
1

On Parallel and Hitless vSDN Reconfiguration
Sicheng Zhao, Xing Wu, and Zuqing Zhu,Senior Member, IEEE

Abstract—The symbiosis of network virtualization and
software-defined networking (SDN) enables an infrastructure
provider (InP) to build various virtual software defined networks
(vSDNs) over a shared substrate network (SNT). To handle a
dynamic network environment, the InP may need to reconfigure
the mapping schemes of vSDNs for a variety of reasons. Although
previous studies have addressed how to calculate the new virtual
network embedding (VNE) schemes for vSDN reconfiguration
under different objectives, the transition to migrate vSDNs from
their original VNE schemes to new ones is still under-explored.

Hence, this paper studies how to realize parallel and hitless
vSDN reconfiguration, by leveraging the “make-before-break”
scenario. We come up with a generic solution to optimize the
transition to remap vSDNs to new VNE schemes, such that the
remappings can be done in the parallel, hitless and resource-
efficient manner, as long as the new VNE schemes are feasible.
More specifically, our proposal is the multi-stage parallelvSDN
reconfiguration based on maximal connected reconfigurable sub-
graph (MCRSG). To ensure the efficiency of our proposal, we
formulate the optimization for selecting MCRSGs to reconfigure
in each stage, and prove theNP-hardness of the problem. Then,
we design an approximation algorithm based on Lagrangian
relaxation to solve it time-efficiently. Extensive simulations verify
that the proposed algorithm can obtain near-optimal solutions
quickly. In addition to the algorithmic study, we also realize our
multi-stage parallel vSDN reconfiguration in a practical NVH
system, and demonstrate its performance in a real network
testbed. Our experimental study identifies in what condition
losing of packets during remapping would be inevitable, studies
the tradeoff between reconfiguration latency and packet loss rate,
and reveal an empirical method to adjust key parameters of our
NVH system, for adapting to various network environments.

Index Terms—Network virtualization, Software-defined net-
working (SDN), Parallel and hitless vSDN reconfiguration, La-
grangian relaxation, Approximation algorithm.

I. I NTRODUCTION

A FTER many years of development, the Internet is now
facing numerous challenges, most of which cannot be

addressed with traditional network control and management
(NC&M) mechanisms [1, 2]. Hence, to prevent the ossifica-
tion of Internet infrastructure, people turned to develop new
network technologies. Among them, the two most-referred-
to ones are network virtualization [3] and software-defined
networking (SDN) [4]. Network virtualization transforms the
conventional ISPs into infrastructure providers (InPs) and
service providers (SPs). An InP owns one substrate network
(SNT), and it can slice the SNT into logically-isolated virtual
networks (VNTs) with virtual network embedding (VNE) [5,
6], and lease them to the SPs to satisfy their demands [7–
9]. SDN takes the features of NC&M out of each network
element to build a logically-centralized control plane, and

S. Zhao, X. Wu, and Z. Zhu are with the School of Information Science
and Technology, University of Science and Technology of China, Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on November 10, 2019.

makes network elements operate according to the instructions
from the control plane, for ensuring enhanced programmability
and application-awareness in various networks [10–12].

Network virtualization and SDN are mutually beneficial
[13–15]. This makes an InP provision software-defined VNTs,
i.e.,virtual software-defined networks (vSDNs), to the SPs that
subscribe to its service. To build vSDNs over its SNT, the
InP needs a VNE algorithm [16] and a network virtualization
hypervisor (NVH) [17]. The VNE algorithm determines how
to allocate the memory resources on substrate switches (S-
SWs) to compose virtual switches (vSWs) (i.e., node map-
ping), and how to route virtual links (VLs) over substrate
links (SLs) and assign bandwidth to them (i.e., link mapping).
The memory resources concerned in the node mapping usually
refer to the ternary content-addressable memory (TCAM) and
static random-access memory (SRAM), which store flow-
entries/tables in S-SWs. Note that, due to the power consump-
tion and cost of TCAM and SRAM, their amounts are usually
very limited in an S-SW [18, 19]. For instance, the memory
resource in a start-of-art commercial SDN-based S-SW can
usually only accommodate a few thousands of flow-entries at
most [18]. The NVH translates the control communications
between S-SWs and virtual controllers (vCs) of vSDNs [17]
to implement the node and link mappings.

The algorithmic studies on VNE and the system designs
of NVH have already been covered comprehensively in the
literature [16, 17]. However, since an SNT usually possesses
dynamic network environment, its InP might need to recon-
figure the VNE schemes of vSDNs, for a variety of reasons.
The first example is for fault tolerance and failure recovery
[20]. Since various failures can happen in a production SNT
due to random faults, human errors or even malicious attacks,
the InP needs to migrate the affected vSDNs to minimize
service disruptions. The second example is for service upgrad-
ing/downgrading [21] and mobility support [22]. Specifically,
an SP may request to add/remove vSWs/VLs in its vSDN, and
it may also hope to relocate some of its vSWs/VLs to adapt
to the movement of its clients. The last example is for bal-
ancing the usages of substrate resources [23]. As TCAM and
SRAM are very limited hardware resources in S-SWs [18], the
memory provided by them for storing flow-entries/tables could
become the bottleneck resources in vSDN slicing. Therefore,
without dynamic load-balancing, the memory capacity of an
S-SW could be insufficient to accommodate all the active flow-
entries/tables from its vSWs during rush hours.

To the best of our knowledge, the existing algorithmic stud-
ies on vSDN reconfiguration only addressed how to calculate
the new VNE schemes for vSDNs under various objectives,
but have not considered the transition to migrate vSDNs from
their original VNE schemes to the new ones. We argue that
to realize high-performance vSDN reconfiguration in practical

2

systems, it is very important for the InP to carefully handle
the remapping transition of each vSDN. More specifically, it
is desired that the InP handles the transition with paralleland
hitless vSDN reconfiguration. Here, “parallel reconfiguration”
means to reconfigure multiple vSWs and VLs simultaneously,
while “hitless reconfiguration” refers to the one whose re-
sulting packet losses are very few or even zero. The demand
for parallel reconfiguration comes from the fact that the InP
might need to remap a few vSWs and VLs in a vSDN or
even multiple vSDNs within a short period of time (e.g., for
failure recovery or load-balancing). Hence, parallelizing the
remapping operations would bring in benefits such as short
reconfiguration latency, low operational complexity, and less
disruption to the services of vSDNs. The rationale behind the
demand for hitless reconfiguration is also obvious,i.e., vSDNs
can carry live traffic and thus any service disruptions on their
vSWs and VLs would affect their quality-of-service (QoS).

However, since there are complex dependencies among
vSWs, VLs, S-SWs and SLs, it is never easy to achieve parallel
vSDN reconfiguration. For instance, remapping a vSW will
change the link mapping schemes of all the VLs that use it
as an end-node, which will in turn affect the resource usages
on many SLs and S-SWs1. Moreover, if we want the parallel
reconfiguration to be hitless, we will need to leverage the
“make-before-break” scenario [26]. Specifically, the InP first
builds new vSWs and VLs in new locations, then redirects
the traffic passing through original vSWs and VLs to use the
new ones, and finally removes the original ones from the SNT
[27]. Hence, vSWs and VLs can be remapped in the hitless
way. Nevertheless, make-before-break further complicates the
dependencies among vSWs, VLs, S-SWs and SLs, and makes
parallel reconfiguration even more difficult. Last but not least,
when parallel vSDN reconfiguration is considered, the make-
before-break scenario might consume too many redundant
resources because the original vSWs and VLs cannot be torn
down before the new ones are up and operational.

In this work, we aim to realize parallel and hitless vSDN
reconfiguration. Specifically, we optimize the transition to
remap vSDNs, regardless of how or for what purpose the new
VNE schemes were computed. In other words, our proposal
is so generic that for a given set of vSDNs, it can remap them
to arbitrary VNE schemes in the parallel, hitless and resource-
efficient manner, as long as the schemes are feasible. We
consider both algorithm design and system implementation.

As for the algorithm design, we first analyze the problem
of parallel and hitless vSDN reconfiguration, and point out the
issues of one-stage parallel reconfiguration. Then, to address
the issues, we propose a multi-stage parallel vSDN reconfigu-
ration scheme based on the maximal connected reconfigurable
subgraph (MCRSG). Here, an MCRSG refers to a maximal
structure in a vSDN, which is built with connected vSWs and
VLs concerned in a reconfiguration. Next, we consider how
to select MCRSGs to reconfigure in each stage, and prove its
NP-hardness. Hence, we develop an approximation algorithm

1Each VL consumes bandwidth resources on each of the SLs alongthe
substrate path that it is embedded on, while in addition to the S-SWs that carry
its two end vSWs, the VL also uses memory resources in all the intermediate
S-SWs along its substrate path [24, 25].

based on Lagrangian relaxation, for improved time-efficiency.
Simulation results confirm that for problems with relatively
large sizes, our approximation algorithm can obtain near-
optimal solutions within reasonable numbers of iterations. We
also conduct extensive simulations to evaluate the performance
of our proposal in dynamic network environments.

As for the system implementation, we expand our NVH
system designed in [27] to facilitate parallel vSDN reconfigu-
ration, and experimentally demonstrate it in a network testbed
that consists of six S-SWs. Experimental results indicate that
compared with sequential reconfiguration, our parallel vSDN
reconfiguration effectively reduces the reconfiguration latency.
We also conduct experiments to identify in what condition los-
ing of packets during remapping would be inevitable, study the
tradeoff between reconfiguration latency and packet loss rate,
and reveal an empirical method to adjust key parameters of our
NVH system, for adapting to various network environments.

The major contributions of our work can be summarized as:

• To the best of our knowledge, our proposal is the first
work to realize parallel and hitless vSDN reconfiguration
in the resource-efficient manner.

• We propose a novel multi-stage parallel vSDN reconfig-
uration scheme based on MCRSG to address the issues
of one-stage parallel vSDN reconfiguration.

• To ensure the efficiency of our multi-stage parallel vSDN
reconfiguration, we design the optimization to select
MCRSGs in each stage, and prove itsNP-hardness.

• We design an approximation algorithm based on La-
grangian relaxation to solve the problem of MCRSG se-
lection time-efficiently, and simulation results verify that
the algorithm can obtain near-optimal solutions quickly.

• We realize the multi-stage parallel vSDN reconfiguration
in an NVH system for experimental demonstrations.

The rest of the paper is organized as follows. We survey
the related work briefly in Section II. Section III describes
the problem of parallel and hitless vSDN reconfiguration. Our
proposed multi-stage parallel vSDN reconfiguration schemeis
introduced in Section IV. Since the selection of indetermin-
istic MCRSGs to reconfigure, which is a subproblem in our
proposal, isNP-hard, we leverage Lagrangian relaxation to
solve it time-efficiently in Section V. Section VI discusses
the numerical simulations for performance evaluation, while
the experimental demonstrations and studies are presentedin
Section VII. Finally, we summarize the paper in Section VIII.

II. RELATED WORK

For network virtualization, VNE is the fundamental problem
and it has been studied intensively with various networks as
the SNT [3, 5–8]. Compared with the VNE in packet networks,
the VNE in optical networks (e.g., the fixed-/flexible-grid
wavelength-division multiplexing networks [28–30]) could be
more complex since the link mapping involves routing and
spectrum assignment, which itself is anNP-hard problem.
The studies in [31–33] proposed algorithms based on decom-
positions and Lagrangian relaxation to solve the VNE problem.
Although the mathematical methods are similar, our problem
is not about VNE and thus it is fundamentally different from

3

those studied in [31–33]. For a comprehensive survey on the
existing VNE algorithms, one is suggested to refer to [16].

The symbiosis of network virtualization and SDN leads
to the creation of vSDNs [13], which brings new challenges
to VNE algorithm design. In [24], the authors pointed out
that in addition to the S-SWs carrying its end vSWs, each
VL in a vSDN also consumes memory resources in all the
intermediate S-SWs along the substrate path that it is em-
bedded on. Considering the dependency between the control
and data planes of vSDNs, the studies in [25, 34] tackled
the problems of correlated data and control plane embedding.
More recently, to address the memory fragmentation in S-SWs
with programmable data plane (PDP), Xueet al.[35] leveraged
“Big-Switches” to design a three-layer VNE scheme, which
could realize resource-efficient vSDN creation. Nevertheless,
all these studies are orthogonal to this work, because they did
not investigate the transition to realize vSDN reconfiguration.

With VNE algorithms, an InP can use an NVH system
to create vSDNs over its SNT. Due to the benefits of this
approach, numerous studies have been dedicated to develop-
ing effective and powerful NVH systems [17]. Initially, the
development efforts were focused on designing NVH systems
to support the creation of OpenFlow-based vSDNs,e.g., the
FlowVisor [36] and OpenVirteX [37]. Later on, the designs
tried to make NVH compatible with PDP. Here, PDP refers
to the packet processing and forwarding elements that have
powerful programmable features to remove the dependence on
existing protocols, such as P4 [38] and protocol-independent
forwarding (POF) [39]. HyPer4 [40] was designed to slice
vSDNs over the S-SWs that are based on P4-based PDP.
Meanwhile, by leveraging famous open-source projects such
as OpenVirtex and ONOS [41], people have also come up with
various NVH systems that support POF [14, 42–44]. However,
none of the aforementioned NVHs have been demonstrated
to support parallel and hitless vSDN reconfiguration. This
is because without a sophisticated algorithm to sort out the
dependencies among vSWs, VLs, S-SWs and SLs, NVH can
hardly make the remapping of vSWs and VLs satisfy the two
conflicting demands (i.e., parallel and hitless) simultaneously.

Previously, the studies in [45–47] considered how to migrate
virtual machines (VMs) in SDNs, but these approaches did not
address the vSDN reconfiguration that remaps VLs and vSWs
simultaneously. Jiaoet al. [48] tackled the online resource
allocation in multi-tier distributed cloud networks, to jointly
optimize the reconfiguration cost and the operational cost of
the target configuration. However, the background was still
not vSDN reconfiguration. The authors of [49] studied how to
calculate the new VNE schemes for realizing VNT reconfigu-
ration in a dynamic network environment. The studies in [50,
51] tried to achieve vSDN reconfiguration with the help of
vSDNs’ vCs. However, since a vC cannot have a global view
of the SNT, it would have difficulty determining when and how
to reconfigure its vSDN. The system developed in [52] could
realize SDN migration, but it did not put network virtualization
into consideration. Loet al. [53] considered vSDN recon-
figuration based on a network virtualization scenario that is
different from ours,i.e., instead of being created by slicing S-
SWs, the vSWs were all software-based ones that needed to be

instantiated in VMs. In our previous work [23, 27], we studied
how to calculate new VNE schemes for vSDNs such that the
memory resource usages in an SNT can be re-balanced by
leveraging sequential vSDN reconfiguration operations based
on make-before-break. Nevertheless, the solution was neither
generic nor parallel. Therefore, to the best of our knowledge,
the problem of parallel and hitless vSDN reconfiguration has
not been explored yet, especially when the algorithm design
needs to be considered together with system implementation.

NVH

ca
b

vSDN 1S

a’ b’

vSDN 2

a

b ca’

b’a---b

b---c

a’---b’

a’---b’

S-SW

vC 1 vC 2

SNT

4

56

3

1

2

SL

vSW VL

Fig. 1. Network system for vSDN creation and reconfiguration.

III. PROBLEM DESCRIPTION

In this section, we first introduce the network model of
vSDN reconfiguration, then explain how to remap vSWs and
VLs with the make-before-break scenario, and finally define
the problem of parallel and hitless vSDN reconfiguration.
Since several abbreviations are frequently used in this paper,
we list them here in Table I for the readers’ convenience.

TABLE I
MAJOR ABBREVIATIONS

Abbrev. Full Name Abbrev. Full Name
SDN Software-defined networking InP Infrastructure provider
VNE Virtual network embedding SNT Substrate network
vSW Virtual switch SP Service provider
QoS Quality-of-service VNT Virtual network

S-SW Substrate switch VL Virtual link
MtV Move-to-vacancy VM Virtual machine

SRAM Static random-access memory SL Substrate link
MbB Make-before-break vC Virtual controller
ILP Integer linear programming DG Dependency graph
LR Lagrangian relaxation RTT Round-trip-time

vSDN Virtual software-defined network
NC&M Network control and management
TCAM Ternary content-addressable memory

MCRSG Maximal connected reconfigurable subgraph
MKP Multi-dimensional0-1 knapsack problem

FPTAS Fully polynomial-time approximation scheme

A. Network Model

Fig. 1 shows the architecture of the network system con-
cerned in this work for vSDN creation and reconfiguration.
The SNT can be modeled as an undirected graphGs(Vs, Es),
where Vs and Es denote the sets of its S-SWs and SLs,

4

NVH

ca
b

vSDN 1

a

b a’

b’a---b

b---c

SNT

4

56

3

1

2

ca
b

vSDN 1

Reconfiguration

c

a---b

b

b---c

NVH

a d

a’

b’

b---c

SNT

4

56

3

1

2
c---ba---b c---d

a---b c---d

a

b

vSDN 1 vSDN 1
Reconfiguration

(MtV)

(a) (b)

vSDN 1

Reconfiguration

a---b b---c c---d

c
b

b
c

1-2-3-4

S-SW 3

S-SW 2

Remap

Remap

1-3-2-4

1-6-5-4 MtV
b c bc

b c

c

d a

b c

d a

b c

d

Fig. 2. Examples on hitless vSDN reconfiguration with MbB, a)MbB is feasible, and b) MtV has to be used.

respectively. In this work, we consider two types of substrate
resources,i.e., the memory resources on S-SWs to store flow-
entries and the bandwidth resources on SLs to carry traffic.
The NVH manages the SNT for vSDN creation and recon-
figuration. The data plane of a vSDN can also be modeled
as an undirected graphGr

i (V
r
i , E

r
i), where i is its unique

index, andV r
i andEr

i represent the sets of its vSWs and VLs,
respectively. To create a vSDN, the NVH first utilizes a VNE
algorithm to calculate the node and link mapping schemes of
Gr

i (V
r
i , E

r
i), subject to the resource constraints2, as follows.

Mi =

{

MN : V
r
i → Vs,

ML : E
r
i → Ps,

(1)

whereMN and ML refer to the node and link mappings,
respectively, andPs is the set of pre-calculated substrate paths
in the SNT. Then, the NVH implements the VNE scheme
Mi, and hands over the vSDN’s NC&M to its vC. At this
moment, the vSDN is up and operational, and its vC can
install, update, and remove flow-entries in the vSWs to forward
application traffic. According toMi, the NVH performs two-
way translation of the control messages between the vC and
the S-SWs that carry the vSDN’s vSWs. As shown in Fig.
1, the S-SWs and SLs in an SNT can be shared by multiple
vSDNs, while the NVH enforces proper isolation such that the
vSDNs’ operations would not interfere with each other.

To invoke a vSDN reconfiguration, the NVH first obtains
the new VNE schemeM′

i of Gr
i (V

r
i , E

r
i), and then remaps the

related vSWs and VLs to implementM′

i. Since the generic vS-
DN reconfiguration is considered in this work, we do not care
how or for what purposeM′

i is calculated, but focus on the
transition to migrateGr

i (V
r
i , E

r
i) from Mi to M′

i. Moreover,
our proposal supports the vSDN reconfiguration that needs to
migrate multiple vSDNs simultaneously. In our design, both
the vSDN creation and reconfiguration are handled solely by
the NVH, i.e., they are completely transparent to the vCs.

B. Hitless Reconfiguration with Make-before-Break

Since the vSDN reconfiguration is performed during when
vSDN(s) are in operation, we need to make the transition

2Note that, in a dynamic network environment, each vSDN can change both
the memory usages of its vSWs and the bandwidth usages on its VLs on-the-
fly. Hence, its initial VNE scheme can be calculated based on the estimated
statistics of the resource usages (e.g., their mean or maximum values).

“hitless”, i.e., the resulting packet losses should be very few or
even zero. To achieve this, a common practice is to leverage
the “make-before-break” scenario (MbB) [27]. Specifically,
this means that to reconfigureGr

i (V
r
i , E

r
i), the InP needs to

1) set up new vSWs and VLs according toM′

i,
2) switch traffic fromMi to M′

i,
3) remove the original vSWs and VLs inMi.
For instance, in Fig. 2(a), we reconfigurevSWb in vSDN

1 from S-SW2 to S-SW6. Due to the dependency between
vSWb andVLs a-b andb-c, the migration ofvSWb involves
one node remapping and two link remappings. Specifically,
the NVH first copies all the flow-entries ofvSW b to S-SW
6, then steers the traffic passing throughvSWb in vSDN1 to
useS-SW6 instead ofS-SW2, and finally removes the flow-
entries ofvSW b on S-SW2. Hence, the transition will not
cause noticeable packet losses invSDN1.

One might think that the aforementioned procedure is feasi-
ble, as long asM′

i is a feasible VNE scheme forGr
i (V

r
i , E

r
i)

based on the network status. Unfortunately, this is not true,
and MbB is infeasible in certain cases whereMi and M′

i

share some resource-insufficient S-SWs or/and SLs. Fig. 2(b)
illustrates such an example. This time, we assume that the
bandwidth usages onSLs 1-2 and 3-4 are relatively high,
while SLs 1-3 and 2-4 have abundant bandwidth resources.
Hence, for the purpose of re-balancing the bandwidth usages,
the vSDN reconfiguration wants to remapvSWsb and c and
the related VLs from the original VNE scheme (marked in
green) to the new one (marked in red). However, as shown in
Fig. 2(b), the available memory resources onS-SWs2 and 3
are insufficient to carry the flow-entries/tables of the original
and new VNE schemes simultaneously, which makes MbB
infeasible. Therefore, we consider the move-to-vacancy (MtV)
scenario [54],i.e., first remappingvSWsb andc to a third VNE
scheme (ontoS-SWs6 and 5, respectively), then tearing down
the original VNE scheme, and finally remapping the vSWs
and related VLs from the third VNE scheme to the new one.
Here, the third VNE scheme is marked in purple in Fig. 2(b).

Finally, with the procedure shown in Fig. 2(b), we accom-
plish the vSDN reconfiguration with MbB and MtV, and mini-
mize the service disruptions during the vSDN reconfiguration.
Nevertheless, MtV could be infeasible too, and thus it can only
be used in the best-effort way,i.e., service disruption would
be inevitable if both MbB and MtV are not possible.

5

C. Parallel vSDN Reconfiguration

Ideally, we would like to parallelly remap all the concerned
vSWs and VLs, which could be from multiple vSDNs, in each
vSDN reconfiguration. Hence, the reconfiguration latency can
be reduced significantly, and it would not increase with the
total number of concerned vSWs and VLs anymore. However,
considering the complex dependencies among vSWs, VLs, S-
SWs and SLs, we can hardly achieve this in one shot, espe-
cially when the vSDN reconfiguration has to leverage MbB
and MtV for hitless operation. Here, the major difficulty of
realizing one-stage parallel and hitless vSDN reconfiguration
comes from the resource constraints.

Fig. 3 shows an example on the conflicts in memory usages
caused by parallel vSDN reconfiguration. Here, we assume
that there are four S-SWs and the vSDN reconfiguration is for
re-balancing the memory usages on the S-SWs. Therefore, to
address the unbalanced usages in Fig. 3(a), the InP needs to
migrate vSWsa, b and c from S-SWs1, 2 and 3 toS-SWs
3, 3 and 4, respectively (as in Fig. 3(c)). However, due to the
insufficient memory capacity onS-SW3 to accept all the flow-
entries fromvSWsa, b andc, one-stage parallel reconfiguration
with MbB will have the conflict in Fig. 3(b). We can see that
the conflicts in memory usages happen in the first step of MbB,
i.e., setting up new vSWs and VLs according to the new VNE.

(a) Before reconfiguration

(b) During reconfiguration (c) After reconfiguration

3 4

3 41 2

c
a b

1 2

a b

3 41 2

a
b

c

c

Fig. 3. Conflict in memory usages in parallel reconfiguration.

Meanwhile, the conflicts in bandwidth usage can also pre-
vent one-stage parallel vSDN reconfiguration. Fig. 4 provides
such an example. This time, the vSDN reconfiguration needs
to remap twoVLsa-b anda′-b′ from 1-2-3 and 4-5-3 to 1-5-3
and 4-3, respectively (i.e., from the mapping in Fig. 4(a) to that
in Fig. 4(c)), while both VLs carry active traffic flows. Hence,
during the one-stage parallel reconfiguration with MbB, the
new substrate path ofVL a-b can shareSL5-3 with the original
one ofVL a′-b′, as shown in Fig. 4(b). In this case, if the total
throughput of the two flows is larger than the capacity ofSL
5-3, there will be a conflict in bandwidth usage. The conflicts
in bandwidth usages happen in the second step of MbB,i.e.,
switching active traffic to new vSWs and VLs. Note that,
the conflicts in bandwidth usages are much less devastating
than those in memory usages. This is because the traffic on
original and new substrate paths might not encounter each
other if path switching is done quickly enough, but according
to MbB, coexistence of flow-entries in original and new vSWs
will certainly happen. Therefore, we should focus more on
minimizing the conflicts in memory usages.

1

2

4

3

5

flow 1

flow 2
1

2

4

3

5flow 1

flow 2

1

2

4

3

5flow 1

flow 2

(a) Before reconfiguration (b) During reconfiguration

(c) After reconfiguration

a b ba

a’ a’

b’ b’

ba

a’

b’

Fig. 4. Conflict in bandwidth usages in parallel reconfiguration.

IV. M ULTI -STAGE PARALLEL V SDN RECONFIGURATION

One-stage parallel vSDN reconfiguration can hardly avoid
the conflicts in resource usages, and thus it can cause severe
service disruptions. In this section, we design a multi-stage
parallel vSDN reconfiguration scheme. Specifically, we opti-
mize the reconfiguration procedure such that both the stages
of operations and the service disruptions can be minimized.

A. Maximal Connected Reconfigurable Subgraph (MCRSG)

Intuitively, we would consider vSWs and VLs as the basic
elements in vSDN reconfiguration. Nevertheless, this would
not benefit our algorithm design due to the complex depen-
dencies among vSWs and VLs. Fig. 5 shows an illustrative
example on why the basic elements should not simply be
vSWs and VLs. For the reconfiguration scheme in Fig. 5(a),
we have the conflict in memory usages in Fig. 5(b),i.e.,
vSW b cannot be remapped with MbB before the successful
remapping ofvSWa′. Hence,VL a-b and vSWa′ cannot be
reconfigured in parallel. But if we treatvSW a as a basic
element and remap it together withvSWa′, the intermediate
state will be the one in Fig. 5(c), where a temporary substrate
path 3-4-2 is set up to support the interimVL a-b. However,
because the remapping ofvSWb has to be put on hold until
vSWa′ has been reconfigured (as in Fig. 5(d)), the remapping
of vSWa in Fig. 5(c) is apparently redundant. In other words,
it would be more beneficial in terms of saving operation
complexity and ensuring reconfiguration success, if we treat
VL a-b as a basic element and remap it aftervSWa′.

The dilemma in Fig. 5 inspires us to define the basic
element in our vSDN reconfiguration as a maximal connected
reconfigurable subgraph (MCRSG).

Definition 1. The maximal connected reconfigurable sub-
graph (MCRSG)refers to a connected structure in a vSDN,
which only consists of the vSWs and VLs that need to be
reconfigured and cannot be enlarged anymore by adding in
more such vSWs and VLs. Note that, an MCRSG might not
always be a graph because the VLs in it can be dangling ones
(i.e., the MCRSG might not include both end vSWs of a VL).

6

a

a---b

43

21

b

a ba---b

a

43

21

b

a a---b

a---b

(a) vSDN Reconfiguration Scheme

(c) Remapping vSWs a and a’ in parallel (d) Remapping vSW b

5

a’

a’

a’

a’

a’

b

a’

S-SW 4

b
a’

S-SW 2 S-SW 5

43

21

b

a a---b

a’

a’

(b) Dependency between vSWs b and a’

b

Fig. 5. Example on setting vSWs and VLs as basic reconfiguration element.

Therefore, a vSDN can have multiple MCRSGs (as shown
in Fig. 6). The smallest MCRSG is a VL, while the largest one
is a whole vSDN when all of its vSWs need to be remapped.
Note that, a single vSW cannot be an MCRSG, because
remapping the vSW will change the link mappings of all the
VLs that use it as an end-node. For a vSDNGr

i (V
r
i , E

r
i), its

MCRSGs can be obtained by performing a breadth-first search
on it to compareMi andM′

i. Hence, the time complexity of
finding all of its MCRSGs isO(|V r

i |+ |Er
i |).

a
b

e

d

f

g

h
c

MCRSG 1
MCRSG 2

MCRSG 3

Fig. 6. Example on finding MCRSGs in a vSDN.

B. Overall Algorithm Design

Algorithm1 shows the overall procedure of our multi-stage
parallel vSDN reconfiguration based on MCRSGs. Specifical-
ly, the algorithm operates in the greedy manner to let the InP
select the most weighted MCRSGs to reconfigure in parallel in
each stage. Here, the weight of each MCRSG will be defined
in the next subsection.Lines 1-7 are for the initialization.
Specifically, for a reconfiguration operation, we store the
indices of concerned vSDNs in setI (Line 1), check each
concerned vSDN to find its MCRSGs and store them in setSG
(Line5), and obtain the new S-SWs and SLs that each MCRSG
will use after remapping (Line 6). Then, the while-loop of
Lines 8-36 realizes the multi-stage parallel reconfiguration.
Each iteration is a stage of reconfiguration, which divides
the pending MCRSGs inSG into three categories,i.e., the
moveable, unmoveable, and indeterministic MCRSGs.

Firstly, we hypothetically remap all the MCRSGs inSG
but keep their original resource usages (i.e., conducting the

“make” operation in MbB), find all the MCRSGs that are
surely moveable, and move the moveable MCRSGs fromSGt

to SG1 (Lines10-16). Here,SGt gets initialized asSG in Line
9. Secondly, we check whether each remaining MCRSG in
SGt can be remapped while keeping its original resource usage
(Line 18). If this cannot be done, the MCRSG is certainly an
unmoveable one and we move it fromSGt to SG2 (Lines19-
21). At this moment, we store the moveable and unmoveable
MCRSGs inSG1 andSG2, respectively, while the remaining
ones inSGt are indeterministic. Thirdly,Lines23-25 leverage
Algorithm5 to transform certain indeterministic MCRSGs into
moveable ones, ifSGt is not empty. The detailed procedure
of Algorithm 5 will be discussed in the next subsection.

Finally, we remap the MCRSGs according to their cate-
gories (Lines 26-35). If SG1 is not empty, all the MCRSGs
in it are the moveable ones that can be remapped in parallel
with MbB. Hence, the stage just reconfigures them in one
shot (Lines 27-29), and the while-loop will proceed to the
next iteration. Note that, when remapping an MCRSG, we
change its VNE scheme to the new one,i.e., the resource
utilization of its original VNE scheme in the SNT is released.
Otherwise, ifSG1 is empty butSG2 is not empty, we are
only left with unmoveable MCRSGs whose remappings have
cyclic dependencies such that resource conflicts will happen
if they are remapped with MbB.Lines 31-34 remap the
MCRSGs inSG2 with MbB and MtV in the best-effort way, by
leveragingAlgorithm 2 below. Then, the multi-stage parallel
reconfiguration is accomplished.

b

a

c

MCRSG 3MCRSG 1

MCRSG 2

a’’’

b’’’

c’’’

a’

a’’

b’’

a’

a
a’

b’’
a’’’

Move in

Move out

MCRSG 4

Dependency

S-SW 1

Fig. 7. Example on dependencies among MCRSGs.

Fig. 7 gives an example on the dependencies among M-
CRSGs. Here,vSWa in MCRSG1 andvSWa′ in MCRSG
2 need to be remapped toS-SW1, while vSWb′′ in MCRSG
3 andvSWa′′′ in MCRSG4 need to be reconfigured fromS-
SW1. As the memory resources inS-SW1 are limited, if we
remap the four MCRSGs in parallel with MbB, there will be
resource conflicts inS-SW1. Hence,MCRSGs3 and 4 should
be remapped beforeMCRSGs1 and 2, and the dependencies
among them are illustrated in Fig. 7. In the worst cases, the
dependencies can be cyclic as shown in Fig. 8(a), which makes
all the related MCRSGs unmoveable and can only be resolved
with MtV in the best-effort manner (as explained in Fig. 2(b)).

7

Algorithm 1: Multi-stage Parallel Reconfiguration

1 store the indices of vSDNs to reconfigure in setI;
2 SG = ∅;
3 for each indexi ∈ I do
4 perform breadth-first search onGr

i (V
r
i , E

r
i) to

find all the MCRSGs based onMi andM′

i;
5 store the MCRSGs inSG as{SGj}, wherej is

the global index of an MCRSG;
6 store the new S-SWs and SLs ofSGj in setRj ;
7 end
8 while SG 6= ∅ do
9 R = ∅, SGt = SG, SG1 = ∅, SG2 = ∅;

10 find all S-SWs and SLs with resource conflicts, if
we hypothetically remap all the MCRSGs inSGt

but keep their original resource usages;
11 store the S-SWs and SLs inR;
12 for eachSGj ∈ SGt do
13 if R ∩ Rj = ∅ then
14 moveSGj from SGt to SG1;
15 end
16 end
17 for eachSGj ∈ SGt do
18 remapSGj hypothetically but keep its

original resource usages;
19 if there are resource conflictsthen
20 moveSGj from SGt to SG2;
21 end
22 end
23 if SGt 6= ∅ then
24 select certain MCRSGs inSGt with Algorithm

5 and move them fromSGt to SG1;
25 end
26 move all the remaining MCRSGs inSGt to SG2;
27 if SG1 6= ∅ then
28 remap MCRSGs inSG1 with MbB in parallel;
29 SG = SG \ SG1;
30 else
31 if SG2 6= ∅ then
32 remap MCRSGs inSG2 with MbB and

MtV in the best-effort way (Algorithm 2);
33 SG = SG \ SG2;
34 end
35 end
36 end

Algorithm2 explains how to break cyclic dependencies with
MtV. Lines 1-2 are for the initialization, where we get the
dependencies among the unmoveable MCRSGs inSG2 and
build a dependency graph (DG)Gd(Vd, Ed) to represent it.
Specifically, each MCRSG inSG2 is represented as a node in
Vd while the dependencies among the MCRSGs are denoted as
directed edges inEd. If an MCRSGvd,1 cannot be remapped
before the MCRSGvd,2 has been reconfigured, there will be
a directed edge as(vd,1, vd,2) in Ed. Note that, a direct edge
from an MCRSG can point to itself, if the remapping schemes

Algorithm 2: Break Cyclic Dependencies with MtV

1 find dependencies among MCRSGs inSG2 by
hypothetically remapping all of them but keeping
their original resource usages;

2 construct a DGGd(Vd, Ed) to denote dependencies;
3 while SG2 6= ∅ do
4 if Gd has node(s) whose out-degrees are0 then
5 remap the corresponding MCRSGs with MbB;
6 remove the MCRSGs fromSG2 and update

Gd(Vd, Ed) to remove their nodes;
7 else
8 perform MtV (in best-effort) to remap the

MCRSG whose in-degree is the maximum;
9 remove the MCRSG fromSG2 and update

Gd(Vd, Ed) to remove its node;
10 end
11 end

of its vSWs and VLs have resource conflicts.

1

2

4

3 5

6

1

2

4

3

5

1

2

5

V

1

2

4

3

6

5

1

5

(a) (b)

(c) (d) (e)

MtV

Fig. 8. Example on breaking cyclic dependencies with MtV.

Fig. 8(a) shows an example on the DG, whereMCRSGs
2, 3 and 5 have cyclic dependencies. In each iteration of the
while-loop, we first check whether the DG contains node(s)
whose out-degrees are 0. If yes, the MCRSGs represented
by these nodes do not depend on other ones, and thus can
be remapped with MbB (Lines 4-6). Otherwise, we find the
MCRSG whose in-degree is the maximum, and try to remap
it with MtV in the best-effort way,i.e., for breaking cyclic
dependencies (Lines 8-9). Here, we always make sure that
there will not be any new dependencies when calculating
the vacancy for each MCRSG. Meanwhile, MtV can also
become infeasible, when the SNT is heavy loaded. In that
case, the MCRSGs are remapped with the scheme that will
cause service disruption,i.e., first tearing down their original
VNE schemes and then setting up the new ones. For the DG
in Fig. 8(a),Algorithm 2 will first selectMCRSG5 to apply
the remapping with MtV. If this can be done,MCRSG5 will
be remapped in the hitless manner, and there will be service
disruptions, otherwise. Next, the remapping sequence willbe
6→{3, 4}→2→{1, 5}, as explained in Figs. 8(b)-8(e). The
time complexity ofAlgorithm 2 is O(|SG2|2 · (|Vs|+ |Es|).

8

C. Selection of Indeterministic MCRSGs to Reconfigure

As explained inAlgorithm1, we divide the pending MCRS-
Gs into three categories in each stage. Specifically, in addition
to those that are surely moveable and unmoveable, we also
have indeterministic MCRSGs that can be transformed into
moveable ones, if we have a proper selection algorithm to sort
out the potential resource conflicts. Here, the potential resource
conflicts can be obtained by hypothetically remapping all the
indeterministic MCRSGs (i.e., those inSGt whenAlgorithm1
reachesLine 24), while keeping their original resource usages.
Then, the S-SWs and SLs with resource conflicts are stored in
setRin, with which we formulate the following integer linear
programming (ILP) model to optimize the MCRSG selection.

Input Parameters:
• SGt: the set of indeterministic MCRSGs.
• Rin: the set of substrate elements (i.e., S-SWs and SLs)

with resource conflicts.
• cse: the available resources on an elementse ∈ Rin.
• wj,se: the resource usage on an elementse ∈ Rin, if an

MCRSGSGj ∈ SGt is reconfigured.
• pj : the preset weight of remappingSGj successfully.

Variables:
• xj : the boolean variable that equals 1 ifSGj is selected

to be transformed into a moveable one, and 0 otherwise.

Objective:
In this work, we introduce a preset weightpj for each

MCRSG SGj to generalize our problem formulation and to
give the InP the freedom to prioritize each MCRSG in the
parallel reconfiguration. For instance, if the InP simply wants
to reconfigure as many MCRSGs in each batch, it should
set {pj = 1, ∀SGj ∈ SGt}. As we do not restrict how to
define the preset weight, our MCRSG selection algorithm can
optimize the following objective,i.e., to maximize the total
weight of the selected MCRSGs, regardless of the definition.

Maximize
∑

SGj∈SGt

pj · xj . (2)

Constraints:
∑

SGj∈SGt

wj,se · xj ≤ cse, ∀se ∈ Rin. (3)

Eq. (3) ensures that the remappings of the selected indetermin-
istic MCRSGs with MbB will not cause any resource conflicts,
i.e., the selection transforms them into moveable ones.

Theorem 2. The MCRSG selection problem isNP-hard.

Proof: We prove theNP-hardness of the MCRSG selec-
tion problem by transforming it into a general case of a well-
knownNP-hard problem. By observing the MCRSG selection
problem defined by Eqs. (2) and (3), we find that each MCRSG
in SGt can consume the resources in multiple substrate ele-
ments. Hence, we can treat each substrate elementse ∈ Rin

as a dimension (with a capacity ofcse) of a multi-dimensional
knapsack (Rin), and consider each MCRSGSGj as an item,
which has a multi-dimensional size ({wj,se, ∀se ∈ Rin})
and a value (pj). Then, the problem becomes how to select
items to put into the multi-dimensional knapsack such that

their total value is maximized. This is essentially the general
case of a multi-dimensional0-1 knapsack problem (MKP),
which is known to beNP-hard [55]. Hence, we prove the
NP-hardness of the MCRSG selection problem.

Since the MCRSG selection problem isNP-hard, we first
would like to resort to a fully polynomial-time approximation
scheme (FPTAS) to design a time-efficient algorithm, which
can get near-optimal solutions with reasonable running time.
Nevertheless, the study in [56] has already proven that it isnot
feasible to find an FPTAS for MKP. Hence, in the next section,
we will leverage Lagrangian relaxation (LR) to design a time-
efficient algorithm to solve the MCRSG selection problem.

V. A PPROXIMATION ALGORITHM TO SELECT MCRSGS

In this section, we explain how to leverage LR to optimize
the selection of MCRSGs. The MCRSG selection problem
is a maximization problem. Therefore, we first dualize the
hard-side constraints of the original problem, and construct
a dual problem whose solution gives an upper-bound on the
optimal solution of the original one. Then, we obtain a feasible
solution of the original problem based on the solution of the
dual problem. Since we have a maximization problem, the
feasible solution provides a lower-bound. Next, we optimize
the solution of the original problem by obtaining upper-/lower-
bounds iteratively. Meanwhile, the gap between the upper-
and lower-bounds indicates the distance between the current
feasible solution and the optimal one.

A. Lagrangian Dual Problem

The number of constraints in Eq. (3) is|Rin|. By dualizing
|Rin|−1 constraints, we get the following dual problem, where
the |Rin| − 1 constraints compose setR′

in $ Rin.

Minimize Zdual(Λ) = max
{xj}

∑

SGj∈SGt

pj · xj

+

∑

se∈R′

in

λse ·

cse −
∑

SGj∈SGt

wj,se · xj

 ,

s.t.
∑

SGj∈SGt

wj,se · xj ≤ cse, se = Rin \ R′
in,

(4)

whereΛ = {λse} is the vector of Lagrangian multipliers. We
haveλse ≥ 0, ∀se ∈ R′

in to ensure thatZdual(Λ) will be an
upper-bound on the optimal solution in each iteration, where
Zdual(Λ) is maximized for a specificΛ. Then, we have

Zdual(Λ) = max
{xj}

∑

SGj∈SGt

p̄j · xj +
∑

se∈R′

in

λse · cse

 , (5)

wherep̄j is the Lagrangian-modified weight of MCRSGSGj

p̄j = pj −
∑

se∈R′

in

λse · wj,se. (6)

The second term in Eq. (5) is independent of{xi}, and thus we
only need to solve the following optimization to getZdual(Λ).

Maximize
∑

SGj∈SGt

p̄j · xj ,

s.t.
∑

SGj∈SGt

wj,se · xj ≤ cse, se = Rin \ R′
in.

(7)

9

The optimization in Eq. (7) can be solved with the dynamic
programming inAlgorithm 3 [57]. The time complexity of
Algorithm 3 is O(|SGt| · cse), wherese = Rin \ R′

in.

Algorithm 3: Dynamic Programming to GetZdual(Λ)

Input : {p̄j, cse, wj,se : se = Rin\R′

in, ∀SGj ∈ SGt}.
Output : {xj}.

1 temporarily reassign indices of MCRSGs inSGt as
i ∈ [1, |SGt|];

2 initialize M = {mi,j , i ∈ [1, |SGt|], j ∈ [1, cse]} as
an all-zero matrix;

3 for eachi ∈ [1, |SGt|] do
4 for eachj ∈ [1, cse] do
5 if j < wi,se then
6 mi,j = mi−1,j ;
7 else if j = wi,se then
8 mi,j = max (mi−1,j , p̄i);
9 else

10 mi,j = max
(

mi−1,j , mi−1,j−wi,se
+ p̄i

)

;
11 end
12 end
13 end
14 for eachk ∈ [0, |SGt| − 2] do
15 i = |SGt| − k;
16 if mi,cse > mi−1,cse then
17 xi = 1;
18 cse = cse − wi,se;
19 if cse = 0 then
20 break;
21 end
22 end
23 end
24 restore indices of MCRSGs inSGt and get{xj}

based on{xi, i ∈ [1, |SGt|]} accordingly;

B. Construction of Feasible Solution

After solving the optimization defined in Eq. (7) with
Algorithm 3, we get the optimal solution{xj} regarding
a specificΛ in an iteration. Then, we need to construct a
feasible solution of the original problem based on the solution
{xj}, which can be achieved by leveragingAlgorithm4. More
specifically,Algorithm 4 removes certain MCRSGs from the
solution provided byAlgorithm 3 until the resulting solution
becomes feasible to the original problem. The time complexity
of Algorithm 4 is O(|SGt| · |R′

in|).

C. Solving Lagrangian Dual Problem

The optimization objective of the Lagrangian dual problem
defined in Eq. (4) is to minimizeZdual(Λ). SinceZdual(Λ) is
a piecewise linear programming, we leverage the sub-gradient
method in [58] to optimizeΛ iteratively untilZdual(Λ) con-
verges to the minimum. Specifically, we first setΛ to an initial
value, and then updateΛ in each iteration as follows.

Λk+1 = Λk − µk · f(Λk), (8)

Algorithm 4: Construction of Feasible Solution

Input : {xj}, Z∗ = 0.
Output : {xj}, Z∗.

1 for eachse ∈ R′

in do
2 a = 0;
3 for eachSGj ∈ SGt do
4 if xj = 1 then
5 a = a+ wj,se;
6 end
7 end
8 while a > cse do
9 for SGj ∈ SGt do

10 if xj = 1 AND wj,se > 0 then
11 xj = 0, a = a− wj,se;
12 Zdual(Λ) = Zdual(Λ)− pj ;
13 end
14 if a ≤ cse then
15 break;
16 end
17 end
18 end
19 end
20 for eachSGj ∈ SGt do
21 if xj = 1 then
22 Z∗ = Z∗ + pj ;
23 end
24 end

whereΛk andµk are the Lagrangian multiplier and step-size,
respectively, andf(Λk) is the sub-gradient vector ofZdual(Λ)
regardingΛ, in thek-th iteration. Specifically, we have

f(Λ) =
∂Zdual

∂Λ
, (9)

whereΛ is a vector, and each of its elements is

λse = cse −
∑

SGj∈SGt

wj,se · xj . (10)

As µk affects the convergence performance ofZdual(Λ), we
get its value with the following formulation, based on [59].

µk =
ν · (Zdual(Λ)− Z∗)

||f(Λk)||2
. (11)

Here, Zdual(Λ) is obtained by solving the optimization in
Eq. (7) with a specific Lagrangian multiplierΛk, Z∗ is the
maximum feasible solution until thek-th iteration, andν is a
scaler variable whose initial value is set as2. Specifically, if
the value ofZdual(Λ) cannot be improved after a fixed number
of iterations, we will divideν by 2. Note that, we need to have
Λ � 0 to guarantee thatZdual(Λ) is an upper-bound on the
optimal solution, and this is achieved by applying

(Λk+1)se = max{0, [Λk − µk · f(Λk)]se}. (12)

D. Overall Procedure

Algorithm 5 shows the overall procedure of the LR-based
algorithm to select indeterministic MCRSGs to reconfigure.

10

Line 1 is for the initialization, whereub andlb are introduced
to store the upper- and lower-bounds obtained in iterations,
respectively, andn is the counter to monitor the convergence
performance ofZdual(Λ). The while-loop coveringLines2-19
tries to improve the solution’s quality until the relative dual
gap is smaller than a preset thresholdγ. In thek-th iteration,
we first useAlgorithm3 to get the optimal solution{xj} of the
dual problem in Eq. (7) regardingΛk (Lines 3-4). Then, we
useZdual(Λk) to update the upper-boundub, and if the value
of ub has not been updated afterTh iterations, we dividev by
2 (Lines 5-11). Next, we construct a feasible solutionZ∗ of
the original problem withAlgorithm 4, and update the lower-
boundlb according toZ∗ (Lines12-15). Finally,Lines16-18
prepare for the next iteration.

Algorithm 5: Overall Algorithm Procedure

1 k = 1, Λk = 0, ν = 2, ub = +∞, lb = 0, n = 0;
2 while ub−lb

ub
≥ γ do

3 calculate{p̄j} with Eq. (6) andΛk;
4 solve the optimization in Eq. (7) withAlgorithm

3 to getZdual(Λk) and{xj};
5 if Zdual(Λk) < ub then
6 ub = Zdual(Λk), n = 0;
7 else if n > Th then
8 ν = ν/2, n = 0;
9 else

10 n = n+ 1;
11 end
12 get a feasible solutionZ∗ with Algorithm 4;
13 if Z∗ > lb then
14 lb = Z∗;
15 end
16 calculateµk with Eq. (11);
17 calculateΛk+1 with Eqs. (8)-(10) and (12);
18 k = k + 1;
19 end

The optimal solution of the MCRSG selection problem can
be obtained by directly solving the ILP defined by Eqs. (2)-
(3). Hence, we can denote the optimal solution asZILP. Since
the optimization is a maximization problem, the approximation
ratio of Algorithm 5 can be defined as

ε =
Z∗

ZILP
, (13)

where Z∗ is the feasible solution obtained withAlgorithm
4. Meanwhile, the principle of LR ensures that by solving
the Lagrangian dual problem withAlgorithm 3, we can get
Zdual(Λk) as an upper-bound onZILP. The while-loop in
Algorithm 5 guarantees that the algorithm’s output satisfies

1−
lb

ub
< γ, (14)

where we haveub = Zdual(Λk) and lb = Z∗ according to
Lines6 and 14, respectively. Therefore, we can get

ε =
Z∗

ZILP
≥

Z∗

Zdual(Λk)
=

lb

ub
> 1− γ. (15)

This verifies thatAlgorithm 5 is an approximation algorithm
whose approximation ratioε is at least1 − γ for the maxi-
mization in Eqs. (2)-(3). Moreover, its approximation becomes
better if we can get a feasible solution with a smallerγ.

VI. N UMERICAL SIMULATIONS

In this section, we perform simulations to evaluate the
performance of the multi-stage parallel vSDN reconfiguration.

A. Simulation Setup

Section III-A has already explained that for a vSDN
Gr

i (V
r
i , E

r
i), our vSDN reconfiguration scheme optimizes the

transition (i.e., from its original VNEMi to the new oneM′

i)
to make the transition parallel and hitless, but we do not care
how or for what purposeM′

i is calculated. In other words, our
proposal is independent ofMi to the new oneM′

i for each
Gr

i (V
r
i , E

r
i), and thus is generic. Nevertheless, in numerical

simulations, we still need a scenario that can obtain new VNE
schemes as the inputs to our vSDN reconfiguration scheme.
Without loss of generality, we choose the load-balancing
scenario considered in [27]. Specifically, in a dynamic SNT,
the memory usages in S-SWs can become unbalanced due to
various reasons [60], and thus the InP needs to invoke vSDN
reconfiguration from time to time to re-balance them.

In the simulations, we consider three SNT topologies with
different sizes, i.e., the 14-node NSFNET topology [28],
and two large-scale random topologies that have50 S-SWs
and 122 SLs (RT-50) and100 S-SWs and496 SLs (RT-
100), respectively. Each S-SW has a random memory ca-
pacity to accommodate[2500, 5000] flow-entries, while the
bandwidth capacity of each SL is also randomly selected
within [1000, 2000] units. For each vSDN, its number of vSWs
uniformly distributes within[5, 10], the vSWs are randomly
connected with a probability of0.5, the memory requirement
of each vSW is randomly selected within[50, 200] flow-
entries, and the bandwidth demand of each VL is within[1, 80]
units. The parameters above are set according to the realistic
cases discussed in [14, 17, 61]. Our simulations consider
dynamic network environment, where vSDNs are generated
according to the Poisson traffic model,i.e., the average arrival
rate isλ vSDNs per time-unit and each vSDN has an average
life-time of 1

µ
time-units. Hence, the load of vSDNs can

be quantified asλ
µ

in Erlangs. In order to ensure sufficient
statistical accuracy, we average the results from5 independent
runs to get each data point.

The simulations run as follows. When a vSDN first comes
in, we use an existing VNE algorithm, which is the GRC-VNE
in [3], to provision it in the SNT. Although GRC-VNE tries
to embed each vSDN such that the substrate resource usages
can be balanced in the greedy manner, the dynamic arrivals
and departures of vSDNs will still induce unbalanced memory
usages in S-SWs. Then, when the unbalanced memory usages
get accumulated to certain extent, the InP will leverage the
LF-R algorithm in [27] to select certain vSDNs to reconfigure
and calculate the new VNE schemes for them. Hence, for each
selected vSDNGr

i (V
r
i , E

r
i), Mi is calculated by GRC-VNE

at when it first comes in, whileM′

i is obtained by LF-R at

11

when the InP detects severe unbalanced memory usages in
its SNT. Next, our multi-stage parallel vSDN reconfiguration
scheme kicks in to handle the transition fromMi to M′

i.

B. Single Operations

We first evaluate an operation of vSDN reconfiguration in
detail. For the definition ofpj (i.e., the weight of remapping an
MCRSGSGj successfully), we consider two types: 1){pj =
1, ∀SGj ∈ SGt}, and 2)pj is set as the number of vSWs
in SGj . Hence, the first definition motivates the optimization
in Section IV-C to maximize the number of selected MCRSG
(MCRSG-prioritized), while the second one pushes it to select
as many vSWs as possible (vSW-prioritized). For the LR-
based approach inAlgorithm 5, we setγ ∈ {0.2, 0.5, 0.8} as
the preset threshold on the relative dual gap (i.e., the condition
to stop iterations), whileTh is empirically set as15.

(a) R

0 20 40 60 80 100
Iteration Number

0.1

0.3

0.5

0.7

0.9

R
e
la

ti
v
e
 D

u
a
l
G

a
p

0 20 40 60 80
0.1

0.3

0.5

0.7

0.9

R
e
la

ti
v
e
 D

u
a
l
G

a
p

100
Iteration Number

()

Fig. 9. Convergence performance of LR-basedAlgorithm 5 on NSFNET.

1) Convergence Performance:We first evaluate the con-
vergence performance ofAlgorithm 5. With the simulation
scenario explained above, we randomly select vSDN recon-
figuration cases in SNTs based on the NSFNET, RT-50, and
RT-100 at when the load of dynamic vSDNs is40, 120,
and 240 Erlangs, respectively. Note that, we also test the
algorithm with other loads, and confirm that its convergence
performance would not be affected significantly. Figs. 9-
11 show the results on convergence performance from the
simulations with NSFNET, RT-50 and RT-100, respectively.
For each SNT, we consider both the MCRSG-prioritized and
vSW-prioritized definitions of preset weightpj . We observe
that for all the simulation scenarios, the relative dual gap
becomes less than0.2 within 20 iterations, and this verifies that
Algorithm 5 converges fast to provide good time-efficiency.

0 20 40 60 80 100
0.1

0.3

0.5

0.7

0.9

R
e
la

ti
v
e
 D

u
a
l
G

a
p

0 20 40 60 80 100
0.1

0.3

0.5

0.7

0.9

R
e
la

ti
v
e
 D

u
a
l
G

a
p

Iteration Number

(a) R

Iteration Number

()

Fig. 10. Convergence performance of LR-basedAlgorithm 5 on RT-50.

2) Parallel Reconfiguration Stages:Then, we change the
load of vSDNs in each SNT, apply our multi-stage parallel
vSDN reconfiguration scheme, and get the average number of

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

R
e
la

ti
v
e
 D

u
a
l
G

a
p

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

R
e
la

ti
v
e
 D

u
a
l
G

a
p

(a) R

Iteration Number Iteration Number

()

Fig. 11. Convergence performance of LR-basedAlgorithm 5 on RT-100.

parallel stages in each reconfiguration operation at different
loads. Meanwhile, to check the effect ofγ on algorithm per-
formance, we select its value from{0.2, 0.5, 0.8} and compare
the results from the multi-stage parallel reconfiguration using
Algorithm 5, and those from the one using the ILP model in
Section IV-C. Note that, if we use the ILP model to solve
the problem of indeterministic MCRSG selection, the solution
would be optimal. Figs. 12-14 show the simulation results.
In Figs. 12 and 13, the average number of stages in each
operation from the multi-stage parallel reconfiguration using
Algorithm 5 with γ = 0.2 is very close to the optimal result
from that using the ILP model. For RT-100, the scheme using
the ILP model is too time-consuming, and thus we cannot
obtain optimal solutions with it in that case, but the general
trend that the multi-stage parallel reconfiguration becomes
more efficient for a smallerγ can still be seen in Fig. 14.

Note that, the loads of vSDNs in Figs. 12-14 are select-
ed to cover the light, medium and heavy loaded network
environments in each SNT, as indicated by the results in
Table II. Here, “Mem. Usage” and “BW Usage” mean the
average utilizations of memory and bandwidth resources in
the SNT, respectively, “Dep. per MCRSG” means the average
number of dependencies from each MCRSG to substrate
elements (S-SWs and SLs) before each vSDN reconfiguration,
and “Non-MbB Ratio” means the average ratio of MCRSGs
that cannot be remapped with MbB in each vSDN recon-
figuration. Meanwhile, we can see that the average number
of dependencies increases with the load of vSDNs,i.e., the
dependencies among the MCRSGs become more complicated.
However, our proposal can always realize effective parallel
vSDN reconfigurations to achieve large degree of conflict
avoidance (as shown in Figs. 12-14). The results in Table II
also suggest that for each of the SNTs, the non-MbB ratios are
very low (i.e., below1.5%) in all the simulation scenarios, and
we only have MCRSGs that cannot be remapped with MbB
when the average usages of substrate resources are relatively
high. This further verifies the performance of our proposal.

3) Time Complexity:To compare the algorithms’ perfor-
mance on time complexity, we list the average running time for
different simulation scenarios in Table III. Here, each running
time is the average result from multiple scenarios in Figs. 12-
14. For instance, the running time listed in (ILP, NSFNET)
in Table III is the average result of10 ILP-related scenarios
(i.e., 10 combinations ofpj definitions and vSDN loads) in
Fig. 12. The results indicate that our LR-based approximation
algorithm is much more time-efficient than solving the ILP,

12

TABLE II
RESULTS ONSUBSTRATERESOURCEUSAGES, DEPENDENCIES PER

MCRSG,AND RATIO OF MCRSGS NOT REMAPPED WITH MBB

NSFNET

Load of vSDNs 20 30 40 50 60

Mem. Usage (%) 42.3 54.3 65.7 74.3 85.6

BW Usage (%) 36.7 47.6 59.4 63.4 73.4

Dep. per MCRSG 3.4 4.3 5.1 6.5 7.8

Non-MbB Ratio (%) 0 0 0.12 0.59 1.45

RT-50

Load of vSDNs 60 90 120 150 180

Mem. Usage (%) 34.6 47.8 65.2 79.5 87.0

BW Usage (%) 29.2 40.1 58.2 68.1 74.0

Dep. per MCRSG 2.4 3.9 4.5 5.9 6.6

Non-MbB Ratio (%) 0 0 0 0.24 0.75

RT-100

Load of vSDNs 120 180 240 300 360

Mem. Usage (%) 32.3 47.7 64.9 78.2 88.1

BW Usage (%) 26.7 39.8 56.8 67.3 75.2

Dep. per MCRSG 2.4 3.7 4.0 4.6 5.6

Non-MbB Ratio (%) 0 0 0 0.14 0.35

i.e., the running time could be reduced by more than two
magnitudes. Meanwhile, since a smallerγ means that the LR-
based algorithm needs to run more iterations to reduce the
relative dual gap, the running time decreases withγ.

20 50 60
0

2

4

6

8

10

12

14

N
u
m

b
e
r

o
f

S
ta

g
e
s

20 30 50 60
0

2

4

6

8

10

12

14

N
u
m

b
e
r

o
f

S
ta

g
e
s

0 0 0

ILP

 (Erlangs)

(a)

 (Erlangs)

()

ILP

Fig. 12. Average number of parallel stages in each operationin NSFNET.

60 90 150 180
0

2

4

6

8

10

12

N
u
m

b
e
r

o
f

S
ta

g
e
s

60 90 150 180
0

2

4

6

8

10

12

N
u
m

b
e
r

o
f

S
ta

g
e
s

120120

 (Erlangs)

(a)

 (Erlangs)

()

ILP ILP

Fig. 13. Average number of parallel stages in each operationin RT-50.

C. Dynamic Operations

Next, we conduct dynamic simulations to confirm that
multi-stage parallel vSDN reconfiguration is beneficial to the
operation of SNT. This time, we use RT-50 as the SNT’s
topology, run the network for5, 000 time-units to embed,
reconfigure and remove dynamic vSDNs, and collect the

120 180 300 360
0

2

4

6

8

10

N
u
m

b
e
r

o
f

S
ta

g
e
s

120 180 300 360
0

2

4

6

8

10

N
u
m

b
e
r

o
f

S
ta

g
e
s

240240

 (Erlangs)

(a)

 (Erlangs)

()

Fig. 14. Average number of parallel stages in each operationin RT-100.

TABLE III
AVERAGE RUNNING T IME (SECONDS)

NSFNET RT-50 RT-100

ILP 1.012 94.943 –

γ = 0.2 0.096 0.287 1.230

γ = 0.5 0.042 0.098 0.263

γ = 0.8 0.032 0.062 0.175

blocking probability of vSDNs. To ensure that the blocking
probabilities are in the range of[10−4, 10−1], we reduce the
bandwidth demand of each VL to be within[1, 10] units.
We compare the performance of the SNT with and without
multi-stage parallel vSDN reconfiguration. When vSDN re-
configuration is enabled, the operations are triggered every
{50, 100, 200} time-units. Hence, we denote the corresponding
algorithms as LF-R-Parallel-50, LF-R-Parallel-100, and LF-
R-Parallel-200, respectively. Figs. 15 shows the results on
blocking probability, which confirms that multi-stage parallel
vSDN reconfiguration can reduce the blocking probability.

(a)

60 90 120 150 180
Load of vSDNs (Erlangs)

10
-3

10
-2

10
-1

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

w/o -Parallel

LF-R-Parallel-200

LF-R-Parallel-100

LF-R-Parallel-50

Fig. 15. Results on blocking probability.

VII. E XPERIMENTAL DEMONSTRATIONS

Although numerical simulations have already verified the
effectiveness of our multi-stage parallel vSDN reconfiguration,
its practicalness cannot be confirmed without experimental
investigations. Moreover, experiments can reveal the scheme’s
performance on the overall reconfiguration latency and packet
loss rate during reconfiguration, which cannot be simulated.
Therefore, we expand the NVH system developed in [27] to
enable multi-thread based parallel operations, and implement
our multi-stage parallel vSDN reconfiguration scheme in it.

A. Experimental Setup

Fig. 16 shows the experimental setup, where the NVH can
leverage the multi-thread scheme to remap multiple vSWs

13

and VLs (i.e., either in the same vSDN or multiple vSDNs)
simultaneously. The SNT consists of six S-SWs, each of
which is based on a software-based SDN switch running on
an independent high-performance Linux server. As indicated
in Fig. 16, the experiments set up three vSDNs with chain
topologies, and let each vSDN carry an active traffic flow
with a throughput of1 Mbps. Before vSDN reconfiguration,
all of the flows go throughS-SWs2 and 3, while the vSDN
reconfiguration remaps all the vSWs mapped onS-SWs2 and
3 to S-SWs6 and 5, respectively. In addition to the active
flows, we also install a fixed number of flow-entries in each
vSW, to emulate the background traffic.

NVH

c

a

b

vSDN 1

a’

vSDN 2

a

b cb’

d’

a’---b’

S-SW

4

56

3

1

2

d

b’

a’

c’

d’

b’’

d’’a’’

c’’

vSDN 3

d

a’

a’’

b’’
c’

c’’

d’’

Reconfiguration

a---b

a’’---b’’

b---c

b’---c’
b’’---c’’

c---d

c’---d’
c’’---d’’

Flow 1

Flow 2

Flow 3

Host 1

Host 2

Host 3

Host 4

Host 5

Host 6

Flow 1 Host 1 a b c d Host 4

Flow 2

Flow 3

Host 2 Host 5a’ b’

c’

c’ d’

Host 3 Host 6a’’ b’’ c’’ d’’

Fig. 16. Experimental setup.

B. Benefits of Parallel Reconfiguration

We first conduct an experiment to verify that the NVH can
realize parallel vSDN reconfiguration. In this experiment,we
first install 500 flow-entries on each vSW to reconfigure, and
then invoke the parallel reconfiguration. During the transition,
we record the total bandwidth of the traffic going throughS-
SW2. Fig. 17 compares the experimental results of sequential
and parallel vSDN reconfigurations. In Fig. 17(a), the sequen-
tial reconfiguration takes∼600 ms, and the three bandwidth
drops clearly indicate the remappings of the three vSDNs. On
the other hand, the parallel reconfiguration in Fig. 17(b) only
consumes∼100 ms, which is much more time-efficient.

Next, we make the vSDN reconfiguration to move a total
number of [1000, 6000] flow-entries, and measure the total
reconfiguration latency, which the total time needed to remap
all the three vSDNs with MbB. Fig. 18 shows the result-
s, which still clearly indicate the better time-efficiency of
parallel reconfiguration. Specifically, the latency of parallel
reconfiguration not only is much shorter than that of sequential
reconfiguration, but also increases much slower with the total
number of flow-entries to move. Note that, the reconfiguration
latency in Fig. 18 for moving3, 000 flow-entries in total is
longer than that obtained by observing Fig. 17, for both the
sequential and parallel schemes. This is because the latency
shown in Fig. 18 is measured by considering the whole
procedure of MbB, while the third step of MbB, which is to
remove the original vSWs and VLs, might not have significant
impacts on the bandwidth of active traffic flows.

(a) Sequential vSDN reconfiguration

0
100 200 300 400 500 600 700 800 900 1000

Time (ms)

0

1

2

3

4

B
a
n
d
w

id
th

 (
M

b
p
s
)

0
100 200 300 400 500 600 700 800 900 1000

Time (ms)

0

1

2

3

4

B
a
n
d
w

id
th

 (
M

b
p
s
)

(b) Parallel vSDN reconfiguration

Fig. 17. Bandwidth of traffic going throughS-SW2 during vSDN remapping.

1000 2000 3000 4000 5000 6000

Total Number of Flow-entries to Move

0

200

400

600

800

1000

1200

1400

R
e
c
o
n
fi
g
u
ra

ti
o
n
L
a
te
n
c
y
 (

m
s
)

Sequantial Reconfiguration

Parallel Reconfiguration

Fig. 18. Results on reconfiguration latency.

C. Tradeoff between Latency and Packet Losses

Finally, even though we leverage MbB and MtV to minimize
packet losses, packet losses might not be completely avoided
due to the inconsistency of packet handling during the parallel
vSDN reconfiguration. More specifically, if the traffic flows
affected by a vSDN reconfiguration have longer end-to-end
round-trip-time (RTT), the probability that their packetsget
handled inconsistently because of the vSDN reconfiguration
will become larger. In other words, the packet loss rate during
a vSDN reconfiguration will increase with the longest end-
to-end round-trip-time (RTT) of the affected traffic flows
[27]. Meanwhile, the inconsistency of packet handling will
disappear after each stage of the parallel vSDN reconfiguration
(i.e., the related flow-entries/tables have been updated in the
corresponding S-SWs), and thus it would not cause severe
packet losses because each stage can be accomplished very
quickly (within a few hundred milliseconds in Fig. 18).

To check how hitless our parallel vSDN reconfiguration is,
we conduct more experiments. Specifically, we intentionally
increase the end-to-end RTT of the traffic flows, perform the
parallel vSDN reconfiguration again, and measure the packet
loss rate during the transition3. Fig. 19 shows the experimental

3Here, packet losses are transient as they only happen duringthe remapping,
and because the reconfiguration latency is always less than one second, we
average the packet loss rate within a second.

14

results, which show that the packet loss rate increases with
the end-to-end RTT. This is because if the end-to-end RTT is
relatively long, some packets might still be transmitting on the
original path when the third step of MbB is invoked to remove
the original vSWs and VLs. Hence, to reduce the packet loss
rate, we should insert certain waiting time in between the
second and third steps of MbB. However, this would increase
the total reconfiguration latency. Hence, we can see that for
vSDN reconfiguration, if the longest end-to-end RTT is fixed,
there is a tradeoff between the total reconfiguration latency
and the packet loss rate during remapping.

20 40 60 80 100 120 140 160 180 200

End-to- nd RTT (ms)

0

1

2

3

4

5

6

7

8

9

10

P
a
c
k
e
t

L
o
s
s
 R

a
te

 (
%

)

Fig. 19. Packet loss rate during parallel vSDN reconfiguration.

Hence, we use experiments to find out the shortest waiting
time that can make the vSDN reconfiguration in Fig. 16 com-
pletely hitless (i.e., the packet loss rate during the transition is
zero), for both the sequential and parallel schemes. The total
waiting time is plotted in Fig. 20, which indicates that the
parallel vSDN reconfiguration balances the tradeoff between
the total reconfiguration latency and the packet loss rate during
remapping better. This is still because parallel reconfiguration
can remap the vSDNs with much fewer MbB operations.

20 40 60 80 100 120 140 160 180 200

End-to-end RTT (ms)

0

50

100

150

200

250

300

T
o
ta

l
W

a
it
in

g
T

im
e
 (

m
s
) Sequential Reconfiguration

Parallel Reconfiguration

Fig. 20. Extra waiting time to ensure zero packet loss.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we optimized the transition to migrate vSDNs
from their original VNE schemes to the new ones, and
proposed a scheme that can realize parallel and hitless vSDN
reconfiguration in a resource-efficient manner, by leveraging
the “make-before-break” scenario. To resolve the issues of
one-stage parallel reconfiguration, we proposed a multi-stage
parallel vSDN reconfiguration scheme based on MCRSG,
which operates in the greedy manner to let the InP select the
most weighted MCRSGs to reconfigure in parallel in each
stage. The optimization to select MCRSGs to reconfigure in
each stage was formulated as an ILP model, and we proved its

NP-hardness. Then, we designed an approximation algorithm
based on Lagrangian relaxation to solve the problem time-
efficiently. Extensive simulations verified that the proposed
algorithm can obtain near-optimal solutions quickly,i.e., for
a relatively large SNT with100 S-SWs, it can reduce the
relative dual gap below0.2 within only 20 iterations. More-
over, we also considered the system implementation of our
proposed algorithms, realized the multi-stage parallel vSDN
reconfiguration in a practical NVH system, and demonstrated
its performance in a real network testbed. Our experimental
study analyzed the tradeoff between reconfiguration latency
and packet loss rate, and revealed an empirical method to
adjust key parameters of our NVH system, for adapting to
various network environments.

Meanwhile, we hope to point out that this work still has
some unresolved issues, which will be addressed in our future
work. Firstly, the overall procedure of the multi-stage parallel
vSDN reconfiguration inAlgorithm 1 operates in the greedy
manner. Therefore, it will be interesting to optimize the overall
procedure towards a specific objective (e.g., minimizing the
number of parallel reconfiguration stages) and design an exact
or approximation algorithm for the optimization. Secondly,
the algorithms designed in this work do not care how the
new VNE schemes for vSDN reconfiguration were calculated.
Although this brings some advantages (e.g., simplifying the
algorithm design, and supporting modular design of the NVH
system), it would still be relevant to study the optimization
that jointly considers the calculations of new VNE schemes
and reconfiguration procedure. Hence, our future work will
address the joint optimization and try to balance the tradeoff
between the reconfiguration and operational costs of vSDNs.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC
projects 61871357, 61771445 and 61701472, ZTE Research
Fund PA-HQ-20190925001J-1, Zhejiang Lab Research Fund
2019LE0AB01, CAS Key Project (QYZDY-SSW-JSC003),
and SPR Program of CAS (XDC02070300).

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,”IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[3] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekingvirtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[4] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74,
Mar. 2008.

[5] M. Chowdhury and M. Rahman, “ViNEYard : Virtual Network Em-
bedding Algorithms With Coordinated Node and Link Mapping,”
IEEE/ACM Trans. Netw., vol. 20, pp. 206–219, Jan. 2012.

[6] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[7] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

15

[8] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[9] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[10] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[11] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[12] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,”IEEE Trans. Netw. Serv. Manag., vol. 15,
pp. 275–288, Mar. 2018.

[13] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,”IEEE Commun. Mag.,
vol. 51, pp. 24–31, Nov. 2013.

[14] H. Huang et al., “Realizing highly-available, scalable and protocol-
independent vSDN slicing with a distributed network hypervisor sys-
tem,” IEEE Access, vol. 6, pp. 13 513–13 522, 2018.

[15] Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netw., vol. 10, pp. A206–
A215, Feb. 2018.

[16] A. Fischeret al., “Virtual network embedding: A survey,”IEEE Com-
mun. Surveys Tuts., vol. 15, pp. 1888–1906, Fourth Quarter 2013.

[17] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for software defined networking,” IEEE Com-
mun. Surveys Tuts., vol. 18, pp. 655–685, First Quarter 2016.

[18] D. Kim et al., “Generic external memory for switch data planes,” in
Proc. of ACM HotNets 2018, pp. 1–7, Nov. 2018.

[19] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended TCAMs,” inProc. of ICNP 2003, pp. 120–131, Nov. 2003.

[20] J. Yin et al., “Experimental demonstration of building and operating
QoS-aware survivable vSD-EONs with transparent resiliency,” Opt.
Express, vol. 25, pp. 15 468–15 480, 2017.

[21] B. Konget al., “Demonstration of application-driven network slicing and
orchestration in optical/packet domains: On-demand vDC expansion for
Hadoop MapReduce optimization,”Opt. Express, vol. 26, pp. 14 066–
14 085, 2018.

[22] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[23] S. Zhaoet al., “Make Big Data applications more reliable: Hitless vSDN
migration to avoid TCAM depletion,” inProc. of ICC 2018, pp. 1–6,
May 2018.

[24] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Comput.
Commun., vol. 45, pp. 1–10, Mar. 2014.

[25] H. Huang et al., “Embedding virtual software-defined networks over
distributed hypervisors for vDC formulation,” inProc. of ICC 2017, pp.
1–6, May 2017.

[26] M. Zhang, C. You, H. Jiang, and Z. Zhu, “Dynamic and adaptive
bandwidth defragmentation in spectrum-sliced elastic optical networks
with time-varying traffic,” J. Lightw. Technol., vol. 32, pp. 1014–1023,
Mar. 2014.

[27] S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitlessvSDN
reconfiguration to balance substrate TCAM utilization: From algorithm
design to system prototype,”IEEE Trans. Netw. Serv. Manag., vol. 16,
pp. 647–660, Jun. 2019.

[28] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[29] L. Gonget al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[30] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[31] X. Gaoet al., “A new algorithm with coordinated node and link mapping
for virtual network embedding based on LP relaxation,” inProc. of ACP
2010, pp. 152–153, Dec. 2010.

[32] G. Chochlidakis and V. Friderikos, “Low latency virtual network em-
bedding for mobile networks,” inProc. of ICC 2016, pp. 1–6, May
2016.

[33] R. Lin, C. Du, S. Wang, and S. Luo, “Virtual network embedding in
flexi-grid optical networks,” inProc. of ICCT 2017, pp. 777–782, Oct.
2017.

[34] J. Yin et al., “On-demand and reliable vSD-EON provisioning with
correlated data and control plane embedding,” inProc. of GLOBECOM
2016, pp. 1–6, Dec. 2016.

[35] Y. Xue, J. Peng, K. Han, and Z. Zhu, “On table resource virtualization
and network slicing in programmable data plane,”IEEE Trans. Netw.
Serv. Manag., vol. 17, pp. 319–331, Jan. 2020.

[36] R. Sherwoodet al., “FlowVisor: A network virtualization layer,”Open-
Flow Switch Consortium, Tech. Rep, pp. 1–13, 2009.

[37] A. Al-Shabibi et al., “OpenVirteX: Make your virtual SDNs pro-
grammable,” inProc. of ACM HotSDN 2014, pp. 25–30, Aug. 2014.

[38] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[39] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[40] D. Hancock and J. Merwe, “HyPer4: Using P4 to virtualizethe pro-
grammable data plane,” inProc. of CoNEXT 2016, pp. 35–49, May
2016.

[41] P. Berdeet al., “ONOS: Towards an Open, Distributed SDN OS,” in
Proc. of ACM HotSDN 2014, pp. 1–6, Aug. 2014.

[42] S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: flow-table virtualization
in POF-based vSDN hypervisor (PVX),” inProc. of ICNC 2018, pp. 1–
5, Mar. 2018.

[43] Y. Xue et al., “Virtualization of table resources in programmable data
plane with global consideration,” inProc. of GLOBECOM 2018, pp.
1–6, Dec. 2018.

[44] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,”IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[45] B. Boughzalaet al., “OpenFlow supporting inter-domain virtual machine
migration,” in Proc. of WOCN 2011, pp. 1–7, May. 2011.

[46] S. Zhanget al., “Fast network flow resumption for live virtual machine
migration on SDN,” inProc. of ICNP 2015, pp. 446–452, Nov. 2015.

[47] C. Benet, K. Noghani, and A. Kassler, “Minimizing live VM migration
downtime using OpenFlow based resiliency mechanisms,” inProc. of
CloundNet 2015, pp. 27–32, Oct. 2016.

[48] L. Jiao et al., “Smoothed online resource allocation in multi-tier dis-
tributed cloud networks,”IEEE/ACM Trans. Netw., vol. 25, pp. 2556–
2570, Aug. 2017.

[49] M. Zangiabady, C. Aguilar-Fuster, and J. Rubio-Loyola, “A virtual
network migration approach and analysis for enhanced online virtual
network embedding,” inProc. of CNSM 2016, pp. 324–329, Oct. 2016.

[50] P. Pisaet al., “OpenFlow and Xen-based virtual network migration,” in
Proc. of IFIP 2010, pp. 170–181, Jun. 2010.

[51] R. Mijumbi et al., “Dynamic resource management in SDN-based
virtualized networks,” inProc. of CNSM 2014, pp. 412–417, Nov. 2014.

[52] S. Ghorbaniet al., “Transparent, live migration of a software-defined
network,” in Proc. of SOCC 2014, pp. 1–14, Nov. 2014.

[53] S. Lo, M. Ammar, E. Zegura, and M. Fayed, “Virtual network migration
on real infrastructure: A PlanetLab case study,” inProc. of IFIP 2014,
pp. 1–9, Jun. 2014.

[54] M. Zhang, C. You, and Z. Zhu, “On the parallelization of spectrum de-
fragmentation reconfigurations in elastic optical networks,” IEEE/ACM
Trans. Netw., vol. 24, pp. 2819–2833, Oct. 2016.

[55] A. Freville, “The multidimensional 0–1 knapsack problem: An
overview,” Eur. J. Oper. Res., vol. 155, pp. 1–21, May 2004.

[56] B. Korte and R. Schrader, “On the existence of fast approximation
schemes,” inNonlinear Programming 4. Elsevier, 1981, pp. 415–437.

[57] H. Kellerer, U. Pferschy, and D. Pisinger, “Multidimensional knapsack
problems,” inKnapsack Problems. Springer, 2004, pp. 235–283.

[58] M. Held, P. Wolfe, and H. Crowder, “Validation of subgradient opti-
mization,” Math. Program., vol. 6, pp. 62–88, Feb. 1974.

[59] D. Bertsekas,Nonlinear Programming. Athena Scientific, 1999.
[60] H. Huanget al., “Cost minimization for rule caching in software defined

networking,” IEEE Trans. Parallel Distrib. Syst., vol. 27, pp. 1007–1016,
Apr. 2016.

[61] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compilingpacket
programs to reconfigurable switches,” inProc. of NSDI 2015, pp. 103–
115, May 2015.

