ines23-25 leverage
Algorithm5 to transform certain indeterministic MCRSGs into
moveable ones, iSG; is not empty. The detailed procedure
of Algorithm 5 will be discussed in the next subsection.
Finally, we remap the MCRSGs according to their cate-
(c) Remapping vSWs a and a’ in parallel (d) Remapping vSW b gOI’iES (_ines 26-35) If SG; is not empty, all the MCRSGs
in it are the moveable ones that can be remapped in parallel
with MbB. Hence, the stage just reconfigures them in one
shot Lines 27-29), and the while-loop will proceed to the

Therefore, a vSDN can have multiple MCRSGs (as shoW§*t iteration. Note that, when remapping an MCRSG, we
in Fig. 6). The smallest MCRSG is a VL, while the largest ong@ng€ its VNE scheme to the new one, the resource
is a whole vSDN when all of its vVSWs need to be remappe‘dt.'l'zat"_)n of_ its ongmal VNE scheme_ in the SNT is released
Note that, a single VSW cannot be an MCRSG, becauSserwise, ifSG, is empty butSG; is not empty, we are
remapping the VSW will change the link mappings of all th@Y left with unmoveable MCRSGs whose remappings have
VLs that use it as an end-node. For a vSDN(V:", EY), its cyclic dependencies such that resource conflicts will happe
. 7 7 Al . . .
MCRSGs can be obtained by performing a breadth-first seaftf1€y aré remapped with MbBLines 31-34 remap the
on it to compareM; and M’ Hence, the time complexity of MCRSGs inSG» with MbB and MtV in the best-effort way, by
finding all of its MCRSGs i;O(|VT| + B leveragingAlgorithm 2 below. Then, the multi-stage parallel
¢ e reconfiguration is accomplished.

Fig. 5. Example on setting vSWs and VLs as basic reconfiguratlement.

~

MCRSGJ/” N
4

\ MCRSG 2 Move in
-8
Move out
—_
MCRSG 1 MCRSG 3

Fig. 6. Example on finding MCRSGs in a vSDN.

O
B. Overall Algorithm Design I i

Algorithm 1 shows the overall procedure of our multi-stage MCRSG 2 MCRSG 4
parallel vSDN reconfiguration based on MCRSGs. Specifical- --=
ly, the algorithm operates in the greedy manner to let the InP
select the most Welghted MCRSGs to reconfigure in parallelh‘g, 7. Example on dependencies among MCRSGs.
each stage. Here, the weight of each MCRSG will be defined
in the next subsectionLines 1-7 are for the initialization. Fig. 7 gives an example on the dependencies among M-
Specifically, for a reconfiguration operation, we store thERSGs. HereySWa in MCRSG1 andvSWa' in MCRSG
indices of concerned vSDNSs in sét(Line 1), check each 2 need to be remapped & SW1, while vSW?” in MCRSG
concerned vSDN to find its MCRSGs and store them irf&t 3 andvSWa’ in MCRSG4 need to be reconfigured fro8r
(Line 5), and obtain the new S-SWs and SLs that each MCRS3V 1. As the memory resources 8tSW1 are limited, if we
will use after remappinglLine 6). Then, the while-loop of remap the four MCRSGs in parallel with MbB, there will be
Lines 8-36 realizes the multi-stage parallel reconfiguratiomesource conflicts i5-SW1. Hence MCRSGs3 and 4 should
Each iteration is a stage of reconfiguration, which dividdse remapped befor®ICRSGsl and 2, and the dependencies
the pending MCRSGs ii8G into three categoried,e., the among them are illustrated in Fig. 7. In the worst cases, the
moveable, unmoveable, and indeterministic MCRSGs. dependencies can be cyclic as shown in Fig. 8(a), which makes

Firstly, we hypothetically remap all the MCRSGs $ all the related MCRSGs unmoveable and can only be resolved
but keep their original resource usageg.(conducting the with MtV in the best-effort manner (as explained in Fig. 3(b)

Dependency

Algorithm 1: Multi-stage Parallel Reconfiguration

Algorithm 2: Break Cyclic Dependencies with MtV

1 store the indices of vSDNs to reconfigure in $et
2 SG = 0;

3
4

© 0 N O

11
12
13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29
30
31
32

33
34
35
36

for each index; € I do

perform breadth-first search a#; (V;", ET) to
find all the MCRSGs based aiv; and M};
store the MCRSGs i8G as{SG,}, wherej is
the global index of an MCRSG;

store the new S-SWs and SLs 8 ; in setR;;

nd
hile SG # # do

R =0, SG; = SG, SG1 =0, SG2 = 0;

find all S-SWs and SLs with resource conflicts, if

we hypothetically remap all the MCRSGs 6,

but keep their original resource usages;

store the S-SWs and SLs I®;

for eachSG; € SG, do

if RNR; = () then

| moveSG; from SG; to SGy;

end

end

for eachSG; € SG; do

remapSG; hypothetically but keep its

original resource usages;

if there are resource conflicthien

| moveSG; from SG; to SGo;

end

end

if SG; # 0 then

select certain MCRSGs i§G; with Algorithm

5 and move them fror8G; to SGq;

end

move all the remaining MCRSGs BG; to SGy;

if SGy # 0 then

remap MCRSGs if$G; with MbB in parallel;

SG =SG \ SGy;

else

if SGo # 0 then
remap MCRSGs it8G, with MbB and
MtV in the best-effort way Algorithm 2);
SG = SG \ SGy;

end

end

end

1 find dependencies among MCRSGsS@, by
hypothetically remapping all of them but keeping
their original resource usages;

2 construct a DGG4(Vy, E4) to denote dependencies;

3 while SG» # 0 do

4 if G4 has node(s) whose out-degrees arthen

5 remap the corresponding MCRSGs with MbB;

6 remove the MCRSGs frorG, and update
G4(Va, E4) to remove their nodes;

7 else

perform MtV (in best-effort) to remap the
MCRSG whose in-degree is the maximum;

9 remove the MCRSG fror8G. and update
G4(Va, E4) to remove its node;

10 end

11 end

of its vSWs and VLs have resource conflicts.

o 9 o ©
l,’ MtV
o © O 2©® ©
| S 4 S
(a) (b)
')
(5]
o © e
o 9 =) L
(1 (1)
4]
(c) (d) (e)

Fig. 8. Example on breaking cyclic dependencies with MtV.

Fig. 8(a) shows an example on the DG, whMERSGs
2, 3 and 5 have cyclic dependencies. In each iteration of the
while-loop, we first check whether the DG contains node(s)
whose out-degrees are 0. If yes, the MCRSGs represented
by these nodes do not depend on other ones, and thus can
be remapped with MbBL{nes 4-6). Otherwise, we find the
MCRSG whose in-degree is the maximum, and try to remap
it with MtV in the best-effort way,i.e., for breaking cyclic
dependenciesL{nes 8-9). Here, we always make sure that
there will not be any new dependencies when calculating
the vacancy for each MCRSG. Meanwhile, MtV can also

Algorithm2 explains how to break cyclic dependencies withecome infeasible, when the SNT is heavy loaded. In that
MtV. Lines 1-2 are for the initialization, where we get thecase, the MCRSGs are remapped with the scheme that will
dependencies among the unmoveable MCRSGSGn and cause service disruptiong., first tearing down their original
build a dependency graph (DGQ).(Va, E4) to represent it. VNE schemes and then setting up the new ones. For the DG
Specifically, each MCRSG i8Gs,, is represented as a node irin Fig. 8(a), Algorithm 2 will first selectMCRSG5 to apply
Va while the dependencies among the MCRSGs are denotedfas remapping with MtV. If this can be donB|ICRSG5 will
directed edges it;. If an MCRSGuy ; cannot be remappedbe remapped in the hitless manner, and there will be service
before the MCRSGyq 2 has been reconfigured, there will bedisruptions, otherwise. Next, the remapping sequencebaill
a directed edge a@,1,v4,2) in E4. Note that, a direct edge 6—{3,4}—2—{1,5}, as explained in Figs. 8(b)-8(e). The
from an MCRSG can point to itself, if the remapping schemésne complexity ofAlgorithm 2 is O(|SGz|? - (|Vi| + | Es|).

C. Selection of Indeterministic MCRSGs to Reconfigure their total value is maximized. This is essentially the gahe

As explained inAlgorithm 1, we divide the pending MCRsS- €@se of a multi-dimensional-1 knapsack problem (MKP),
Gs into three categories in each stage. Specifically, intiaadi Which is known to beA’P-hard [55]. Hence, we prove the
to those that are surely moveable and unmoveable, we al¥g -nardness of the MCRSG selection problem. -
have indeterministic MCRSGs that can be transformed intoSiNce the MCRSG selection problemASP-hard, we first
moveable ones, if we have a proper selection algorithm to sifould like to resort to a fully polynomial-time approximati
out the potential resource conflicts. Here, the potentiduece SCheme (FPTAS) to design a time-efficient algorithm, which

conflicts can be obtained by hypothetically remapping al tHa" get near-optimal sollutions with reasonable runnin@.tim
indeterministic MCRSGsi.., those inSG; whenAlgorithm1 ~ Nevertheless, the study in [56] has already proven thatiots
reached.ine 24), while keeping their original resource usaged€@sible to find an FPTAS for MKP. Hence, in the next section,

Then, the S-SWs and SLs with resource conflicts are stored{f Will leverage Lagrangian relaxation (LR) to design a time
setR;,, with which we formulate the following integer linearéfficient algorithm to solve the MCRSG selection problem.

programming (ILP) model to optimize the MCRSG selection.\; A pproxIMATION ALGORITHM TO SELECT MCRSGs

Input Parameters: In this section, we explain how to leverage LR to optimize

« SG;: the set of indeterministic MCRSGs. the selection of MCRSGs. The MCRSG selection problem
« Rin: the set of substrate elementse(S-SWs and SLs) js 5 maximization problem. Therefore, we first dualize the
with resource conflicts. hard-side constraints of the original problem, and comstru
« ¢! the available resources on an element Riy. a dual problem whose solution gives an upper-bound on the

« wjs.: the resource usage on an element Ri,, if an niimal solution of the original one. Then, we obtain a fbksi
MCRSG 5G; € SG; is reconfigured. solution of the original problem based on the solution of the

« p;: the preset weight of remappirfif; successfully. §ya| problem. Since we have a maximization problem, the

Variables: feasible solution provides a lower-bound. Next, we optaniz

« x;: the boolean variable that equals 19, is selected the solution of the original problem by obtaining uppem/és-
to be transformed into a moveable one, and 0 otherwidgmunds iteratively. Meanwhile, the gap between the upper-
Objective: and lower-bounds indicates the distance between the durren

In this work, we introduce a preset weigpt for each feasible solution and the optimal one.
MCRSG SG; to generalize our problem formulation and toA L ian Dual Probl
give the InP the freedom to prioritize each MCRSG in the" agrangian Dual Froblem
parallel reconfiguration. For instance, if the InP simplyntga 1 he number of constraints in Eq. (3) 8., |. By dualizing
to reconfigure as many MCRSGs in each batch, it shoulfin|—1 constraints, we get the following dual problem, where

set{p; = 1, VSG; € SG,}. As we do not restrict how to the [Rin| — 1 constraints compose s&f, & Rin.

define the preset weight, our MCRSG selection algorithm can
optimize the following objectivej.e,, to maximize the total Minimize Zgyai(A) = max Z pj-x; |+
weight of the selected MCRSGs, regardless of the definition. b | \ 56, ese

Maximize Z pj T (2 ST Nee (cse > wj,se‘l'j>:| , “)

SG;ESGy se€R), 5G; €86y
Constraints: St Y wjee w; < coe, se=Rin \ R,
SG;eSG
Z Wjse * Tj < Cse, Vs € Rin. 3) o ¢ . o
5G; €Sy whereA = {)\,.} is the vector of Lagrangian multipliers. We

. - o > ' \ [
0.5 nsures ha e emappings o e selected ndrn[VS = "< B o e il (1) wikbe &
istic MCRSGs with MbB will not cause any resource conflicts pp P '

i.e., the selection transforms them into moveable ones. Zauai(A) I maximized for a specifid. Then, we have

Theorem 2. The MCRSG selection problemA§P-hard. Zawar(A) = max (Z b x;+ Z Ao - cgg) 7 (5)

Proof: We prove the\VP-hardness of the MCRSG selec- 7 \ st seeRin
tion problem by transforming it into a general case of a welwherep; is the Lagrangian-modified weight of MCRS&;
known N P-hard problem. By observing the MCRSG selection 73 = pi — Z Ase - Wjse. ©6)
problem defined by Egs. (2) and (3), we find that each MCRSG ' ’
in SG; can consume the resources in multiple substrate e
ments. Hence, we can treat each substrate elegeeatR;,,
as a dimension (with a capacity of.) of a multi-dimensional

3 ’
seE]Rm

lﬁie second term in Eq. (5) is independen{of}, and thus we
only need to solve the following optimization to g8}..:(A).

knapsack R;,), and consider each MCRSEG; as an item, Maximize Z Py - T4,
which has a multi-dimensional sizgw; s., Vse € R;,}) 5G; €56, @)
and a value if;). Then, the problem becomes how to select st > wjae 75 < ooy se = Rin \ Riy.

items to put into the multi-dimensional knapsack such that 5G;€SGy

The optimization in Eqg. (7) can be solved with the dynamicAlgorithm 4: Construction of Feasible Solution

programming inAlgorithm 3 [57]. The time complexity of
Algorithm 3 is O(|SG¢| - ¢se)

, Wherese = R;,, \ R,..

Input: {z;}, Z* =0.
Output: {z;}, Z*.

. _ _ 1 for eachse € R}, do
Algorithm 3: Dynamic Programming to Ge&f,,4;(A)) a=0
INput: {7, Coe, wjse = s€ = Rin\RY,, ¥SG; € SG,}. 3 | for eachSG; € SG; do
Output: {z;}. 4 if z; =1 then
1 temporarily reassign indices of MCRSGs Sf>; as 5 | a=a+wjs
i € [1,SG]]; 6 end
2 initialize M = {m, j, i € [1,|SG,|], j € [1,csc]} as 7 | end
an all-zero matrix; 8 | While a>c, do
3 for eachi e [1,[SG,|] do 9 for SG; € SG; do
4 for eachj c [17086] do 10 if Tj = 1 AND Wi se > 0 then
5 if j < Wi, se then 1 zj =0, a=0a—wjse;
6 | mi; = m,-_Lj; 12 Zdual(A) = Zdual(A) - pJ,
7 else if j = w; 5. then 13 end
8 | mi; = max (mi_1j, Pi); 14 if a < ¢, then
9 else 15 | break;
_ = 16 end
12 e|ndmz,] max (mlfl,j; mzfl,jfwi,w + pz): 17 end
12 end 18 end
13 end 19 end
14 for eachk € [0, |SG,| — 2] do 20 for eachSG; € SG; do
15 i = |SGy| — k; 21 if x; =1 then
16 if m; cse = Mi—1,cq. then 22 | Zt =7 +pj
17 33@ —1; ' 23 end
18 Cse = Cge — Wj se, 24 end
19 if cse =0 then
20 | break;
21 end whereA, anduy; are the Lagrangian multiplier and step-size,
22 dend respectively, ang (Ay) is the sub-gradient vector &f;,q;(A)
23 en

regardingA, in the k-th iteration. Specifically, we have

F(8) = teat, ©

whereA is a vector, and each of its elements is

se—csef Z Wj,se * Tj-
SG,;€SGe

After solving the optimization defined in Eq. (7) with ag 1, affects the convergence performanceZgf,.; (A), we

Algorithm 3, we get the optimal solutiofz;} regarding get its value with the following formulation, based on [59].
a specificA in an iteration. Then, we need to construct a (Zuwt(A) — 2°)
v dual -

feasible solution of the original problem based on the gorut 2
{z;}, which can be achieved by leveragiAtgorithm4. More 17 (Aol
specifically, Algorithm 4 removes certain MCRSGs from theHere, Z;,4:(A) is obtained by solving the optimization in
solution provided byAlgorithm 3 until the resulting solution Eq. (7) with a specific Lagrangian multiplieY,, Z* is the
becomes feasible to the original problem. The time compleximaximum feasible solution until the-th iteration, andv is a

of Algorithm 4 is O(|SG;| - |R; scaler variable whose initial value is set ZisSpecifically, if
the value 0fZ,,,;(A) cannot be improved after a fixed number
of iterations, we will dividev by 2. Note that, we need to have

= 0 to guarantee thaZ,,,;(A) is an upper-bound on the

rHptlmal solution, and this is achieved by applying

(Akt1)se = max{0, [Ax — px - f(Ax)]se}-

24 restore indices of MCRSGs i8G; and get{z,}
based on{z;, i € [1,|SG:|]} accordingly;

B. Construction of Feasible Solution (10)

M = (11)

n

C. Solving Lagrangian Dual Problem

The optimization objective of the Lagrangian dual proble
defined in Eq. (4) is to miniMiz& 4,,:(A). SinceZg,qi(A) is
a piecewise linear programming, we leverage the sub-gnadie
method in [58] to optimizeA iteratively until Z;,.:(A) con-
verges to the minimum. Specifically, we first geto an initial
value, and then updatg in each iteration as follows.

= Ap — pr - f(Ag), (8)

(12)

D. Overall Procedure

Algorithm 5 shows the overall procedure of the LR-based

Mgy algorithm to select indeterministic MCRSGs to reconfigure.

10

Line 1 is for the initialization, whereb and(b are introduced This verifies thatAlgorithm 5 is an approximation algorithm
to store the upper- and lower-bounds obtained in iterationghose approximation ratie is at leastl — v for the maxi-
respectively, and: is the counter to monitor the convergencenization in Egs. (2)-(3). Moreover, its approximation becrs
performance o¥,.;(A). The while-loop coverindlines2-19 better if we can get a feasible solution with a smatjer

tries to improve the solution’s quality until the relativeiad

gap is smaller than a preset thresheldn the k-th iteration, VI. NUMERICAL SIMULATIONS

we first useAlgorithm3 to get the optimal solutiofiz; } of the
dual problem in Eq. (7) regardingd;. (Lines3-4). Then, we
useZg.aq1(Ax) to update the upper-bound, and if the value
of ub has not been updated aftgy, iterations, we divider by
2 (Lines5-11). Next, we construct a feasible solutigri of
the original problem withAlgorithm 4, and update the lower- Section IlI-A has already explained that for a vSDN
boundib according toZ* (Lines12-15). Finally,Lines16-18 G7(V;", E7), our vSDN reconfiguration scheme optimizes the
prepare for the next iteration. transition (.e., from its original VNE.M; to the new oneM?)

to make the transition parallel and hitless, but we do no¢ car
how or for what purposév; is calculated. In other words, our
proposal is independent 0¥1; to the new oneM, for each

In this section, we perform simulations to evaluate the
performance of the multi-stage parallel vSDN reconfigorati

A. Simulation Setup

Algorithm 5: Overall Algorithm Procedure

1k=1,A,=0,v=2,ub=400,lb=0,n=0; GI(V],ET), and thus is generic. Nevertheless, in numerical

2 while 2212 > ~ do simulations, we still need a scenario that can obtain new VNE

3 calculate{p;} with Eq. (6) andAy; schemes as the inputs to our vSDN reconfiguration scheme.

4 solve the optimization in Eq. (7) witAlgorithm Without loss of generality, we choose the load-balancing
3to getZyuai(Ax) and{z;}; scenario considered in [27]. Specifically, in a dynamic SNT,

5 if Zauai(Ax) < ub then the memory usages in S-SWs can become unbalanced due to

6 | ub= Zguar(Ax), n = 0; various reasons [60], and thus the InP needs to invoke vSDN

7 else ifn > T}, then reconfiguration from time to time to re-balance them.

8 | v=v/2,n=0; In the simulations, we consider three SNT topologies with

9 else different sizes,i.e, the 14-node NSFNET topology [28],

10 | n=n+1; and two large-scale random topologies that haoeS-SWs

11 end and 122 SLs (RT-50) and100 S-SWs and496 SLs (RT-

12 get a feasible solutio@* with Algorithm 4; 100), respectively. Each S-SW has a random memory ca-

13 if Z* > b then pacity to accommodat§500,5000] flow-entries, while the

14 | b= 27* bandwidth capacity of each SL is also randomly selected

15 end within [1000, 2000] units. For each vSDN, its number of vSWs

16 calculateyy, with Eq. (11); uniformly distributes within[5, 10], the vSWs are randomly

17 calculateA; with Egs. (8)-(10) and (12); connected with a probability ai.5, the memory requirement

18 kE=k+1; of each vSW is randomly selected withii#0,200] flow-

19 end entries, and the bandwidth demand of each VL is wiftirg0]

units. The parameters above are set according to the realist
] . . cases discussed in [14, 17, 61]. Our simulations consider
The optimal solution of the MCRSG selection problem Caflynamic network environment, where vSDNs are generated

be obtained by directly solving the ILP defined by Eqs. (2kccording to the Poisson traffic modeé., the average arrival
(3). Hence, we can denote the optimal solutionzas. Since rate js)\ vSDNSs per time-unit and each vSDN has an average
the optimization is a maximization problem, the approxionat |ife-time of 1 time-units. Hence, the load of vSDNs can
ratio of Algorithm 5 can be defined as be quantified as% in Erlangs. In order to ensure sufficient
- zZ" (13) statistical accuracy, we average the results feoimdependent
Zip’ runs to get each data point.
where Z* is the feasible solution obtained witAlgorithm The simulations run as follows. When a vSDN first comes
4. Meanwhile, the principle of LR ensures that by solvin§fl, We use an existing VNE algorithm, which is the GRC-VNE
the Lagrangian dual problem witAlgorithm 3, we can get [N [3], to provision it in the SNT. Although GRC-VNE tries
Zawa(Ay) as an upper-bound oty p. The while-loop in 0 eémbed each vSDN such that the substrate resource usages
Algorithm 5 guarantees that the algorithm’s output satisfiescan be balanced in the greedy manner, the dynamic arrivals
and departures of vSDNs will still induce unbalanced memory
- <7, (14) usages in S-SWs. Then, when the unbalanced memory usages
ub get accumulated to certain extent, the InP will leverage the
where we haveub = Zguai(Ax) andib = Z* according to | F-R algorithm in [27] to select certain vSDNs to reconfigure
Lines6 and 14, respectively. Therefore, we can get and calculate the new VNE schemes for them. Hence, for each
7% 7* b selected vSDNZ? (V/", ET), M, is calculated by GRC-VNE

l
~ Zup 2 Tt (AR) b~ 1= (15) at when it first comes in, while\t; is obtained by LF-R at

3

11

. 0.6 0.6
when the InP detects severe unbalanced memory usages in_ o
its SNT. Next, our multi-stage parallel vSDN reconfiguratio ~ & °° 899
scheme kicks in to handle the transition frok, to M. 304 304
203 203
o o
B. Single Operations €02 @ 02
. . - . . A 0.1
We first evaluate an operation of vSDN reconfiguration in 0 20" :%0 NGOb 80 100 0 20“ ‘:_0 N60b 80 100
. . el . . . eration Number eration Number
detail. For the definition of; (i.e., the weight of remapping an (a) MCRSG-prioritized (b) vSW-prioritized

MCRSG SG, successfully), we consider two types: {ij);, =

1, VSG; € SG,}, and 2)p; is set as the number of vSWsFig. 11. Convergence performance of LR-bagégorithm 5 on RT-100.

in SG;. Hence, the first definition motivates the optimization

in Section IV-C to maximize the number of selected MCRSG

(MCRSG-prioritized), while the second one pushes it tocteleparallel stages in each reconfiguration operation at differ

as many vSWs as possible (vSW-prioritized). For the LReads. Meanwhile, to check the effect gfon algorithm per-

based approach iAlgorithm 5, we sety € {0.2,0.5,0.8} as formance, we select its value froff.2,0.5,0.8} and compare

the preset threshold on the relative dual gag,(the condition the results from the multi-stage parallel reconfiguratisimg

to stop iterations), whild}, is empirically set ad5. Algorithm 5, and those from the one using the ILP model in
Section IV-C. Note that, if we use the ILP model to solve

0.9 0 the problem of indeterministic MCRSG selection, the soluiti
&or 807 would be optimal. Figs. 12-14 show the simulation results.
gos ;gos In Figs. 12 and 13, the average number of stages in each
2" 2 operation from the multi-stage parallel reconfiguratiomgs
go.sL é“ioe» Algorithm 5 with v = 0.2 is very close to the optimal result

from that using the ILP model. For RT-100, the scheme using

o
-

20 40 60 80 100 %o 20 40 60 80 100

R W \teration Number the ILP model is too time-consuming, and thus we cannot
(a) MCRSG-prioritized (b) vSW-prioritized obtain optimal solutions with it in that case, but the gehera

trend that the multi-stage parallel reconfiguration become
more efficient for a smalle can still be seen in Fig. 14.

1) Convergence Performancelfe first evaluate the con- Note that, the I(_)ads of VSDNSs in Figs. 12-14 are select
ed to cover the light, medium and heavy loaded network

vergence performance oflgorithm 5. With the simulation) . . :
9 P 9 vironments in each SNT, as indicated by the results in

scenario explained above, we randomly select vSDN reco%f'— ;)) y
figuration cases in SNTs based on the NSFNET, RT-50, a Gb'e Il. Here, "Mem. Usage” and "BW Usage” mean the

RT-100 at when the load of dynamic VSDNs 48, 120 average utilizations of memory and bandwidth resources in
and 240 Erlangs, respectively. Note that, we also test thtge SbNT’ rfesg)ectlvzly, pep.fper MCRhS C"\'/I Crr;eesags tthe a\éertagte
algorithm with other loads, and confirm that its convergen mber of dependencies from eac 0 substrate
performance would not be affected significantly. Figs. éa_ements (5-SWs and SLs) before each vSDN reconfiguration,

11 show the results on convergence performance from tﬂ@d “Non-MbB Ratio® means the average ratio of MCRSGs
simulations with NSFNET, RT-50 and RT-100, respectivelj’.—'at cannot be remapped with MbB in each vSDN recon-
For each SNT, we consider both the MCRSG-prioritized a uration. Megnw_hlle, we can see that the average number
vSW-prioritized definitions of preset weight;. We observe 0 depende_nCIes increases with the load of vSDiN, thg

that for all the simulation scenarios, the relative dual g gpendencies among the MCRSGs beco_me more _comphcated.
becomes less than2 within 20 iterations, and this verifies that owever, our proposal can always realize effective pdralle

: . . - SDN reconfigurations to achieve large degree of conflict
Algorithm 5 converges fast to provide good time-efficiency. V=5 . :
g g P ¢ 4 avoidance (as shown in Figs. 12-14). The results in Table Il

also suggest that for each of the SNTs, the non-MbB ratios are

Fig. 9. Convergence performance of LR-bagddorithm 5 on NSFNET.

0.9 0

s e very low (i.e., below1.5%) in all the simulation scenarios, and
00T © 07 we only have MCRSGs that cannot be remapped with MbB
éo.s §05 when the average usages of substrate resources are tglative
§0_3 éoa high. This further verifies the performance of our proposal.
“0_1 ”‘0.1 3) Time .Complexity:'l.'o compare the algorithmg’ pgrfor-

0 Zoltera‘:i(c)n) ij?n ber80 100 0 20nera‘:ign NS?n berso 100 mance on_tlme c_ompIeX|ty, we _Ilst the average running t_|rme fo

(a) MCRSG-priortized (b) vSW-prioritized different simulation scenarios in Table Ill. Here, eachning

time is the average result from multiple scenarios in Figs. 1

Fig. 10. Convergence performance of LR-bagegorithm 5 on RT-50. 14. For instance, the running time listed in (ILP, NSFNET)
in Table Il is the average result a0 ILP-related scenarios
2) Parallel Reconfiguration Stagesthen, we change the (i.e, 10 combinations ofp; definitions and vSDN loads) in
load of vSDNs in each SNT, apply our multi-stage paralléiig. 12. The results indicate that our LR-based approxomati

vSDN reconfiguration scheme, and get the average numbertforithm is much more time-efficient than solving the ILP,

12

TABLE Il 10 10
RESULTS ONSUBSTRATERESOURCEUSAGES, DEPENDENCIES PER 38 38
MCRSG,AND RATIO OF MCRSGs NOT REMAPPED WITHMBB & &
® 6 6
k] k]
NSFNET g4 B4
Load of vSDNs 20 30 40 50 60 § 2 § 2
Mem. Usage (%) | 42.3 | 54.3 | 65.7 | 74.3 | 85.6 0 0
> 120 180 240 300 360 120 180 240 300 360
BW Usage (/0) 36.7 | 476 | 59.4 | 634 | 734 Load of vSDNs (Erlangs) Load of vSDNs (Erlangs)
Dep. per MCRSG 3.4 4.3 5.1 6.5 7.8 (a) MCRSG-prioritized (b) vSW-prioritized
Non-MbB Ratio (%) | 0 0 | 012] 059 | 1.45]) »
Fig. 14. Average number of parallel stages in each operatidrT-100.
RT-50
Load of vSDNs | 60 | 90 | 120 | 150 | 180 A . TAB'-ET'“ S
VERAGE RUNNING TIME (SECONDS)
Mem. Usage (%) | 34.6 | 47.8 | 65.2 | 79.5 | 87.0 ()
BW Usage (%) 29.2 | 40.1 | 58.2 | 68.1 | 74.0 NSENET | RT-50 | RT-100
Dep. per MCRSG 2.4 3.9 4.5 5.9 6.6 P oLz 94 943
Non-MbB Ratio ¢) | © 0 0 | 024] 075 : i —
v=0.2 0.096 0.287 1.230
RT-100 ~—=05| 0042 | 0.098 | 0263
Load of vSDNs 120 | 180 | 240 | 300 | 360 ~ =038 0.032 0.062 0.175
Mem. Usage (%) | 32.3 | 47.7 | 64.9 | 78.2 | 88.1
BW Usage (%) 26.7 | 39.8 | 56.8 | 67.3 | 75.2
Dep. per MCRSG | 2.4 | 37 | 40 | 46 | 56 blocking probability of vSDNs. To ensure that the blocking
Non-MbB Ratio ¢5) | 0 0 0 | 014|035 probabilities are in the range ¢f0—*,10~!], we reduce the

bandwidth demand of each VL to be withid, 10] units.
We compare the performance of the SNT with and without

i.e, the running time could be reduced by more than twamulti-stage parallel vSDN reconfiguration. When vSDN re-
magnitudes. Meanwhile, since a smalemeans that the LR- configuration is enabled, the operations are triggeredyever
based algorithm needs to run more iterations to reduce tff#, 100,200} time-units. Hence, we denote the corresponding
relative dual gap, the running time decreases with

14

(o2}

es
N

2
0
8
6

Number of Sta

4
2

020 30 40 50

60

14

Number of Stage

20 30

40

60

Load of vSDNs (Erlangs)

Load of vSDNs (Erlangs)

algorithms as LF-R-Parallel-50, LF-R-Parallel-100, anfé- L
R-Parallel-200, respectively. Figs. 15 shows the resufts o
blocking probability, which confirms that multi-stage péeh
vSDN reconfiguration can reduce the blocking probability.

(a) MCRSG-prioritized (b) vSW-prioritized

Blocking Probability

& wio LF-R-Parallel

£ LF-R-Parallel-200
LF-R-Parallel-100

¥ LF-R-Parallel-50

60 90 120 150 180
Load of vSDNs (Erlangs)

Fig. 12. Average number of parallel stages in each operatiddSFNET.

-
N

810 @< 02 810 @ 0.2

g gl@7=05 g glm1=05 Fig. 15. Results on blocking probability.

@ "/m7=08 @ “m7=0.8

o 6 S 6

£ 4 34

E E VII. EXPERIMENTAL DEMONSTRATIONS

P4 z
009012050180 R T T BT Although numerical simulations have already verified the

effectiveness of our multi-stage parallel vSDN reconfigjora

its practicalness cannot be confirmed without experimental

investigations. Moreover, experiments can reveal theraetge

performance on the overall reconfiguration latency and giack

loss rate during reconfiguration, which cannot be simulated

Therefore, we expand the NVH system developed in [27] to

C. Dynamic Operations enable multi-thread based parallel operations, and imgihem
Next, we conduct dynamic simulations to confirm tha@ur multi-stage parallel vSDN reconfiguration scheme in it.

multi-stage parallel vSDN reconfiguration is beneficial he t

operation of SNT. This time, we use RT-50 as the SNTA- Experimental Setup

topology, run the network fo, 000 time-units to embed, Fig. 16 shows the experimental setup, where the NVH can

reconfigure and remove dynamic vSDNs, and collect theverage the multi-thread scheme to remap multiple vSWs

Load of vSDNs (Erlangs)
(b) vSW-prioritized

Load of vSDNs (Erlangs)
(a) MCRSG-prioritized

Fig. 13. Average number of parallel stages in each operatidrT-50.

13

and VLs {.e. either in the same vSDN or multiple vSDNSs)
simultaneously. The SNT consists of six S-SWs, each of
which is based on a software-based SDN switch running on
an independent high-performance Linux server. As inditate
in Fig. 16, the experiments set up three vSDNs with chain
topologies, and let each vSDN carry an active traffic flow 0160 260 300 460 500 660 700 860985600
with a throughput ofl Mbps. Before vSDN reconfiguration, Time (ms)

all of the flows go througts-SW< and 3, while the vSDN (a) Sequential vSDN reconfiguration
reconfiguration remaps all the vSWs mappeds8W< and

3 to S-SWs6 and 5, respectively. In addition to the active
flows, we also install a fixed number of flow-entries in each
vSW, to emulate the background traffic.

Bandwidth (Mbps)

0

Bandwidth (Mbps)
N

vSDN 1 VSDN 2 vSDN 3 1r
/éo_oé/ /é@ oé/ M/ % 100 200 300 400 500 600 780 860 850 00
Time (ms)
[N NVH ,] (b) Parallel vSDN reconfiguration
Fig. 17. Bandwidth of traffic going through-SW2 during vSDN remapping.

1400 T T
1200 4 Sequantial Reconfiguration

B Parallel Reconfiguration
1000

800
600
40 £l
200

Flow 1: Host 1 —»e—»o—»@—»@‘»Host 4
&P S-SW Flow2: Host2—€)——@—C) —>Host5
Flow3: Host3——€)—(P——E P —Host 6

Reconfiguration Latency (ms)

O 1 1 1 1
1000 2000 3000 4000 5000 6000
Total Number of Flow-entries to Move

Fig. 16. Experimental setup.

. . . Fig. 18. Results on reconfiguration latency.
B. Benefits of Parallel Reconfiguration

We first conduct an experiment to verify that the NVH can
realize parallel vSDN reconfiguration. In this experiment, C. Tradeoff between Latency and Packet Losses
first install 500 flow-entries on each vSW to reconfigure, and

then invoke the parallel reconfiguration. During the trdosj packet losses, packet losses might not be completely avoide
we record the total bandwidth of the traffic going throuh due to the inconsistency of packet handling during the feral

SW2. Fig. 17 compares the experimental results of sequenti : ; o ; ,
and parallel vSDN reconfigurations. In Fig. 17(a), the sequev DN reconfiguration. More specifically, if the traffic flows

tial reconfiguration takes-600 ms, and the three bandwdthaﬁeCted. by. a vSDN reconflguratlpﬂ have Ionger end-to-end
A : ound-trip-time (RTT), the probability that their packegst
drops clearly indicate the remappings of the three vSDNs. On ; . . .
. R andled inconsistently because of the vSDN reconfiguration
the other hand, the parallel reconfiguration in Fig. 17(dyon_ :
L . -~ will become larger. In other words, the packet loss raterdyri
consumes-100 ms, which is much more time-efficient. vSDN reconfiguration will increase with the longest end
Next, we make the vSDN reconfiguration to move a tot 9 9

number of [1000, 6000] flow-entries, and measure the tota| 0-end round-trip-time (RTT) of the affected traffic flows

reconfiguration latency, which the total time needed to &m ZIZ; Meea?n;;/tzlrlee’aihhesgczr‘;'?rt]eenCgr;];e?sgée& ?;Cnodrilfr']g glt”
all the three vSDNs with MbB. Fig. 18 shows the result; pp 9 P 190

s, which still clearly indicate the better time-efficiency oli-€. the related flow-entries/tables have been updated in the
parallel reconfiguration. Specifically, the latency of plata nglfstp%nsdslensg bsefa\l/L\leze :;c(:jh tztuas ét g;?]utje n;écg;:#slfssggevr;
reconfiguration not only is much shorter than that of seq'allentp 9 P y

reconfiguration, but also increases much slower with tha! togwckly (within a few hundred miliiseconds in Fig. 18).

number of flow-entries to move. Note that, the reconfiguratio To check how hitless our parallel VS.DN reconfigurat?on s,
latency in Fig. 18 for moving, 000 flow-entries in total is we conduct more experiments. Specifically, we intentignall

longer than that obtained by observing Fig. 17, for both tH’gcrease the end-to-end RTT of the traffic flows, perform the

sequential and parallel schemes. This is because the yate! %rallel vSDN reconfiguration again, and measure the packet
shown in Fig. 18 is measured by considering the who gss rate during the transitidnFig. 19 shows the experimental

procedure of MbB, while the third step of MbB, which is to , _ _ _
Here, packet losses are transient as they only happen dhgnmgmapping,

remove the original VSWS and VI-Sv might not have significaghy pecause the reconfiguration latency is always less tharsecond, we
impacts on the bandwidth of active traffic flows. average the packet loss rate within a second.

Finally, even though we leverage MbB and MtV to minimize

14

results, which show that the packet loss rate increases wifi’-hardness. Then, we designed an approximation algorithm
the end-to-end RTT. This is because if the end-to-end RTThased on Lagrangian relaxation to solve the problem time-
relatively long, some packets might still be transmittingtbe efficiently. Extensive simulations verified that the propods
original path when the third step of MbB is invoked to removalgorithm can obtain near-optimal solutions quicklg., for

the original vSWs and VLs. Hence, to reduce the packet loasrelatively large SNT with100 S-SWs, it can reduce the
rate, we should insert certain waiting time in between thelative dual gap belov.2 within only 20 iterations. More-
second and third steps of MbB. However, this would increasser, we also considered the system implementation of our
the total reconfiguration latency. Hence, we can see that fmoposed algorithms, realized the multi-stage paralldDNS
vSDN reconfiguration, if the longest end-to-end RTT is fixedeconfiguration in a practical NVH system, and demonstrated
there is a tradeoff between the total reconfiguration latenits performance in a real network testbed. Our experimental
and the packet loss rate during remapping. study analyzed the tradeoff between reconfiguration Igtenc
and packet loss rate, and revealed an empirical method to
adjust key parameters of our NVH system, for adapting to

10

9F p . .
<8l various network environments.
2 7r Meanwhile, we hope to point out that this work still has
T
6 some unresolved issues, which will be addressed in ourdutur

Sa | work. Firstly, the overall procedure of the multi-stage gl
vSDN reconfiguration inAlgorithm 1 operates in the greedy
manner. Therefore, it will be interesting to optimize thell
procedure towards a specific objectived, minimizing the
number of parallel reconfiguration stages) and design actexa
or approximation algorithm for the optimization. Secondly
the algorithms designed in this work do not care how the
new VNE schemes for vSDN reconfiguration were calculated.
Hence, we use experiments to find out the shortest waitiddthough this brings some advantagesg, simplifying the
time that can make the vSDN reconfiguration in Fig. 16 conalgorithm design, and supporting modular design of the NVH
pletely hitless ite., the packet loss rate during the transition isystem), it would still be relevant to study the optimizatio
zero), for both the sequential and parallel schemes. Tla tahat jointly considers the calculations of new VNE schemes
waiting time is plotted in Fig. 20, which indicates that thend reconfiguration procedure. Hence, our future work will
parallel vSDN reconfiguration balances the tradeoff betweaddress the joint optimization and try to balance the tréideo
the total reconfiguration latency and the packet loss rat@glu between the reconfiguration and operational costs of vSDNs.
remapping better. This is still because parallel reconéition
can remap the vSDNs with much fewer MbB operations.

100 120 140 160 180

End-to-end RTT (ms)

40 60 80 200

Fig. 19. Packet loss rate during parallel vSDN reconfiganati

ACKNOWLEDGMENTS

This work was supported in part by the NSFC
projects 61871357, 61771445 and 61701472, ZTE Research
Fund PA-HQ-20190925001J-1, Zhejiang Lab Research Fund
2019LEOABO1, CAS Key Project (QYZDY-SSW-JSCO003),
and SPR Program of CAS (XDC02070300).

w
=3
=}

$Sequential Reconfiguration
& Parallel Reconfiguration

N
a
o

T)
a o a o
S © o o

Total Waiting Time (ms)

80 100 120 140 160 180 REFERENCES
End-to-end RTT (ms)

60

20 40 200

[1] P. Lu et al, “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter net®grkEEE Netw,
vol. 29, pp. 36-42, Sept./Oct. 2015.

W. Lu et al,, “Al-assisted knowledge-defined network orchestration fo
energy-efficient data center network$Z2EE Commun. Mag.vol. 58,
pp. 86-92, Jan. 2020.

Fig. 20. Extra waiting time to ensure zero packet loss.

(2]

VIIl. CONCLUSION AND FUTURE WORK [3]

In this paper, we optimized the transition to migrate vSDNs
from their original VNE schemes to the new ones, and4]
proposed a scheme that can realize parallel and hitless vSDN
reconfiguration in a resource-efficient manner, by leverggi s,
the “make-before-break” scenario. To resolve the issues of
one-stage parallel reconfiguration, we proposed a mualgest
parallel vSDN reconfiguration scheme based on MCRSd?]
which operates in the greedy manner to let the InP select the
most weighted MCRSGs to reconfigure in parallel in each
stage. The optimization to select MCRSGs to reconfigure iﬁ]
each stage was formulated as an ILP model, and we proved its

L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekingtual
network embedding algorithm via global resource capédityProc. of
INFOCOM 2014 pp. 1-9, Apr. 2014.

N. McKeown et al, “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rewol. 38, pp. 69-74,
Mar. 2008.

M. Chowdhury and M. Rahman, “ViNEYard : Virtual Networknk
bedding Algorithms With Coordinated Node and Link Mapping,
IEEE/ACM Trans. Netw.vol. 20, pp. 206-219, Jan. 2012.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel locationrstrained
virtual network embedding (LC-VNE) algorithms towards eigtated
node and link mapping,JEEE/ACM Trans. Netw.vol. 24, pp. 3648—
3661, Dec. 2016.

L. Gong and Z. Zhu, “Virtual optical network embedding@XE) over
elastic optical networksJ. Lightw. Techno).vol. 32, pp. 450-460, Feb.
2014.

(8]

(9

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-ane survivable
virtual network embedding (A-SVNE) in optical datacentetworks,”
J. Opt. Commun. Netywol. 7, pp. 1160-1171, Dec. 2015.

M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-typeF/fdrwarding
graphs in inter-DC elastic optical networksg,”Lightw. Techno].vol. 34,
pp. 3330-3341, Jul. 2016.

Z. Zhu et al, “Demonstration of cooperative resource allocation in
OpenFlow-controlled multidomain and multinational SD{&@stbed,”
J. Lightw. Techno].vol. 33, pp. 1508-1514, Apr. 2015.

N. Xue et al, “Demonstration of OpenFlow-controlled network orches{36]
tration for adaptive SVC video manycastEEE Trans. Multimedia

(33]

[34]

ab35]

vol. 17, pp. 1617-1629, Sept. 2015. [37]
S. Li et al, “Improving SDN scalability with protocol-oblivious sote
routing: A system-level studyfEEE Trans. Netw. Serv. Managol. 15, (38]
pp. 275-288, Mar. 2018.

R. Jain and S. Paul, “Network virtualization and softevadefined (39]
networking for cloud computing: a surveyJEEE Commun. Mag.

vol. 51, pp. 24-31, Nov. 2013. [40]

H. Huang et al, “Realizing highly-available, scalable and protocol
independent vSDN slicing with a distributed network hypsov sys-

tem,” IEEE Accessvol. 6, pp. 13513-13522, 2018. [41]
Z. Zhu et al,, “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netywol. 10, pp. A206—

A215, Feb. 2018. 42]
A. Fischeret al, “Virtual network embedding: A survey/EEE Com-
mun. Surveys Tutsvol. 15, pp. 1888—-1906, Fourth Quarter 2013. [43]
A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Sawon network
virtualization hypervisors for software defined netwotkinlEEE Com-
mun. Surveys Tutsvol. 18, pp. 655-685, First Quarter 2016. [44]

D. Kim et al, “Generic external memory for switch data planes,” in
Proc. of ACM HotNets 2018p. 1-7, Nov. 2018.

E. Spitznagel, D. Taylor, and J. Turner, “Packet clasatiion using
extended TCAMSs,” inProc. of ICNP 2003 pp. 120-131, Nov. 2003.

J. Yin et al, “Experimental demonstration of building and operating46]
QoS-aware survivable vSD-EONs with transparent resyign©pt.
Express vol. 25, pp. 15468-15 480, 2017.

B. Konget al,, “Demonstration of application-driven network slicingdan
orchestration in optical/packet domains: On-demand vDgaegion for
Hadoop MapReduce optimizationQpt. Expressvol. 26, pp. 14066— [48]
14085, 2018.

K. Han et al, “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based melédge com-
puting,” IEEE Accessvol. 6, pp. 26 567-26 577, 2018.

S. Zhaoet al., “Make Big Data applications more reliable: Hitless vSDN

[45]

[47]

[49]

migration to avoid TCAM depletion,” irProc. of ICC 2018 pp. 1-6, [50]
May 2018.

M. Demirci and M. Ammar, “Design and analysis of techmeg for map- [51]
ping virtual networks to software-defined network subssAtComput. [52]

Commun. vol. 45, pp. 1-10, Mar. 2014.
H. Huanget al, “Embedding virtual software-defined networks over,

distributed hypervisors for vDC formulation,” iAroc. of ICC 2017 pp. (53]
1-6, May 2017.

M. Zhang, C. You, H. Jiang, and Z. Zhu, “Dynamic and adept 54]
bandwidth defragmentation in spectrum-sliced elastidgcapnetworks

with time-varying traffic,”J. Lightw. Techno].vol. 32, pp. 1014-1023,

Mar. 2014. [55]
S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitlesSDN
reconfiguration to balance substrate TCAM utilization: riralgorithm [56]

design to system prototypelEEE Trans. Netw. Serv. Managol. 16,
pp. 647-660, Jun. 2019. [57]
Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic servicepisioning

in elastic optical networks with hybrid single-/multi-parouting,” J. (58]
Lightw. Technol.vol. 31, pp. 15-22, Jan. 2013.
L. Gonget al,, “Efficient resource allocation for all-optical multicasy [59]

over spectrum-sliced elastic optical networkd,"Opt. Commun. Netw. [60]
vol. 5, pp. 836-847, Aug. 2013.

Y. Yin et al, “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical netapri. Opt. [61]
Commun. Netw.vol. 5, pp. A100-A106, Oct. 2013.

X. Gaoet al, “A new algorithm with coordinated node and link mapping

for virtual network embedding based on LP relaxation,Pic. of ACP

201Q pp. 152-153, Dec. 2010.

G. Chochlidakis and V. Friderikos, “Low latency virlupetwork em-
bedding for mobile networks,” ifProc. of ICC 2016 pp. 1-6, May
2016.

15

R. Lin, C. Du, S. Wang, and S. Luo, “Virtual network embledy in
flexi-grid optical networks,” inProc. of ICCT 2017 pp. 777-782, Oct.
2017.

J. Yin et al, “On-demand and reliable vSD-EON provisioning with
correlated data and control plane embedding,Pinc. of GLOBECOM
2016 pp. 1-6, Dec. 2016.

Y. Xue, J. Peng, K. Han, and Z. Zhu, “On table resourcéusiization
and network slicing in programmable data plankEE Trans. Netw.
Serv. Manag.vol. 17, pp. 319-331, Jan. 2020.

R. Sherwoockt al, “FlowVisor: A network virtualization layer,Open-
Flow Switch Consortium, Tech. Repp. 1-13, 2009.

A. Al-Shabibi et al, “OpenVirteX: Make your virtual SDNs pro-
grammable,” inProc. of ACM HotSDN 2014pp. 25-30, Aug. 2014.

P. Bosshartt al, “P4: Programming protocol-independent packet pro-
cessors,"Comput. Commun. Rewol. 44, pp. 87-95, Jul. 2014.

S. Li et al, “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmabilityEEE Netw, vol. 31, pp.
12-20, Mar./Apr. 2017.

D. Hancock and J. Merwe, “HyPer4: Using P4 to virtualitee pro-
grammable data plane,” iRroc. of CONEXT 2016pp. 35-49, May
2016.

P. Berdeet al, “ONOS: Towards an Open, Distributed SDN OS,” in
Proc. of ACM HotSDN 2014pp. 1-6, Aug. 2014.

S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: flow-tablertialization

in POF-based vSDN hypervisor (PVX),” iroc. of ICNC 2018pp. 1-
5, Mar. 2018.

Y. Xue et al, “Virtualization of table resources in programmable data
plane with global consideration,” ifPfroc. of GLOBECOM 2018pp.
1-6, Dec. 2018.

S. Lietal, “SR-PVX: A source routing based network virtualization hy
pervisor to enable POF-FIS programmability in vSDNEEE Access
vol. 5, pp. 7659-7666, 2017.

B. Boughzaleet al., “OpenFlow supporting inter-domain virtual machine
migration,” in Proc. of WOCN 2011pp. 1-7, May. 2011.

S. Zhanget al, “Fast network flow resumption for live virtual machine
migration on SDN,” inProc. of ICNP 2015pp. 446-452, Nov. 2015.
C. Benet, K. Noghani, and A. Kassler, “Minimizing liveMW migration
downtime using OpenFlow based resiliency mechanismspPruc. of
CloundNet 2015pp. 27-32, Oct. 2016.

L. Jiao et al, “Smoothed online resource allocation in multi-tier dis-
tributed cloud networks,IEEE/ACM Trans. Netw.vol. 25, pp. 2556—
2570, Aug. 2017.

M. Zangiabady, C. Aguilar-Fuster, and J. Rubio-LoyolA virtual
network migration approach and analysis for enhanced enlirtual
network embedding,” ifProc. of CNSM 2016pp. 324-329, Oct. 2016.
P. Pisaet al,, “OpenFlow and Xen-based virtual network migration,” in
Proc. of IFIP 2010 pp. 170-181, Jun. 2010.

R. Mijumbi et al, “Dynamic resource management in SDN-based
virtualized networks,” inProc. of CNSM 2014pp. 412-417, Nov. 2014.
S. Ghorbaniet al, “Transparent, live migration of a software-defined
network,” in Proc. of SOCC 2014pp. 1-14, Nov. 2014.

S. Lo, M. Ammar, E. Zegura, and M. Fayed, “Virtual netkanigration
on real infrastructure: A PlanetLab case study,Proc. of IFIP 2014
pp. 1-9, Jun. 2014.

M. Zhang, C. You, and Z. Zhu, “On the parallelization glestrum de-
fragmentation reconfigurations in elastic optical netegrkEEE/ACM
Trans. Netw. vol. 24, pp. 2819-2833, Oct. 2016.

A. Freville, “The multidimensional 0-1 knapsack prefl: An
overview,” Eur. J. Oper. Resvol. 155, pp. 1-21, May 2004.

B. Korte and R. Schrader, “On the existence of fast axipmation
schemes,” ilfNonlinear Programming 4 Elsevier, 1981, pp. 415-437.
H. Kellerer, U. Pferschy, and D. Pisinger, “Multidimganal knapsack
problems,” inKnapsack Problems Springer, 2004, pp. 235-283.

M. Held, P. Wolfe, and H. Crowder, “Validation of subgdiant opti-
mization,” Math. Program, vol. 6, pp. 62—-88, Feb. 1974.

D. BertsekasNonlinear Programming Athena Scientific, 1999.

H. Huanget al,, “Cost minimization for rule caching in software defined
networking,”IEEE Trans. Parallel Distrib. Systvol. 27, pp. 1007-1016,
Apr. 2016.

L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compilipgcket
programs to reconfigurable switches,”fmoc. of NSDI 2015pp. 103—
115, May 2015.

