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Abstract—Multilayer in-band network telemetry (ML-INT) T) [14]. Specifically, INT relies on programmable data
and data analytics (DA) is the key techniques for monitoring plane (PDP) [15-17] to realize customized packet procgssin
and troubleshooting backbone networks, since they obtain@al-  yinalines for capturing ephemeral changes in networkskiyyic
time and fine-grained telemetry data about the optical and IP d id twork ¢ the flexibility to desianirth
layers and facilitate artificial intelligence (Al) assistel network ana proviaes ne W_Or _0pera ors the Tiexibility to designithe
automation. Despite their success, there are still privacyand OWN network monitoring schemes. The research and devel-
security issues to address for realizing a practical ML-INT&DA  opment on INT techniques have gained intensive attentions i
system. This is because a malicious party can obtain plainte recent years. To reduce the overheads on bandwidth andtpacke
telemetry data illegally by tapping the data reporting chamels processing, Tangt al. [18] developed a selective INT scheme

between the control and data planes, derive sensitive infaration Sel-INT) t i lective i i f tel trv da
about the network, and launch various attacks accordingly.In (Sel-INT) to realize selective insertion of telemetry a

this paper, we propose to realize multilayer network monitsing  Packets. A programmable INT event pre-filtering mechanism
and data analytics over encrypted telemetry data and demon- has been proposed in [19] to improve the accuracy and
strate a privacy-preserving ML-INT&DA system to address the  efficiency of network monitoring. The authors of [20, 21]
aforementioned issues. More specifically, we first utilizente vector have expanded INT to handle the multilayer INT (ML-INT)

homomorphic encryption (VHE) to encrypt ML-INT data, i.e, . . .
the threats from data tapping can removed, and then architet in backbone networks, and the obtained ML-INT techniques

a deep |earning (DL) model for anoma|y detection’ which can can V|Sual|ze bOth the IP and Optlca| |ayerS in I’ea|-tlme
directly operate on the encrypted data. We implement and  The advances on INT have boosted the research and devel-

experimentally demonstrate the feasibility of the propose system  gpment on Al-assisted network automation. Following treaid
in a real IP over ela_st|c optical nt_etwork (IP-over-EON) tesbed, of knowledge-defined networking (KDN) [22—24], the authors
and the results confirm the effectiveness of our proposal. . .
of [13] proposed an architecture for self-driving networithw
Index Terms—In-band network telemetry (INT), Deep learning  the help of Al and INT. Meanwhile, several ML-INT and
(DL), Vector homomorphic encryption (VHE). data analytics (DA) schemes have been designed in [10, 20,
21] to achieve real-time and fine-grained NC&M. Specifically
. INTRODUCTION ML-INT allows the network operator to collect the statistic
Nowadays, the infrastructure of multilayer backbone netf each traffic flow in real-time, while the DA analyzes
works (namely, IP-over-Optical) is experiencing dramatithe statistics to realize end-to-end flow monitoring. Aligh
changes, which are driven by the raising of emerging ndtie integration of ML-INT with DA has been proven to be
work services €.g., Big Data and cloud computing) [1, 2], effective in backbone network monitoring, the importastiss
and the fast deployment of virtualization technologiesshsu about privacy and security should also be addressed [25, 26]
as network function virtualization (NFV) [3-5] and virtual There are two reasons for realizing a privacy-preserving
network embedding (VNE) [6-8]. These changes have mabli-INT&DA system. Firstly, it is known that in a software-
the network control and management (NC&M) in backbongefined networking (SDN) environment, the control channels
networks increasingly complicated [9, 10], and thus datgct between the control and data planes for reporting/coligcti
and locating network exceptions accurately and timely hd4L-INT data are vulnerable to various attack scenarios.[26]
become more and more challenging [11, 12]. The difficulticBherefore, if a malicious party eavesdrops these chanitels,
motivated people to consider the artificial intelligence)(A can analyze the stolen ML-INT data to derive sensitive infor
assisted network automation [10, 13], which can make intehation about the configuration and operation of the backbone
ligent and timely decisions to satisfy the quality-of-9eev network, and cause serious security breaches [27]. Segondl
(QoS) of various network services and to detect and resolthe training/testing data sets for the deep learning (DLjlel®
network exceptions to maintain the QoS levels. However, tire DA should be privacy-preserving. Hence, when the neces-
Al-assisted network automation can never be realized withcsary labor/hardware/software resources to design andttrai
an agile and powerful network monitoring and troubleshagti DL models are not available, the operators can outsource the
scheme that can promote real-time and fine-grained NC&Mraining/verification process of the DL models to a thirdtpar
The new challenges on network monitoring can be adly leveraging “machine-learning-as-a-service (MLaa28][
dressed by leveraging the in-band network telemetry (IN-In this invited paper, we discuss our research progress on
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Fig. 1. Privacy-preserving ML-INT&DA system, PDP-SW: PDRiteh, OXC: optical cross-connect, OPM: optical perforamonitor (adapted from [26]).

the privacy-preserving ML-INT&DA system that can realizeagent. After being parsed and aggregated, the data coltecti
multilayer network monitoring over encrypted ML-INT dataagent reports the received ML-INT data to the centralizetiSD
in IP-over-Optical networks. We first leverage the vector haontroller through control channels. Finally, the DA in the
momorphic encryption (VHE) scheme [29, 30] to encrypt theontroller utilizes a DL model to analyze the received ML-
plaintext ML-INT data in the data plane. Then, we architedNT data, and provides suggestions to the SDN controller on
a DL model in the control plane to directly analyze théow to implement network adjustments to address the dynamic
ciphertext ML-INT data for anomaly detection. The privacyenvironment in the data plane.
preserving ML-INT&DA system is implemented in an IP over Note that, the ML-INT&DA system developed in [10, 20]
elastic optical network (IP-over-EON) testbed, for expem- was not a privacy-preserving one, because plaintext ML-
tal demonstrations. Experimental results confirm that thé&EY INT data gets reported from the data plane to the control
based encryption hides sensitive information about tha dglane. Therefore, our latest studies in [25, 26] designetl an
plane well, and our DL-based DA can find the root-causes iofiplemented a few new functional modulés( the VHE-
exceptions accurately by classifying encrypted ML-INTadat based encryption and DL model for anomaly detection in
The rest of the paper is organized as follows. Section Hig. 1) to avoid sending plaintext ML-INT data in the control
elaborates on the architecture and operation principleuof achannels. The privacy-preserving ML-INT&DA system works
ML-INT&DA system. We describe the implementation detailsis follows. After receiving, parsing and aggregating MLFIN
in Section Ill. The experimental demonstrations are diseds data from packets, each data collection agent organizes a
in Section V. Finally, Section V summarizes the paper. set of multi-dimensional ML-INT data with its time-stamp
as a plaintext vectorxj. Here, the multi-dimensional ML-
[I. SYSTEM DESIGN AND OPERATION PRINCIPLE INT data includes the telemetry data that records the status
Fig. 1 shows the overall architecture of our privacyof each electrical/optical network element (NE) on a flow'’s
preserving ML-INT&DA system, which is based on SDN'outing path. For instance, the packet forwarding latenuy a
The data plane is an IP-over-Optical network. Here, opticiPut/output bandwidth of the PDP switches in the IP layer,
cross-connects (OXCs) and fiber links build the optical tayeand the power-level, OSNR, dispersion parameters, and bit-
and the OXCs support bandwidth-variable optical switchin@fTor-rate (BER) of the related lightpaths in the opticaleia
to facilitate flexible-grid spectrum allocation [31-34]h@ P Then, the VHE-based encryption module in the the data col-
layer consists of PDP switches, application servers, tlidfction agent transforms the plaintext vectanto a ciphertext
hosts, and data collection agents. vectorc'. For privacy-preserving, VHE-based encryption will
The operation principle of a generic ML-INT&DA systemMap each unique plaintext vectarto dispersive ciphertext
is as follows [10, 20]. The optical performance monitor (OQPMvectors in different rounds. However, the correlationsidulir
attaches to each OXC collects status data about the acifyethe ML-INT data will be kept through the VHE-based
lightpaths passing through it, which includes the poweelle €ncryption, such that the DL model can directly analyze and
spectral shape, optical-signal-to-noise ratio (OSNR3peii- Classify the ciphertext vectors for anomaly detection [26]
sion parameterstc., and sends the collected data to the PDAccording to the suggestions from the DL-based DA, the SDN
switch that is locally connected to the OXC. Then, the PDgoNtroller makes suitable NC&M decisions to handle network
switch encodes the optical telemetry data together with tHg1anges and exceptions [35-39].
about the IP layer as INT fields, and inserts them into the
headers of related packets. Before such a packet reacking it lIl. SYSTEM IMPLEMENTATION
destination host, the egress PDP switch pops out all the INTIn this section, we present the implementation details of ou
fields from its header, and forwards them to a data collecti@nivacy-preserving ML-INT&DA system, and elaborate on the
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Fig. 3 describes the operation of the privacy-preserving DA
in the controller. The DL model for the DA is architected ldhse
Fig. 3. Privacy-preserving DA in control plane (adaptedrfr{26]). on a deep neural network (DNN) to realize the anomaly de-
tection based on classification. There are 7 layers in the DNN
where the number of neurons in the input layer is equal to the
Qimension of a ciphertext vectar, the number of neurons
in the output layer is just the number of exception types plus
A. VHE-based Encryption one {.e.,, the normal case), and the hidden layers in between of

Fig. 2 explains the operation of the VHE-based encryptidReém has 256, 128, 64, 32, and 16 neurons, respectively. The
in the data collection agent, which includes three phases, loss of the DL model is designed based on the categorlcal
the key generation, key-switching, and vector encrypt@@, [ Cross-entropy function, and we apply supervised learning t
30]. We denote the plaintext vector asthe private key as, train the DL model until its loss is less than a preset thrlesho
predefined weight ag, random noise as, and the ciphertext
vector asc. These are the parameters and variables considered IV. EXPERIMENTAL DEMONSTRATIONS
in the VHE-based encryption, and they satiSic = w-x+e. We build a real IP-over-EON testbed as shown in Fig.
The key generation first uses an identity matrias the initial 4. The data plane consists of erbium-doped fiber amplifiers
private keyS and sets the initial noise vector as= 0. Hence, (EDFASs), fiber links, and four nodes, each of which includes a
this leads to the initial ciphertext vector as= w - X. client host, a P4-based PDP switch [16], and an optical switc

Next, the key-switching changes the private kByto a based on bandwidth-variable wavelength-selective sesich
new oneS* in the binary-related form, and transforms théBV-WSS’). We use a commercial traffic generator/analyzer
ciphertext vectorc into a new ciphertext* in the bipolar to emulate each host, which can send/receive data at 10 Gbps.
representation accordingly. Then, we h&se = S*-c*, where The PDP switches are 3.2-Thps Barefoot switches equipped
both S* andc* are the intermediate parameter for improvingvith 10 GbE optical ports. The homemade data collection
the strength of the encryption. Finally, the vector endoypt agents run on Linux servers to complete the privacy-présgrv

generates three random integer matriées, T, E andA, to ML-INT, and together with the hosts, they build the IP
SS+E-T-A layer. Each BV-WSS operates with{h528.43, 1566.88] nm

A and provides a spectrum allocation granularity of 12.5 GHz.
the final private key a§ = [I, T]. Hence, the final ciphertext Hence, the BV-WSS’, EDFAs, and fiber links construct an
vector can be obtained a$ = M - ¢*, and it will be easy EON, which is the optical layer.

to verify that we haveS* - ¢ = S - ¢’. Therefore, the final On each BV-WSS, we place OPMs to gather the input
private keyS and ciphertext vectar’ are obtained, and basedpower-level and OSNR of its optical ports in realtime. Each

VHE-based encryption and DL model for anomaly detectio

construct an integer matrikl = , and set
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Fig. 5. Results for applying VHE-based encryption to ML-IN@mples. (b) Ciphertext data

Fig. 6. Applying VHE-based encryption to a large set of MLTIata.

PDP switch collects the packet forwarding latency and in-
put/output bandwidth regarding each pair of its switch gortno exception, we label the corresponding vectors as “Ndrmal
Each data collection agent organizes the ML-INT data abalihe encrypted vectors are partitioned into training antirigs
data plane elements as vectors, encrypts them, and sesats, which consists of 90% and 10% of them, respectively.
the results to the control plane. The centralized controlle Fig. 5(a) plots the correlation between the plaintext pewer
is developed based on the ONOS platform to monitor amglvel and OSNR of a lightpath, and after applying the VHE-
manage both the IP and optical layers, and the DL model fyased encryption to each plaintext sample in Fig. 5(a) for
privacy-preserving DA classifies the received ciphertext-M multiple times, we obtain the ciphertext samples in Fig.)5(b
INT vectors for anomaly detection. We observe that a plaintext sample is mapped to a cluster
With the IP-over-EON testbed, we demonstrate anomaby ciphertext ones in different encryption rounds. Henaa, o
detection in the multilayer IP-over-EON to verify the effecscheme prevents the ciphertext ML-INT data from being de-
tiveness of our privacy-preserving ML-INT&DA system. Ascrypted illegally by a malicious party. Hence, the VHE-lzhse
hard failure detection has already been studies intensiveincryption is capable of hiding the sensitive informatibouat
long time ago [41, 42], we focus on detecting soft failureshe backbone network well. In the meantime, by comparing the
which only induce minor performance degradations and thpkiintext and ciphertext samples for a large set of ML-INTada
are more difficult to be detected and located. We setup a @@., in Figs. 6(a) and 6(b), respectively), we can see clearly
Gbps packet flow from the host connectingRBP Switch 1  that the original inner correlations between the poweellev
to the one onPDP Switch 3, as indicated by the red solidand OSNR get kept through the VHE-based encryption.
line in Fig. 4. Then, we apply various settings in the IP-ever Finally, we conduct an experiment to compare the privacy-
EON to emulate different exceptions in both layers, such pseserving ML-INT&DA with a benchmark, whose DL model
different EDFA settings and noise insertions for lightmathoperates on plaintext ML-INT samples. Specifically, we use
various bandwidth usages and flow-table configurationsen tthe plaintext ML-INT data to train a DL model whose structure
PDP switches. The system collects a set of ML-INT data thist the same as the one in Fig. 2. It takes95 seconds to
includes18, 000 samples, and applies VHE-based encryptiomccomplish the training, while the training of the DL model i
to convert these plaintext samples into ciphertext vectothe privacy-preserving ML-INT&DA use$4.91 seconds. This
Meanwhile, we label each encrypted vector to indicate tlseiggests that the training time of the two is almost idehtica
root-cause of its exception, and more specifically, we a®@rsi For the anomaly detection, the classification accuracy ef th
exception labels as “Low Power”, “Switch Misconfiguration”privacy-preserving DA is also very similar to that of the
“Degraded OSNR”, and “Packet Congestion”, and if there lsenchmarki(e., 97.91% and 98.83%, respectively).



V. CONCLUSION [17]

In this paper, we discussed a privacy-preserving ML-
INT&DA system with enhanced security for realizing Al-[18]
assisted network automation. The system first leveraged-VHE
based encryption to encrypt plaintext ML-INT data but keqig]
the inner correlations of them. Then, it utilized a DL model
that can directly operate on the ciphertext ML-INT data for
anomaly detection. We implemented the system in a ré%]
IP-over-EON testbed for experimental demonstrations, and
the experimental results confirmed that sensitive infoionat [21]
regarding the data plane can be hidden well, while the DL-
based DA can find the root-causes of exceptions accuratelj2]
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