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Abstract—With the evolution of Internet infrastructure and
network services, multilayer in-band network telemetry (ML-

INT) and data analytics (DA) have been considered as key

enabling techniques to realize real-time and fine-grained etwork
monitoring, especially for backbone IP-over-Optical netvorks.
However, the existing ML-INT&DA systems have privacy and
security issues, because plaintext ML-INT data is reported
from the data plane and gets analyzed in the control plane.

In this work, we address these issues by designing a privacy-

preserving ML-INT&DA system for IP-over-Optical networks .

We first leverage vector homomorphic encryption (VHE) to
design a lightweight encryption scheme, which overcomes ¢h
security breaches due to eavesdropping and preserves thelidate

correlations buried in multi-dimensional ML-INT data. The n, we
develop an effective data compression scheme to further eode
the encrypted ML-INT data and make the results suitable for
hash-based signature. The signature is for data certificatin and

enables the DA in the control plane to verify the integrity of
received ML-INT data. Hence, the threats from data tampering

are removed. Next, we architect a deep learning (DL) model tht

can directly operate on encrypted ML-INT data for anomaly

detection. Finally, we implement the proposed ML-INT&DA

system, and experimentally demonstrate its effectivenesimn a

real IP over elastic optical network (IP-over-EON) testbed whose
key elements,i.e., optical line system (OLS), bandwidth-variable
wavelength-selective switches (BV-WSS’) and programmabldata
plane (PDP) switches, are all commercial products.

Index Terms—In-band network telemetry (INT), IP over elastic
optical networks (IP-over-EONSs), Multilayer networks, Deep
learning (DL), Vector homomorphic encryption (VHE), Privacy-
preserving network monitoring, Data analytics, Soft failures.

I. INTRODUCTION

multilayer architecture of backbone networks( IP-over-
Optical) over time [8]. The major hassle is that the tradiib
techniques, such as SNMP [9] and NetFlow [10], can hardly
achieve real-time and fine-grained network monitoring,olthi
has already become one prerequisite for the network control
and management (NC&M) of today’s Internet.

The aforementioned dilemma can be mostly relieved by the
in-band network telemetry (INT) technique [11], which has
recently been promoted by the advances on programmable
data plane (PDP) [12, 13]. Specifically, PDP provides nektwor
operators the flexibility to customize packet processirigalve
iors in the data plane, and this enables INT, which embeds
telemetry data collection in packet processing pipelinas f
end-to-end monitoring. A typical INT system works as follow
for a packet network. When a packet first enters a network
with INT-based monitoring, the ingress switch inserts the
preset INT instructionsi.g., what to monitor and how) in it
as header fields. Then, each intermediate switch checks the
fields, executes the desired INT operations, and pushes the
obtained telemetry data into the packet’s header, as isitsan
the network. Finally, when the packet is about to leave the
network, the egress switch pops all the telemetry data from
its header, aggregates the results, and sends them to a data
analyzer for real-time and fine-grained network monitoring

Therefore, INT opens limitless possibilities for NC&M,
allowing network operators to capture and identify temppra
issues that emerge due to various types of failures, both
hard and soft ones. Following the trend, people has extended
the applications of INT from packet-based single-layer- net

OWADAYS, the rapid development of emerging servicegvorks to multilayer IP-over-Optical ones, and designecsav

such as 5G, Big Data and cloud computing, has mad#eultilayer INT and data analytics (ML-INT&DA) schemes
backbone networks increasingly complicated and highly dj14-17] to facilitate real-time, fine-grained and prograatie
namic [1]. Meanwhile, the wide deployment of virtualizatio NC&M. Specifically, the ML-INT provides network operators
technologies €.g, virtual network embedding (VNE) [2, 3] & powerful tool to visualize both IP and optical layers in
and network function virtualization (NFV) [4, 5]) has in-realtime, while the DA leverages deep learning (DL) to analy
creased the difficulty of detecting and tracing down networlich telemetry data from both layers, for application-asvar
failures, especially the soft ones [6, 7]. All these added ggrvice provisioning and accurate and timely troubleshgot
to cumulative stressing the monitoring and managing of tféthough these ML-INT&DA proposals are promising, they
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all overlooked the important issues related to privacy and
security, because plaintext telemetry data is reportea fiee
data plane and gets analyzed in the control plane.

The necessity of privacy-preserving ML-INT&DA systems
is multiple-fold. Firstly, ML-INT provides rich telemetrgata
regarding a backbone network, which can be analyzed to
derive sensitive information regarding the configuratiord a



operation of the network. In today’s Internet, telemetryadaplane can easily verify whether encrypted ML-INT data from
usually gets reported to the control plane through contrifle data plane has been illegally modified or not. Therefore,
channels based on the transport layer security (TLS) oreecthe threats from tampering-based attacks are removed, Next
socket layer (SSL) connections, which are vulnerable to tkee architect a DL model that can directly operate on encgypte
man-in-the-middle attack [18]. Hence, if a malicious paagys ML-INT data for anomaly detection.
the control channels and obtains plaintext telemetry data, We implement the proposed ML-INT&DA system, and
can launch various attacks based on the derived informatiesperimentally demonstrate its effectiveness on privacy-
For instance, the operation margin of the optical layer cqmeserving in a real IP over elastic optical network (IPfeve
be obtained by analyzing the data regarding power-level aB®ON) testbed, whose key elemenisg. optical line sys-
optical signal-to-noise-ratio (OSNR), and the malicioasty tem (OLS), bandwidth-variable wavelength-selective shés
can inject jamming or interference signals in the fiber lioks (BV-WSS’) and PDP switches, are all commercial products.
which the margins for quality-of-transmission (QoT) gudiese Experimental results confirm that the encryption hidesisens
are relatively small to amplify its attack efficiency [17]. tive information about data plane well, the encoding and sig

Secondly, in additional to passive eavesdropping, the-matiature scheme helps to detect illegally-revised data atelyr
cious party could be more aggressive to modify the telemetind our DL model can classify encrypted multi-dimensional
data for misleading the DA system, and this would severelL-INT data to find the root causes of exceptions.
disturb the network automation in its network. Note that, it The rest of the paper is organized as follows. Section I
is known that the neural networks for DL are vulnerablpriefly surveys the related work. We describe the architec-
to adversarial samples, which are hard to be detected aote and operation principle of our privacy-preserving ML-
can easily cause DL to make incorrect decisions [19]. SUNT&DA system in Section Ill, and the implementation desail
tampering-based attacks have already been demonstratedriin Section IV. We discuss experimental demonstrations i
[20, 21] to make IP-over-Optical networks behave strangel8ection V. Finally, Section VI summarizes the paper.
Last but not least, plaintext telemetry data should not be
disclosed for the consideration of privacy, if the operator
wants to outsource the DL model for DA to a third party,
i.e., leveraging the “machine-learning-as-a-service (ML4aS) Recently, optical networks have been greatly impacted by
[22] to overcome its shortage on the labor/hardware/soéweghe rapid evolution of SDN [26—28] and artificial intelligem
resources to design and train a sophisticated DL model. (Al) [29], which promotes the idea of knowledge-defined net-

As an ML-INT&DA system usually relies on the softwareworking (KDN) [30, 31] for network automation. Therefore,
defined networking (SDN) architecture [23], the securitgd annumerous studies have been focused on realizing Al-adsiste
privacy issues mentioned above could be relieved if we adétwork automation for optical networks [32-37]. However,
encryption/decryption at both ends of each data-reportinge can never close the loop of automatic NC&M without real-
channel between the data and control planes. However, ttilge and fine-grained network monitoring and troubleshoot-
will bring in additional operation complexity and thus proing [6, 38, 39]. Traditional monitoring schemes for packet
cessing latency, especially to the control plane. Morgoveetworks €.9, SNMP [9] and NetFlow [10]) utilize the out-
the DA still processes plaintext telemetry data in the aantrof-band scenario based on a server-client model. Spebfical
plane, there are still security breaches. Note that, differ they leverage a centralized monitor to poll network elemment
from the DA in the control plane, the ML-INT in the data(NEs) periodically for collecting status data. Nevertissle
plane is usually handled in a distributed manner. Henceangddthe polling-based data collection cannot visualize nekaadn
data encryption in each performance monitor would not caukgaltime or realize fine-grained monitoring to reveal thd-tm
excessive processing burdens. Then, it would be promisiagd information of arbitrary flows. Same issues also apply to
if the DA can directly operate on encrypted telemetry datsaditional optical performance monitoring schemes [4]-4
with its DL model. Nevertheless, most encryption schemdis wi  The issues with traditional network monitoring schemes can
just break the correlations buried in telemetry data and thbe addressed with the INT technique [11], which boosted up
make privacy-preserving DA infeasible. More importantlythe research and development on in-band network monitoring
the encryption schemes cannot address the tampering-bd4&li Consequently, people have quickly expanded the idea t
attacks that might occur in data reporting channels. consider multilayer IP-over-Optical networks and develba

In this work, we address the aforementioned challenges & ML-INT schemes [14, 15]. Meanwhile, the INT technique
designing a privacy-preserving ML-INT&DA system for IP-has been further optimized in [44—-46] to reduce its bandwidt
over-Optical networks. We first leverage vector homomarphdverheads and data processing burdens. However, none of
encryption (VHE) [24, 25] to design a lightweight encryptio these enhanced INT versions has addressed the privacy and
scheme, which not only preserves the delicate correlatiosacurity issues due to eavesdropping and data tampering.
buried in multi-dimensional ML-INT data but also limits Following the idea of KDN, people have also studied how
the time complexity of data encryption. Hence, the securitp integrate INT with DA to facilitate Al-assisted network
breaches due to eavesdropping are addressed. Then, weadéemation. Hyunet al. [47] considered how to realize a
velop an effective data compression scheme to further encaglf-driving network by combining INT, DL and SDN. The
the encrypted ML-INT data and make the results suitable fauthors of [48] presented an architecture, namely, Netdork
hash-based signature. With the signature, the DA in theabntto enable self-learning control strategies in SDN with the

Il. RELATED WORK



assistance of INT. Leveraging INT to provision latency- There could be multiple data collection agents residing in
aware virtual network functions in metro networks has bedhe data plane, and they forward ML-INT data to the cen-
demonstrated in [49]. Previously, in [8, 16], we proposeialized controller through data reporting channels. dwilhg
an ML-INT&DA system, and demonstrated real-time, finethe principle of KDN [30], the controller leverages DL to
grained and programmable NC&M in a multilayer IP-overanalyze the ML-INT dataif., DA) and realize anomaly
Optical network testbed, where the IP layer was based datection and other NC&M tasks, for Al-assisted network
PDP switches and the optical layer was a flexible-grid EO&utomation. Note that, since the IP-over-Optical netwesrk i
[50-53]. Nevertheless, none of the aforementioned studiesckbone network, it can cover a relatively large geogreghi
considered the privacy and security issues. area. Hence, the controller and the data collection agents
To the best of our knowledge, the privacy-preserving MLrormally reside at different locations, which makes theadat
INT&DA system, which can properly address the potentiabporting and processing vulnerable to eavesdropping atal d
threats of eavesdropping and data tampering, has not bé&smpering if the ML-INT data is in plaintext.
studied in the literature yet. This motivates us to addrbes t
problem in this work and to extend our ML-INT&DA systemB Pri P ina O .
demonstrated in [8, 16] to a privacy-preserving one. - Privacy-Preserving Operations

In order to address the privacy and security issues caused

ll. SYSTEM ARCHITECTURE ANDOPERATION PRINCIPLE DY Using plaintext ML-INT data, we, in this work, design and

In this section, we describe the overall architecture of Obrpplement a few new functional modules in the ML-INT&DA

privacy-preserving ML-INT&DA system, explain its operatti system o mak_e Its operations privacy-preserving. Spadmc_
S . .. the new functional modules are for both the data collection
principle, and elaborate on the new modules introducedign th ) R
. : agent and the centralized controller, as shown in Fig. 1.
work over the existing system developed in [8, 16].

After obtaining ML-INT data from received INT fields, the
data collection agent organizes each set of data with the sam
A. ML-INT&DA time-stamp as a plaintext vector)( For instance, a plaintext

Fig. 1 shows the system architecture of the proposeéctor can contain a set of ML-INT data that includes the
privacy-preserving ML-INT&DA system. The data plane igpacket forwarding latency and input/output bandwidth of a
an IP-over-Optical network, where the optical layer is buiPDP switch, and the input power and OSNR of the related
with optical cross-connects (OXCs) and fiber links, and theptical port on the switch’s local OXC. Since raw telemetry
IP layer consists of programmable data plane (PDP) switchdata may contain outlier samples, which are due to collactio
[12, 13], client hosts, application servers, and data ctile errors and data corruption, we introduce an outlier degacti
agents. The optical performance monitor (OPM) on eachodule to remove them. The outlier detection is designed
OXC collects telemetry data regarding the lightpaths dweitt based on the well-known density-based clustering algorith
by it. To monitor OSNR, power-level and spectral shap§DBSCAN) [54], because the ML-INT data may distribute in
one can leverage optical spectrum analysis [40], while mareegular shapes. As we will show later in Section V, theieutl
sophisticated OPM, such as the monitoring on bit-error ratetection not only maintains the quality of ML-INT data, but
(BER) and dispersion, can be accomplished by utilizing trso improves the robustness of our privacy-preserving DA.
digital signal processing modules in optical transpon{42§ Then, the plaintext vectox gets encrypted in the VHE-
As we focus on privacy-preserving in this work, we do ndbased encryption module, whose detailed operations will
specify the actual scheme of OPM. In other words, telemetg described in Section IV-A. The VHE-based encryption
data can be encrypted and processed with our proposal,tramsformsx into a ciphertext vector’. To ensure privacy-
matter how it was collected. preserving, we design the VHE-based encryption to map each

As explained in [16], the telemetry data collected by thenique plaintext vector to different ciphertext vectorgnde,
OPM is then sent to the local PDP switch of its OXC, byt would be even more difficult for a malicious party to guess
a homemade agent. The PDP switch encodes the receitleal plaintext vectors based on their ciphertext countéspar
telemetry data regarding the optical layer together witht thMore importantly, the VHE-based encryption preserves the
it collects locally about the IP layer as INT fields, and itserinner correlations of ML-INT data, such that the DL-based DA
them in the packets of related flows. Since the INT fields the controller can directly analyze the ciphertext vestor
carry the telemetry data about each electrical/opticabodt anomaly detection and other NC&M tasks.
element (NE) on a flow's routing path, real-time and fine- Next, to address tampering-based attack, the encoding and
grained ML-INT has been realized. Note that, our ML-INTsignhature module is introduced to generate a digital sigeat
scheme also has the capability of selecting only a smaligrort for each ciphertext vector. It is known that hash-basedasign
of a flow's packets to insert the INT fields, for reducing théure method has acceptable time complexity and can provide
bandwidth overheads of ML-INT [16]. Finally, before a packesufficient data certification strength. Therefore, we depel
with INT fields leaves the IP-over-Optical network and resxh an effective data compression scheme to further encode the
to its destination host, the egress PDP switch pops all tie IMiphertext vectors and make the results suitable for hasked
fields from the packet and sends them to a data collectisignature. We will elaborate on the operation principle of
agent, where the INT fields will be parsed, aggregated atitk encoding and signature module in Section 1V-B. Finally,
processed to get the ML-INT data (as shown in Fig. 1). the data assembly module simply appends the hash-based
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signature to each ciphertext vector, and then forwards it |Data Plane: Coliection and Encryption of ML-INT Data

the controller through the data reporting channel. VHE-based

On the other hand, the controller realizes privacy-presgrv | ey Encryption ‘
DA with the data verification and cleaning module and th Ouputpw | | Key Generation | - g |
DL for anomaly detection, as shown in Fig. 1. Both module i U oswe [ mpusw oou s
directly operate on encrypted ML-INT date/, the ciphertext | Pliniext x| | oo ok
vectors). By repeating the encoding and signature proeed: et ol p— osne
discussed above and comparing the obtained signatureheith: L S —! ol ) Din | < oreon |
one in the received message, the data verification and olgar brop Date Vector Encryption Ciphoriext ¢ ISR ;
module verifies the integrity of ML-INT data. Specifically,

if the signatures do not match, the module will classify the
data as Susp|c|ousy drop |t, and ﬂag an alert if necessd‘?@ 2. Operation of privacy-preserving functional module data plane.
Then, trusted ML-INT data is forwarded to the DL module

for anomaly detectiohh which not only determines whether

the encrypted ML-INT data indicates exceptions, but algheryption. Initially, we have the plaintext vector for arLM

classifies the exceptions. The design and training of the D! data sample ag € Z™, where all the elements ix are

module will be discussed in Section IV-C integers, andn denotes the length of the vector. Meanwhile,
Based on the output of the DL module, the controller mak&ie definec € Z™ as the ciphertext vector of with n > m.

proper NC&M decisions to address the detected exceptiong€": the VHE-based encryption satisfies [24, 25]

In this work, we consider four types of exceptions, which are S-c=w-X+e€ 1)

packet congestion and PDP switch misconfiguration in the IP

mxXmn H m _
layer, and excessive power loss and OSNR degradation in W‘I%eres €Z is the private keyg € Z™ is the randomly

optical layer. Meanwhile, we hope to point out that thisiegtt generated noise vector, andis the preset weight to balance

is only for the purpose of experimental demonstrations,amdth?l_r']miortance oftQata anc_j dn0|tsr$ n t_heterlgrypél?rr: .
the privacy-preserving scheme has good universality oh-hi ¢ € (?y gtehnera '2” provi ei’. € p_;lr\]/aEe 1an Létebnmse
dimensional data, our proposal can handle more types of M gctor € for the vector encryption wi 9. (). € an

INT data and/or exceptions with only minor modifications. "> " identity matrix. We can easily verify that-x =1 (w-
X). Hence| can be the initial private ke, which encrypts

IV. | MPLEMENTATIONS OFKEY FUNCTIONAL MODULES @S @ Ciphertext vectar = w-x with the noise vector as = 0.
Then, to improve the strength of the encryption, we leverage

This section presents the implementation details of thrﬁgie o : :
) . e key-switching technique. Apparently, for another pir
key functional modules in our proposed ML-INT&DA system_ . < : . :
(i.e., the VHE-based encryption, the encoding and signattr}er,lvate keyS' and ciphertext vector', if they satisfy

and the DL-based anomaly detection). S§.c"=S-¢c 2
) the relation in Eq. (1) still holds. We choogesuch that
A. VHE-based Encryption )
As shown in Fig. 2, our VHE-based encryption involves max (leil) <27, )

three phasesi,e., key generation, key-switching, and vecto{ynare . is the i-th element inc, and construct ciphertext

INote that, with a proper design, the privacy-preserving D teverage VECtOTrC* by_ tranSforr_n_'ng eaCh element minto the bipolar
the encrypted ML-INT data to accomplish other NC&M tasks. too representation. Specifically, if we have= b,o+b;1-2+-- -+



bii—1)-2°71, ¢; is transformed int@} = [bio, bi1, -+ , b;e—1)),  Algorithm 1: VHE-based Encryption

whereb;; € {~1,0,1}. Then, we obtairc* = [cf, -~ ,C;]". ™ Input: weightw, plaintext vectox.

For instance, the vectar= [2, —1]" can be transformed into  Qutput: ciphertext vector, private keyS.
private keyS® can be obtained by converting each element jnitialize private keyS as anm xm identity matrix;

Si; € Sinto a binary-related vectoi,e, Sj; = [5;;,2 - 3 get initial ciphertext vectoc = w - X;
Sij,--+ 271+ Si;]. Then, the following equality holds 4 obtain the value of with Eq. (3);
bio 5 transformc into the bipolar representatiart;
bi1 6 convertS into the binary-related vectd’;
S ¢ =852 Sy, 27 Syl | L | =S¢ B 7 generate a random matri € Zmx (W —m):
bj(é.—l) 8 get the final private keys' = [I, T];

9 get random matricek € Z™*"¢ andA € z(n' ~m)xn-t;

Therefore, we construct a ciphertext veatbiwhose elements 10 constructM with Eq. (5);

have thexlz.;naxmum absolute value asand a private Key ,; cacylate the final ciphertext vectof with Eq. (7);
S ezm , and ensure that they satisfy Eq. (2). 12 return (¢, S);
Next, the vector encryption gets the final private-key-and-
ciphertext pair i(e., S' andc’) based orS* andc*. We have
¢ € Z" andS € Z™*"', wheren’ > n is the predefined
length of the final ciphertext vectar. With the procedure in the data bytes. Therefore, if we encode the elements and make
[24, 25], we first construct an integer matik € Z" *™* as the results fit into fixed-length fields, the aforementionad-h
v {S* LE_T. A} sle can be avoided. Secondly, applying hash function dyrect

A (3) to the elements irc’ will make the obtained signature too

sensitive to the changes an In other words, the signature

whereE € 24 A € Z=mxnl gnd T € (=™ will not be identical, even if there is only a very minor chang
are all randomly-generated integer matrices. Then, we cah one element i’. Note that, there could be minor changes

structS asS' = [I, T], wherel is an identity matrix, and can on ¢/, which were not caused by data tamperiregg( bit
verify . errors due to the noise in data transmission), and evenri¢ the
S-M=S+E. (6) is data tampering, minor modifications might not affect the
Therefore, the final ciphertext should be DL rr_lodel_m the controller. _H_ence, |f_ we drop aII_the non-
. X identical ciphertext vectors, it is overkill and the efficty of
c=M-c. (7)  ML-INT&DA would be impacted. A proper data compression
It will be easy to verify on ¢’ can improve the signature’s tolerance to minor changes.

Inspired by the nonuniform quantization in speech com-
munications [56], we design the data compression scheme as
which also satisfy Eq. (1) witle = E - ¢*. explained inAlgorithm 2. The data compression will encode

Algorithm 1 illustrates the procedure of the VHE-based er2ach element in a ciphertext vector with one byté. As
cryption used in our privacy-preserving ML-INT&DA System_nlustrated in Fig. 3, thg by_te is divided into two po_rtlom;e.,
Line 1 is for the initialization. The key generation is realizede Paragraph code with bits and the level code wit8 —n)
with Lines2-3, the key-switching is accomplished hines4- bits. Here, the paragraph code represents which nonuniform
6, and the vector encryption is achieved witines7-11. The r€gion the elemen&? stays in, \_Nhll_e the Igvel code_denotes
strength of the VHE-based encryption is guaranteed by matt1€ result of the uniform quantization fey in the region. In
M, based on the hardness assumption of the extended leardi@prithm2, Line 1 is for the initialization to normalize; as a
with error problem [55]. Hence, it would be extremely difficu Non-negative value; € [0, ¢j***—¢;""]. Then, the nonuniform
for an attacker to decrypt the ciphertext telemetry datdiwit "€910NS for quahtlzatlon are opta|ned yvllhnesZ—?, while the
a reasonable amount of computing time. The time complex#ta compression is accomplished wifines 8-12.

of Algorithm 1 is O(m + ¢), i.e., a linear-time algorithm. Note that, the value of. (i.e, the length of the paragraph
code field) determines the tolerance of the change on the
. : . original element;, which is simply the maximum quantization
B. Data Compression Encoding for Hash-based Signature error caused by the data compression. For instance, if we set

Fig. 2 indicates that the ciphertext vectogenerated by the ,, — 3 bits, the tolerance changes withigls, 1] - (cnax —
VHE-based encryption needs to be processed by the encoding) depending on which region the element is actually in.
and signature module to obtain a hash-based signaturet®r dgherefore, the value of can be determined empirically based
certification. Although we can directly apply hash functton on the dynamic range of;, and in the extreme case with
all the elements in ciphertext, encoding them beforehand,, — ¢, the data compression uses uniform quantization. As
for data compression has the following two advantages. we always have: < 8, Algorithm 2 is constant timeif., its

First of all, as the elements i’ have different ranges

qf values,_ their_ bina_lry repr_e_sentations occupy variaem?f'_h 2Note that, the data compression is just for the hash-bagedtsie, while
fields, which will bring additional complexity for organimj the ciphertext vectoe’ will still be sent to the controller without compression.

S. =S . ¢"+E-¢c"=w-x+E-c, (8)



Algorithm 2: Data Compression for Hash-based Signature iControl Plane: Data Analytics over Encrypted ML-INT Data

Input: an element; in ciphertextc’, upper- and : DL for Anomaly Detection , N
lower-bounds ofc,-_ (c,ﬁ“f"‘ apd cnin)length of .Lpl.svyv . ' | Noma
paragraph code field in bits:). ; TR 7

Output: one-byte encoding of; (b;). i E & [ Classitication S |

16 =c¢ — cin) g = cmax _ cminy G| o @—ﬁ :
2 for j=0t0 2" —1 do i " 7
3 if j =2" -1 then 27 O‘ O O “C/) i
4 | y=u, o=c"" | Verfication < :xE;égpiiVorns g
5 else iand Cleaning _>YSPICIOUS | pyop Data and Flag Alerts ]
6 | y=x, =73, e GhCGnEEEE ISR :
7 end i , _ ) .
8 if ¢ e [m, y] then Fig. 4. Operation of privacy-preserving functional moduie control plane.
9 encode the paragraph codebinas the binary
representation of; _ _ Hence, the DL model can not only detect the exceptions but
10 quantizez; in [z, y] uniformly with (8 — n) bits also locate them on the packets’ multilayer routing path.
as the level code in;; The DNN includes seven layers, which are the input layer
1 break; whose neurons match with the dimension of a ciphertext
12 de”d vectorc, five hidden layers with{256, 128,64, 32, 16} neu-
13 en

rons, respectively, and the output layer where the number of
neurons equals that of exceptions plus dree, for the normal
case). Except for the output layer, which uses the softmax
activation function, all the layers in the DNN utilize rels a

14 return (b;);

i=0( Uni izati () . L ) ;
ot of —»[U”'f°"“EnQC‘§’;:1'Sa"°”&]-» their activation functions. We leverage the categoricakst
Ciphertext One-Byte entropy function to design the loss function, and use it to
———r| D;t:gigi:e : Output |egacading describe the DNN's accuracy on the multi-class classibeati
oo for anomaly detection. Then, the DNN is trained in the offline
Uniform Quantization & | manner to minimize the Iqsge., its parameters are optl_mlzed
Encoding - iteratively over labeled training samples with the classck-
propagation and gradient descent algorithm [29].
P h Cod Level Cod
e &\fi)bﬁse V. EXPERIMENTAL DEMONSTRATIONS
8 bits In this section, we implement the proposed ML-INT&DA

system in an IP-over-EON testbed, and conduct experiments
on anomaly detection to verify and evaluate its performance
As hard failures usually cause immediate service intelonpt

the techniques to detect and locate them have already been
mature [40]. Therefore, the anomaly detection discusséusn
section will focus on the soft failures that only induce mino

C. DL Model for Anomaly Detection degradations on network operatiag, small reductions on

Fig. 4 explains the operation of privacy-preserving fund@SNR and power-level, and minor misconfigurations and
tional modules in the controller. The data verification anf@ndwidth shrinking on PDP switches. These soft failures do

cleaning module repeats the procedure discussed in the t_cgu_se relevant service disruptions immed_iately and thu
vious subsection, obtains a hash-based signature basér orfif€ difficult to be detected and located, but if the operator
ciphertextc’ that it received, and checks the signature with€€PS ignoring them, their impacts can accumulate over time
the received one for data verification. If the signatures d§'d eventually introduce unsolvable complications [6].

not match, the ciphertext’ will be dropped. Next, trusted

ciphertext vectors are forwarded to the DL model for anomafy- Testbed Setup

detection. We design the DL model based on a deep neural) Data Plane: Our testbed uses a small but real IP-over-
network (DNN), and apply supervised learning to train it foEON as the data plane. Supporting network disaggregation
detecting and classifying exceptions based on the enatypi&5], the optical layer is an EON that enables flexible-grid
ML-INT data. Note that, for a traffic flow that passes througbpectrum allocation and bandwidth-variable data trarsions

N PDP switches in the IP-over-Optical network, a comple{g7]. Specifically, the EON consists of two types of major
set of the ML-INT data carried by its packets contaiNs elements,i.e.,, disaggregated optical line system (OLS) and
ciphertext vectors, for the end-to-end multilayer routiige bandwidth-variable wavelength-selective switches (BSSY).

DL model performs anomaly detection on each complete set ofThe disaggregated OLS is realized based on the Ju-
ML-INT data,i.e., analyzingN ciphertext vectors in sequenceniper BTI7800 platform, in which each bandwidth-variable

Fig. 3. Data compression based encoding for hash signature.

complexity isO(1)).



transponder (BV-T) can leverage different modulation faten = )

(e.g, PM-QPSK and 16-QAM) to achieve a line-rate of@ leseInsertlon \’9—@
[100,400] Gbps, and the BV-Ts are connected with fiber 724 _’_.|_ > O, g5t

links with in-line erbium-doped fiber amplifiers (EDFAS). .._r >

Each fiber link containg0 km standard single-mode fiber P 4

(SSMF), and due to the shortage of SSMF in our lab, w

have difficulty in using longer fiber links. Therefore, the 57 Noise Generator (TE# BV-T P EDFA A oM @ Host — INT Flow

experiments use an amplified spontaneous emission (AS _
noise generator, dispersion compensation modules, andrpov Data Coliection Agent [l Couper X Bvwss &G PoPsw  — FiberLink

attenuators to emulate the effects of longer fiber transaniss (a) ExperimentaScenario 1 Optical layer anomaly detection
The disaggregated nature of the OLS system enables our

ML-INT&DA to collect rich telemetry data regarding the —_— —
optical layer, such as optical power-level, OSNR, bit-erro @ ,TT L

rate before forward error correction (BERbFEC), chromatic A2t N

dispersion (CD), differential group delay (DGDgtc The — _ N
2= 3 N

BV-WSS'’ are also commercial products, each of which has

1x9 configuration, operates within528.43, 1566.88] nm, and =2 ’.“:*é‘_:—' i
provides a spectrum allocation granularity 1¢£.5 GHz. A ¢

The IP layer of the testbed consists of PDP switches, client g&grorsw Ba svwss 07 oM —— FiberLink
hosts, and data collection agents. The PDP switches.are bata Gotection Agent @ o oA INTFiow

Tbps Barefoot switches equipped with Tofino ASICs, which
support P4-based network programming [12]. They have 10/40  (b) ExperimentalScenario 2 Multilayer anomaly detection
GbE optical ports, and can be programmed to collect ML- INT
data and insert them into packets as INT fields. Each host
emulated with a commercial traffic generator/analyzer that
send/receive data up # Gbps. The data collection agents are .
homemade, and they run on high-performance Linux servers o
to accomplish the collection and encryption of ML-INT data. 004,
2) Control Plane: Developed based on the open network

operating system (ONOS) platform [58], the control plane
of our testbed leverages a centralized controller to monito
and manage the IP-over-EON. In addition to the conventional
SDN-based NC&M tasks, the ONOS-based controller also o

g 5. Two scenarios for function verification and perfonoa evaluation.

BERbFEC
o o
o O
N W

o
o
e

communicates with the data collection agents through TCP _;0\’\\ 50
connections to receive encrypted ML-INT data. Hence, it can 40 S~ _— 0
perform privacy-preserving DA over the encrypted ML-INT Power (dBm) -60 -0 OSNR (dB)
data for anomaly detection. The controller also runs on h-hig

performance Linux server. Fig. 6. Results of the outlier detection Scenario 1

B. Experimental Scenarios

With the testbed, we consider two experimental scenariB§rformance of the privacy-preserving DA, the data calbect
to verify the performance of our proposal and demonstrate #9ent organizes the telemetry data on power-level and OSNR
universality. Specifically, we first use the privacy-preseg as plaintext ML-INT vectors, and labels the vectors based on
ML-INT&DA system to monitor a single hop in the EON, their corresponding BERbFEC. We set the threshold.as5
and then apply it to oversee both the IP and optical layers.for BERbFEC. Specifically, if the combination of power-léve

1) Scenario 1: Optical Layer Anomaly DetectioRig. 5(a) and OSNR in a vector corresponds to a BERbFEC that is lower
shows the first experimental scenario, which is for optic#tan 0.015, the vector is labeled as “Normal”. Otherwise,
layer anomaly detection. Here, we have(® Gbps lightpath We label the vector as “Low Power” or “Degraded OSNR”
from Node Ato Node B The OLS system assigns its centraficcording to the major reason of the high BER value, the
wavelength as550.39 nm and allocate$0 GHz bandwidth Power-level is too low or the OSNR gets degraded too much.
to it (i.e., four 12.5-GHz frequency slots (FS’)). As indicatedNext, the data collection agent encrypts the ML-INT vectors
in Fig. 5(a), we use an ASE noise generator to insert noisedfd forwards them to the controller for anomaly detection.
the fiber link between the two nodes. The experiments witlscenario Icollect~31,000 ML-INT

In the experiments, we apply different configurations teectors as data samples. We @8& of them to train the DL
the OLS system, such that the power-level and OSNR wfodel in the controller, and the remaining% samples are
the lightpath exhibit various combinations at the receaed. included in the testing set for performance evaluation.
Then, we program our ML-INT system to collect the power- 2) Scenario 2: Multilayer Anomaly Detectiolhe second
level, OSNR and BERDFEC of the lightpath. To test thexperimental scenario is for multilayer anomaly detectias



w
o

shown in Fig. 5(b). This time, we use the proposed privacy-

E3 + Normal

preserving ML-INT&DA system to supervise both the IP and . Low Power
optical layers of an IP-over-EON that consists of four nodes * o 2 Drarded OSAR
Here, the host connecting RDP Switch Iransmits a0 Gbps g **z
packet flow to the one oRDP Switch 4 The flow is routed in x R ' )
the IP-over-EON network as indicated by the red solid line in oot ggé§§g§§§§§§§§§§§§§§§§§
Fig. 5(b),i.e., PDP Switch 1BV-WSS AyBV-WSS B»PDP . )
Switch 2-BV-WSS B>BV-WSS B+>PDP Switch 4Hence, the
multilayer routing path involves two lightpaths in the aati 0.5 20 o o
layer and three PDP switches in the IP layer. Power (dBm)

We still program our ML-INT system to collect the power- (a) Plaintext data
level and OSNR of each lightpath at its receiver end, and o
meanwhile, IP layer telemetry is realized with the PDP £ [+ Nomal
switches, which collect the packet processing latency hed t 007 3 | o Degadedosnr
input and output bandwidths regarding each switch port pair g 450 .
Therefore, forScenario 2 each ML-INT vector includes five §400 .
elements. Then, with the IP-over-EON testbed in Fig. 5(b), gsso ait igi}%;z;% éw
we apply various settingse(g, various routing and spectrum 2300t 1 ggggéegégéggg%éé é égg
assignments for lightpaths, different EDFA settings anideo 250 | CLCR ALY A
insertion, various traffic routing, bandwidth usages, and/l 200
table configurations in the PDP switches), emulate differen -500 400 -300  -200  -100 0

. . . Encrypted Power
exception cases in the IP and optical layers, and collect and

encrypt~18,000 ML-INT vectors as data samples. For each
case, we monitor the receiving bandwidth of the flow at itsig. 7. Results of VHE-based encryption $tenario 1

destination host, and flag an exception if the bandwidth is

below 9 Gbps temporarily. Then, each ML-INT vector is

labeled with the actual root-cause of its exception (if ¢helan example, and plot the plaintext and ciphertext of them for
is any), which can be “Normal”, “Low Power”, “DegradedScenarios land2 in Figs. 7 and 8, respectively. By comparing
OSNR?”, “Packet Congestion”, and “Switch Misconfiguration"the plaintext and ciphertext in the figures, we can clearly se
Similar to that inScenario 1 we still put 90% of the data why our VHE-based encryption can preserve the privacy of
samples in the training set of the DL model in the controlledata plane. The results indicate that each plaintext sample
while the remainingl0% samples are included in the testingyets spread to a cluster of encrypted ones, the VHE-

(b) Ciphertext data

set for its performance evaluation. based encryption will not encode a plaintext sample to the
same value in different rounds, and the ciphertext sames u
C. Performance of Outlier Detection meaningless values for power-level and OSNR. This makes

- . , illegal ryption difficult, and prevents malici ifrom
As shown in Fig. 2, the data collection agent first Ieveragesega Qec yption difficult, and preve FS alicious pe_ast om

. ; ; analyzing the data samples to derive sensitive information
the outlier detection module to remove the outlier sampl

€ ! ; i
: ; ‘bout the configuration and operation of the network. Mean-
that are due to collection errors and data corruption. I_ﬁk'gvhile, the figures also suggest that the correlation between

Scenario 1as an example, we plot a portion of the raw :
telemetry data in Fig. 6. 'IPhe 3—dim€ansion§l (3D) plot ind power-level and OSNR gets preserved through the encryption

) This can be further justified, if we check the classification
that the normal data samples confine to a 3D cluster, while .
. . ¢curacy of the anomaly detection. Note that, an attacker ca
the outliers lay far away from the cluster. Here, the “nofmal

samples do not mean that they correspond to normal netwgrlﬁo use a DL model to get the correlations buried in the
. . ciphertext telemetry data, but this will not bring anythigjapd
operations, but just suggest that they were collected with P X y urtis wi Ing any

collection errors or data corruntion. Apparently. to emsl o its attacks. This is because the ciphertext data doesavet h
ption. Apparently, . any physical meaning, and thus the attacker cannot deriwe an
accuracy of subsequent anomaly detection, all the outliers” ...~ : .
slensmve information about the IP-over-Optical network.
should be detected and removed. Because normal samplés ) . .
. ; . : ; n the experiments, we train two DL models with the
confining to irregular-shaped high-dimensional clustevs, . .
. ) . . ame structure for each scenario, to operate on plaintekt an
design the outlier detection based on DBSCAN, which deteda :
98.9% outliers on average in the experiments ciphertext ML-INT data, rgspeptlvely. Th_e performancehaf t
' ' DL-based anomaly detection is shown in Table I. The results
_ ) indicate that with our designs of the VHE-based encryption
D. Performance of Privacy-Preserving Feature and DL model, the DA over encrypted ML-INT data provides
We verify the privacy-preserving feature of our proposaimilar training/testing accuracies and uses similarningj
as follows. Because the VHE-based encryption has similéme, as that over plaintext ML-INT data. Note that, the
effects on the plaintext of multi-dimensional ML-INT datatraining for the DL model inScenario 1ltakes longer time
and Scenarios land 2 both consider the power-level andbecause its training set contains more samples. This canfirm
OSNR of lightpaths, we take the correlation between them #ee feasibility of our proposal. Finally, Figs. 9 and 10 pio¢
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. . . Output of DL
confusion matrices that describe the DL models’ performreanc b) Ciohertext dat
. . . . iphertext data
on their testing sets, foBcenarios land 2, respectively. The (b) Cip
figures show the breakdown of classification errors. Fig. 9. Confusion matrices of DL-based anomaly detectioSg¢enario 1

TABLE |
PERFORMANCE OFDL-BASEDANOMALY DETECTION . . . .
(gnax — i) where ("> — ™) is the dynamic range of

Experimental Accuracy on [ Accuracy on | Training the element; in ciphertext vecto’. Then, for the encoding
__Scenario Training Set | Testing Set | Time ()~ gcheme withn = 3, any tampering ony; that is greater than
gﬁgfg;;?fgfgﬁ:ﬁoll gg'g%’ ggi;? iggg 64 - § will be detected by the hash-based signature.
. 0 . 0 . . .
Plaintext inScenario 2 | 98.67% 98.83% 14.95 In the experiments, we set = 3 and consider three
Ciphertext inScenario 2| 98.90% 97.91% 14.91 scenarios as Minor, Moderate, and Severe tampering, with

the modifications falling in1, 64], (32,2048], and (64, 4096]

times ofd, respectively, to analyze how data tampering impacts
E. Performance of Protection against Tampering Attacks our privacy-preserving DA. The experiments also compage th

The VHE-based encryption and the DL model that caglassification accuracy of the DL model, with and without

directly operate on encrypted ML-INT data address passilee signature based data verification. The results in Figs.
eavesdropping. We evaluate the encoding and signature mdé-and 12 indicate that for all the experimental scenarios,
ule in the following to verify our proposal’s protection a-our encoding and signature scheme successfully protect the
gainst tampering-based attacks. Specifically, for theenijgixt System against tampering-based attacks. SpecificallyDtre
vectors {c'}, we randomly modify a fixed portion of their accuracies on data without tampering and tampered data with
elements in the data reporting channel, then let the cdetroldata verification are almost the same, and the tamperingdbas
process them with the data verification and cleaning modwgacks only reduce the accuracies slightly. On the othed ha
and the DL model, and finally check the data tamperinggxcept for the Minor tampering cases, the data tampering can
effect on the classification accuracy of anomaly detection. severely affect the DL's accuracy when the data verificatson
absent. Therefore, the results confirm that our data cetiific
and verification with the encoding and signature scheme can
detect illegally-revised data accurately and protect thie- M
INT&DA system against tampering-based attacks.

Definition 1. We define théampering ratio as the portion of
the ciphertext elements that are illegally modified in théada
reporting channel, which changes withib0%, 50%].

Definition 2. We defing as theminimum tolerance provided

by our encoding and signature scheme. F. Stress Tests on Data Collection Agent and Controller

For instance, if the encoding scheme assigns- 3 bits As we have explained in Sections IV-A and IV-B, the time
to the paragraph code field in Fig. 3, we have= ﬁ - complexities of our VHE-based encryptioAlgorithm 1) and



10

Normal | 1.00 1 — — __ -
0.9
< Low Power| - 1.00 5‘
2 kS
F 208
O Degraded OSNR| - - 1.00 e
5 5
o 8 0.7 [[EEWithout Tampering
(6] Mis-config| - - - 1.00 < [ Tampered with Data Verification
[ Tampered without Data Verification
0.6 T ] — | ) Ll
Pkt-congest | 0.02 - - - 0.98 10% 20% 30% 40% 50%
Tampering Ratio
& & & © s . .
éf < R co&z (a) Minor tampering
V°$ @5’0 + Q¥
N 1
Output of DL
. — 0.9
(a) Plaintext data a
k]
0.8
Normal | 1.00 ©
=1
S 0.7 | [EEEWithout Tampering
< Low Power| - 1.00 < [ Tampered with Data Verification
5 [ ITampered without Data Verification
= 0.6
O Degraded OSNR| - 0.03 0.97 - - 10% 20% 30% 40% 50%
=] Tampering Ratio
o
1] Mis-config| - - - 100 - (b) Moderate tampering
1
Pkt-congest| 0.02 - - - 0.98
& & & © s 09
é"‘\& ‘AQO\A bob; .(,f’oo &Q& a
K3 RSO N S
& 208
IS
Output of DL 5
S 0.7 | [EEEWithout Tampering
(b) Ciphertext data < I Tampered with Data Verification
[ ITampered without Data Verification
. . . . . . 0.6
Fig. 10. Confusion matrices of DL-based anomaly detectioBdenario 2 10% 20% 30% 40% 50%
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data compression based encodiAtgprithm2) are linear and Fig. 11.
constant, respectively. Therefore, they will run very fast
practical NC&M systems and will not cause any scalability
issues. To verify this, we conduct two stress tests to etalugollection agent is suitable for practical network openasi
the computing overheads that the algorithms will bring is. A In the second test, we flood thousands of ML-INT vectors
the plaintext vectors irScenario 2includes more elements,to the controller within a second, wait it to process all the
we perform the stress tests with them. data, and measure the total processing time and the CPU
In the first test, we stress the data collection agent bygage on the server that runs the controller. Here, the total
letting it encrypt, encode and sign a large amount of ML-INProcessing time includes both the time for the communicatio
vectors within a second to prepare a batch report for sendiiggeport the data and the time used to process them. Fig) 13(b
to the controller. Note that, we design the data collectipera Shows that the total processing time is almost identicalrwhe
such that these privacy-preserving tasks get handled allpar the data collection agent reports plaintext and encryptéd M
with the agent’s normal operations of parsing, aggregatitdy INT vectors to the controller. The CPU usages in Fig. 13(c)
processing INT fields in packets to get and record ML-INsuggest that the DA over encrypted data only costs slightly
data. The total processing time to prepare the batch reportmore CPU usage~0.2%). Hence, the results further confirm
shown in Fig. 13(a), which indicates that the data collectidhat our privacy-preserving scheme would not cause ndileea
agent can finish the whole data processing withinseconds, overhead or slow down the processing in the control plane.
when it getsl0, 000 ML-INT vectors within a second to report
to the controller. The results confirm that our algorithme ar VI. CONCLUSION

lightweight, and the encoding and signature runs muchifaste In this paper, we designed and experimentally demonstrat-
than the VHE-based encryption. ed a privacy-preserving ML-INT&DA system for IP-over-
Note that, an ML-INT&DA system normally should notOptical networks. We first developed a lightweight VHE-lhse
send telemetry data to the controller in the constant mannencryption scheme to encrypt ML-INT data, such that the
because this will flood the controller and prevent it fronsecurity breaches due to eavesdropping can be addressed and
conducting other NC&M tasks. Hence, except for reportinipe inner correlations buried in the multi-dimensional NNF
urgent issues, each data collection agent uses a pollieyait data can be preserved. Then, we designed an effective data
of at least tens of seconds. To this end, we can see that the @ampression scheme to further encode the encrypted ML-INT

Results of protection against tampering attacksSfeenario 1
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