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Abstract—As a new paradigm for the monitoring and trou-
bleshooting of backbone networks, the multilayer in-band net-
work telemetry (ML-INT) with deep learning (DL) based data
analytics (DA) has recently been proven to be effective on real-
time visualization and fine-grained monitoring. However, the
existing studies on ML-INT&DA systems have overlooked the
privacy and security issues, i.e., a malicious party can apply
tapping in the data reporting channels between the data and
control planes to illegally obtain plaintext ML-INT data in them.
In this paper, we discuss a privacy-preserving DL-based ML-
INT&DA system for realizing AI-assisted network automation
in backbone networks in the form of IP-over-Optical. We first
show a lightweight encryption scheme based on integer vector
homomorphic encryption (IVHE), which is used to encrypt plain-
text ML-INT data. Then, we architect a DL model for anomaly
detection, which can directly analyze the ciphertext ML-INT
data. Finally, we present the implementation and experimental
demonstrations of the proposed system. The privacy-preserving
DL-based ML-INT&DA system is realized in a real IP over elastic
optical network (IP-over-EON) testbed, and the experimental
results verify the feasibility and effectiveness of our proposal.

Index Terms—In-band network telemetry (INT), Deep learning
(DL), Integer vector homomorphic encryption (IVHE), Privacy-
preserving network monitoring, Soft failures.

I. INTRODUCTION

RECENTLY, the Internet infrastructure has been under-
going dramatic changes to adapt to ever-growing and

fast-evolving network services [1, 2]. These developments
have complicated the monitoring and managing of multilayer
backbone networks (i.e., IP-over-Optical) [3, 4]. Moreover,
to improve cost-effectiveness, virtualization technologies (e.g.,
network slicing [5–7] and network function virtualization
(NFV) [8–10]) have become more and more popular in back-
bone networks. However, as they loose or even completely
break the tie between network services and physical network
elements, they make the detecting and locating of network
exceptions increasingly difficult [11, 12]. Hence, people were
seeking for new and more powerful network monitoring and
troubleshooting techniques to address the challenges. Among
recent proposals, the in-band network telemetry (INT) [13] has
been considered as a promising one because it realizes real-
time visualization and fine-grained monitoring, which are the
weakness of traditional techniques (e.g., SNMP [14]).
Specifically, INT leverages the advances on programmable

data plane (PDP) [15–17] to enable a network operator to

program packet processing pipelines in switches, such that
ephemeral changes cross its network can be captured quickly,
and the scheme of telemetry data collection can be customized
flexibly for various end-to-end monitoring scenarios. Hence,
INT has been treated as a key enabling technique for the
network control and management (NC&M) in future Internet,
and thus it has gained significant attentions from both the
academia and industry recently. For instance, Barefoot Deep
Insight [18] used INT to fully enable per-packet visibility into
packet networks, Netcope [19] achieved INT-based linerate
monitoring with 100Gbps-capable hardware, Sel-INT [20] was
proposed to realize selective insertion of INT header fields for
reducing the overheads on bandwidth and packet processing,
and a programmable INT event pre-filtering mechanism was
designed in [21] to make INT-based monitoring more precise
and efficient. Furthermore, to tackle the monitoring and trou-
bleshooting of backbone networks, researchers have expanded
the applications of INT to address multilayer network archi-
tectures, i.e., accomplishing multilayer telemetry (ML-INT) to
observe IP and optical layers simultaneously [22, 23].
The implementation of INT will greatly enrich the teleme-

try data collected for network operators to make NC&M
decisions, which provides opportunities for data analytics
(DA) and promotes the idea of knowledge-defined networking
(KDN) [24–27]. More specifically, one can integrate INT with
deep learning (DL) based DA schemes to realize artificial
intelligence (AI) assisted network automation [4, 28]. For
example, in [4], the authors showed the big picture of realizing
AI-assisted network automation by combining ML-INT with
DA. Here, ML-INT provides the network operator a complete
and realtime view about the electrical/optical network elements
(NEs) on each traffic flow’s routing path through an IP-over-
Optical network, while the DL-based DA conducts comprehen-
sive analysis on the statistics of both layers for accurate and
timely monitoring and troubleshooting. Note that, even though
the combination of INT/ML-INT and DL-based DA has shown
a few desired advantages, none of the existing proposals on it
has considered the important issues about privacy and security.
The necessity of realizing a privacy-preserving DL-based

ML-INT&DA system is two-fold. Firstly, in ML-INT, the data
plane aggregates and transmits plaintext telemetry data to the
control plane for getting analyzed. However, the telemetry
data is so rich that it can be analyzed to infer sensitive
information about the configuration and operation of the back-
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Fig. 1. Architecture of privacy-preserving DL-based ML-INT&DA system, PDP-SW: PDP switch, OXC: optical cross-connect, OPM: optical performance
monitor.

bone network. Therefore, if a malicious party eavesdrops the
data reporting channels, the security breach could be serious
[29]. Secondly, the privacy-preserving scheme can ensure the
security of both the training/testing data sets for the DL-
based DA. Hence, if the operator does not have the necessary
labor/hardware/software resources to design and train the DL
model for DA, it can outsource the training/verification process
of the DL model to a third party, by leveraging the well-known
“machine-learning-as-a-service (MLaaS)” scenario [30].
In this paper, we discuss a privacy-preserving DL-based

ML-INT&DA system for realizing AI-assisted network au-
tomation in backbone networks in the form of IP-over-Optical.
We first show a lightweight encryption scheme based on inte-
ger vector homomorphic encryption (IVHE) [31, 32], which is
used to encrypt plaintext ML-INT data. Then, we architect a
DL model for anomaly detection, which can directly analyze
the ciphertext ML-INT data. Finally, we present the imple-
mentation and experimental demonstrations of the proposed
system. The privacy-preserving ML-INT&DA system is real-
ized in a real IP over elastic optical network (IP-over-EON)
testbed, and the experimental results verify the feasibility and
effectiveness of our proposal. Specifically, the IVHE-based
encryption not only hides sensitive information regarding the
data plane well, but also keeps the relation buried in ML-INT
data, such that the DL-based DA can classify ciphertext data
to detect the root-causes of exceptions accurately.
The rest of the paper is organized as follows. We describe

the architecture and operation principle of our proposed system
in Section II. Then, Section III introduces the implementation
details. Next, the experimental demonstrations are discussed
in Section IV. Finally, Section V summarizes the paper.

II. SYSTEM DESIGN
This section describes the overall design of our privacy-

preserving ML-INT&DA system, including its architecture and
operation principle. Fig. 1 shows the overall architecture, and
it can be seen that our design involves both the data and control
planes. The data plane is a multilayer network taking the form
of IP-over-Optical. Here, the optical layer is built with optical
cross-connects (OXCs) and fiber links, and since we would like
to facilitate flexible-grid spectrum allocation [33–36] in the

optical layer, the OXCs all support bandwidth-variable optical
switching. The IP layer consists of PDP switches, application
servers, client hosts, and data collection agents.
The DL-based ML-INT&DA system works as follows [4,

22]. The optical performance monitor (OPM) on each OXC
collects telemetry data regarding active lightpaths (e.g., pow-
er levels, optical-signal-to-noise ratios (OSNRs), and central
wavelengths), and sends the data to the local PDP switch
that attaches to the OXC. Then, the PDP switch encodes the
received telemetry data together with that about the IP layer as
INT fields, and inserts them in the corresponding packets that
are transmitting over the lightpaths. When a packet is about
to exit the network, the egress PDP switch pops all the INT
fields in it and mirrors them to a data collection agent, where
all the telemetry data will be parsed, aggregated and processed
to obtain the ML-INT data for end-to-end monitoring. Based
on the software-defined networking (SDN) architecture, the
data collection agent forwards the ML-INT data to the SDN
controller through a data reporting channel. Finally, the DL-
based DA analyzes the multi-dimensional ML-INT data to
detect anomalies, and implements network adjustments for
AI-assisted network automation. As we also want to address
the privacy and security issues, we make sure that the ML-
INT&DA system is a privacy-preserving one, by designing
and implementing the IVHE-based encryption module and DL
model for anomaly detection in Fig. 1.
The IVHE-based encryption module and DL model for

anomaly detection work as follows. According to the time-
stamp, the data collection agent organizes each set of received
ML-INT data as a plaintext vector (x). Specifically, a plaintext
vector contains a set of ML-INT data that tells the status
of both layers, such as the packet forwarding latency and
port bandwidth usage of PDP switches in the IP layer, and
the power level, OSNR, and central wavelength of lightpaths
in the optical layer. For privacy-preserving, the IVHE-based
encryption module converts x into a ciphertext vector c′.
Note that, each unique plaintext vector will be mapped to
diverse ciphertext vectors in different rounds of encryption,
to prevent unlawful decryption. In the meantime, the IVHE-
based encryption is capable of preserving the inner correlations
buried in the ML-INT data, such that the DL model in the
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controller can operate on the ciphertext vectors directly for
anomaly detection. Based on the classification results from
the DL model, the centralized controller makes proper NC&M
decisions to deal with the detected exceptions [37–41].

III. IMPLEMENTATIONS OF SYSTEM
This section presents the implementation details of our pro-

posed privacy-preserving DL-based ML-INT&DA system, and
elaborates on the two key functional modules (i.e., the IVHE-
based encryption and the DL model for anomaly detection).

A. IVHE-based Encryption
As explained in Fig. 2, the IVHE-based encryption includes

three phases, i.e., key generation, key-switching, and vector
encryption [31, 32]. The key generation provides the initially
private key S, biased weight w, and random noise e, which
satisfy S · c = w ·x+ e. Next, in the key-switching, we get the
intermediate parameter S∗ and c∗, where S∗ is a new private
key in a binary-related form, and c∗ is a new ciphertext in
the bipolar representation, such that S · c = S∗ · c∗. Lastly, the
vector encryption obtains the final private key S′ and ciphertext
c′ according to S∗ ·c∗ = S′ ·c′. The hardness assumption of the
extended learning with error (LWE) problem [42] guarantees
the strength of the IVHE-based encryption.
The procedure of the IVHE-based encryption used in our

system is illustrated in Algorithm 1. Line 1 is for the initial-
ization, n′ denotes the predefined length of the final ciphertext
vector. Lines 2-3 realize the key generation, set the initial
private key S as an identity matrix I, calculate the initial
ciphertext vector c as w · x, and select the initial noise vector
as e = 0. The key-switching is achieved with Lines 4-5, and
the vector encryption is accomplished by Lines 6-9, where we
get the final pair of private key and ciphertext by constructing
a “public key” (i.e., the integer matrix M).

Algorithm 1: IVHE-based Encryption
Input: plaintext vector x, weight w.
Output: private key S′, ciphertext vector c′.

1 set the column of x as m, and n
′ = m+ 1;

2 obtain initial private key S as an identity matrix;
3 get initial ciphertext vector c = w · x;
4 convert c into intermediate parameter c∗;
5 transform S into intermediate parameter S∗;
6 generate three random integer matrixs T, E and A;

7 construct an integer matrix, M =

[
S∗ + E− T · A

A

]
;

8 get the final private key S′ = [I,T];
9 calculate the final ciphertext vector c′ =M · c∗;
10 return(c′, S′);

B. DL model for Anomaly Detection
Fig. 2 also describes the operation of the privacy-preserving

DL-based DA in the controller. We design the DL model for
anomaly detection with a deep neural network (DNN). The

DNN consists of seven layers, where the number of neurons
in the input layer equals the dimension of a ciphertext ML-
INT vector, there are five hidden layers with 256, 128, 64,
32, and 16 neurons, respectively, and the output layer has
neurons matching to the number of exceptions plus one (i.e.,
for the normal case). Only the output layer utilizes softmax
as its activation function, while the remaining layers all use
relu-based activation functions. We design the loss function to
describe the DNN’s accuracy by using the categorical cross-
entropy function. As the DL model essentially needs to solve
a classification problem, the DNN is trained in the off-line
manner until the loss function reaches a preset threshold.

IV. EXPERIMENTAL DEMONSTRATIONS

In this section, we implement the privacy-preserving DL-
based ML-INT&DA system in a real network testbed, ex-
perimentally demonstrate its effectiveness, and evaluate its
performance. As the techniques for hard failure detection have
been mature [43, 44], our demonstrations focus on detecting
soft failures, which only cause minor service degradations and
thus can be more difficult to detect and locate.

A. Testbed Setup

1) Data Plane: We build a small-scale but real IP-over-
EON testbed as the data plane, the EON consists of disag-
gregated optical line system (OLS) and bandwidth-variable
wavelength-selective switches (BV-WSS’), both of which
are commercial products. The disaggregated OLS utilizes
bandwidth-variable transponders (BV-T) that support the PM-
QPSK/16-QAM modulation formats to achieve the line-rates
within {100, 200, 400} Gbps. The OLS should also include
fiber links with in-line erbium-doped fiber amplifiers (EDFAs),
but due to the limited budget, we do not have enough fiber
links. Hence, we take advantage of an amplified sponta-
neous emission (ASE) noise generator, power attenuators,
and dispersion compensation modules to simulate the ef-
fects of fiber transmissions. The BV-WSS’ operate within
[1528.43, 1566.88] nm, and enable a spectrum allocation gran-
ularity of 12.5 GHz. We implement our ML-INT scheme in
the EON to collect the telemetry data regarding the power
levels, OSNRs and central wavelengths of lightpaths in it.
The IP layer is built with PDP switches, data collection

agents, and client hosts. The PDP switches are 3.2-Tbps
Barefoot switches equipped with 10/40 GbE optical ports,
which can be programmed with the P4 language [15] to
realize the ML-INT operations. We emulate each host with
a commercial traffic generator/analyzer. The data collection
agents are in charge of collecting and encryptingML-INT data,
and they are homemade and running on Linux servers.
2) Control Plane: The control plane of our testbed is de-

veloped based on the open network operating system (ONOS)
platform [45]. The controller is responsible for monitoring and
managing the data plane, and also runs on a Linux server.
It receives ciphertext ML-INT data from the data collection
agents through TCP connection, and processes the data with
a homemade DL model for anomaly detection.
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Fig. 2. Operation of privacy-preserving functional modules in DL-based ML-INT&DA system.

Fig. 3. Experimental setup.

B. Experimental Scenario
To verify the performance of our proposal, we first consider

a scenario of optical layer anomaly detection in the testbed.
As indicated in Fig. 3, we have a 100 Gbps lightpath (i.e.
Node A→ Node B), whose central wavelength and bandwidth
are 1550.39 nm and 50 GHz, respectively. The ASE noise
generator is placed in the fiber link to insert noise and cause
quality-of-transmission (QoT) degradation.
To emulate exceptions in the optical layer, we apply d-

ifferent configurations to the OLS system, such that the
receiver experiences various combinations of power level and
OSNR. Then, we utilize the privacy-preserving DL-based
ML-INT&DA system to collect the power-level, OSNR and
bit-error-rate before forward error correction (BERbFEC) of
the lightpath. Next, the data collection agent organizes the
received power-level and OSNR as plaintext ML-INT vectors,
and tags them based on their corresponding BERbFECs.
Specifically, if the ML-INT vector corresponds to a BERbFEC
that is lower than the preset threshold, we tag it as “Normal”.
Otherwise, we tag it as “Low Power” or “Degraded OSNR” in
accordance with the actual reason that leads to the high BER
value. Then, the data collection agent performs encryption
and reports ciphertext vectors to the centralized controller. We
collect ∼31, 000 ML-INT data samples in this scenario.

C. Feature Validation
Taking the correlation between the OSNR and power level

of a lightpath as an example, we verify the privacy-preserving
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Fig. 4. Results for applying IVHE-based encryption to ML-INT data.

feature of our proposal. Fig. 4(a) plots the combinations of
OSNR and power level of a lightpath, and the telemetry
data is in plaintext. Then, after applying the IVHE-based
encryption to each data sample in Fig. 4(a) for multiple times,
we obtain the ciphertext samples are shown in Fig. 4(b).
It can be seen that the IVHE-based encryption encrypts a
plaintext sample to different values in different encryption
rounds, and thus it would be difficult for a malicious party
to decrypt the ciphertext samples illegally. Therefore, the
sensitive information regarding the data plane gets protected
well. Meantime, the ciphertext data in Fig. 4(b) also indicates
that the original correlations of the power-level and OSNR are
kept through the encryption. This can be further justified, if
we compare the plaintext and ciphertext data in Figs. 5(a) and
5(b), respectively, when much more samples are considered.
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Fig. 5. Applying IVHE-based encryption to a larger set of ML-INT data.

To verify the performance of our privacy-preserving DL-
based DA, we conduct an experiment to compare it with a
DL model that directly operates on plaintext data. Specifically,
the data is divided into training and testing sets, which include
90% and 10% samples, respectively. Then, we use the plaintext
data to train a DL model whose structure is similar to that
of the one in Fig. 2, and consider it as the benchmark. The
training time is almost identical for the two DL models,
i.e., the ones operate on plaintext and ciphertext data sets
take 44.33 and 45.30 seconds to accomplish their training,
respectively. After being trained, the DL models perform well
in the controller for anomaly detection. Here, the one on
ciphertext data achieves a classification accuracy of 99.48%,
which is very similar to that of the benchmark (99.31%). These
results confirm the feasibility of our proposal.

D. Stress Tests
Next, we conduct two stress tests to evaluate the computing

overheads of the privacy-preserving scheme. In the first test,
we let the data collection agent encrypt a burst of tremendous
ML-INT data vectors that flood in within a second. The
processing time in Fig. 6 suggests that the data collection
agent completes the whole data encryption within 2.1 seconds,
when it burstily receives 104 ML-INT vectors in a second. The
results confirm that our IVHE-based encryption algorithm is
lightweight in terms of computing load.
In the second test, we flood a large amount of ML-INT

data to the controller within a second, and measure the total
processing time on it, which includes both the time used to
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Fig. 6. Results of stress tests in data collection agent and controller.

receive the data though TCP connections and that for anomaly
detection in the DL model. Fig. 6 indicates that the total
processing time on ciphertext is similar as that on plaintext.
Hence, the results further confirm that our privacy-preserving
scheme will not cause significant computing overheads to slow
down the processing in the control plane.

V. CONCLUSION

In this paper, we proposed a privacy-preserving DL-based
ML-INT&DA system for realizing AI-assisted network au-
tomation in IP-over-Optical networks with enhanced securi-
ty. We first presented a lightweight IVHE-based encryption
scheme, which can be used to encrypt plaintext ML-INT data
but maintain the inner correlations of ML-INT data. Then,
we architected a DL model for anomaly detection, which
can directly analyze the ciphertext ML-INT data. Finally, we
showed the implementation and experimental demonstrations
of the proposed system. The privacy-preserving DL-based
ML-INT&DA system was realized in a real IP-over-EON
testbed, and the experimental results verified the feasibility
and effectiveness of our proposal. Specifically, the IVHE-based
encryption not only hid sensitive information regarding the
data plane well, but also kept the inner correlations of the ML-
INT data, such that the DL-based DA can classify ciphertext
data to detect the root-causes of exceptions accurately.
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