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Abstract—Multilayer in-band network telemetry (ML-INT)
and data analytics (DA) is the key techniques for monitoring
and troubleshooting backbone networks, since they obtain real-
time and fine-grained telemetry data about the optical and IP
layers and facilitate artificial intelligence (AI) assisted network
automation. Despite their success, there are still privacyand
security issues to address for realizing a practical ML-INT&DA
system. This is because a malicious party can obtain plaintext
telemetry data illegally by tapping the data reporting channels
between the control and data planes, derive sensitive information
about the network, and launch various attacks accordingly.In
this paper, we propose to realize multilayer network monitoring
and data analytics over encrypted telemetry data and demon-
strate a privacy-preserving ML-INT&DA system to address the
aforementioned issues. More specifically, we first utilize the vector
homomorphic encryption (VHE) to encrypt ML-INT data, i.e.,
the threats from data tapping can removed, and then architect
a deep learning (DL) model for anomaly detection, which can
directly operate on the encrypted data. We implement and
experimentally demonstrate the feasibility of the proposed system
in a real IP over elastic optical network (IP-over-EON) testbed,
and the results confirm the effectiveness of our proposal.

Index Terms—In-band network telemetry (INT), Deep learning
(DL), Vector homomorphic encryption (VHE).

I. I NTRODUCTION

Nowadays, the infrastructure of multilayer backbone net-
works (namely, IP-over-Optical) is experiencing dramatic
changes, which are driven by the raising of emerging net-
work services (e.g., Big Data and cloud computing) [1, 2],
and the fast deployment of virtualization technologies, such
as network function virtualization (NFV) [3–5] and virtual
network embedding (VNE) [6–8]. These changes have made
the network control and management (NC&M) in backbone
networks increasingly complicated [9, 10], and thus detecting
and locating network exceptions accurately and timely has
become more and more challenging [11, 12]. The difficulties
motivated people to consider the artificial intelligence (AI)
assisted network automation [10, 13], which can make intel-
ligent and timely decisions to satisfy the quality-of-service
(QoS) of various network services and to detect and resolve
network exceptions to maintain the QoS levels. However, the
AI-assisted network automation can never be realized without
an agile and powerful network monitoring and troubleshooting
scheme that can promote real-time and fine-grained NC&M.

The new challenges on network monitoring can be ad-
dressed by leveraging the in-band network telemetry (IN-

T) [14]. Specifically, INT relies on programmable data
plane (PDP) [15–17] to realize customized packet processing
pipelines for capturing ephemeral changes in networks quickly,
and provides network operators the flexibility to design their
own network monitoring schemes. The research and devel-
opment on INT techniques have gained intensive attentions in
recent years. To reduce the overheads on bandwidth and packet
processing, Tanget al. [18] developed a selective INT scheme
(Sel-INT) to realize selective insertion of telemetry datain
packets. A programmable INT event pre-filtering mechanism
has been proposed in [19] to improve the accuracy and
efficiency of network monitoring. The authors of [20, 21]
have expanded INT to handle the multilayer INT (ML-INT)
in backbone networks, and the obtained ML-INT techniques
can visualize both the IP and optical layers in real-time.

The advances on INT have boosted the research and devel-
opment on AI-assisted network automation. Following the idea
of knowledge-defined networking (KDN) [22–24], the authors
of [13] proposed an architecture for self-driving network with
the help of AI and INT. Meanwhile, several ML-INT and
data analytics (DA) schemes have been designed in [10, 20,
21] to achieve real-time and fine-grained NC&M. Specifically,
ML-INT allows the network operator to collect the statistics
of each traffic flow in real-time, while the DA analyzes
the statistics to realize end-to-end flow monitoring. Although
the integration of ML-INT with DA has been proven to be
effective in backbone network monitoring, the important issues
about privacy and security should also be addressed [25, 26].

There are two reasons for realizing a privacy-preserving
ML-INT&DA system. Firstly, it is known that in a software-
defined networking (SDN) environment, the control channels
between the control and data planes for reporting/collecting
ML-INT data are vulnerable to various attack scenarios [26].
Therefore, if a malicious party eavesdrops these channels,it
can analyze the stolen ML-INT data to derive sensitive infor-
mation about the configuration and operation of the backbone
network, and cause serious security breaches [27]. Secondly,
the training/testing data sets for the deep learning (DL) models
in DA should be privacy-preserving. Hence, when the neces-
sary labor/hardware/software resources to design and train the
DL models are not available, the operators can outsource the
training/verification process of the DL models to a third party
by leveraging “machine-learning-as-a-service (MLaaS)” [28].

In this invited paper, we discuss our research progress on
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Fig. 1. Privacy-preserving ML-INT&DA system, PDP-SW: PDP switch, OXC: optical cross-connect, OPM: optical performance monitor (adapted from [26]).

the privacy-preserving ML-INT&DA system that can realize
multilayer network monitoring over encrypted ML-INT data
in IP-over-Optical networks. We first leverage the vector ho-
momorphic encryption (VHE) scheme [29, 30] to encrypt the
plaintext ML-INT data in the data plane. Then, we architect
a DL model in the control plane to directly analyze the
ciphertext ML-INT data for anomaly detection. The privacy-
preserving ML-INT&DA system is implemented in an IP over
elastic optical network (IP-over-EON) testbed, for experimen-
tal demonstrations. Experimental results confirm that the VHE-
based encryption hides sensitive information about the data
plane well, and our DL-based DA can find the root-causes of
exceptions accurately by classifying encrypted ML-INT data.

The rest of the paper is organized as follows. Section II
elaborates on the architecture and operation principle of our
ML-INT&DA system. We describe the implementation details
in Section III. The experimental demonstrations are discussed
in Section IV. Finally, Section V summarizes the paper.

II. SYSTEM DESIGN AND OPERATION PRINCIPLE

Fig. 1 shows the overall architecture of our privacy-
preserving ML-INT&DA system, which is based on SDN.
The data plane is an IP-over-Optical network. Here, optical
cross-connects (OXCs) and fiber links build the optical layer,
and the OXCs support bandwidth-variable optical switching
to facilitate flexible-grid spectrum allocation [31–34]. The IP
layer consists of PDP switches, application servers, client
hosts, and data collection agents.

The operation principle of a generic ML-INT&DA system
is as follows [10, 20]. The optical performance monitor (OPM)
attaches to each OXC collects status data about the active
lightpaths passing through it, which includes the power-level,
spectral shape, optical-signal-to-noise ratio (OSNR), disper-
sion parameters,etc., and sends the collected data to the PDP
switch that is locally connected to the OXC. Then, the PDP
switch encodes the optical telemetry data together with that
about the IP layer as INT fields, and inserts them into the
headers of related packets. Before such a packet reaching its
destination host, the egress PDP switch pops out all the INT
fields from its header, and forwards them to a data collection

agent. After being parsed and aggregated, the data collection
agent reports the received ML-INT data to the centralized SDN
controller through control channels. Finally, the DA in the
controller utilizes a DL model to analyze the received ML-
INT data, and provides suggestions to the SDN controller on
how to implement network adjustments to address the dynamic
environment in the data plane.

Note that, the ML-INT&DA system developed in [10, 20]
was not a privacy-preserving one, because plaintext ML-
INT data gets reported from the data plane to the control
plane. Therefore, our latest studies in [25, 26] designed and
implemented a few new functional modules (i.e., the VHE-
based encryption and DL model for anomaly detection in
Fig. 1) to avoid sending plaintext ML-INT data in the control
channels. The privacy-preserving ML-INT&DA system works
as follows. After receiving, parsing and aggregating ML-INT
data from packets, each data collection agent organizes a
set of multi-dimensional ML-INT data with its time-stamp
as a plaintext vector (x). Here, the multi-dimensional ML-
INT data includes the telemetry data that records the status
of each electrical/optical network element (NE) on a flow’s
routing path. For instance, the packet forwarding latency and
input/output bandwidth of the PDP switches in the IP layer,
and the power-level, OSNR, dispersion parameters, and bit-
error-rate (BER) of the related lightpaths in the optical layer.

Then, the VHE-based encryption module in the the data col-
lection agent transforms the plaintext vectorx into a ciphertext
vectorc′. For privacy-preserving, VHE-based encryption will
map each unique plaintext vectorx to dispersive ciphertext
vectors in different rounds. However, the correlations buried
in the ML-INT data will be kept through the VHE-based
encryption, such that the DL model can directly analyze and
classify the ciphertext vectors for anomaly detection [26].
According to the suggestions from the DL-based DA, the SDN
controller makes suitable NC&M decisions to handle network
changes and exceptions [35–39].

III. SYSTEM IMPLEMENTATION

In this section, we present the implementation details of our
privacy-preserving ML-INT&DA system, and elaborate on the
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VHE-based encryption and DL model for anomaly detection.

A. VHE-based Encryption

Fig. 2 explains the operation of the VHE-based encryption
in the data collection agent, which includes three phases,i.e.,
the key generation, key-switching, and vector encryption [29,
30]. We denote the plaintext vector asx, the private key asS,
predefined weight asw, random noise ase, and the ciphertext
vector asc. These are the parameters and variables considered
in the VHE-based encryption, and they satisfyS·c = w ·x+e.
The key generation first uses an identity matrixI as the initial
private keyS and sets the initial noise vector ase= 0. Hence,
this leads to the initial ciphertext vector asc = w · x.

Next, the key-switching changes the private keyS to a
new oneS∗ in the binary-related form, and transforms the
ciphertext vectorc into a new ciphertextc∗ in the bipolar
representation accordingly. Then, we haveS·c = S∗ ·c∗, where
both S∗ andc∗ are the intermediate parameter for improving
the strength of the encryption. Finally, the vector encryption
generates three random integer matrices,i.e., T, E and A, to

construct an integer matrixM =

[

S∗ + E − T · A
A

]

, and set

the final private key asS′ = [I ,T]. Hence, the final ciphertext
vector can be obtained asc′ = M · c∗, and it will be easy
to verify that we haveS∗ · c∗ = S′ · c′. Therefore, the final
private keyS′ and ciphertext vectorc′ are obtained, and based
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Fig. 4. Experimental setup.

on the hardness assumption of the extended learning with
error (LWE) problem [40], the strength of the VHE-based
encryption is guaranteed by the “public key” (i.e., the integer
matrix M ). To this end, we can see that it is difficult for a
malicious party to illegally decrypt ciphertext ML-INT vectors
with reasonable computational complexity.

B. DL model for Anomaly Detection

Fig. 3 describes the operation of the privacy-preserving DA
in the controller. The DL model for the DA is architected based
on a deep neural network (DNN) to realize the anomaly de-
tection based on classification. There are 7 layers in the DNN,
where the number of neurons in the input layer is equal to the
dimension of a ciphertext vectorc′, the number of neurons
in the output layer is just the number of exception types plus
one (i.e., the normal case), and the hidden layers in between of
them has 256, 128, 64, 32, and 16 neurons, respectively. The
loss of the DL model is designed based on the categorical
cross-entropy function, and we apply supervised learning to
train the DL model until its loss is less than a preset threshold.

IV. EXPERIMENTAL DEMONSTRATIONS

We build a real IP-over-EON testbed as shown in Fig.
4. The data plane consists of erbium-doped fiber amplifiers
(EDFAs), fiber links, and four nodes, each of which includes a
client host, a P4-based PDP switch [16], and an optical switch
based on bandwidth-variable wavelength-selective switches
(BV-WSS’). We use a commercial traffic generator/analyzer
to emulate each host, which can send/receive data at 10 Gbps.
The PDP switches are 3.2-Tbps Barefoot switches equipped
with 10 GbE optical ports. The homemade data collection
agents run on Linux servers to complete the privacy-preserving
ML-INT, and together with the hosts, they build the IP
layer. Each BV-WSS operates within[1528.43, 1566.88] nm
and provides a spectrum allocation granularity of 12.5 GHz.
Hence, the BV-WSS’, EDFAs, and fiber links construct an
EON, which is the optical layer.

On each BV-WSS, we place OPMs to gather the input
power-level and OSNR of its optical ports in realtime. Each



4

10 12 14 16 18 20 22
OSNR (dB)

-26

-24

-22

-20

-18

-16

-14

-12

P
ow

er
 (

dB
m

)

Normal
Low Power
Degraded OSNR

(a) Plaintext samples

180 200 220 240 260 280 300 320 340
Encrypted OSNR

-420

-400

-380

-360

-340

-320

-300

-280

-260

E
nc

ry
pt

ed
 P

ow
er

Normal
Low Power
Degraded OSNR

(b) Ciphertext samples

Fig. 5. Results for applying VHE-based encryption to ML-INTsamples.

PDP switch collects the packet forwarding latency and in-
put/output bandwidth regarding each pair of its switch ports.
Each data collection agent organizes the ML-INT data about
data plane elements as vectors, encrypts them, and sends
the results to the control plane. The centralized controller
is developed based on the ONOS platform to monitor and
manage both the IP and optical layers, and the DL model in
privacy-preserving DA classifies the received ciphertext ML-
INT vectors for anomaly detection.

With the IP-over-EON testbed, we demonstrate anomaly
detection in the multilayer IP-over-EON to verify the effec-
tiveness of our privacy-preserving ML-INT&DA system. As
hard failure detection has already been studies intensively
long time ago [41, 42], we focus on detecting soft failures,
which only induce minor performance degradations and thus
are more difficult to be detected and located. We setup a 10
Gbps packet flow from the host connecting toPDP Switch 1
to the one onPDP Switch 3, as indicated by the red solid
line in Fig. 4. Then, we apply various settings in the IP-over-
EON to emulate different exceptions in both layers, such as
different EDFA settings and noise insertions for lightpaths,
various bandwidth usages and flow-table configurations in the
PDP switches. The system collects a set of ML-INT data that
includes18, 000 samples, and applies VHE-based encryption
to convert these plaintext samples into ciphertext vectors.
Meanwhile, we label each encrypted vector to indicate the
root-cause of its exception, and more specifically, we consider
exception labels as “Low Power”, “Switch Misconfiguration”,
“Degraded OSNR”, and “Packet Congestion”, and if there is
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Fig. 6. Applying VHE-based encryption to a large set of ML-INT data.

no exception, we label the corresponding vectors as “Normal”.
The encrypted vectors are partitioned into training and testing
sets, which consists of 90% and 10% of them, respectively.

Fig. 5(a) plots the correlation between the plaintext power-
level and OSNR of a lightpath, and after applying the VHE-
based encryption to each plaintext sample in Fig. 5(a) for
multiple times, we obtain the ciphertext samples in Fig. 5(b).
We observe that a plaintext sample is mapped to a cluster
of ciphertext ones in different encryption rounds. Hence, our
scheme prevents the ciphertext ML-INT data from being de-
crypted illegally by a malicious party. Hence, the VHE-based
encryption is capable of hiding the sensitive information about
the backbone network well. In the meantime, by comparing the
plaintext and ciphertext samples for a large set of ML-INT data
(i.e., in Figs. 6(a) and 6(b), respectively), we can see clearly
that the original inner correlations between the power-level
and OSNR get kept through the VHE-based encryption.

Finally, we conduct an experiment to compare the privacy-
preserving ML-INT&DA with a benchmark, whose DL model
operates on plaintext ML-INT samples. Specifically, we use
the plaintext ML-INT data to train a DL model whose structure
is the same as the one in Fig. 2. It takes14.95 seconds to
accomplish the training, while the training of the DL model in
the privacy-preserving ML-INT&DA uses14.91 seconds. This
suggests that the training time of the two is almost identical.
For the anomaly detection, the classification accuracy of the
privacy-preserving DA is also very similar to that of the
benchmark (i.e., 97.91% and98.83%, respectively).
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V. CONCLUSION

In this paper, we discussed a privacy-preserving ML-
INT&DA system with enhanced security for realizing AI-
assisted network automation. The system first leveraged VHE-
based encryption to encrypt plaintext ML-INT data but kept
the inner correlations of them. Then, it utilized a DL model
that can directly operate on the ciphertext ML-INT data for
anomaly detection. We implemented the system in a real
IP-over-EON testbed for experimental demonstrations, and
the experimental results confirmed that sensitive information
regarding the data plane can be hidden well, while the DL-
based DA can find the root-causes of exceptions accurately.
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