
1

Hybrid Flow Table Installation: Optimizing Remote
Placements of Flow Tables on Servers to Enhance

PDP Switches for In-Network Computing
Yuhan Xue and Zuqing Zhu,Senior Member, IEEE

Abstract—Recently, the programmable data plane (PDP)
switches have been considered as the key enablers for in-network
computing. However, the limited memory resources in them for
flow tables might restrict their performance. This work addresses
this challenge by studying how to optimize the placements offlow
tables in the external memory on multiple servers, and to access
them with remote direct memory access (RDMA) for ensuring
low latency. Specifically, we consider a data-center network
(DCN) that uses PDP switches as top-of-rack (ToR) switches,
and propose and optimize the hybrid flow table installation (hFT-
INST) on each ToR switch. With hFT-INST, the switch can either
store flow tables in its local memory or use RDMA to install and
access them remotely in its rack servers. We first design the
protocol and operation procedure of hFT-INST. Then, regarding
the key problem of hFT-INST, i.e., how to place the flow tables on
the external memory on different servers, we take a few practical
parameters into account, and formulate a mixed integer linear
programming (MILP) model to tackle it. Next, the optimizati on
in the MILP is transformed into a capacitated facility locat ion
problem (CFLP) with additional constraints. We further tra ns-
form it into a k-median problem through pre-processing, and
design a polynomial-time approximation algorithm to solvethe
problem. Extensive simulations confirm the performance of our
proposed algorithm. We also prototype our design of the hFT-
INST, and conduct experiments to demonstrate its feasibility.

Index Terms—Software-defined networking (SDN), In-network
computing, P4, Programmable data plane (PDP), Remote direct
memory access (RDMA), Approximation algorithm.

I. I NTRODUCTION

NOWADAYS, the fast developments of cloud computing,
big data analytics, and immersive multimedia applica-

tions have driven the Internet to go through revolutionary
changes [1, 2]. For instance, the advances on software-defined
networking (SDN) [3–5], network virtualization [6–10], and
physical-layer technologies [11–15] have paved the road to
realize network function virtualization (NFV), for flexible,
cost-effective, and short time-to-market network servicepro-
visioning [16–18]. NFV instantiates virtual network functions
(vNFs) and composes various network services with them.
Recent studies have suggested that the cost-effectivenessand
power-efficiency of NFV can be further improved with in-
network computing [19, 20]. Specifically, in-network com-
puting refers to the execution of vNFs within the network
devices that are already used to forward traffic [20]. Because it

Y. Xue and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China,Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on Jun. 4, 2020.

terminates transactions as they traverse a network, in-network
computing can significantly reduce the load on the network.

In-network computing can normally be realized with three
types of devices,i.e., the field programmable gate arrays
(FPGAs), SmartNICs and programmable data plane (PDP)
switches [20]. Among them, PDP switches [21, 22] are the
key enablers. With domain specific languages (e.g., P4 [23]),
one can program the data plane logic of PDP switches,i.e.,
defining packet header fields and packet processing pipelines,
and specifying the match fields and actions of each flow
table in the pipelines. Compared with traditional ones, PDP
switches have similar costs and power consumption, but they
offer improved programmability without sacrificing packet
processing performance. Hence, they have the potential to
realize high performance in-network computing [24–28].

Although PDP switches are promising for implementing in-
network computing, there are still a few challenges to address.
Among them, a major one is that due to the power consump-
tion and cost of ternary content addressable memory (TCAM)
and static random-access memory (SRAM), a PDP switch
usually has very limited memory resources, which might not
be sufficient to accommodate all the active flow tables for in-
network computing [29]. For instance, the memory resources
in a state-of-art PDP switch can only store a few thousands of
flow tables at most [22, 30]. To address the difficulty caused
by the limited memory capacity, people have considered to
expand the memory in PDP switches with external memory
and enable them to access the external memory with remote
direct memory access (RDMA) [30]. Specifically, RDMA was
developed to enable the direct access from the memory of one
computer into that of another one without the intervention
of either one’s operating system [31]. Hence, it eliminatesthe
overheads of memory copying and context switching, and thus
allows high-throughput and low-latency data transfers.

Inspired by the idea in [30], we consider a practical and
more complex scenario than the one in that work,i.e., a data-
center network (DCN) that uses PDP switches as top-of-rack
(ToR) switches, and study how to optimize the placements
of flow tables in the external memory on multiple servers
to improve the performance of the PDP switches for in-
network computing. Specifically, each ToR switch supports
hybrid flow table installation (hFT-INST),i.e., it can either
store flow tables in its local memory, or use RDMA to install
and access them in the external memory on the servers in
its rack. Note that, RDMA can be supported with either
the RDMA-based network adapters (RDMA-NICs) or normal

2

network adapters that enable soft RDMA over converged
Ethernet (Soft-RoCE-NICs). RDMA-NICs are more expensive
and thus less common in a network, while Soft-RoCE provides
a software-based alternative solution to enable RDMA with
normal network adapters. Meanwhile, in addition to RDMA,
one can also use the remote produce call (RPC) [32] to
realize remote memory access. However, both the existing
studies in [33, 34] and our own experimental investigation
suggested that compared with the generic RPC, RDMA can
achieve more efficient and faster remote memory operations.
Hence, we model a practical situation where the servers can be
equipped with RDMA-NICs or Soft-RoCE-NICs, and consider
the different data transfer latencies of the hFT-INSTs through
RDMA-NICs and Soft-RoCE-NICs.

Based on this network environment, we first design the
protocol for hFT-INST, and lay out the operation procedure
to implement it. Note that, the RDMA-based design in [30]
mainly considered the scheme that tries to perform the related
tasks purely in the data plane. Although the data plane im-
plementation was compact, it also suffers from the restrictions
due to the limited computing and storing capability of the
data plane. Hence, each PDP switch can only use the external
memory on a single location,i.e., organizing and indexing
flow tables with different match fields on a single memory.
However, as match fields can have various lengths and RDMA
operations also consume bandwidth, the one-to-one scheme
has to use complex flow table indexing/accessing methods
and causes “hot-spots” of bandwidth usage in some extreme
cases. Meanwhile, using a single server to provide the remote
memory will make our proposal unreliable, because the entire
system will stop functioning if the server breaks down.

Moreover, the design in [30] cannot be expanded to sup-
port multiple servers with simple modifications, because an
effective algorithm is then needed to manage the mapping
between flow tables and external memory locations, which was
not addressed in [30]. This motivates us to study the related
network modeling and algorithm design together with system
implementation. In other words, as this work addresses both
algorithm design and system implementation, its coverage is
more comprehensive than that of [30]. We design the system
to involve the control plane in the process, which has enhanced
computing and storing capability to manage the mapping
between flow tables and external memory locations. Therefore,
the flow tables can be organized and indexed more efficiently
and the bandwidth overheads of RDMA can be shared among
multiple servers, which is similar to anycast [35].

It can be seen that in this new design, it is essential
to determine how to place the flow tables on the external
memory on different servers, which is the problem of hFT-
INST considered in this work. More specifically, we take the
widths of flow tables, computing and networking loads on
servers, and RDMA latencies of RDMA-NICs and Soft-RoCE-
NICs into account, and formulate an optimization model to
tackle the problem of hFT-INST. To the best of our knowledge,
such algorithm design has not been addressed in the existing
studies on this topic. Next, we first transform the problem of
hFT-INST into a capacitated facility location problem (CFLP)
with additional constraints [36], further transform it into a

k-median problem through pre-processing, and then design
a polynomial-time approximation algorithm to solve it with
performance guarantee. Finally, we prototype our design of
hFT-INST with Soft-RoCE and BMv2 [37], and conduct
experiments to demonstrate the feasibility of our proposal.

The rest of this paper is organized as follows. Section II
presents the related work. We describe the network model
and related definitions in Section III. The mixed integer
linear programming (MILP) model for optimizing hFT-INST
is formulated in Section IV. Then, Section V designs the
approximation algorithm, and its simulation results are shown
in Section VI. Next, we introduce the implementation of the
prototype system and discuss the experimental demonstrations
in Section VII. Finally, Section VIII summarizes the paper.

II. RELATED WORK

In-network computing [20], also known as in-network com-
putation [19], tries to extend the functionalities of network
devices beyond traffic forwarding, to cover computing tasks
in the application layer. The studies in [24–26] leveraged
PDP switches to accomplish the computing tasks for key-
value store. Sonchacket al. [38] introduced Turboflow, which
was an in-network computing system for network telemetry.
Specifically, they designed and implemented two types of
flow record generators for network telemetry, based on the
PDP switch using Tofino application-specific integrated circuit
(ASIC) [22] and a prototype switch built with SmartNICs,
respectively. Note that, SmartNICs usually consist of network
processors whose architectures are similar to the run-to-
completion model, and thus they can also be used for in-
network computing [39, 40]. The authors of [39] utilized
SmartNICs to extend RDMA primitives for offloading key-
value store. IPipe [40] was an actor-based framework for
offloading distributed applications onto SmartNICs.

Although in-network computing is promising, it has to
consume a noticeable amount of memory in programmable
network devices, and thus will bring new challenges since the
memory resources in these network devices are usually very
limited [22, 30]. For instance, in [28], the authors designed
NetHCF to realize the filtering of spoofed IP traffic with
PDP switches, while they had to take the shortage of memory
resources in PDP switches into account and considered flow
table aggregation. These new challenges actually motivateus
to design and optimize hFT-INST.

Previously, there were also studies to address the shortage
of memory resources in SDN/PDP switches. Bosshartet
al. [21] investigated how to optimize the hardware design
of SDN switches to relieve the memory fragmentation in
them, and proposed two chip design techniques. Even though
their results confirmed that the design could achieve efficient
memory utilization over a wide range of network configura-
tions, the proposals were still hardware-specific. The study in
[41] proposed to replace part of hardware TCAM with the
table resources realized by software. However, the high-speed
search capability of hardware is also lost. The lookup time
introduced by software-based table resources is much longer.
The authors of [42] tried to delay the installation of flow tables

3

and expedite their evictions to adapt to the limited memory in
SDN switches, but this might affect the packet processing per-
formance. The shortage of memory resources in SDN switches
could also be relieved by deploying aggregated default paths
[43] or leveraging flow rule multiplexing [44]. However, these
schemes might not be applicable to in-network computing,
because the flow tables would be much more complicated than
those used for packet forwarding. Previously, we also tackled
the problem with table resource virtualization [45, 46], and
tried to leverage the memory resources in directly-connected
PDP switches as the supplement to address the limited memory
in one of them. Nevertheless, the performance of the proposed
scheme depended on the actual network topology.

Nowadays, the RDMA technology [31] has already been
widely used in DCNs. However, most of its applications are
still about realizing fast memory sharing among servers,e.g.,
in FaRM [47]. The study in [30] proposed to expand the
memory in PDP switches with external memory by leverag-
ing RDMA. Specifically, the authors designed three remote
memory primitives,i.e., packet buffer primitive, lookup table
primitive and state-store primitive, to show the feasibility of
accessing remote memory from PDP switches. Nevertheless,
they only considered to accomplish the remote table lookup
purely in the data plane, which restricts the memory sharing
in the one-to-one manner (i.e., each PDP switch can only
leverage the external memory on a single location). In this
work, we also utilize external memory with RDMA to enhance
PDP switches for in-network computing, but we improve the
design by adding control plane operations to realize hFT-INST
in the one-to-many way. Specifically, we take real system
parameters into consideration, formulate a model to optimize
hFT-INST, and design a polynomial-time approximation algo-
rithm to solve it with performance guarantee. To the best of
our knowledge, such algorithm design has not been addressed
in the existing work on this topic.

III. PROBLEM DESCRIPTION

In this section, we first explain the memory in PDP switches
for storing flow tables, then introduce the RDMA scheme to
access remote memory on servers, present our system design,
and finally define the problem of hFT-INST.

A. Memory Resources in PDP Switches

Fig. 1 shows the the general architecture of a PDP switch
that is based on a P4-enabled programmable ASIC [21, 29].
It processes packets with a pipeline model, where each packet
needs to traverse a fixed sequence of flow tables. Each flow
table stores its flow entries in TCAM, and uses SRAM for the
counters and other states of processed packets. Meanwhile,the
flow table also needs to occupy a small number of processing
units in the ASIC, for executing operations while accessingthe
SRAM. The major benefit of such pipeline-based architecture
is that the processing delay on each packet is almost the
same, regardless of the number of flow tables that it needs
to go through [21]. This is extremely useful for in-network
computing, because it enables a PDP switch to handle complex
operations with fixed latency. Meanwhile, we can see that the

!
"
#$
%
#

&
%
'
"
#$
%
#

!"#$%& !"#$%&

!('%)(*%

!#+,#"--".)% /012 3+#4"#5 6*,(*%

3)+478".)%

3)+476*9#:

;%-+#: <$",%

!#+=%$$(*,7<*(9

8

2

/

;

0

>

/

;

;
"
9=
?

/
=
9(
+
*

8

2

/

;

0

>

/

;

;
"
9=
?

/
=
9(
+
*

Fig. 1. General architecture of a P4-enabled PDP switch.

amount of memory resources provided by TCAM/SRAM will
affect the PDP switch’s performance, since the limited capacity
will make it difficult to accommodate necessary flow tables.

B. Remote Access of Memory in Servers

We explain our proposal of hFT-INST in Fig. 2. Here, we
consider a DCN environment, where PDP switches are used
as the top-of-rack (ToR) switches, and assume that they can
leverage external memory in its rack servers to store the flow
tables for in-network computing, by utilizing RDMA. In a
practical situation, the rack servers can be equipped with either
RDMA-NICs or Soft-RoCE-NICs to share their memory with
the ToR switch. Note that, the remote memory access will
introduce extra bandwidth usages between the ToR switch and
its rack servers. However, according to a recent measurement
of the traffic characteristics in real DCNs [48], the traffic
between a ToR switch and its rack servers is usually sparse.
Therefore, we will consider the bandwidth usages between the
ToR switch and its rack servers when solving the problem of
hFT-INST, and try to find the servers whose bandwidth to/from
the ToR switch is enough for the RDMA operations.

!"#$"#

%&'()*+,

!"#$"#

%&'()*+,

!"#$"#

!-./)%-,0)*+,

!"#$"#

!-./)%-,0)*+,

111

!"#$"#

%&'()*+,

111

!"#$"#

!-./)%-,0)*+,

%2345!"#$"#65/-57#-$89"50:/"#;2<5'"=-#>

?-% 7&75!@8/3A

!"#$"#

!"#$"#

!"#$"#

111

%2345!"#$"#6

111

%&'(

Fig. 2. Network model of hFT-INST.

C. System Design

To realize the hFT-INST in Fig. 2, we design the system ar-
chitecture as shown in Fig. 3, which includes implementations
in both the PDP switch and rack servers. On the switch side,
the function modules are distributed in the control and data

4

!"#$"#

!%&#"'()"*+#,

-+#. -+#. -+#. -+#. -+#.

!+/.01+230452

!"#$%&'()*+,&-),#%. /$#)01

)&.6%(7 86.9+:(7

)&.6%(; 86.9+:(;

< <

)&.6%(4 86.9+:(4

2=>

2=>

=?=(!@9.6%(?&.&(=A&:"

=?=(!@9.6%(2+:.#+A(=A&:"

9:-B.C+B.-B.(-&6D".

1?)8(=#+6"EE(2+:.#+AA"#

)9EE9:F(*&.6%

1?)8(@#9."

1?)8(9:9.9&A9G&.9+:((

HA+@(I&JA"(7

HA+@(I&JA"(;

HA+@(I&JA"(4

22
?"/&BA. 1?)8

I&JA"

KB.-B.(

!"#$"#

!%&#"'()"*+#,

1?)80452

!"#$%&'()*+,&-),#%. /$#)01

)&.6%(7 86.9+:(7

)&.6%(; 86.9+:(;

< <

)&.6%(4 86.9+:(4

2=>

2=>

LM

7

;

1?)8(@#9."

N

3O"6B."(&6.9+:

7

;

N

M
L

Fig. 3. Overall system architecture to realize hFT-INST.

planes. We insert a RDMA process controller in the control
plane to 1) determine the scheme of hFT-INST according to
network status, and 2) sendRDMA-Writemessages to servers
to implement the scheme. The data plane still processes and
forwards packets according to the pipelines built with flow
tables. To overcome the shortage of TCAM/SRAM in the PDP
switch, hFT-INST places and accesses flow entries remotely
on rack servers. To achieve this, we program the PDP switch
to enable low-latency remote table lookup with RDMA. When
a packet comes in, if its flow entries are stored locally, it is
processed as usual in normal PDP switches. Otherwise, the
data plane of the PDP switch first asks the control plane to
do a remote table lookup, which reads the external memory
on servers with RDMA to get the flow entries for the packet,
and then performs the actions in the obtained flow entries by
leveraging the default RDMA table. Hence, instead of relying
on the data plane to locate flow entries in external memory on
servers, we design the control plane to accomplish the task.

Specifically, the overall procedure is explained in Fig. 3.
When a packet encounters a table-miss, the PDP switch esca-
lates it from the data plane to the RDMA process controller
(Step 1). Then, the controller finds the remote location of
its flow entry based on the match field of the flow table, and
generates anRDMA-Writemessage to the corresponding server
for remote table lookup (Step 2). Here, we include the packet
in the RDMA-Writemessage to avoid caching it on the PDP
switch. When the RDMA-NIC/Soft-RoCE-NIC on the target
server receives the message, it locates the packet’s flow entry
in its local memory, encodes anotherRDMA-Write message
to include both the packet and the flow entry, and sends the
message back to the PDP switch (Step 3). On the server side,
we store flow entries in a storage structure that is similar to
the key-value store [26], where the key is the match field and
the value is the corresponding action. Note that, the principle
of RDMA ensures that the operations inSteps 2and3 will not
cause any overheads on the CPU on the server [31]. Finally,
with the RDMA-Writemessage, the PDP switch executes the
needed actions on the packet in the default RDMA table, and
sends it out if necessary (Steps 4and5).

Note that, the system design in Fig. 3 assumes that the
control plane of the PDP switch can communicate with servers

using RDMA. This assumption is reasonable for the following
two reasons. Firstly, the control plane should be able to talk
to the servers, because such communications are needed even
we do not consider remote memory access (e.g., collecting
working status of the servers). Secondly, the assumption does
not necessarily mean that the control plane has to be equipped
with a RDMA-NIC, since RDMA can also be realized on
normal adapters by leveraging Soft-RoCE. Meanwhile, con-
sidering the fast development and wide usage of RDMA, it
could be possible for us to equip a RDMA-NIC in a PDP
switch just for the control plane in the future.

D. Problem Description of hFT-INST

It can be seen that the system design of hFT-INST described
above sacrifices packet processing latency and bandwidth for
larger memory capacities to store the flow tables for in-
network computing. Since the rack servers can be equipped
with different kinds of NICs and the bandwidth usages be-
tween them and the ToR switch can be various, how to
allocate the flow entries to the servers (i.e., the problem of
hFT-INST) will be an interesting but necessary problem to
investigate, especially when the PDP switch needs to satisfy
different quality-of-service (QoS) requirements in in-network
computing. Meanwhile, we should also pay attention to the
length of the match field (i.e., the key) in each flow entry,
when organizing the entries in the servers. This is because for
the remote table lookup with RDMA, it will be much easier
and faster if the RDMA process controller searches in fixed-
length keys. Hence, it would be beneficial to store flow entries
whose keys have the same or similar lengths in a same server.

We define the problem of hFT-INST as follows. Given a
set of flow tables that should be accommodated in external
memory (C) and a set of rack servers (F), we need to map
the tables inC to the servers inF , such that the overall cost
of the mapping is minimized. Here, the RDMA latency, the
bandwidth overhead, and the key length differences among the
entries stored in each server all contribute to the cost.

IV. MILP F ORMULATION FOR HFT-INST

In this section, we formulate an MILP model to opti-
mize hFT-INST, based on the system design explained in
Section III-C. Note that, RDMA-NICs and Soft-RoCE-NICs
provide different RDMA latencies. Specifically, the latency
from RDMA-NICs is shorter and usually does not change with
packet length, while that from Soft-RoCE-NICs can be longer
and increase with packet length. Hence, to be generic, we
model the RDMA latency of an NIC as

T =

{

α+ γ · l, enough bandwidth for RDMA,

β + γ · l, insufficient bandwidth for RDMA,
(1)

whereα andβ are the fixed latencies for the cases where the
available bandwidth between the PDP switch and a server is
enough and not enough for RDMA operations, respectively,
γ is the factor for calculating the dynamic latency based on
packet length, andl is the packet length. Theα, β andγ of
RDMA-NICs and Soft-RoCE-NICs take different values.

Notations:

5

• C: the set of flow tables that need to be stored in external
memory in servers1, where we assume that each flow
table can be indexed with an integerj ∈ [1, |C|].

• F : the set of rack servers that can provide external
memory for flow tables, where we assume that each
server can be indexed with an integeri ∈ [1, |F |].

• ci,j : the cost when the entries in theTablej get stored in
Serveri, and the detailed formulation will be given later.

• lj : the average length of the packets that match to flow
entries inTable j.

• sj : the average arrival rate of the packets that match to
flow entries inTablej.

• Bi: the bandwidth left for RDMA onServeri.
• αi: the fixed RDMA latency if the switch andServeri

have enough bandwidth for RDMA operations.
• βi: the fixed RDMA latency if the switch andServeri

do not have enough bandwidth for RDMA operations2.
• γi: the factor for calculating the dynamic RDMA latency

on Serveri, based on packet length.
• δ: the normalization factor for length difference between

the key in a server and the match field in a table.
• cwj : the length of the match field inTablej.
• fwi: the key length of the remote memory inServeri.
• M : a large positive constant.
• bmax: the maximum bandwidth usage of packets,i.e.,
bmax = max

∀j
(sj · lj).

• bmin: the minimum bandwidth usage of packets,i.e.,
bmin = min

∀j
(sj · lj).

Variables:

• xi,j : the boolean variable that equals1 if the entries in
Table j are stored onServeri, and0 otherwise.

• yi: the boolean variable that equals1 if Serveri stores
flow entries, and0 otherwise.

• fi: the real variable that indicates the fixed RDMA
latency onServeri.

• fi,1, fi,2, pi,1 and pi,2: the boolean auxiliary variables
that are introduced for linearization.

• qi,1 and qi,2: the integer auxiliary variables that are
introduced for linearization.

Objective:
The optimization tries to minimize the overall cost of map-

ping the flow tables to rack servers. Therefore, the optimization
objective can be designed as

Minimize
∑

∀i,j

ci,j · xi,j +
∑

∀i

fi · yi, (2)

where the first term includes the costs caused by the dynamic
RDMA latencies and the key length difference, while the
second term denotes the total fixed RDMA latency. Hence,

1Note that, flow tables should only be placed on external memory in servers
when the local memory on a PDP switch is used up. This is because RDMA
brings extra memory access latency and thus will affect the packet processing
performance of the PDP switch. Hence,C just contains all the flow tables
that cannot be stored locally in a PDP switch, and can be easily obtained.

2We normally haveβi ≫ αi, and thus the packet processing in a PDP
switch will be severely affected if the bandwidth left for RDMA operations
is insufficient.

we formulate the costci,j as follows.

ci,j = γi · lj + δ · (fwi − cwj). (3)

Note that, the second term in Eq. (2) is nonlinear, and in the
following, we will show the method to linearize it.

Constraints:
∑

∀i

xi,j = 1, ∀j. (4)

Eq. (4) ensures that each flow table is allocated to one and
only one server, for storing its entries remotely.

yi − xi,j ≥ 0, ∀i, j. (5)

Eq. (5) ensures that the value ofyi is set correctly.

fi =















αi, Bi ≥
∑

∀j

sj · lj · xi,j ,

βi, Bi <
∑

∀j

sj · lj · xi,j .
(6)

Eq. (6) determines the value of the fixed RDMA latencyfi
on Serveri according to the bandwidth usage3. However, this
is a nonlinear constraint and needs to be linearized.

fi,1 + fi,2 = 1, (7)

αi · fi,1 + βi · fi,2 = fi, (8)

Bi ≥ fi,1 ·
∑

∀j

sj · lj · xi,j , ∀i, (9)

Bi < fi,2 ·
∑

∀j

sj · lj · xi,j +M · fi1, ∀i. (10)

Eqs. (7)-(10) leverage variablesfi,1 andfi,2 to linearize Eq.
(6), while Eqs. (9)-(10) need to be further linearized.

Bi ≥ qi,1, ∀i, (11)

qi,1 ≤
∑

∀j

sj · lj · xi,j , ∀i, (12)

qi,1 ≥





∑

∀j

sj · lj · xi,j



− bmax · (1− fi,1) , ∀i, (13)

bmin · fi,1 ≤ qi,1 ≤ bmax · fi,1, ∀i. (14)

We use Eqs. (11)-(14) to linearize Eq. (9) with variableqi,1.

Bi < qi,2 +M · fi,1, ∀i, (15)

qi,2 ≤
∑

∀j

sj · lj · xi,j , ∀i, (16)

qi,2 ≥





∑

∀j

sj · lj · xi,j



− bmax · (1− fi,2) , ∀i, (17)

bmin · fi,2 ≤ qi,2 ≤ bmax · fi,2, ∀i. (18)

Similarly, we use Eqs. (15)-(18) to linearize Eq. (10) with
variableqi,2. Then, we can linearize the objective in Eq. (2)
with variablesfi,1 andfi,2 as

Minimize
∑

∀i,j

ci,j · xi,j +
∑

∀i

(αi · fi,1 · yi + βi · fi,2 · yi) , (19)

3Here, we assume that the average length and average arrival rate of the
packets, which match to the flow entries in each flow table inC, should be
known a prior. This assumption is valid, because for in-network computing,
a flow table normally contains the flow entries for the same application, while
the traffic statistics of applications in DCNs can be estimated [48, 49].

6

which can be further linearized as follows.

Minimize
∑

∀i,j

ci,j · xi,j +
∑

∀i

(αi · pi,1 + βi · pi,2) , (20)

which represents the final formulation of the objective. Here,
pi,1 and pi,2 are the auxiliary integer variables introduced
to assist the linearization of the objective, and the following
constraints should be added for them.

{

pi,1 ≤ fi,1,

pi,2 ≤ fi,2,
∀i, (21)

{

pi,1 ≤ yi,

pi,2 ≤ yi,
∀i, (22)

{

pi,1 ≥ fi,1 + yi − 1,

pi,2 ≥ fi,2 + yi − 1,
∀i. (23)

By treating the flow tables inC as demand points and
the servers inF as potential facility sites, we can easily
verify that the optimization described by the aforementioned
MILP can be transformed into a capacitated facility location
problem (CFLP) with additional constraints, which isNP-
hard according to [50]. Therefore, in the next section, we
will leverage some existing techniques in [50, 51] to designa
polynomial-time approximation algorithm for it.

V. A PPROXIMATION ALGORITHM

In this section, we design a polynomial-time approximation
algorithm to solve the optimization in Section IV with per-
formance guarantee, and thus it can be implemented in the
RDMA process controller in Fig. 3. Specifically, as the opti-
mization is an instance of CFLP with additional constraints,
we first design a preprocessing procedure to transform it into
a k-median problem, and then we leverage the local search
approach in [51] to design the approximation algorithm for it.

A. Preprocessing

By looking into the MILP model in Section IV, we can
see that compared with the standard CFLP, it includes a few
additional constraints, which are mainly related to bandwidth
usages. More specifically, because the relation between fixed
RDMA latency and bandwidth usage is modeled as a piece-
wise function in Eq. (6), we introduce several variables and
constraints to linearize it. Hence, we design the preprocessing
to simplify the constraints, reduce the scale of the problem,
and transform it into a standardk-median problem. The main
idea of the preprocessing is to aggregate tables and filter out
infeasible servers, such that all the selected servers should have
enough bandwidth for the RDMA operations of hFT-INST.

Algorithm 1 explains the procedure of the preprocessing.
Lines 1-2 is for the initialization. Note that, the mapping of
flow tables to servers is not conducted in the preprocessing,but
it is just for organizing the flow tables in a reasonable set of
grouped tables and removing the servers whose bandwidth left
for RDMA is too small. Hence,Line2 selects the server whose
bandwidth is median among all the servers, and records its
bandwidth inB̄ as an empirical threshold. Then, the for-loop
coveringLines3-12 organizes the flow tables inC in grouped
tables. Specifically, the flow tables in each grouped table have

Algorithm 1: Preprocessing
Input : the set of serversF , and set of flow tablesC.
Output : the set of selected serversF ′, set of grouped

tablesC′, and number of grouped tablesk.

1 F ′ = F , C′ = C, p = 0, gb = 0, cw = 0;
2 sort servers inF based on bandwidth left for RDMA,

select the median one, and store its bandwidth inB̄;
3 for each Tablej in C in ascending order ofcwj do
4 if (cwj = cw) AND (gb+ sj · lj ≤ B̄) then
5 addTable j into Table GroupGp;
6 gb = gb+ sj · lj ;
7 else
8 p = p+ 1;
9 addTable j into Table GroupGp;

10 gb = sj · lj , cw = cwj ;
11 end
12 end
13 insert all the grouped tables inC′;
14 k = p;
15 store the maximum bandwidth of all grouped tables

in b̂;
16 for each Serveri in F do
17 if Bi ≥ b̂ then
18 addServeri in the set of selected serversF ′;
19 end
20 end
21 return (F ′, C′, k);

the same length of match field, and the total bandwidth usage
of the packets that match to them does not exceedB̄. We insert
all the obtained grouped tables in setC′ (Line 13), record
the number of grouped tables ink (Line 14), and find the
grouped table whose total bandwidth usage from packets is
the maximum and store the bandwidth inb̂ (Line 15). Finally,
we use the for-loop that coversLines 16-20 to filter out the
servers whose bandwidth left for RDMA is less thanb̂ and
insert the remaining ones in the set of selected serversF ′.
The time complexity ofAlgorithm 1 is O(|C| + |F |).

B. Approximation Algorithm to Solve k-Median Problem

Since the preprocessing makes sure that all the selected
servers inF ′ can provide sufficient bandwidth for RDMA, the
second term in the optimization objective in Eq. (2) becomes
a constant multiplied byk. Therefore, the optimization in
Section IV gets transformed into the following problem.

Minimize
∑

∀i∈F ′, ∀j∈C′

ci,j · xi,j . (24)

Constraints:
∑

∀i∈F ′

xi,j = 1, ∀j ∈ C
′
, (25)

yi − xi,j ≥ 0, ∀i ∈ F
′
, ∀j ∈ C

′
, (26)

∑

i∈F ′

yi ≤ k. (27)

7

Algorithm 2: Local Search Algorithm

Input : the set of selected serversF ′, set of grouped
tablesC′, and number of grouped tablesk.

Output : M: the mapping ofC′ → F ′.

1 F ′′ = ∅;
2 while |F ′′| < k do
3 move a server fromF ′ to F ′′, such that mapping

grouped tables inC′ to servers inF ′′ greedily
leads to the smallest cost with Eq. (24);

4 record the mapping and its cost inM andC;
5 end
6 swapn servers inF ′′ with those inF ′, and store all

the possible new server sets inF ;
7 for eachF ′′ ∈ F do
8 map grouped tables inC′ to servers inF ′′

greedily to minimize the cost in Eq. (24);
9 record the new cost inC′;

10 if C′ < C then
11 updateM with the new mapping forF ′′;
12 C = C′;
13 end
14 end
15 return (M);

We can see that the optimization described with Eqs. (24)-
(27) is just a standardk-median problem [51]. Note that,
there have already been a few approximation algorithms to
solve this problem [51–53], and the local search approach in
[51] can provides the best approximation ratio. Therefore,we
leverage it to designAlgorithm2 and solve the optimization of
Eqs. (24)-(27) with performance guarantee.Line 1 is for the
initialization. Then, we use a while-loop to move one server
fromF ′ to F ′′ in each iteration with a forward greedy process,
i.e., the mapping cost is minimized after each operation, until
there arek servers inF ′′ (Lines 2-5). In Line 6, we try to
swapn servers inF ′′ with those inF ′, obtain all the possible
new server sets, and store them in setF . Finally, the for-loop
covering 7-14 checks all the new server sets inF to find the
best mapping scheme, which provides the smallest mapping
cost. The time complexity ofAlgorithm2 isO((|C′|+|F ′|)n).

C. Approximation Ratio

We assume that there are sufficient servers with enough
bandwidth for RDMA to accommodate the flow tables. This
is reasonable because if the servers are insufficient, the packet
processing in the PDP switch will be severely affected, and we
should not offload flow tables in this case. Hence, by denoting
the optimal solution from the MILP asCMILP, we have

CMILP ≥
∑

j∈C

min
i∈F

(ci,j) = C1. (28)

Meanwhile, we denote the optimal solution obtained by solv-
ing thek-median problem of Eqs. (24)-(27) exactly asCkMP,

CkMP ≤
∑

j∈C

max
i∈F

(ci,j) + k ·max
i∈F

(αi) = C2. (29)

It can be seen thatC1 andC2 are constants for each instance of
the hFT-INST problem, and the ratio ofCkMP to CMILP satisfies

CMILP

CkMP
≥

C1

C2

. (30)

Then, we define the solution fromAlgorithm 2 asCAPP, and
according to [51], we have

CAPP

CkMP
≤ 3 +

2

n
. (31)

Finally, by combining Eqs. (28)-(32), we get the upper-bound
of the approximation ratio as

CAPP

CMILP
≤

C2

C1

·
CAPP

CkMP
≤

C2

C1

·

(

3 +
2

n

)

. (32)

VI. N UMERICAL SIMULATIONS

In this section, we evaluate the performance of our ap-
proximation algorithm (Algorithms 1 and 2) with extensive
numerical simulations. Specifically, we consider both small-
and large-scale problems of hFT-INST. Due to the MILP’s
complexity, we only compare it with the approximation algo-
rithm in the small-scale scenario. In the large-scale scenario,
we consider more flow tables and rack servers to further study
the performance of the approximation algorithm. Note that,
other than the MILP and approximation algorithm, we do
not consider heuristics in the simulations. This is becausefor
an optimization problem, a heuristic can only obtain feasible
solutions but can never guarantee a fixed approximation ratio.
In other words, it is theoretically impossible to have the
heuristics that could better approximate the optimal solutions
than an approximation algorithm in all the scenarios. The sim-
ulations obtain each data point by averaging the results from
20 independent runs, to ensure sufficient statistical accuracy.

As we will explain in Section VII-A, the system imple-
mentation uses the software-based BMv2 [37] to emulate a
P4-enabled PDP switch. Therefore, the settings ofα, β and
γ in Eq. (1) should follow the assumption that the PDP
switch is a software-based one using BMv2. Then, based
on the experimental results about RDMA-NICs in [30], the
simulations chooseα = 0.4 ms, β = 1000 ms, andγ = 0
ms/byte for RDMA-NICs. On the other hand, we measure
the RDMA latency on a Soft-RoCE-NIC in the experiments
that will be described in Section VII-C. According to the
experimental results, we setα = 0.5655 ms, β = 1000 ms,
andγ = 4.5× 10−4 ms/byte for Soft-RoCE-NICs.

A. Small-Scale Simulations

In this scenario, we choose the number of rack servers
from {16, 32}. The key length of the remote memory on
each server is randomly selected from{32, 48, 64, 128} bits
with probabilities of{0.15, 0.1, 0.6, 0.15}, respectively. The
bandwidth capacity of the connection between each server
to the PDP switch is chosen from{1, 10, 40} Gbps with
probabilities of{0.75, 0.1875, 0.0625}. Also, we assume that
servers with10 and40 Gbps connection speeds are equipped
with RDMA-NICs, while those with1 Gbps connection speed
have Soft-RoCE-NICs. The number of flow tables inC is
fixed as500 or 1000, and the lengths of their match fields are

8

TABLE I
PERFORMANCECOMPARISONS BETWEENMILP AND APPROXIMATION ALGORITHM

MILP Approximation Algorithm

Servers Flow Tables First Term Second Term Overall Running First Term Second Term Overall Running

|F | |C| in Eq. (2) in Eq. (2) Objective Time (s) in Eq. (2) in Eq. (2) Objective Time (s)

16 500 231.25 1.20 232.45 0.800 249.35 1.20 250.55 0.003

16 1000 471.75 1.20 472.95 1.300 495.25 1.60 496.85 0.013

32 500 217.50 2.40 219.90 13.600 233.50 1.60 235.10 0.011

32 1000 455.00 1.60 456.60 366.400 471.25 1.60 472.85 0.100

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

500

1000

1500

O
ve

ra
ll

O
bj

ec
tiv

e

16 32 48 64

(a) Overall cost

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

2

4

6

8

10

12

A
ve

ra
ge

 B
an

dw
id

th
 U

sa
ge

 (
%

) Application Traffic RDMA

(b) Average bandwidth usage

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

5

10

15

20

25

M
ax

im
um

 B
an

dw
id

th
 U

sa
ge

 (
%

) Application Traffic RDMA

(c) Maximum bandwidth usage

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

1

2

3

4

5

6

M
in

im
um

 B
an

dw
id

th
 U

sa
ge

 (
%

) Application Traffic RDMA

(d) Minimum bandwidth usage

Fig. 4. Large-scale simulation results (First scenario: light-loaded DCN).

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

500

1000

1500

2000

O
ve

ra
ll

O
bj

ec
tiv

e

16 32 48 64

(a) Overall cost

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

20

40

60

80

100

A
ve

ra
ge

 B
an

dw
id

th
 U

sa
ge

 (
%

) Application Traffic RDMA

(b) Average bandwidth usage

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

20

40

60

80

100

M
ax

im
um

 B
an

dw
id

th
 U

sa
ge

 (
%

) Application Traffic RDMA

(c) Maximum bandwidth usage

500 1000 1500 2000 2500 3000
Number of Flow Tables

0

10

20

30

40

50

60

70

M
in

im
um

 B
an

dw
id

th
 U

sa
ge

 (
%

) Application Traffic RDMA

(d) Minimum bandwidth usage

Fig. 5. Large-scale simulation results (Second scenario: heavy-loaded DCN).

randomly selected within{16, 32, 48, 64, 96, 128} bits4. The
length of the packets that match to the flow tables is chosen
within {64, 128, 256, 512, 1024, 1500} bytes with probabilities
of {0.2, 0.2, 0.2, 0.2, 0.1, 0.1}, respectively. The packet rate is
randomly selected from[1, 10] kilo-packets per second (kpps).

Table I summarizes the simulation results to compare the
performance of the MILP and approximation algorithm. We
can see that the objectives from the approximation algorithm
are always very close to those from the MILP, and the
maximum relative gap is only7.78%. Meanwhile, the running
time of the approximation algorithm can be three magnitudes
shorter than that of the MILP. Hence, the results verify the
time-efficiency and effectiveness of our proposed algorithm,
and confirm that it can be implemented in the RDMA process
controller for dynamic operations.

B. Large-Scale Simulations

In this scenario, we increase the numbers of rack servers
and flow tables. Specifically, the number of servers is chosen

4In a practical DCN, the distribution of flow tables can changewhen
different types of in-network computing tasks are considered. Hence, uniform
distribution is the most statistically-suitable assumption to use. Meanwhile, as
our proposals do not depend on the distribution of flow tables, this assumption
will not restrict the generality of our numerical evaluations.

from {16, 32, 48, 64}, the number of flow tables is selected
within [500, 3000], and the packet rate is selected from[1, 20]
kpps. While the remaining parameters are unchanged. We
consider two scenarios in the simulations. The first scenario
emulates a light-loaded DCN, where the bandwidth between
the ToR switch and rack servers is abundant. The second one
considers a relatively heavy-loaded scheme, where[0.5, 0.75]
of the bandwidth between the ToR switch and rack servers
has already been used for carrying application traffic. We
only simulate the approximation algorithm, and compare the
performance of hFT-INST in terms of the following metrics:

• Overall Objective: the cost of hFT-INST with Eq. (2).
• Metrics about Bandwidth Usage: the average, maximum

and minimum bandwidth usages on each server over the
time of each simulation.

Fig. 4 shows the simulation results of the first scenario. In
Fig. 4(a), we can see that when the number of flow tables is
fixed, the overall objective does not change much if the number
of rack servers varies. Specifically, the overall objectiveonly
decreases slightly with the number of servers. This is because
when the DCN is empty, the hFT-INST schemes with fewer
or more servers do not make much difference in terms of
the overall cost since the bandwidth resources are abundant.

9

However, as when the number of servers increases, the number
of servers with RDMA-NICs also increases, and this helps to
reduce the overall cost slightly. Then, we fix the number of
servers as64 and obtain the bandwidth usages in Figs. 4(b)-
4(d). The average bandwidth in Fig. 4(b) shows that the extra
bandwidth consumed by RDMA operations is much smaller
than that for normal packet processing of application traffic.
The similar trend can be observed in Figs. 4(c) and 4(d).

For the second scenario, the results in Fig. 5(a) show that
the overall costs are generally higher than their counterparts in
Fig. 4(a). This is because the fact that the available bandwidth
between the ToR switch and rack servers is smaller makes
Algorithm 1 generate more grouped tables, which will in turn
let the hFT-INST distribute the grouped tables on more servers.
When more servers are used, the probability of placing flow
tables on the servers with Soft-RoCE-NICs increases, and this
leads to higher overall costs. Meanwhile, we also observe that
the overall cost decreases more noticeably with the number of
servers, and this is also due to the limited available bandwidth.
Other than these, Figs. 5(b)-5(d) still indicate that the extra
bandwidth consumed by RDMA operations is much smaller
than that for normal packet processing of application traffic.

VII. SYSTEM IMPLEMENTATION AND EXPERIMENTAL

DEMONSTRATIONS

In this section, we provide the detailed design of our hFT-
INST system and discuss its experimental demonstrations.

A. System Implementation

!"!#$%&'()#*+,'-+.#!./,0

1"23#!-+(044#*+,'-+..0-

5/4)#67,('&+,4

85/4)#9/.70:

8$0-;0-#<"=#>0?:

@/A.0#2&44# 1/%#!/(B0'

CC

>0?#'+#3DD-044#2/EE&,F#@/A.0#

8$0-;0-#G:

!"#$%&"'() *++,)##

G HI//AA((DD

C C

J HI((DD00KK

8$0-;0-#G=#20L+-?#3DD-044:

85/4)#9/.70:

8$0-;0-#M=#20L+-?#3DD-044:

$0-;0-#M

20L+-?

&"'()

N,'-?#G#82/'()#G#O#3('&+,#G:

N,'-?#M#82/'()#M#O#3('&+,#M:

PPP

N,'-?#J#82/'()#J#O#3('&+,#J:

>0?#'+#3DD-044#2/EE&,F#@/A.0#

8$0-;0-#M:

!"#$%&"'() *++,)##

G HI//AA((DD

C C

J HI((DD00KK

$0-;0-#G

20L+-?

&"'()

N,'-?#G#82/'()#G#O#3('&+,#G:

N,'-?#M#82/'()#M#O#3('&+,#M:

PPP

N,'-?#J#82/'()#J#O#3('&+,#J:

10L+'0#20L+-?#3DD-044

10L+'0#20L+-?#3DD-044

1"23#

Q-&'0

8@/A.0#<"=#>0?:

@/A.0#<"#'+#$0-;0-#<"#2/EE&,F#@/A.0

-".')%/0% 1),2),%/0

C C

1"23#

Q-&'0

Fig. 6. Control plane design of PDP switch for hFT-INST.

Fig. 6 shows our design of the control plane in the PDP
switch for hFT-INST. In our system, the control plane in the
PDP switch is in charge of indexing/accessing flow tables
stored in the external memory on multiple rack servers. As
different servers may use the same memory address range,
we create a hash table to store the memory addresses of
each server that provides external memory for hFT-INST.
Specifically, the hash table is obtained by applying the preset
hash functions on the tuples of<Server ID, Key>, whereKey
is the match field in a flow table. We program the control
plane with Python, while the RDMA process controller is
written in the C language and works as a RDMA client to
use the interfaces provided by Soft-RoCE. The PDP switch

!"#$%&$" '()*(++,-!./ *0"0

+012(034$"

(a) RDMA-Writemessage from PDP switch to rack server

!"#$%&$" '()*(++,-!./ *0"0

1203 4052$6'* 7$8 9:";,&6'* 9:";,&6*0"0 +0<6(0:=$"

(b) RDMA-Writemessage from rack server to PDP switch

Fig. 7. Packet formats designed for RDMA messages.

is emulated with the software-based BMv2 [37], and we
program its data plane with the P4 language. The control
and data planes of the PDP switch talk with each other using
the interface of remote procedure call (RPC). On each rack
server, we program a RDMA server on it, also in the C
language, to communicate with the RDMA process controller
for accomplishing RDMA operations.

The operation of our system involves two phases,i.e.,
the initialization and operational phases. The initialization
implements a few key settings of hFT-INST,e.g., the key
length and addresses of the remote memory on each related
rack server, and the hash functions for memory indexing.
Then, the system enters its operational phase to let the PDP
switch process packets according to local/remote flow tables.
As shown in Fig. 6, when a packet encounters a table-miss,
the data plane will first generate a key based on the match
field of the flow table, and then send the packet to the control
plane along with the table ID and key. The control plane
first determines the ID of the server that stores the flow
table remotely based on the table ID, and then applies the
corresponding hash function to the tuple of<Server ID, Key>
to obtain the memory address that points to the required flow
entry. Next, the remote memory address and the raw packet
are sent to the RDMA process controller, which constructs an
RDMA-Writemessage with the format in Fig. 7(a).

When the target server receives theRDMA-Writemessage,
it performs the remote table lookup to determine the action
for the packet, generates anotherRDMA-Writemessage with
the format in Fig. 7(b), and sends it back to the PDP switch.
With the content in theRDMA-Writemessage, the PDP switch
executes the needed action on the packet in the default RDMA
table. After the packet having been processed in the PDP
switch, the data plane sends the table ID, key, action ID, and
action data about it to the control plane, which can use the
information to generate a flow entry and insert it locally in the
data plane. Then, the processing of the subsequent packets can
be completed locally on the PDP switch. The caching of flow
entries is optional in our design, and should only be invoked
when there are sufficient memory resources on the PDP switch.

B. Function Verification

To verify the functionality of our hFT-INST system, we cap-
ture RDMA messages with Wireshark on the PDP switch. Fig.

10

!"#$!%&$!'"$#'()*+,-./0*12

!"#$!%&$!'"$#'3)*+45645*!*12

!"#$!%&$!'"$#'")*+45645*#*12

17-.-89-:8.-;7*,-.0*
+45645*!

<-=/;774/.*,-.0*=45645*#

>5-.4*,-.0*58,*?8/@4.

>5-.4*,-.0*47.5A*87B*58,*?8/@4.

17-.-89-:8.-;7*,-.0*
+45645*#

(a) RDMA messages received on PDP switch

!! !! !! !! !! !! "" "" #$%&$'($&)$*+$,-$")$,!$.%

/.0$1.%234

(b) Details on a switch-to-serverRDMA-Writemessage

!"#$%&'()#)

'*+''*+'*,'*,'*,'*,'**'**'--'--'--'--'**'**'**'*+'**'*+'

,,',,',,',,'.'/0'+1'/,')"'

23)4 5)/36'7(869 !"#$%&'7(

:);'<)"=6#

(c) Details on a server-to-switchRDMA-Writemessage

Fig. 8. Wireshark captures on PDP switch.

8(a) shows the operation procedure, which includes the RDMA
messages for the initializations on two rack servers, and the
switch-to-server and server-to-switchRDMA-Write messages
to accomplish a remote table lookup. The details about the
switch-to-serverRDMA-Writemessage are illustrated in Fig.
8(b), which only includes the packet that encounters a table-
miss. Shortly after receiving theRDMA-Write message, the
server returns the server-to-switchRDMA-Write message in
Fig. 8(c) to the PDP switch. This time, the message includes
both the packet and the information about its matched entry.

C. Latency Measurements

With our implementation, we first compare the packet
processing latency with and without remote table lookup. In

Fig. 9, we can see that for each packet, the remote table
lookup with RDMA can cause an extra latency of around200
µs. Note that, we implement the hFT-INST with a software-
based scheme,i.e., using BMv2 to emulate the PDP switch
and realizing RDMA operations on a Soft-RoCE-NIC. Hence,
we expect that the RDMA latency can be significantly reduced
if the entire hFT-INST system is implemented in a hardware-
based environment (e.g., a PDP switch with Tofino ASIC [22]
and RDMA-NICs). Meanwhile, we observe that the packet size
does affect the packet processing latency when there is remote
table lookup. The linear regression in Fig. 10 suggests thatthe
latencyT changes with the packet lengthl asT = α + γ · l,
whereα = 0.5655 ms andγ = 4.5× 10−4 ms/byte.

64 128 256 512 832
Packet Size (Bytes)

0

2

4

6

8

10

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

w/o Remote Table Lookup
w/ Remote Table Lookup

Fig. 9. Comparison of packet processing latencies for with and without
remote table lookup.

64 128 192 256 320
Packet Size (Bytes)

5.5

6

6.5

7

7.5

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Fig. 10. Relation between packet length and processing latency (with remote
table lookup).

D. HD Video Streaming

To further verify the practicalness of our proposal, we
utilize high-definition (HD) video streaming as the application
to test whether the remote table lookup with RDMA can
affect its QoS. Specifically, we stream an HD video with an
average throughput of2 Mbps and the resolution of1280×720
through the PDP switch, and let the switch store the flow
table to process its traffic on a remote server. We measure the
luminance component’s peak signal-to-noise ratio (Y-PSNR)

11

of the video’s playback on the receiver end, to quantify the
QoS of the video streaming. The experimental results are
shown in Fig. 11, which indicate that the Y-PSNR always
stays at relatively high values,i.e., the RDMA latency does
not cause noticeable impacts on the HD video streaming.

10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

Y
-P

S
N

R
 (

dB
)

Fig. 11. Y-PSNR of video streaming (with remote table lookup).

VIII. C ONCLUSION

This paper considered a DCN that uses PDP switches
as ToR switches, and studied how to leverage the external
memory in rack servers to improve the performance of PDP
switches for in-network computing. Specifically, each ToR
switch facilitated hFT-INST, which means that it can either
store flow tables in its local memory or use RDMA to install
and access them remotely in the rack servers. We designed the
protocol for hFT-INST, and laid out the operation procedure
to implement it. Regarding the key problem of hFT-INST,i.e.,
how to place the flow tables on the external memory on differ-
ent servers, we took the widths of flow tables, computing and
networking loads on servers, and RDMA latencies of RDMA-
NICs and Soft-RoCE-NICs into account, and formulated an
MILP model to tackle it. The optimization in the MILP was
first transformed into a CFLP with additional constraints, and
then we transformed it into ak-median problem through pre-
processing, and designed a polynomial-time approximation
algorithm to solve it. Extensive simulations verified the per-
formance of our proposal. Finally, we prototyped our design
of the hFT-INST with Soft-RoCE and BMv2, and conducted
experiments to demonstrate its feasibility.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC projects
61871357, 61771445 and 61701472, Zhejiang Lab Re-
search Fund 2019LE0AB01, CAS Key Project (QYZDY-SSW-
JSC003), SPR Program of CAS (XDC02070300), and Funda-
mental Funds for Central Universities (WK3500000006).

REFERENCES

[1] Cisco Global Cloud Index: Forecast and Methodology, 2016-
2021. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
service-provider/visual-networking-index-vni/index.html.

[2] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[4] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[5] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[6] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekingvirtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[7] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[8] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[9] J. Liu et al., “On dynamic service function chain deployment and
readjustment,”IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[10] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[11] Z. Zhu et al., “Jitter and amplitude noise accumulations in cascaded all-
optical regenerators,”J. Lightw. Technol., vol. 26, pp. 1640–1652, Jun.
2008.

[12] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[13] L. Gonget al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[14] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[15] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
networks: A comprehensive survey,”IEEE Commun. Surveys Tuts.,
vol. 18, pp. 1617–1655, Third Quarter 2016.

[16] W. Fanget al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[17] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[18] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network
orchestration for on-demand and cost-effective vNF service chaining
in inter-DC elastic optical networks,”J. Opt. Commun. Netw., vol. 10,
pp. D29–D41, Oct. 2018.

[19] A. Sapio et al., “In-network computation is a dumb idea whose time
has come,” inProc. of HotNets-XVI 2017, pp. 150–156, Nov. 2017.

[20] N. Zilberman, “In-network computing,” Apr. 2019. [Online]. Available:
https://www.sigarch.org/in-network-computing-draft/.

[21] P. Bosshartet al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” inACM SIGCOMM
Comput. Commun. Rev., vol. 43, pp. 99–110, Oct. 2013.

[22] Tofino switch. [Online]. Available: https://www.barefootnetworks.com/
products/brief-tofino/.

[23] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[24] X. Li et al., “Be fast, cheap and in control with SwitchKV,” inProc. of
NSDI 2016, pp. 31–44, Mar. 2016.

[25] E. Cidon, S. Choi, S. Katti, and N. McKeown, “AppSwitch:Application-
layer load balancing within a software switch,” inProc. of APNet 2017,
pp. 64–70, Aug. 2017.

[26] X. Jin et al., “NetCache: Balancing key-value stores with fast in-network
caching,” inProc. of SOSP 2017, pp. 121–136, Oct. 2017.

[27] Z. Liu et al., “DistCache: Provable load balancing for large-scale storage
systems with distributed caching,” inProc. of FAST 2019, pp. 143–157,
Feb. 2019.

[28] G. Li et al., “NETHCF: Enabling line-rate and adaptive spoofed IP traffic
filtering,” in Proc. of ICNP 2019, pp. 1–12, Oct. 2019.

12

[29] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compilingpacket
programs to reconfigurable switches,” inProc. of NSDI 2015, pp. 103–
115, May 2015.

[30] D. Kim et al., “Generic external memory for switch data planes,” in
Proc. of ACM HotNets 2018, pp. 1–7, Nov. 2018.

[31] Remote direct memory access (RDMA). [Online]. Available: https:
//en.wikipedia.org/wiki/Remotedirect memory access.

[32] gRPC: an open-source universal RPC framework. [Online]. Available:
http.//www.gRPC.io/.

[33] M. Suet al., “RFP: When RPC is faster than server-bypass with RDMA,”
in Proc. of EuroSys 2017, pp. 1–15, Apr. 2017.

[34] R. Biswas, X. Lu, and D. Panda, “Accelerating TensorFlow with adaptive
RDMA-based gRPC,” inProc. of HiPC 2018, pp. 2–11, Dec. 2018.

[35] L. Zhang and Z. Zhu, “Spectrum-efficient anycast in elastic optical inter-
datacenter networks,”Opt. Switch. Netw., vol. 14, pp. 250–259, Aug.
2014.

[36] Facility location problem. [Online]. Available: https://en.wikipedia.org/
wiki/Facility location problem.

[37] P4 behavioral model. [Online]. Available: https://github.com/p4lang.
[38] J. Sonchack, J. Aviv, E. Keller, and M. Smith, “Turboflow: Information

rich flow record generation on commodity switches,” inProc. of EuroSys
2018, pp. 1–16, Apr. 2018.

[39] B. Li et al., “KV-Direct: High-performance in-memory key-value store
with programmable NIC,” inProc. of SOSP 2017, pp. 137–152, Oct.
2017.

[40] M. Liu et al., “Offloading distributed applications onto SmartNICs using
IPipe,” in Proc. of ACM SIGCOMM 2019, pp. 318–333, Aug. 2019.

[41] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
of SOSR 2016, pp. 1–12, Mar. 2016.

[42] S. Shirali-Shahreza and Y. Ganjali, “Delayed installation and expedited
eviction: An alternative approach to reduce flow table occupancy in SDN
switches,”IEEE/ACM Trans. Netw., vol. 26, pp. 1547–1561, Aug. 2018.

[43] G. Zhaoet al., “Joint optimization of flow table and group table for
default paths in SDNs,”IEEE/ACM Trans. Netw., vol. 26, pp. 1837–
1850, Aug. 2018.

[44] H. Huang et al., “Joint optimization of rule placement and traffic
engineering for QoS provisioning in software defined network,” IEEE
Trans. Comput., vol. 64, pp. 3488–3499, Feb. 2015.

[45] Y. Xue et al., “Virtualization of table resources in programmable data
plane with global consideration,” inProc. of GLOBECOM 2018, pp.
1–6, Dec. 2018.

[46] Y. Xue, J. Peng, K. Han, and Z. Zhu, “On table resource virtualization
and network slicing in programmable data plane,”IEEE Trans. Netw.
Serv. Manag., vol. 17, no. 1, pp. 319–331, 2020.

[47] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro,“FaRM: Fast
remote memory,” inProc. of NSDI 2014, pp. 401–414, Apr. 2014.

[48] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” inProc. of IMC 2017, pp.
78–85, Nov. 2017.

[49] Y. Hanet al., “Flow-level traffic matrix generation for various data center
networks,” inProc. of NOMS 2014, pp. 1–6, May 2014.

[50] Y. Bejerano, “Efficient integration of multihop wireless and wired
networks with QoS constraints,”IEEE/ACM Trans. Netw., vol. 12, pp.
1064–1078, Dec. 2004.

[51] V. Arya et al., “Local search heuristic for k-median and facility location
problems,” inProc. of STOC 2001, pp. 21–29, May 2001.

[52] K. Jain, M. Mahdian, and A. Saberi, “A new greedy approach for facility
location problems,” inProc. of STOC 2002, pp. 731–740, May 2002.

[53] K. Jain and V. Vazirani, “Approximation algorithms formetric facility
location and k-median problems using the primal-dual schema and
Lagrangian relaxation,”J. ACM, vol. 48, pp. 274–296, Mar. 2001.

