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Abstract—With the evolution of Internet infrastructure and
network services, multilayer in-band network telemetry (ML-
INT) and data analytics (DA) have been considered as key
enabling techniques to realize real-time and fine-grained network
monitoring, especially for backbone IP-over-Optical networks.
However, the existing ML-INT&DA systems have privacy and
security issues, because plaintext ML-INT data is reported
from the data plane and gets analyzed in the control plane.
In this work, we address these issues by designing a privacy-
preserving ML-INT&DA system for IP-over-Optical networks .
We first leverage vector homomorphic encryption (VHE) to
design a lightweight encryption scheme, which overcomes the
security breaches due to eavesdropping and preserves the delicate
correlations buried in multi-dimensional ML-INT data. The n, we
develop an effective data compression scheme to further encode
the encrypted ML-INT data and make the results suitable for
hash-based signature. The signature is for data certification and
enables the DA in the control plane to verify the integrity of
received ML-INT data. Hence, the threats from data tampering
are removed. Next, we architect a deep learning (DL) model that
can directly operate on encrypted ML-INT data for anomaly
detection. Finally, we implement the proposed ML-INT&DA
system, and experimentally demonstrate its effectivenessin a
real IP over elastic optical network (IP-over-EON) testbed, whose
key elements,i.e., optical line system (OLS), bandwidth-variable
wavelength-selective switches (BV-WSS’) and programmable data
plane (PDP) switches, are all commercial products.

Index Terms—In-band network telemetry (INT), IP over elastic
optical networks (IP-over-EONs), Multilayer networks, Deep
learning (DL), Vector homomorphic encryption (VHE), Priva cy-
preserving network monitoring, Data analytics, Soft failures.

I. I NTRODUCTION

NOWADAYS, the rapid development of emerging services,
such as 5G, Big Data and cloud computing, has made

backbone networks increasingly complicated and highly dy-
namic [1]. Meanwhile, the wide deployment of virtualization
technologies (e.g., virtual network embedding (VNE) [2, 3]
and network function virtualization (NFV) [4, 5]) has in-
creased the difficulty of detecting and tracing down network
failures, especially the soft ones [6, 7]. All these added up
to cumulative stressing the monitoring and managing of the
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multilayer architecture of backbone networks (i.e., IP-over-
Optical) over time [8]. The major hassle is that the traditional
techniques, such as SNMP [9] and NetFlow [10], can hardly
achieve real-time and fine-grained network monitoring, which
has already become one prerequisite for the network control
and management (NC&M) of today’s Internet.

The aforementioned dilemma can be mostly relieved by the
in-band network telemetry (INT) technique [11], which has
recently been promoted by the advances on programmable
data plane (PDP) [12, 13]. Specifically, PDP provides network
operators the flexibility to customize packet processing behav-
iors in the data plane, and this enables INT, which embeds
telemetry data collection in packet processing pipelines for
end-to-end monitoring. A typical INT system works as follows
for a packet network. When a packet first enters a network
with INT-based monitoring, the ingress switch inserts the
preset INT instructions (i.e., what to monitor and how) in it
as header fields. Then, each intermediate switch checks the
fields, executes the desired INT operations, and pushes the
obtained telemetry data into the packet’s header, as it transits
the network. Finally, when the packet is about to leave the
network, the egress switch pops all the telemetry data from
its header, aggregates the results, and sends them to a data
analyzer for real-time and fine-grained network monitoring.

Therefore, INT opens limitless possibilities for NC&M,
allowing network operators to capture and identify temporary
issues that emerge due to various types of failures,i.e., both
hard and soft ones. Following the trend, people has extended
the applications of INT from packet-based single-layer net-
works to multilayer IP-over-Optical ones, and designed several
multilayer INT and data analytics (ML-INT&DA) schemes
[14–17] to facilitate real-time, fine-grained and programmable
NC&M. Specifically, the ML-INT provides network operators
a powerful tool to visualize both IP and optical layers in
realtime, while the DA leverages deep learning (DL) to analyze
rich telemetry data from both layers, for application-aware
service provisioning and accurate and timely troubleshooting.
Although these ML-INT&DA proposals are promising, they
all overlooked the important issues related to privacy and
security, because plaintext telemetry data is reported from the
data plane and gets analyzed in the control plane.

The necessity of privacy-preserving ML-INT&DA systems
is multiple-fold. Firstly, ML-INT provides rich telemetrydata
regarding a backbone network, which can be analyzed to
derive sensitive information regarding the configuration and
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operation of the network. In today’s Internet, telemetry data
usually gets reported to the control plane through control
channels based on the transport layer security (TLS) or secure
socket layer (SSL) connections, which are vulnerable to the
man-in-the-middle attack [18]. Hence, if a malicious partytaps
the control channels and obtains plaintext telemetry data,it
can launch various attacks based on the derived information.
For instance, the operation margin of the optical layer can
be obtained by analyzing the data regarding power-level and
optical signal-to-noise-ratio (OSNR), and the malicious party
can inject jamming or interference signals in the fiber linkson
which the margins for quality-of-transmission (QoT) guarantee
are relatively small to amplify its attack efficiency [17].

Secondly, in additional to passive eavesdropping, the mali-
cious party could be more aggressive to modify the telemetry
data for misleading the DA system, and this would severely
disturb the network automation in its network. Note that, it
is known that the neural networks for DL are vulnerable
to adversarial samples, which are hard to be detected and
can easily cause DL to make incorrect decisions [19]. Such
tampering-based attacks have already been demonstrated in
[20, 21] to make IP-over-Optical networks behave strangely.
Last but not least, plaintext telemetry data should not be
disclosed for the consideration of privacy, if the operator
wants to outsource the DL model for DA to a third party,
i.e., leveraging the “machine-learning-as-a-service (MLaaS)”
[22] to overcome its shortage on the labor/hardware/software
resources to design and train a sophisticated DL model.

As an ML-INT&DA system usually relies on the software-
defined networking (SDN) architecture [23], the security and
privacy issues mentioned above could be relieved if we add
encryption/decryption at both ends of each data-reporting
channel between the data and control planes. However, this
will bring in additional operation complexity and thus pro-
cessing latency, especially to the control plane. Moreover,
the DA still processes plaintext telemetry data in the control
plane, there are still security breaches. Note that, different
from the DA in the control plane, the ML-INT in the data
plane is usually handled in a distributed manner. Hence, adding
data encryption in each performance monitor would not cause
excessive processing burdens. Then, it would be promising
if the DA can directly operate on encrypted telemetry data
with its DL model. Nevertheless, most encryption schemes will
just break the correlations buried in telemetry data and thus
make privacy-preserving DA infeasible. More importantly,
the encryption schemes cannot address the tampering-based
attacks that might occur in data reporting channels.

In this work, we address the aforementioned challenges by
designing a privacy-preserving ML-INT&DA system for IP-
over-Optical networks. We first leverage vector homomorphic
encryption (VHE) [24, 25] to design a lightweight encryption
scheme, which not only preserves the delicate correlations
buried in multi-dimensional ML-INT data but also limits
the time complexity of data encryption. Hence, the security
breaches due to eavesdropping are addressed. Then, we de-
velop an effective data compression scheme to further encode
the encrypted ML-INT data and make the results suitable for
hash-based signature. With the signature, the DA in the control

plane can easily verify whether encrypted ML-INT data from
the data plane has been illegally modified or not. Therefore,
the threats from tampering-based attacks are removed. Next,
we architect a DL model that can directly operate on encrypted
ML-INT data for anomaly detection.

We implement the proposed ML-INT&DA system, and
experimentally demonstrate its effectiveness on privacy-
preserving in a real IP over elastic optical network (IP-over-
EON) testbed, whose key elements,i.e., optical line sys-
tem (OLS), bandwidth-variable wavelength-selective switches
(BV-WSS’) and PDP switches, are all commercial products.
Experimental results confirm that the encryption hides sensi-
tive information about data plane well, the encoding and sig-
nature scheme helps to detect illegally-revised data accurately,
and our DL model can classify encrypted multi-dimensional
ML-INT data to find the root causes of exceptions.

The rest of the paper is organized as follows. Section II
briefly surveys the related work. We describe the architec-
ture and operation principle of our privacy-preserving ML-
INT&DA system in Section III, and the implementation details
are in Section IV. We discuss experimental demonstrations in
Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

Recently, optical networks have been greatly impacted by
the rapid evolution of SDN [26–28] and artificial intelligence
(AI) [29], which promotes the idea of knowledge-defined net-
working (KDN) [30, 31] for network automation. Therefore,
numerous studies have been focused on realizing AI-assisted
network automation for optical networks [32–37]. However,
one can never close the loop of automatic NC&M without real-
time and fine-grained network monitoring and troubleshoot-
ing [6, 38, 39]. Traditional monitoring schemes for packet
networks (e.g., SNMP [9] and NetFlow [10]) utilize the out-
of-band scenario based on a server-client model. Specifically,
they leverage a centralized monitor to poll network elements
(NEs) periodically for collecting status data. Nevertheless,
the polling-based data collection cannot visualize networks in
realtime or realize fine-grained monitoring to reveal the end-to-
end information of arbitrary flows. Same issues also apply to
traditional optical performance monitoring schemes [40–42].

The issues with traditional network monitoring schemes can
be addressed with the INT technique [11], which boosted up
the research and development on in-band network monitoring
[43]. Consequently, people have quickly expanded the idea to
consider multilayer IP-over-Optical networks and developed a
few ML-INT schemes [14, 15]. Meanwhile, the INT technique
has been further optimized in [44–46] to reduce its bandwidth
overheads and data processing burdens. However, none of
these enhanced INT versions has addressed the privacy and
security issues due to eavesdropping and data tampering.

Following the idea of KDN, people have also studied how
to integrate INT with DA to facilitate AI-assisted network
automation. Hyunet al. [47] considered how to realize a
self-driving network by combining INT, DL and SDN. The
authors of [48] presented an architecture, namely, NetworkAI,
to enable self-learning control strategies in SDN with the



3

assistance of INT. Leveraging INT to provision latency-
aware virtual network functions in metro networks has been
demonstrated in [49]. Previously, in [8, 16], we proposed
an ML-INT&DA system, and demonstrated real-time, fine-
grained and programmable NC&M in a multilayer IP-over-
Optical network testbed, where the IP layer was based on
PDP switches and the optical layer was a flexible-grid EON
[50–53]. Nevertheless, none of the aforementioned studies
considered the privacy and security issues.

To the best of our knowledge, the privacy-preserving ML-
INT&DA system, which can properly address the potential
threats of eavesdropping and data tampering, has not been
studied in the literature yet. This motivates us to address the
problem in this work and to extend our ML-INT&DA system
demonstrated in [8, 16] to a privacy-preserving one.

III. SYSTEM ARCHITECTURE ANDOPERATION PRINCIPLE

In this section, we describe the overall architecture of our
privacy-preserving ML-INT&DA system, explain its operation
principle, and elaborate on the new modules introduced in this
work over the existing system developed in [8, 16].

A. ML-INT&DA

Fig. 1 shows the system architecture of the proposed
privacy-preserving ML-INT&DA system. The data plane is
an IP-over-Optical network, where the optical layer is built
with optical cross-connects (OXCs) and fiber links, and the
IP layer consists of programmable data plane (PDP) switches
[12, 13], client hosts, application servers, and data collection
agents. The optical performance monitor (OPM) on each
OXC collects telemetry data regarding the lightpaths switched
by it. To monitor OSNR, power-level and spectral shape,
one can leverage optical spectrum analysis [40], while more
sophisticated OPM, such as the monitoring on bit-error rate
(BER) and dispersion, can be accomplished by utilizing the
digital signal processing modules in optical transponders[42].
As we focus on privacy-preserving in this work, we do not
specify the actual scheme of OPM. In other words, telemetry
data can be encrypted and processed with our proposal, no
matter how it was collected.

As explained in [16], the telemetry data collected by the
OPM is then sent to the local PDP switch of its OXC, by
a homemade agent. The PDP switch encodes the received
telemetry data regarding the optical layer together with that
it collects locally about the IP layer as INT fields, and inserts
them in the packets of related flows. Since the INT fields
carry the telemetry data about each electrical/optical network
element (NE) on a flow’s routing path, real-time and fine-
grained ML-INT has been realized. Note that, our ML-INT
scheme also has the capability of selecting only a small portion
of a flow’s packets to insert the INT fields, for reducing the
bandwidth overheads of ML-INT [16]. Finally, before a packet
with INT fields leaves the IP-over-Optical network and reaches
to its destination host, the egress PDP switch pops all the INT
fields from the packet and sends them to a data collection
agent, where the INT fields will be parsed, aggregated and
processed to get the ML-INT data (as shown in Fig. 1).

There could be multiple data collection agents residing in
the data plane, and they forward ML-INT data to the cen-
tralized controller through data reporting channels. Following
the principle of KDN [30], the controller leverages DL to
analyze the ML-INT data (i.e., DA) and realize anomaly
detection and other NC&M tasks, for AI-assisted network
automation. Note that, since the IP-over-Optical network is a
backbone network, it can cover a relatively large geographical
area. Hence, the controller and the data collection agents
normally reside at different locations, which makes the data
reporting and processing vulnerable to eavesdropping and data
tampering if the ML-INT data is in plaintext.

B. Privacy-Preserving Operations

In order to address the privacy and security issues caused
by using plaintext ML-INT data, we, in this work, design and
implement a few new functional modules in the ML-INT&DA
system to make its operations privacy-preserving. Specifically,
the new functional modules are for both the data collection
agent and the centralized controller, as shown in Fig. 1.

After obtaining ML-INT data from received INT fields, the
data collection agent organizes each set of data with the same
time-stamp as a plaintext vector (x). For instance, a plaintext
vector can contain a set of ML-INT data that includes the
packet forwarding latency and input/output bandwidth of a
PDP switch, and the input power and OSNR of the related
optical port on the switch’s local OXC. Since raw telemetry
data may contain outlier samples, which are due to collection
errors and data corruption, we introduce an outlier detection
module to remove them. The outlier detection is designed
based on the well-known density-based clustering algorithm
(DBSCAN) [54], because the ML-INT data may distribute in
irregular shapes. As we will show later in Section V, the outlier
detection not only maintains the quality of ML-INT data, but
also improves the robustness of our privacy-preserving DA.

Then, the plaintext vectorx gets encrypted in the VHE-
based encryption module, whose detailed operations will
be described in Section IV-A. The VHE-based encryption
transformsx into a ciphertext vectorc′. To ensure privacy-
preserving, we design the VHE-based encryption to map each
unique plaintext vector to different ciphertext vectors. Hence,
it would be even more difficult for a malicious party to guess
the plaintext vectors based on their ciphertext counterparts.
More importantly, the VHE-based encryption preserves the
inner correlations of ML-INT data, such that the DL-based DA
in the controller can directly analyze the ciphertext vectors for
anomaly detection and other NC&M tasks.

Next, to address tampering-based attack, the encoding and
signature module is introduced to generate a digital signature
for each ciphertext vector. It is known that hash-based signa-
ture method has acceptable time complexity and can provide
sufficient data certification strength. Therefore, we develop
an effective data compression scheme to further encode the
ciphertext vectors and make the results suitable for hash-based
signature. We will elaborate on the operation principle of
the encoding and signature module in Section IV-B. Finally,
the data assembly module simply appends the hash-based
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Fig. 1. Overall architecture of privacy-preserving ML-INT&DA system, PDP-SW: PDP switch, OXC: optical cross-connect, OPM: optical performance
monitor.

signature to each ciphertext vector, and then forwards it to
the controller through the data reporting channel.

On the other hand, the controller realizes privacy-preserving
DA with the data verification and cleaning module and the
DL for anomaly detection, as shown in Fig. 1. Both modules
directly operate on encrypted ML-INT data (i.e., the ciphertext
vectors). By repeating the encoding and signature procedure
discussed above and comparing the obtained signature with the
one in the received message, the data verification and cleaning
module verifies the integrity of ML-INT data. Specifically,
if the signatures do not match, the module will classify the
data as suspicious, drop it, and flag an alert if necessary.
Then, trusted ML-INT data is forwarded to the DL module
for anomaly detection1, which not only determines whether
the encrypted ML-INT data indicates exceptions, but also
classifies the exceptions. The design and training of the DL
module will be discussed in Section IV-C.

Based on the output of the DL module, the controller makes
proper NC&M decisions to address the detected exceptions.
In this work, we consider four types of exceptions, which are
packet congestion and PDP switch misconfiguration in the IP
layer, and excessive power loss and OSNR degradation in the
optical layer. Meanwhile, we hope to point out that this setting
is only for the purpose of experimental demonstrations, andas
the privacy-preserving scheme has good universality on high-
dimensional data, our proposal can handle more types of ML-
INT data and/or exceptions with only minor modifications.

IV. I MPLEMENTATIONS OFKEY FUNCTIONAL MODULES

This section presents the implementation details of three
key functional modules in our proposed ML-INT&DA system
(i.e., the VHE-based encryption, the encoding and signature,
and the DL-based anomaly detection).

A. VHE-based Encryption

As shown in Fig. 2, our VHE-based encryption involves
three phases,i.e., key generation, key-switching, and vector

1Note that, with a proper design, the privacy-preserving DA can leverage
the encrypted ML-INT data to accomplish other NC&M tasks too.

Fig. 2. Operation of privacy-preserving functional modules in data plane.

encryption. Initially, we have the plaintext vector for an ML-
INT data sample asx ∈ Z

m, where all the elements inx are
integers, andm denotes the length of the vector. Meanwhile,
we definec ∈ Z

n as the ciphertext vector ofx with n ≥ m.
Then, the VHE-based encryption satisfies [24, 25]

S · c = w · x + e, (1)

whereS∈ Z
m×n is the private key,e∈ Z

m is the randomly-
generated noise vector, andw is the preset weight to balance
the importance of data and noise in the encryption.

The key generation provides the private keyS and the noise
vector e for the vector encryption with Eq. (1). LetI be an
m×m identity matrix. We can easily verify thatw ·x = I · (w ·
x). Hence,I can be the initial private keyS, which encryptsx
as a ciphertext vectorc = w ·x with the noise vector ase= 0.

Then, to improve the strength of the encryption, we leverage
the key-switching technique. Apparently, for another pairof
private keyS∗ and ciphertext vectorc∗, if they satisfy

S∗ · c∗ = S · c, (2)

the relation in Eq. (1) still holds. We chooseℓ such that

max
i∈[1,n]

(|ci|) < 2ℓ, (3)

where ci is the i-th element inc, and construct ciphertext
vector c∗ by transforming each element inc into the bipolar
representation. Specifically, if we haveci = bi0+bi1 ·2+ · · ·+
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bi(ℓ−1)·2
ℓ−1, ci is transformed intoc∗i = [bi0, bi1, · · · , bi(ℓ−1)],

wherebik ∈ {−1, 0, 1}. Then, we obtainc∗ = [c∗1, · · · , c
∗

n]
T .

For instance, the vectorc = [2,−1]T can be transformed into
c∗ = [0, 1, 0, 0,−1, 0, 0, 0]T , if we haveℓ = 4. Similarly, the
private keyS∗ can be obtained by converting each element
Sij ∈ S into a binary-related vector,i.e., S∗

ij = [Sij , 2 ·
Sij , · · · , 2

ℓ−1 · Sij ]. Then, the following equality holds

S∗

ij · c∗j = [Sij , 2 · Sij , · · · , 2
ℓ−1 · Sij ] ·









bj0
bj1
...

bj(ℓ−1)









= Sij · cj . (4)

Therefore, we construct a ciphertext vectorc∗ whose elements
have their maximum absolute value as1 and a private key
S∗ ∈ Z

m×n·ℓ, and ensure that they satisfy Eq. (2).
Next, the vector encryption gets the final private-key-and-

ciphertext pair (i.e., S′ and c′) based onS∗ and c∗. We have
c′ ∈ Z

n′

and S′ ∈ Z
m×n′

, wheren′ > n is the predefined
length of the final ciphertext vectorc′. With the procedure in
[24, 25], we first construct an integer matrixM ∈ Z

n′
×n·ℓ as

M =

[

S∗ + E − T · A
A

]

, (5)

whereE ∈ Z
m×n·ℓ, A ∈ Z

(n′
−m)×n·ℓ and T ∈ Z

m×(n′
−m)

are all randomly-generated integer matrices. Then, we con-
structS′ asS′ = [I ,T], whereI is an identity matrix, and can
verify

S′ · M = S∗ + E. (6)

Therefore, the final ciphertextc′ should be

c′ = M · c∗. (7)

It will be easy to verify

S′ · c′ = S∗ · c∗ + E · c∗ = w · x + E · c∗, (8)

which also satisfy Eq. (1) withe= E · c∗.
Algorithm1 illustrates the procedure of the VHE-based en-

cryption used in our privacy-preserving ML-INT&DA system.
Line 1 is for the initialization. The key generation is realized
with Lines2-3, the key-switching is accomplished byLines4-
6, and the vector encryption is achieved withLines7-11. The
strength of the VHE-based encryption is guaranteed by matrix
M , based on the hardness assumption of the extended learning
with error problem [55]. Hence, it would be extremely difficult
for an attacker to decrypt the ciphertext telemetry data within
a reasonable amount of computing time. The time complexity
of Algorithm 1 is O(m+ ℓ), i.e., a linear-time algorithm.

B. Data Compression Encoding for Hash-based Signature

Fig. 2 indicates that the ciphertext vectorc′ generated by the
VHE-based encryption needs to be processed by the encoding
and signature module to obtain a hash-based signature for data
certification. Although we can directly apply hash functionto
all the elements in ciphertextc′, encoding them beforehand
for data compression has the following two advantages.

First of all, as the elements inc′ have different ranges
of values, their binary representations occupy variable-length
fields, which will bring additional complexity for organizing

Algorithm 1: VHE-based Encryption
Input : weightw, plaintext vectorx.
Output : ciphertext vectorc′, private keyS′.

1 getm by checkingx and setn = m andn′ = n+ 1;
2 initialize private keyS as anm×m identity matrix;
3 get initial ciphertext vectorc = w · x;
4 obtain the value ofℓ with Eq. (3);
5 transformc into the bipolar representationc∗;
6 convertS into the binary-related vectorS∗;
7 generate a random matrixT ∈ Z

m×(n′
−m);

8 get the final private keyS′ = [I ,T];
9 get random matricesE ∈ Z

m×n·ℓ andA ∈ Z
(n′

−m)×n·ℓ;
10 constructM with Eq. (5);
11 calculate the final ciphertext vectorc′ with Eq. (7);
12 return (c′, S′);

the data bytes. Therefore, if we encode the elements and make
the results fit into fixed-length fields, the aforementioned has-
sle can be avoided. Secondly, applying hash function directly
to the elements inc′ will make the obtained signature too
sensitive to the changes onc′. In other words, the signature
will not be identical, even if there is only a very minor change
on one element inc′. Note that, there could be minor changes
on c′, which were not caused by data tampering (e.g., bit
errors due to the noise in data transmission), and even if there
is data tampering, minor modifications might not affect the
DL model in the controller. Hence, if we drop all the non-
identical ciphertext vectors, it is overkill and the efficiency of
ML-INT&DA would be impacted. A proper data compression
on c′ can improve the signature’s tolerance to minor changes.

Inspired by the nonuniform quantization in speech com-
munications [56], we design the data compression scheme as
explained inAlgorithm 2. The data compression will encode
each element in a ciphertext vectorc′ with one byte2. As
illustrated in Fig. 3, the byte is divided into two portions,i.e.,
the paragraph code withn bits and the level code with(8−n)
bits. Here, the paragraph code represents which nonuniform
region the elementci stays in, while the level code denotes
the result of the uniform quantization forci in the region. In
Algorithm2, Line 1 is for the initialization to normalizeci as a
non-negative valuêci ∈ [0, cmax

i −cmin
i ]. Then, the nonuniform

regions for quantization are obtained withLines2-7, while the
data compression is accomplished withLines8-12.

Note that, the value ofn (i.e., the length of the paragraph
code field) determines the tolerance of the change on the
original elementci, which is simply the maximum quantization
error caused by the data compression. For instance, if we set
n = 3 bits, the tolerance changes within[ 1

8192 ,
1

128 ] · (c
max
i −

cmin
i ), depending on which region the element is actually in.

Therefore, the value ofn can be determined empirically based
on the dynamic range ofci, and in the extreme case with
n = 0, the data compression uses uniform quantization. As
we always haven < 8, Algorithm 2 is constant time (i.e., its

2Note that, the data compression is just for the hash-based signature, while
the ciphertext vectorc′ will still be sent to the controller without compression.
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Algorithm 2: Data Compression for Hash-based Signature

Input : an elementci in ciphertextc′, upper- and
lower-bounds ofci (cmax

i andcmin
i ), length of

paragraph code field in bits (n).
Output : one-byte encoding ofci (bi).

1 ĉi = ci − cmin
i , x = cmax

i − cmin
i ;

2 for j = 0 to 2n − 1 do
3 if j = 2n − 1 then
4 y = x, x = cmin

i ;
5 else
6 y = x, x = x

2 ;
7 end
8 if ĉi ∈ [x, y] then
9 encode the paragraph code inbi as the binary

representation ofj;
10 quantizeĉi in [x, y] uniformly with (8 − n) bits

as the level code inbi;
11 break;
12 end
13 end
14 return (bi);

Element of 

Ciphertext

Vector

Uniform Quantization & 

Encoding

Output
Determine

Region

One-Byte

Encoding

Paragraph Code

n bits

Level Code

(8-n) bits

8 bits

j = 0

Uniform Quantization & 

Encoding

j = 2n - 1

…

Fig. 3. Data compression based encoding for hash signature.

complexity isO(1)).

C. DL Model for Anomaly Detection

Fig. 4 explains the operation of privacy-preserving func-
tional modules in the controller. The data verification and
cleaning module repeats the procedure discussed in the pre-
vious subsection, obtains a hash-based signature based on the
ciphertextc′ that it received, and checks the signature with
the received one for data verification. If the signatures do
not match, the ciphertextc′ will be dropped. Next, trusted
ciphertext vectors are forwarded to the DL model for anomaly
detection. We design the DL model based on a deep neural
network (DNN), and apply supervised learning to train it for
detecting and classifying exceptions based on the encrypted
ML-INT data. Note that, for a traffic flow that passes through
N PDP switches in the IP-over-Optical network, a complete
set of the ML-INT data carried by its packets containsN

ciphertext vectors, for the end-to-end multilayer routing. The
DL model performs anomaly detection on each complete set of
ML-INT data, i.e., analyzingN ciphertext vectors in sequence.

Fig. 4. Operation of privacy-preserving functional modules in control plane.

Hence, the DL model can not only detect the exceptions but
also locate them on the packets’ multilayer routing path.

The DNN includes seven layers, which are the input layer
whose neurons match with the dimension of a ciphertext
vector c′, five hidden layers with{256, 128, 64, 32, 16} neu-
rons, respectively, and the output layer where the number of
neurons equals that of exceptions plus one (i.e., for the normal
case). Except for the output layer, which uses the softmax
activation function, all the layers in the DNN utilize relu as
their activation functions. We leverage the categorical cross-
entropy function to design the loss function, and use it to
describe the DNN’s accuracy on the multi-class classification
for anomaly detection. Then, the DNN is trained in the offline
manner to minimize the loss,i.e., its parameters are optimized
iteratively over labeled training samples with the classicback-
propagation and gradient descent algorithm [29].

V. EXPERIMENTAL DEMONSTRATIONS

In this section, we implement the proposed ML-INT&DA
system in an IP-over-EON testbed, and conduct experiments
on anomaly detection to verify and evaluate its performance.
As hard failures usually cause immediate service interruptions,
the techniques to detect and locate them have already been
mature [40]. Therefore, the anomaly detection discussed inthis
section will focus on the soft failures that only induce minor
degradations on network operation,e.g., small reductions on
OSNR and power-level, and minor misconfigurations and
bandwidth shrinking on PDP switches. These soft failures do
not cause relevant service disruptions immediately and thus
are difficult to be detected and located, but if the operator
keeps ignoring them, their impacts can accumulate over time
and eventually introduce unsolvable complications [6].

A. Testbed Setup

1) Data Plane: Our testbed uses a small but real IP-over-
EON as the data plane. Supporting network disaggregation
[15], the optical layer is an EON that enables flexible-grid
spectrum allocation and bandwidth-variable data transmission
[57]. Specifically, the EON consists of two types of major
elements,i.e., disaggregated optical line system (OLS) and
bandwidth-variable wavelength-selective switches (BV-WSS’).

The disaggregated OLS is realized based on the Ju-
niper BTI7800 platform, in which each bandwidth-variable
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transponder (BV-T) can leverage different modulation formats
(e.g., PM-QPSK and 16-QAM) to achieve a line-rate of
[100, 400] Gbps, and the BV-Ts are connected with fiber
links with in-line erbium-doped fiber amplifiers (EDFAs).
Each fiber link contains30 km standard single-mode fiber
(SSMF), and due to the shortage of SSMF in our lab, we
have difficulty in using longer fiber links. Therefore, the
experiments use an amplified spontaneous emission (ASE)
noise generator, dispersion compensation modules, and power
attenuators to emulate the effects of longer fiber transmissions.
The disaggregated nature of the OLS system enables our
ML-INT&DA to collect rich telemetry data regarding the
optical layer, such as optical power-level, OSNR, bit-error-
rate before forward error correction (BERbFEC), chromatic
dispersion (CD), differential group delay (DGD),etc. The
BV-WSS’ are also commercial products, each of which has
1×9 configuration, operates within[1528.43, 1566.88] nm, and
provides a spectrum allocation granularity of12.5 GHz.

The IP layer of the testbed consists of PDP switches, client
hosts, and data collection agents. The PDP switches are3.2-
Tbps Barefoot switches equipped with Tofino ASICs, which
support P4-based network programming [12]. They have 10/40
GbE optical ports, and can be programmed to collect ML-INT
data and insert them into packets as INT fields. Each host is
emulated with a commercial traffic generator/analyzer thatcan
send/receive data up to40 Gbps. The data collection agents are
homemade, and they run on high-performance Linux servers
to accomplish the collection and encryption of ML-INT data.

2) Control Plane: Developed based on the open network
operating system (ONOS) platform [58], the control plane
of our testbed leverages a centralized controller to monitor
and manage the IP-over-EON. In addition to the conventional
SDN-based NC&M tasks, the ONOS-based controller also
communicates with the data collection agents through TCP
connections to receive encrypted ML-INT data. Hence, it can
perform privacy-preserving DA over the encrypted ML-INT
data for anomaly detection. The controller also runs on a high-
performance Linux server.

B. Experimental Scenarios

With the testbed, we consider two experimental scenarios
to verify the performance of our proposal and demonstrate its
universality. Specifically, we first use the privacy-preserving
ML-INT&DA system to monitor a single hop in the EON,
and then apply it to oversee both the IP and optical layers.

1) Scenario 1: Optical Layer Anomaly Detection:Fig. 5(a)
shows the first experimental scenario, which is for optical
layer anomaly detection. Here, we have a100 Gbps lightpath
from Node Ato Node B. The OLS system assigns its central
wavelength as1550.39 nm and allocates50 GHz bandwidth
to it (i.e., four 12.5-GHz frequency slots (FS’)). As indicated
in Fig. 5(a), we use an ASE noise generator to insert noise in
the fiber link between the two nodes.

In the experiments, we apply different configurations to
the OLS system, such that the power-level and OSNR of
the lightpath exhibit various combinations at the receiverend.
Then, we program our ML-INT system to collect the power-
level, OSNR and BERbFEC of the lightpath. To test the

(a) ExperimentalScenario 1: Optical layer anomaly detection

(b) ExperimentalScenario 2: Multilayer anomaly detection

Fig. 5. Two scenarios for function verification and performance evaluation.

Fig. 6. Results of the outlier detection inScenario 1.

performance of the privacy-preserving DA, the data collection
agent organizes the telemetry data on power-level and OSNR
as plaintext ML-INT vectors, and labels the vectors based on
their corresponding BERbFEC. We set the threshold as0.015
for BERbFEC. Specifically, if the combination of power-level
and OSNR in a vector corresponds to a BERbFEC that is lower
than 0.015, the vector is labeled as “Normal”. Otherwise,
we label the vector as “Low Power” or “Degraded OSNR”
according to the major reason of the high BER value,i.e., the
power-level is too low or the OSNR gets degraded too much.
Next, the data collection agent encrypts the ML-INT vectors
and forwards them to the controller for anomaly detection.

The experiments withScenario 1collect∼31, 000 ML-INT
vectors as data samples. We use90% of them to train the DL
model in the controller, and the remaining10% samples are
included in the testing set for performance evaluation.

2) Scenario 2: Multilayer Anomaly Detection:The second
experimental scenario is for multilayer anomaly detection, as
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shown in Fig. 5(b). This time, we use the proposed privacy-
preserving ML-INT&DA system to supervise both the IP and
optical layers of an IP-over-EON that consists of four nodes.
Here, the host connecting toPDP Switch 1transmits a10 Gbps
packet flow to the one onPDP Switch 4. The flow is routed in
the IP-over-EON network as indicated by the red solid line in
Fig. 5(b), i.e., PDP Switch 1→BV-WSS A→BV-WSS B→PDP
Switch 2→BV-WSS B→BV-WSS D→PDP Switch 4. Hence, the
multilayer routing path involves two lightpaths in the optical
layer and three PDP switches in the IP layer.

We still program our ML-INT system to collect the power-
level and OSNR of each lightpath at its receiver end, and
meanwhile, IP layer telemetry is realized with the PDP
switches, which collect the packet processing latency and the
input and output bandwidths regarding each switch port pair.
Therefore, forScenario 2, each ML-INT vector includes five
elements. Then, with the IP-over-EON testbed in Fig. 5(b),
we apply various settings (e.g., various routing and spectrum
assignments for lightpaths, different EDFA settings and noise
insertion, various traffic routing, bandwidth usages, and flow-
table configurations in the PDP switches), emulate different
exception cases in the IP and optical layers, and collect and
encrypt∼18, 000 ML-INT vectors as data samples. For each
case, we monitor the receiving bandwidth of the flow at its
destination host, and flag an exception if the bandwidth is
below 9 Gbps temporarily. Then, each ML-INT vector is
labeled with the actual root-cause of its exception (if there
is any), which can be “Normal”, “Low Power”, “Degraded
OSNR”, “Packet Congestion”, and “Switch Misconfiguration”.
Similar to that inScenario 1, we still put 90% of the data
samples in the training set of the DL model in the controller,
while the remaining10% samples are included in the testing
set for its performance evaluation.

C. Performance of Outlier Detection

As shown in Fig. 2, the data collection agent first leverages
the outlier detection module to remove the outlier samples
that are due to collection errors and data corruption. Taking
Scenario 1as an example, we plot a portion of the raw
telemetry data in Fig. 6. The 3-dimensional (3D) plot indicates
that the normal data samples confine to a 3D cluster, while
the outliers lay far away from the cluster. Here, the “normal”
samples do not mean that they correspond to normal network
operations, but just suggest that they were collected without
collection errors or data corruption. Apparently, to ensure the
accuracy of subsequent anomaly detection, all the outliers
should be detected and removed. Because normal samples
confining to irregular-shaped high-dimensional clusters,we
design the outlier detection based on DBSCAN, which detects
98.9% outliers on average in the experiments.

D. Performance of Privacy-Preserving Feature

We verify the privacy-preserving feature of our proposal
as follows. Because the VHE-based encryption has similar
effects on the plaintext of multi-dimensional ML-INT data
and Scenarios 1and 2 both consider the power-level and
OSNR of lightpaths, we take the correlation between them as
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Fig. 7. Results of VHE-based encryption inScenario 1.

an example, and plot the plaintext and ciphertext of them for
Scenarios 1and2 in Figs. 7 and 8, respectively. By comparing
the plaintext and ciphertext in the figures, we can clearly see
why our VHE-based encryption can preserve the privacy of
data plane. The results indicate that each plaintext sample
gets spread to a cluster of encrypted ones,i.e., the VHE-
based encryption will not encode a plaintext sample to the
same value in different rounds, and the ciphertext samples use
meaningless values for power-level and OSNR. This makes
illegal decryption difficult, and prevents malicious parties from
analyzing the data samples to derive sensitive information
about the configuration and operation of the network. Mean-
while, the figures also suggest that the correlation between
power-level and OSNR gets preserved through the encryption.
This can be further justified, if we check the classification
accuracy of the anomaly detection. Note that, an attacker can
also use a DL model to get the correlations buried in the
ciphertext telemetry data, but this will not bring anythinggood
to its attacks. This is because the ciphertext data does not have
any physical meaning, and thus the attacker cannot derive any
sensitive information about the IP-over-Optical network.

In the experiments, we train two DL models with the
same structure for each scenario, to operate on plaintext and
ciphertext ML-INT data, respectively. The performance of the
DL-based anomaly detection is shown in Table I. The results
indicate that with our designs of the VHE-based encryption
and DL model, the DA over encrypted ML-INT data provides
similar training/testing accuracies and uses similar training
time, as that over plaintext ML-INT data. Note that, the
training for the DL model inScenario 1takes longer time
because its training set contains more samples. This confirms
the feasibility of our proposal. Finally, Figs. 9 and 10 plotthe
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Fig. 8. Results of VHE-based encryption inScenario 2.

confusion matrices that describe the DL models’ performance
on their testing sets, forScenarios 1and2, respectively. The
figures show the breakdown of classification errors.

TABLE I
PERFORMANCE OFDL-BASED ANOMALY DETECTION

Experimental Accuracy on Accuracy on Training
Scenario Training Set Testing Set Time (s)

Plaintext inScenario 1 99.26% 99.31% 44.33

Ciphertext inScenario 1 99.07% 99.48% 45.30

Plaintext inScenario 2 98.67% 98.83% 14.95

Ciphertext inScenario 2 98.90% 97.91% 14.91

E. Performance of Protection against Tampering Attacks

The VHE-based encryption and the DL model that can
directly operate on encrypted ML-INT data address passive
eavesdropping. We evaluate the encoding and signature mod-
ule in the following to verify our proposal’s protection a-
gainst tampering-based attacks. Specifically, for the ciphertext
vectors{c′}, we randomly modify a fixed portion of their
elements in the data reporting channel, then let the controller
process them with the data verification and cleaning module
and the DL model, and finally check the data tampering’s
effect on the classification accuracy of anomaly detection.

Definition 1. We define thetampering ratio as the portion of
the ciphertext elements that are illegally modified in the data
reporting channel, which changes within[10%, 50%].

Definition 2. We defineδ as theminimum tolerance provided
by our encoding and signature scheme.

For instance, if the encoding scheme assignsn = 3 bits
to the paragraph code field in Fig. 3, we haveδ = 1

8192 ·

(a) Plaintext data

(b) Ciphertext data

Fig. 9. Confusion matrices of DL-based anomaly detection inScenario 1.

(cmax
i − cmin

i ), where(cmax
i − cmin

i ) is the dynamic range of
the elementci in ciphertext vectorc′. Then, for the encoding
scheme withn = 3, any tampering onci that is greater than
64 · δ will be detected by the hash-based signature.

In the experiments, we setn = 3 and consider three
scenarios as Minor, Moderate, and Severe tampering, with
the modifications falling in[1, 64], (32, 2048], and(64, 4096]
times ofδ, respectively, to analyze how data tampering impacts
our privacy-preserving DA. The experiments also compare the
classification accuracy of the DL model, with and without
the signature based data verification. The results in Figs.
11 and 12 indicate that for all the experimental scenarios,
our encoding and signature scheme successfully protect the
system against tampering-based attacks. Specifically, theDL’s
accuracies on data without tampering and tampered data with
data verification are almost the same, and the tampering-based
attacks only reduce the accuracies slightly. On the other hand,
except for the Minor tampering cases, the data tampering can
severely affect the DL’s accuracy when the data verificationis
absent. Therefore, the results confirm that our data certification
and verification with the encoding and signature scheme can
detect illegally-revised data accurately and protect the ML-
INT&DA system against tampering-based attacks.

F. Stress Tests on Data Collection Agent and Controller

As we have explained in Sections IV-A and IV-B, the time
complexities of our VHE-based encryption (Algorithm 1) and
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(a) Plaintext data

(b) Ciphertext data

Fig. 10. Confusion matrices of DL-based anomaly detection in Scenario 2.

data compression based encoding (Algorithm2) are linear and
constant, respectively. Therefore, they will run very fastin
practical NC&M systems and will not cause any scalability
issues. To verify this, we conduct two stress tests to evaluate
the computing overheads that the algorithms will bring in. As
the plaintext vectors inScenario 2includes more elements,
we perform the stress tests with them.

In the first test, we stress the data collection agent by
letting it encrypt, encode and sign a large amount of ML-INT
vectors within a second to prepare a batch report for sending
to the controller. Note that, we design the data collection agent
such that these privacy-preserving tasks get handled in parallel
with the agent’s normal operations of parsing, aggregatingand
processing INT fields in packets to get and record ML-INT
data. The total processing time to prepare the batch report is
shown in Fig. 13(a), which indicates that the data collection
agent can finish the whole data processing within2.4 seconds,
when it gets10, 000 ML-INT vectors within a second to report
to the controller. The results confirm that our algorithms are
lightweight, and the encoding and signature runs much faster
than the VHE-based encryption.

Note that, an ML-INT&DA system normally should not
send telemetry data to the controller in the constant manner,
because this will flood the controller and prevent it from
conducting other NC&M tasks. Hence, except for reporting
urgent issues, each data collection agent uses a polling interval
of at least tens of seconds. To this end, we can see that the data
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Fig. 11. Results of protection against tampering attacks for Scenario 1.

collection agent is suitable for practical network operations.
In the second test, we flood thousands of ML-INT vectors

to the controller within a second, wait it to process all the
data, and measure the total processing time and the CPU
usage on the server that runs the controller. Here, the total
processing time includes both the time for the communication
to report the data and the time used to process them. Fig. 13(b)
shows that the total processing time is almost identical when
the data collection agent reports plaintext and encrypted ML-
INT vectors to the controller. The CPU usages in Fig. 13(c)
suggest that the DA over encrypted data only costs slightly
more CPU usage (∼0.2%). Hence, the results further confirm
that our privacy-preserving scheme would not cause noticeable
overhead or slow down the processing in the control plane.

VI. CONCLUSION

In this paper, we designed and experimentally demonstrat-
ed a privacy-preserving ML-INT&DA system for IP-over-
Optical networks. We first developed a lightweight VHE-based
encryption scheme to encrypt ML-INT data, such that the
security breaches due to eavesdropping can be addressed and
the inner correlations buried in the multi-dimensional ML-INT
data can be preserved. Then, we designed an effective data
compression scheme to further encode the encrypted ML-INT
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Fig. 12. Results of protection against tampering attacks for Scenario 2.

data and make the results suitable for hash-based signature,
which enables the DA in the control plane to easily verify the
integrity of received ML-INT data. Next, we architected a DL
model that can directly operate on the encrypted ML-INT data
for anomaly detection. Finally, we implemented the proposed
ML-INT&DA system, and demonstrated it experimentally in
a real IP-over-EON testbed built with commercial network
elements. The experimental results confirmed that our VHE-
based encryption hides sensitive information regarding data
plane well, the encoding and signature scheme can detect
illegally-revised data and protect against tampering attacks,
and our DL model can classify encrypted ML-INT data with
high accuracy to find the root causes of exceptions.
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